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Abstract 

Modern automobiles and particularly those with off-road lineage possess subsystems that can 

be configured to better negotiate certain terrain types. Different terrain classes amount to 

different adherence (or surface grip) and compressibility properties that impact vehicle ma-

noeuvrability and should therefore incur a tailored throttle response, suspension stiffness and 

so on. This thesis explores prospective terrain recognition for an anticipating terrain response 

driver assistance system. Recognition of terrain and road terrain is cast as a semantic segmen-

tation task whereby forward driving images or point clouds are pre-segmented into atomic 

units and subsequently classified. Terrain classes are typically of amorphous spatial extent con-

taining homogenous or granularly repetitive patterns. For this reason, colour and texture ap-

pearance is the saliency of choice for monocular vision. In this work, colour, texture and sur-

face saliency of atomic units are obtained with a bag-of-features approach. Five terrain classes 

are considered, namely grass, dirt, gravel, shrubs and tarmac. Since colour can be ambiguous 

among terrain classes such as dirt and gravel, several texture flavours are explored with scalar 

and structured output learning in a bid to devise an appropriate visual terrain saliency and 

predictor combination. Texture variants are obtained using local binary patters (LBP), filter 

responses (or textons) and dense key-point descriptors with daisy. Learning algorithms tested 

include support vector machine (SVM), random forest (RF) and logistic regression (LR) as scalar 

predictors while a conditional random field (CRF) is used for structured output learning. The 

latter encourages smooth labelling by incorporating the prior knowledge that neighbouring 

segments with similar saliency are likely segments of the same class. Once a suitable texture 
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representation is devised the attention is shifted from monocular vision to stereo vision. Sur-

face saliency from reconstructed point clouds can be used to enhance terrain recognition. Pre-

vious superpixels span corresponding supervoxels in real world coordinates and two surface 

saliency variants are proposed and tested with all predictors: one using the height coordinates 

of point clouds and the other using fast point feature histograms (FPFH). Upon realisation that 

road recognition and terrain recognition can be assumed as equivalent problems in urban en-

vironments, the top most accurate models consisting of CRFs are augmented with composi-

tional high order pattern potentials (CHOPP). This leads to models that are able to strike a 

good balance between smooth local labelling and global road shape. For urban environments 

the label set is restricted to road and non-road (or equivalently tarmac and non-tarmac). Ex-

periments are conducted using a proprietary terrain dataset and a public road evaluation da-

taset. 

Keywords 

Advanced driver assistance systems, terrain recognition, semantic segmentation, monocular 

vision, stereo vision, machine learning, superpixels, supervoxels. 
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 Introduction 

 

 

 

1.1 Advanced Driver Assistance Systems (ADAS) 

Modern vehicles are designed to attain an ever increasing level of drivability, manoeuvrability, 

safety and comfort. These very sought after attributes of vehicles are made possible with the 

aid of a large array of sensors and an unprecedented amount of computational power. Fur-

thermore, the need to make vehicles aware of their surroundings has been at the heart of 

ADAS developments in recent years, to such an extent that even legislators are moving to ac-

commodate vehicle and safety standards or impose new ones. ADAS innovations are shaping 

the automotive industry and the concept of autonomous driving has long been hailed as the 

way of the future. The driving experience alongside safety and efficiency are currently of ut-

most importance for car manufacturers in a highly competitive global market. Most existing or 

envisioned ADAS applications require scene perception which is attainable to varying degrees 

by leveraging the field of computer vision. 

This item has been removed due to 3rd party copyright. The unabridged version of the thesis can 
be viewed in the Lanchester Library Coventry University.
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1.2 Motivation 

ADAS applications are designed to either assist the driver in taking a decision, or in situations 

when a timely response is critical towards an appropriate outcome autonomously take action. 

Examples of such ADAS include pedestrian protection (Geronimo et al. 2010), lane departure 

warning (Son et al. 2015), collision avoidance and adaptive cruise control (Vahidi and 

Eskandarian 2003), traffic sign recognition and so on. These are all applications specific to ur-

ban-like on road environments but more recently the natural environment and off-road spec-

trum of ADAS started receiving attention particularly in vehicles that possess off-road capabili-

ties. For example applications such as transparent bonnet could help a driver see the terrain 

during a steep ascent and manage steering action accordingly. In more common off-road situa-

tions terrain recognition technology (Gheorghe et al. 2015), (Tang and Breckon 2011) could 

help anticipate an appropriate terrain response. The latter ADAS example is the main driving 

factor behind the work presented in this thesis. Vehicle subsystems responsible for throttle 

response, suspension stiffness, direction response, differential locking and so on can be ad-

justed subject to driving conditions incurred by various terrain types. Configuring such vehicle 

subsystems to negotiate a certain terrain type leads to improved vehicle stability, drivability 

and manoeuvrability. The dynamic behaviour of a vehicle can be modelled given some known 

terrain adhesion and compressibility characteristics and a simple such example dealing with 

vehicle dynamics in vegetated terrain is provided by Talukder et al. (2002). 

1.3 Project aim 

Terrain perception is identified to be a prerequisite for any ADAS that would manage the ter-

rain response of a vehicle. The main aim of the project is to produce an effective terrain recog-

nition technology that can be accommodated later into an ADAS designed to improve the driv-

ing experience no matter the driving environment. At the moment a remote sensing solution, 
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in addition to normal tire pressure sensing and suspension readings, is needed to improve and 

anticipate an appropriate terrain response. This would complement the existing sensing on 

contact efforts based solely on CAN (controller area network) bus data (Taylor et al. 2012). As 

pointed by Khan (2013) terrain identification can be retrospective or prospective. Sensing on 

contact techniques estimate terrain retrospectively during vehicle traversal but a terrain re-

sponse anticipating ADAS requires prospective terrain identification. 

1.4 Research scope and objectives 

To bring about a remote sensing solution that will address terrain recognition (i.e. prospective 

terrain identification) one needs to consider how the environment information can be ac-

quired and what are the inherent strengths and weaknesses associated with a particular sen-

sor. Generally, for all ADAS applications a number of sensors are currently available such as 

active ranging sensors including LIDAR (Badino, Huber and Kanade 2011), time of flight camera 

(TOF) (Zhu et al. 2008), radar and sonar as well as passive ranging with stereo (Einecke and 

Eggert 2014) and monocular vision with monocular camera (Alvarez et al. 2012a). The latter is 

often used not only to acquire 2D imagery but also to recover 3D information using 2D image 

sequences, a technique otherwise known as structure from motion (Sturgess et al. 2009). In 

addition to a sensor of choice one needs to look into possible ways of getting the vehicle to 

make sense of its sensory inputs and the popular fields of image processing and artificial intel-

ligence (i.e. computer vision) have been explored in search of suitable data representation as 

well as hypothesis candidates, namely functions that will make predictions given the data rep-

resentation. Loosely the data representation, commonly known as feature representation, 

constitutes the lens through which a learning algorithm of choice experiences the driving sce-

ne of a vehicle. Therefore in devising a terrain recognition strategy one needs to consider both 

what makes good terrain saliency as well as how it should be learned given the amount of ob-
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tainable training data. To this end, semantic segmentation is the single most overlapping re-

search field that can address the recognition task at hand. Generally semantic segmentation is 

comprised of partitioning the domain into atomic units (e.g. pixels, voxels, grid, superpixels 

and supervoxels) followed by category label assignment to every unit. Object detection is the 

alternative to semantic segmentation and both are able to solve a given recognition problem. 

By contrast, object detection yields localised classification by means of some template match-

ing technique based on a sliding window. The end result represents a bounding box over a re-

gion of interest where template is maximally correlated. A major downfall of template match-

ing is that bounding boxes do not generally span the objects of interest tightly. Performance of 

this already coarse classification technique becomes worse when classes are amorphous, as is 

the case with terrain classes. Semantic segmentation is therefore a natural choice with rich 

literature and existing methods expressive enough to deal with uncertain quantities and ap-

proximate reasoning. Several major research objectives are at the core of this thesis: 

 Cast the prospective terrain recognition problem into a mid-level computer vision task, 

namely semantic segmentation of images recorded from a forward driving perspec-

tive. 

 Devise a strategy to capture the saliency of terrain classes, in pursuit of environment 

perception (i.e. semantics of possibly generic driving scenes, including both on-road 

and off-road situations) using a monocular colour camera 

 Semantically segment images recorded from a forward driving perspective into classes 

such as {grass, trees, sky, dirt, gravel, shrubs, tarmac and void}. Recall that terrain 

sensing is appealing from a vehicle drivability and manoeuvrability perspective. The 

terrain classes of choice contain multiple sub-classes themselves, however coarsely 

classified they could amount for a similar terrain response. 
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 Devise a strategy to improve upon the semantic segmentation by capturing and incor-

porating 3D real world terrain saliency obtainable with a ranging sensor. For example, 

stereo vision attainable using stereo camera is a promising technology and an active 

research topic (Scharstein and Szeliski 2002). 

 Find suitable ways to incorporate prior knowledge about the problem domain into 

model predictions. This can potentially enable more refined semantic segmentations 

of terrain types present in both off-road and on-road driving scenes. 

1.5 Thesis outline 

This thesis is comprised of seven chapters and the entire logic flow behind it can be summa-

rised using a dependency graph with each chapter represented by a node (Figure 1.1). The 

current chapter introduced the reader to the world of ADAS and defined the problem at hand 

while the remaining chapters are being outlined sequentially: 

 Chapter 2 

Sets out to explore the research scope by reviewing the literature around semantic 

segmentation, predominantly considering works in the field of computer vision that 

achieve terrain and road recognition either explicitly or implicitly. Given that semantic 

segmentation is a widespread recognition task, comprised of techniques (e.g. feature 

extraction and classification framework) that can be ported from one application do-

main to another, some works are reviewed on the basis of being incident to the estab-

lished research objectives. For example, with the advent of RGBD sensors semantic 

segmentation of indoor point clouds has been researched intensively leading to novel 

methods of representing geometric surface saliency or the interactions among 3D 

atomic units (i.e. segments). These concepts are in turn generic and therefore applica-

ble to point clouds of both indoor and outdoor environments. Other recent works 
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dealing with semantic segmentation of images and considering irrelevant label sets but 

relevant techniques are also reviewed here. A table that puts the research scope into 

perspective alongside the developments outlined in Chapters 4, 5 and 6 respectively, is 

created as part of the literature review to enable the reader a localised understanding 

of the endeavours presented in this thesis. 

 Chapter 3 

Introduces the popular discriminative learning algorithms that are prevalent in subse-

quent chapters. These algorithms have been used extensively for semantic segmenta-

tion in the literature and can be categorised depending on the type of predictions they 

make, namely scalar or structured. A scalar predicting algorithm outputs a single class 

label at each prediction step, effectively labelling a single segment (e.g. a pixel, voxel, 

grid cell, superpixel or supervoxel). Conversely, a structured predicting algorithm out-

puts a vector of labels, corresponding to a collection of segments that resemble a 

structured object, with each prediction step. The scalar predicting algorithms intro-

duced are support vector machine (SVM), random forest (RF) and logistic regression 

(LR). The conditional random field (CRF) is introduced for structured output learning. 

Subsequent chapters show incremental developments with every chapter building on 

top of the previous one. 

 Chapter 4 

Introduces the atomic units (i.e. segments) and dataset that are going to be used for 

semantic segmentation and sets out to find ways to capture the saliency of these 

atomic units or features that provide good discrimination among terrain classes using 

a monocular colour camera. In the absence of any depth information about the scene 

and knowing for a fact that plain colour appearance does not discriminate between 

some terrain classes such as dirt and gravel, texture is identified as a key saliency com-
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ponent. Both scalar and structured output learning algorithms are explored in conjunc-

tion with several features of different texture flavours in a bid to devise an all-round 

model that is capable to make accurate terrain predictions across a driving scene im-

age. 

 Chapter 5 

Builds on top of the previous Chapter 4 by fixing the best texture alternative as a ter-

rain saliency component and devises a strategy to incorporate an additional real world 

component obtainable with a ranging sensor of choice. Intuitively, terrain surface is as 

a discriminative property particularly able to set apart flat and bumpy segments even if 

all else fails (i.e. texture and colour). Two flavours of surface saliency are devised and 

explored alongside scalar and structured output learning algorithms in order to estab-

lish if there is anything to gain from a ranging sensor towards terrain recognition and 

how to leverage that. In the absence of annotated external datasets with reasonable 

variability among terrain classes, a public evaluation dataset for urban road terrain has 

been chosen to demonstrate tarmac recognition more objectively and mitigate the re-

liance on a proprietary data set. As one of the possible terrain classes, incurring a very 

distinctive terrain response due to virtually no compressibility and good surface adhe-

sion, tarmac is in fact the most likely terrain type experienced by driving automobiles. 

Both flavours of surface saliency cast within a structured learning framework have 

been benchmarked. It is important to consider at this point that, is spite of the reason-

able performance reported, labelling the tarmac superclass of urban road terrains is 

inherently detrimental to the road evaluation criteria. The road terrain recognition 

problem is more constrained than tarmac recognition and can be regarded as a sub-

problem. For example, evaluating the latter should not penalise labelling both roads 

and sidewalks as tarmac.  
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 Chapter 6 

Improves the semantic segmentation accuracy of urban road terrain reported in Chap-

ter 5 by constraining the two devised models to not only consider smooth predictions 

as prior knowledge, but also road shape. This stems from the fact that urban roads are 

designed for vehicles with Ackermann steering. Vehicle’s degrees of freedom in urban 

environments are restricted to physically and legally drivable areas. The terrain mate-

rial of choice for such areas is typically tarmac, thus accurately solving the road recog-

nition sub-problem provides for terrain perception and potentially for higher level rea-

soning about the scene too. 

 Chapter 7 

This chapter concludes the thesis by succinctly discussing the contributions highlighted 

in Chapters 4, 5 and 6 and providing directions for future work. 



Introduction 

9 

 

Figure 1.1 Thesis logic flow. Arrows represent dependencies among individual chapters 

1.6 Contributions 

Most notable contributions of this thesis can be collected from Chapters 4, 5 and 6 respective-

ly. They will be enumerated here according to their significance, with first being the most sig-

nificant contribution and subsequent ones with decaying levels of importance. 

 Modelling the shape priors of urban roads with compositional high order pattern po-

tentials. The contribution becomes particularly obvious by inspecting the literature re-

view (Table 2.2) and localising Chapter 6. This corresponds to the research objective of 

finding suitable ways to refine predictions by exploiting prior knowledge about the 

problem domain.  

 Exploring scalar output learning algorithms such as SVM, RF and LR alongside a struc-

tured output learning algorithm (i.e. CRF) with various flavours of texture in order to 

establish how to make good use of monocular vision for semantic segmentation of ter-
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rains. Texture is the terrain saliency of choice due to ambiguous terrain colours. The 

structured output learning algorithm promotes smooth labelling by enforcing the prior 

knowledge that neighbouring segments of similar saliency are likely part of the same 

class. Fusing information from a ranging sensor demands additional computations and 

therefore it is important to establish how to leverage colour and texture first. With a 

fixed texture representation, the same selection of algorithms is used to establish if 

stereo vision can indeed improve classification performance across terrain classes. Ex-

perimental evidence suggests that stereo vision is not automatically superior to mo-

nocular vision. In fact among the selected algorithms, structured output learning has 

been the only technique able to boost the accuracy using stereo vision. 

 Capturing the 3D surface saliency (or surface signature) of terrains from point clouds 

of both natural and urban outdoor environments using bag of spatial words with pro-

totypes of height and fast point feature histograms. This is synonymous to feature ex-

traction and produces a characteristic surface pattern (or signature) for every super-

pixel reconstructed as a supervoxel with stereo vision.  

 Capturing the texture saliency of terrains from monocular vision using bag-of-visual-

words with a high number of daisy descriptor prototypes, after experimenting with 

several texture descriptors including a lower quantisation level for daisy. 

 Experimental evaluation of proposed learning algorithms and terrain saliency on the 

proprietary JLR dataset and the public KITTI dataset 

 Extending the use of CHOPP augmented CRF to incorporate surface signatures from 3D 

atomic units such as supervoxels, in addition to colour and texture. This concept would 

be highly useful for other application domains and in particular for facial recognition 

where face shapes tend to be more constrained. In this context, shape and visual 

smoothness have already been considered jointly in the literature. However, a certain 
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spatial or geometric smoothness is to be expected since neighbouring atomic units sit-

uated on a face are likely to exhibit similar convexity. 

1.6.1 Published work 

The precursor to developments presented in Chapter 4, namely semantic segmentation albeit 

with a scalar predictor under different texture saliencies (Gheorghe et al. 2015), has been pub-

lished in the international conference on systems engineering (ICSEng). 

 Gheorghe, I., Li, W., Popham, T., and Burnham, K. J. (2015) ‘Superpixel Based Semantic 

Segmentation for Assistance in Varying Terrain Driving Conditions’. Progress in Systems 

Engineering. Springer, 691-698 

 Gheorghe, I., Li, W., Popham, T., Gaszczak, A., and Burnham, K. J. (2014) 'Key Learning 

Features as Means for Terrain Classification'. Advances in Systems Science. Springer, 

273-282 

 Haas, O., Kamran, S., Jaworski, P., and Gheorghe, I. (2013) 'Urban Traffic Simulators for 

Intelligent Transportation Systems'. Measurement and Control 46 (10), 309-314 
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 Literature review 

2.1 Semantic segmentation and terrain recognition 

Semantic segmentation is a very wide and active research area that is being pursuit in a do-

main specific fashion. Recent advancements in semantic segmentation have been driven by 

different application scopes, such ADAS for automotive, medical imaging, internet services (i.e. 

face tagging; image retrieval based on image semantics rather than text tags etc.), augmented 

reality and gesture control to name a few. Even though advancements in these fields are appli-

cation oriented, having semantic segmentation as common denominator leaves room for more 

convergence between innovations. As the name suggests it, semantic segmentation refers to 

the process of assigning a meaning to every element, or atomic unit of a particular environ-

ment, acquired with the aid of sensing technology. In spite of the numerous endeavours only 

two types of publications will be reviewed here, namely those that set out to achieve similar 

labelling (e.g. urban or natural terrain classification) or those that present relevant techniques 

(e.g. feature extraction, classification framework) not necessarily in conjunction with an over-

lapping label set. In this work some recent advancements in semantic segmentation of indoor 

point clouds have been bridged together with recent developments in semantic labelling of 

general images in order to achieve state of the art outdoor terrain labelling (both on road and 

off-road) for ADAS development. Naturally, the relevant publications will be reviewed and put 

into perspective alongside with the contributions of this thesis. As far as the sensing technolo-

gy goes, two types of atomic units are prevalent here, namely 2D segments obtainable via a 
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monocular camera and 3D segments obtainable via both passive and active ranging sensors. 

Passive ranging sensors include stereo cameras while active ranging sensors include LIDAR and 

RGBD sensors. Guiding the literature review in the direction of ADAS is not needed as it will 

become obvious that completely different ADAS applications have overlapping labelling needs 

and hence can be served by similar architectures. Indeed, much work has been done recently 

in classifying the road subclass of tarmac, especially for urban scenarios where roads are noth-

ing but tarmac areas confined to a physically and legally drivable region. The push for a reliable 

solution in such cases is heavily motivated by ADAS where road occupancy is of paramount 

importance. For example, pedestrian protection (Geronimo et al. 2010), lane departure warn-

ing systems (Son et al. 2015), collision avoidance (Vahidi and Eskandarian 2003) and so on. 

Knowing where the road is helps towards higher level reasoning about a traffic scene (e.g. pos-

sible interactions) since the road spans the physical location of objects (Ess et al. 2009), (Geiger 

et al. 2014). It is obvious that such labelling of urban environments can indirectly provide for a 

totally different ADAS application where surface adhesion (or road grip) and terrain compress-

ibility demand an appropriate vehicle behaviour. The labelling space of the latter ADAS would 

accept classification of both {road} and {sidewalk} classes as a {tarmac} superclass since they 

are generally made of the same material and therefore have the same adhesion and compress-

ibility properties. Even though semantic segmentation for a road occupancy ADAS is more con-

strained, it would be sufficient for a road material ADAS since in urban environments vehicle’s 

degrees of freedom are governed by regulations (e.g. sidewalks are usually designed for pe-

destrian use only). On the other hand driving in natural environments (i.e. off-road) requires a 

more relaxed material classification approach as such environments lack structure. In addition 

to that, the only factors restricting vehicle’s degrees of freedom are large non-drivable obsta-

cles (e.g. trees) (Manduchi et al. 2005). Other than categorising the set of labels and the type 

of segments they are attributed to, it is also important to review how prior knowledge (if any) 
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is incorporated into prediction of labels. Prior knowledge represents the information that is 

known beforehand about the driving scene. In a Bayesian sense, a conclusion or posterior can 

be obtained by combining the initial beliefs with new evidence when available. Road priors can 

be classified given the type of knowledge they represent. In the context of general semantic 

segmentation the following priors become apparent: location, temporal, smoothness and 

more recently global shape (Kae et al. 2013), (Yujia, Tarlow and Zemel 2013). Naturally, some 

of these priors are also encountered in the literature dealing with semantic segmentation of 

road or terrain scenes. Typically referred to as assumptions, they can be either learned by ex-

ploring a training set or simply imposed. For example, road location in an image can be learned 

in a supervised way by using ground truth annotations of training examples (Alvarez et al. 

2013) or imposed as a hard assumption such as the image bottom (Alvarez et al. 2012a), below 

the horizon line, towards the vanishing point (Alvarez, Gevers and Lopez 2010) etc. Temporal 

coherence of image sequences is usually motivated by practical applications whereby the sce-

ne in front of the vehicle is likely to be similar from one frame to another unless severe steer-

ing is applied (Alvarez et al. 2013), (Alvarez, Gevers and Lopez 2010), (Beucher and Yu 1994). 

Finally, smoothness is usually encouraged via a probabilistic graphical model framework that 

makes joint predictions across the entire image effectively labelling all the individual pixels in a 

structured fashion (Alvarez et al. 2012b). Alternatively, this can be performed by over-

segmenting the image into a grid or superpixels in order to reduce graph complexity and miti-

gate redundancies (Farabet et al. 2013). Working with atomic representation of images such as 

pixels or superpixels and predicting them individually means that even if a certain prior is ad-

vertised as a global shape prior (i.e. straight or turning road shape (Alvarez et al. 2013)), it is 

merely a location prior that helps to refine the prediction of a scalar label. An exceptional case 

would be if these atomic representations span the entire classifiable objects without exceeding 

their boundaries but this cannot be guaranteed and it is the job of a structured classifier to 
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learn how various atomic parts puzzle together to form objects and hence their global shape. 

Otherwise, shape priors are made explicit in the context of a structured predication framework 

that reasons about all the atomic units jointly (Kae et al. 2013), (Yujia, Tarlow and Zemel 2013). 

Whilst these priors can in theory be introduced selectively or combined at various levels within 

the classification architecture, current relevant road scene literature (Alvarez et al. 2013), (Al-

varez, Gevers and Lopez 2010) makes use of location and temporal coherence priors as a top 

down refinement step applied in conjunction with the bottom up classification (scalar predic-

tion) of pixels, grid or superpixels based on salient features. Furthermore these priors are de-

rived from segments of perspective images. Similarly, such priors are encountered to varying 

extents in the literature that considers 3D atomic units such as voxels or supervoxels for classi-

fication. For example in the works of Douillard, Brooks and Ramos (2009), Lim and Suter 

(2009), Niemeyer, Rottensteiner and Soergel (2012) a smoothness prior is imposed between 

3D segments essentially constraining neighbouring segments with similar saliency to have the 

same label. Voxels represent collections of many neighbouring 3D points, just as pixels repre-

sent collections of many neighbouring 2D perspective points. In theory, one pixel is a discrete 

representation within a digital image that corresponds to an infinite number of light intensities 

within a continuous image. A similar analogy can be made between voxels and real world con-

tinuous surface points. Moreover, just as pixels can be grouped together to form superpixels 

based on their location, texture and colour coherence (Achanta et al. 2012), voxels can also be 

grouped together (Douillard et al. 2011b), (Papon et al. 2013) in order to reduce redundancies, 

computation and the complexity of subsequent classification steps. The 3D grouping criteria 

are location and voxel proximity information or neighbouring distribution. Finding proximity 

information is often formulated as a plane fitting or normal estimation problem. In addition to 

that, colour information may also be used to guide voxel grouping and hence generate more 

accurate supervoxels. While urban environments permit the integration of more prior 
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knowledge to refine classifier predictions of a semantic segmentation task, natural environ-

ments are highly variable and unstructured allowing for only temporal or smoothness priors at 

most. There is no location or global shape that can be enforced upon natural environments. 

Even the location of a class such as {sky} can be different depending on vehicle tilt and there-

fore it is best avoided. In fact, the majority of publications that genuinely consider semantic 

segmentation of natural environments use a no prior, classifier only strategy (Angelova et al. 

2007), (Bajracharya et al. 2008), (Filitchkin and Byl 2012), (Hadsell et al. 2009), (Jansen et al. 

2005), (Lalonde et al. 2006), (Manduchi et al. 2005). In the next subsections more details will 

be provided about the literature considering the urban environment, the natural environment 

as well as the other work incident to this thesis either via feature extraction or classification 

framework. 
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Table 2.2 Literature review of semantic segmentation (continued) 
se

m
an

ti
c 

se
gm

e
n

ta
ti

o
n

 a
u

th
o

rs
 

label predictions 

2D 
atomic 
units 

3D  
atomic  
units 

classes 

camera stereo LIDAR RGBD driving scene 

o
th

e
r 

ir
re

le
va

n
t 

scalar structured 

p
ix

e
ls

 

gr
id

 

su
p

er
p

ix
e

ls
 

vo
xe

ls
 

gr
id

 

su
p

er
vo

xe
ls

 

vo
xe

ls
 

gr
id

 

su
p

er
vo

xe
ls

 

vo
xe

ls
 

gr
id

 

su
p

er
vo

xe
ls

 

gr
as

s 

tr
e

e 

sk
y 

d
ir

t 

gr
av

e
l 

sh
ru

b
s 

ta
rm

ac
 s

u
p

er
cl

as
s 

ro
ad

 s
u

b
cl

as
s 

vo
id

/o
th

e
r 

re
le

va
n

t 

n
o

 p
ri

o
r/

cl
as

si
fi

e
r 

o
n

ly
 

lo
ca

ti
o

n
 p

ri
o

r 

te
m

p
o

ra
l c

o
h

er
e

n
ce

 

p
ai

rw
is

e
 

p
o

te
n

ti
al

s 

h
ig

h
 o

rd
e

r 

p
o

te
n

ti
al

s 

te
m

p
o

ra
l c

o
h

er
e

n
ce

 

sm
o

o
th

n
es

s 
p

ri
o

r 
(s

p
ar

se
 c

o
n

n
e

ct
iv

it
y)

 

sm
o

o
th

n
es

s 
p

ri
o

r 
(d

e
n

se
 c

o
n

n
e

ct
iv

it
y)

 

sm
o

o
th

n
es

s 
p

ri
o

r 

gl
o

b
al

 s
h

ap
e

 p
ri

o
r 

 (Kae et al.  
2013) 

   X   X                       X 

 (Kahler and Reid 
2013) 

   X                X          X 

 (Khan, Komma and 
Zell 2011) 

X         X           X    X  X  X  

 (Krahenbuhl and 
Koltun 2012) 

    X    X            X X X    X  X X 

 (Lalonde et al.  
2006) 

X              X              X  

 (Li and Sahbi  
2011) 

   X  X    X           X X X      X X 

 (Lim and Suter 
2009) 

   X             X    X X       X  

 (Manduchi et al. 
2005) 

X        X      X      X X  X X X   X  

 (Niemeyer, Rotten-
steiner and Soergel 

2012) 
   X           X       X    X X  X  

 (Passani, Yebes and 
Bergasa 2014) 

   X     X                   X X  

 (Rusu et al.  
2009) 

   X              X            X 

 (Sturgess et al. 
2009) 

   X  X   X   X          X X     X X  

 (Vitor et al.  
2013) 

X          X                 X X  

 (Vitor, Victorino and 
Ferreira 2014) 

X          X                 X X  

 (Wang, Fremont and 
Rodriguez 2014) 

X        X                   X X  

(Yujia, Tarlow and 
Zemel 2013) 

   X   X  X                     X 

 (Zhang, Wang and 
Yang 2010) 

   X    X   X   X        X X     X X  

 (Zhang and Chen 
2012) 

    X    X            X X X    X  X X 

Chapter 4 
 

X   
 

      X   
 

      X X X X X X X  X  

Chapter 4 
 

   X       X          X X X X X X X  X  

Chapter 5 
 

X   
 

  
 

   X   X       X X X X X X X 
 

X  

Chapter 5 
 

   X       X   X       X X X X X X X  X  

Chapter 5 
 

   X       X   X              X X  

Chapter 6 
 

   X   X    X   X              X X  

 



Literature review 

19 

2.2 Urban environment 

Road terrain classification in urban environments has been pursued and reported in a number 

of previous publications. Some works consider the semantic segmentation of 2D atomic units 

obtainable via a monocular camera, while other focus on 3D atomic units obtainable via either 

stereo vision or LIDAR. Out of those that classify 2D atomic units some take a scalar labelling 

strategy to predict the labels of units individually with no prior (Alvarez, Salzmann and Barnes 

2013), (Ess et al. 2009), (Fernandez-Maloigne and Bonnet 1995), (Vitor et al. 2013), (Vitor, Vic-

torino and Ferreira 2014), (Wang, Fremont and Rodriguez 2014), with location prior (Alvarez et 

al. 2012a), (Alvarez, Salzmann and Barnes 2014), (Brust et al. 2015), with temporal coherence 

(Beucher and Yu 1994) or both location and temporal coherence (Alvarez et al. 2013), (Alvarez, 

Gevers and Lopez 2010). Others take a structured labelling strategy to predict all 2D units joint-

ly using a smoothness prior (Alvarez et al. 2012b), (Passani, Yebes and Bergasa 2014). 

The work of Fernandez-Maloigne and Bonnet (1995) is an early example of road segmentation 

using texture information in conjunction with a neural network. More recently Alvarez, Salz-

mann and Barnes (2013) learn the contribution of various colour spaces in a bid to create a 

robust appearance representation of road pixels based on training examples. Classification is 

then performed by applying a threshold on the linear combination of these colour spaces. Ess 

et al. (2009) classify individual grid patches of an image (i.e. scalar output) into a number of 

classes using visual information and additional depth information if available. Such semantic 

segmentation is used as a meta-representation towards higher level reasoning. This includes 

estimating the road type {left, right turn, straight, junction etc.} or simply detecting the pres-

ence of crossings, pedestrians and cars in the overall image. Vitor et al. (2013) use a stereo 

disparity map as a pre-processing step to coarsely threshold the reference image into multiple 

planes (i.e. horizontal and vertical) representative of the free space, obstacles and other ob-



Literature review 

20 

jects within the road scene. Simultaneously, a watershed transform segments such image into 

superpixels. With each superpixel being described by a combination of both colour statistics 

and plane occurrences, an artificial neural network is employed for classification of all the 

atomic units into road and non-road. Incremental work with respect to (Vitor et al. 2013) is 

presented in (Vitor, Victorino and Ferreira 2014). Again the road scene image is segmented 

into superpixels using the watershed transform. However, superpixel features are obtained 

using bag-of-visual-words (i.e. colour, texture and pixel location) and bag of disparity words. 

Subsequently each superpixel is classified independently using an ensemble classifier. Wang, 

Fremont and Rodriguez (2014) attain pixel-wise classification of drivable area in an image by 

intersecting two binary maps obtained via thresholds. One map is generated using the dispari-

ty image and the other using a distribution of seed pixels in the log-chromaticity space. Alter-

natively, such binary maps are converted into likelihood maps whereby an element-wise mul-

tiplication between the two would yield a joint confidence map of road pixels. Still in the scalar 

labelling strategy of 2D segments but this time with location prior, Alvarez et al. (2012a) use a 

convolutional neural network (CNN) to predict each pixel as sky, road and vertical structures. 

The CNN is trained on machine annotated training sets and the road is assumed on the bottom 

part of an image. Alvarez, Salzmann and Barnes (2014) propose a direct superpixel labelling by 

a traffic-aware road prior. Such prior is obtained using the output responses of typical object 

detectors in traffic images to rule out non-road locations. As an alternative, a non-parametric 

road prior is proposed, by exploiting the ground truth of similar superpixels within the training 

set. Brust et al. (2015) encode spatial information using the absolute position of a patch in the 

fully connected layers of a CNN, thus effectively learning a road location prior from training 

data in addition to visual features. Some authors consider only temporal coherence such as 

Beucher and Yu (1994) where a watershed segmentation is applied to the gradient of a dynam-

ic time filtered image resulting in crude superpixels which are classified based on their geo-
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metric characteristics. Other authors consider the integration of both location and temporal 

coherence. For example Alvarez et al. (2013) attain pixel predictions (i.e. labelling) by placing a 

threshold on a confidence map obtained using a combination of location prior and illumination 

invariant statistics describing the road. A classifier is employed to learn and predict the loca-

tion prior which is discretized into straight road, strong turns and soft turns. Prototypical road 

confidence shapes are learned from the training data by averaging the annotated ground truth 

within each category. Furthermore, the location prior estimation is subject to temporal coher-

ence since perspective image sequences of a typical driving scenario contain smooth transi-

tions between road shapes from one frame to another. Alvarez, Gevers and Lopez (2010) use a 

Bayesian framework to combine different cues extracted at the image level under the assump-

tion that road is below the horizon line, aimed at the vanishing point and there is an inherent 

perspective layout and geometry of the road scene. This geometrical road prior is obtained by 

simply averaging the ground truth across the training samples. Temporal smoothing is applied 

to refine current predictions based on past ones. Structured prediction for 2D atomic units has 

also been explored before, effectively imposing a smoothness prior on the final labelling of a 

scene. Alvarez et al. (2012b) train a CNN to provide unary potentials for each class within a 

conditional random field framework (CRF), used for labelling consistency. Here classes that are 

typically represented by just a few pixels in an image {i.e. other} such as traffic sign, col-

umn/pole are filtered out. Both {sidewalks and road} are part of the tarmac superclass in a 

typical urban scenario, but they are assigned distinct labels. This again shows that semantic 

labelling is achieved for tarmac road, albeit from the perspective of a different category of 

ADAS, namely one that prioritises scene occupancy over the surface adhesion or compressibil-

ity. Similarly, Passani, Yebes and Bergasa (2014) apply a pairwise CRF on pixel atomic units but 

with hand-crafted features and on down-sampled images for faster processing. 
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Finally, semantic segmentation of urban environment has also been attempted with 3D atomic 

units from either stereo vision (Sturgess et al. 2009), (Zhang, Wang and Yang 2010) or LIDAR 

(Aijazi, Checchin and Trassoudaine 2013), (Douillard et al. 2011a), (Douillard, Brooks and Ra-

mos 2009), (Lim and Suter 2009), (Niemeyer, Rottensteiner and Soergel 2012). Out of these 

works only Aijazi, Checchin and Trassoudaine (2013) perform scalar label predictions with no 

prior. Here the points acquired via a LIDAR are turned into voxels and further augmented with 

reflectance intensity, RGB colour as well as surface normals in a bid to segment the scene into 

coherent supervoxels. After segmentation, a semantic label is attributed to each supervoxel 

individually based on predefined thresholds of surface normals, height, colour and geometrical 

shape. The rest of works perform structured label predictions with smoothness prior. Among 

these, some consider the integration of temporal coherence given the sequential nature of 

scenes such as Zhang, Wang and Yang (2010). Douillard et al. (2011a) project the returns of 2D 

laser scans in the image domain in order to seed regions of interest (ROI). The ROI’s size adapts 

with the distance of a point in the scan and ROI’s features encode both visual appearance as 

well as the corresponding geometric properties of the laser map. Given the nature of the laser 

scans, a chain CRF framework is proposed to allow for structured prediction. This is extended 

to a more general CRF (i.e. lattice like) by considering temporal links between scans, effectively 

disguising temporal coherence into a smoothness prior. The label of each ROI is aggregated at 

the seed locations of the scan projections within an image. The major limitation of this work is 

that, in spite of temporal linking, a lot contextual information is lost when considering only a 

2D semantic map. A fixed pitch angle of the laser scanner makes it impossible to consider clas-

ses if they are below a certain height. However the graphical structure allows for interchange-

ability between temporal and spatial linking which renders the method usable with full 3D 

scans via a LIDAR. Douillard, Brooks and Ramos (2009) use the CRF framework sparingly to 

predict only labels for ground voxels as {grass, asphalt} in an urban scenario. More elevated 
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voxels are clustered into objects and classified scalarly in a different step using a discriminative 

classifier. Each voxel is augmented with visual appearance information coming from corre-

sponding ROI within the perspective image. Lim and Suter (2009) segment LIDAR point clouds 

into supervoxels and represent them by their colour, reflectance and geometry features. Struc-

tured prediction of supervoxel semantics is achieved using a CRF with multi-scale pairwise 

connections. Niemeyer, Rottensteiner and Soergel (2012) generate point clouds using airborne 

LIDAR in urban areas and each voxel is classified into asphalt ground, natural ground, building, 

low vegetation and tree. Therefore the non-asphalt terrain classes are merged into a single 

natural ground class. Features include intensity, distance to ground and distribution saliency 

derived from local point covariance matrix. Structured prediction is achieved using a pairwise 

CRF where local node links are established via a nearest neighbour search in voxel space. Edge 

potentials are computed using absolute difference between the feature vectors of neighbour-

ing voxels. In contrast, the works of Sturgess et al. (2009) and Zhang, Wang and Yang (2010) 

use stereo vision to extract structure from motion features for each atomic unit. Since these 

features correspond to projections of 3D atomic units of point clouds into 2D perspective units 

labelling can be attributed to both. More specifically Sturgess et al. (2009) perform pixel-wise 

semantic segmentation of an entire road scene. Crude structure from motion features are pro-

jected from 3D point clouds to 2D image plane and used in conjunction with appearance fea-

tures. A CRF is augmented with high order smoothness potentials, essentially adding a cost to 

assigning different pixel labels within a superpixel segment. The quality of the superpixel seg-

ments is also accounted for in the formulation of such potentials. Zhang, Wang and Yang 

(2010) achieve semantic segmentation of urban scenes via structured prediction of superpixel 

labels using a Markov random field (MRF). Superpixel unary potentials are the classification 

scores of a random forest classifier that uses only 3D features from dense depth maps ob-

tained via a video sequence. Superpixels are regarded as 3D patches and their saliency is cap-
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tured using point’s normal, height, local and neighbouring planarity as well as the distance to 

camera path. Pairwise potentials on the other hand are only a measure of colour similarity 

between neighbouring superpixels. In addition a pixel-wise temporal fusion is applied to 

smooth prediction by considering neighbouring frames. 

2.3 Natural environment 

Semantic segmentation of natural environments, including terrain type classification has been 

tackled in a number of previous specialised works using both 2D atomic units of monocular 

vision (Bajracharya et al. 2008), (Hadsell et al. 2009), (Jansen et al. 2005) and 3D atomic units 

of LIDAR (Lalonde et al. 2006), (Manduchi et al. 2005). Terrain classification has also been con-

sidered in a more generic sense with both natural and man-made terrains i.e. {tarmac} in (An-

gelova et al. 2007), (Filitchkin and Byl 2012), (Khan, Komma and Zell 2011) where the input 

sensor is again a monocular camera. A common trait among all these works appears to be the 

intentional omission of priors and the adoption of classifier only techniques. This is not surpris-

ing since unlike their urban counterpart, natural environments lack structure which makes 

classification harder (Manduchi et al. 2005). However, the general semantic segmentation lit-

erature touches down on some natural environment and terrain classes (e.g. {grass, tree, sky, 

gravel, road} among other irrelevant ones) with smoothness priors (Farabet et al. 2013), (Li 

and Sahbi 2011), (Zhang and Chen 2012). It is therefore still reasonable to assume that seg-

ments with similar saliency are likely segments of the same class. The works dealing with 2D 

atomic units will be reviewed in more detail followed by those dealing with 3D segments. The 

work of Angelova et al. (2007) uses an ensemble of classifiers to distinguish among several 

terrain classes within image patches. Feature representation becomes more complex only 

when classes are visually similar and hard to distinguish. Bajracharya et al. (2008) use colour 

information to classify the scene into traversable and non-traversable terrains. Stereo vision is 
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utilised only at close range as part of a pre-classification step in order to find seed image loca-

tions for feature extraction. The training set is updated every few meters and subsequently all 

individual pixels within an image are classified by a trained linear SVM. Filitchkin and Byl (2012) 

consider terrain classification for a robotic application, namely a legged robot with adjustable 

gait. A linear SVM is trained to distinguish between several terrain classes described via bag-of-

words features based on pixel descriptors. Hadsell et al. (2009) use a stereo module as a su-

pervisor that assigns labels at close range thus creating training examples. Subsequently, a 

classifier is trained at every frame using lagging examples in order to achieve fast adaptability. 

Features are learned offline by using a multi-layer CNN. Jansen et al. (2005) fit colour distribu-

tions in images with Gaussian mixture models (GMM) and pixel classification of terrain types is 

performed using maximum likelihood. It has been identified here that recognising materials in 

natural terrain leads to improved vehicle drivability. From an application perspective the re-

search of Jansen et al. (2005) is maximally aligned with the work being presented in this thesis. 

Khan, Komma and Zell (2011) investigate terrain classification from a mobile platform with a 

down facing camera. A high resolution image is over-segmented into a grid where each indi-

vidual cell is classified scalarly by a random forest classifier. In this context several texture de-

scriptors are evaluated, including local binary patterns and key point detectors such as daisy 

(Tola, Lepetit and Fua 2010). Daisy and other descriptors are used directly as features and are 

computed at only one seed location per cell. Lastly, the natural environment has also been 

semantically segmented using 3D atomic units. Lalonde et al. (2006) classify natural terrain 

into three classes namely scatter, linear and surface using LIDAR points as atomic units. Salien-

cy features based on covariance matrix in point neighbourhoods are fitted by Gaussian mixture 

models (GMM). Subsequently, classification of each voxel is performed using a Bayesian classi-

fier. Manduchi et al. (2005) present two methods for terrain cover perception, one using col-

our and the other using LIDAR range. Pixel-wise classification is achieved by a maximum likeli-
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hood classifier, where the class-conditional likelihood is learned from training samples using a 

GMM. As a separate solution, single axis LIDAR returns are classified by analysing statistical 

models of range in a bid to discriminate between scattered (e.g. grass) and smooth (e.g. soil) 

patterns. The specialised literature around terrain classification in natural environments is still 

scarce but some notable endeavours have their origins in the learning applied to ground vehi-

cles (LAGR) program under the umbrella of defence advanced research projects agency 

(DARPA) (Angelova et al. 2007), (Bajracharya et al. 2008), (Hadsell et al. 2009). Terrain percep-

tion has so far been researched predominantly in the context of robotic applications including 

unmanned ground vehicles (UGV) in natural environments where terrain traversability is key to 

robot functionality (Angelova et al. 2007), (Bajracharya et al. 2008), (Filitchkin and Byl 2012), 

(Hadsell et al. 2009), (Manduchi et al. 2005). 

Works in semantic segmentation of images depicting general scenes often consider a label set 

that is overlapping to certain terrain classes, however they consider many classes (some irrele-

vant too e.g. cow, plane) and a disproportionate amount of training examples (i.e. only few 

samples per class) and therefore lack the much needed intra-class variability as required for an 

ADAS application. For the sake of completeness, since they make use of smoothness priors in 

conjunction with terrain types, they shall be reviewed here too. Farabet et al. (2013) use a 

multi scale convolutional neural net to classify every pixel in an image. First the input image is 

transformed using a Laplacian pyramid and then copies of the same convolutional network 

learn features at each scale thereby not only capturing texture and shape but also more con-

text. This has been shown to counterbalance the need to enforce label consistency and scene 

level relationships via structured learning. Li and Sahbi (2011) segment images into grid atomic 

units and label them using a CRF augmented with higher order neighbourhoods. Smoothness 

has been enforced by considering pairwise potentials at four neighbouring cells as well as 

higher order potentials based on cell groupings. Zhang and Chen (2012) use a fully connected 
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pairwise CRF by linking together the hidden variables of all pixel nodes. Dense graph connectiv-

ity is the alternative to higher order potentials that would enable a CRF to incorporate more 

context for better semantic segmentation essentially permitting long range interactions be-

tween variables of interest. 

2.4 Relevant techniques 

Other works in the field of semantic segmentation are appealing and incident to the work pre-

sented in this thesis in two ways: either because of how they encode interactions between 

atomic units, or because of how their saliency is captured. The former aspect refers to the 

classification framework, whilst the latter refers to feature extraction. Indeed, recent work of 

semantic segmentation for general scenes tackle the labelling problem of atomic units with 

structured prediction under the popular conditional random field (CRF) (Lafferty, McCallum 

and Pereira 2001) or structural support vector machine (SSVM) (Tsochantaridis et al. 2005). 

Such frameworks allow for all atomic units to be classified jointly whilst also considering how 

interactions among variables would influence labelling. For most part of this thesis, only devel-

opments of CRF will be reviewed and further utilised. The connectivity of such a graphical 

model has traditionally been restricted, allowing for each hidden variable representative of an 

atomic unit to only depend on a few neighbouring variables in order to make learning and in-

ference efficient (Farabet et al. 2013), (Fulkerson, Vedaldi and Soatto 2009). Smoothness pri-

ors via pairwise connections gained popularity for semantic segmentation of images after the 

introduction of CRF by Lafferty, McCallum and Pereira (2001). In order to increase the quality 

of segmentation in such restricted connectivity models, some works have introduced higher 

order potential functions that would depend on more than two atomic units at a time being 

able to catch longer ranges of interactions (i.e. between more than the immediate neigh-

bours). Such models often encourage consistency or smoothness in higher order neighbour-
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hoods (Ibrahim and El-Saban 2011), (Li and Sahbi 2011). More recently, very promising results 

have been obtained with restricted connectivity models by augmenting the pairwise CRF with 

higher order compositional pattern potentials (Yujia, Tarlow and Zemel 2013), most notably a 

global shape prior learned using a restricted Boltzmann machine (RBM) (Kae et al. 2013), 

(Yujia, Tarlow and Zemel 2013). Such models are still in their infancy but are very appealing 

because they enforce both local labelling consistency as well as global shape, something that 

the traditional models would benefit from since they tend to oversmooth labelling around the 

edges of objects. Other than augmenting the CRF with higher order potentials there is also the 

option to use only pairwise potentials but move to densely connected models (i.e. link each 

node with the rest) and some works have done that by making certain assumptions such as 

having Gaussian edge potentials (Campbell, Subr and Kautz 2013), (Krahenbuhl and Koltun 

2012) or spatial stationarity (Zhang and Chen 2012).  

The recent emergence of commercially available (and cheap) RGBD sensors has opened possi-

bilities for a number of new applications especially in indoor environments, such as manipulat-

ing multimedia systems with gesture recognition technology or robotic manipulation of se-

mantic objects. The prospect of such applications has stirred up a lot of excitement and much 

research has gone into the semantic segmentation of a 3D indoor scene. Naturally some ma-

ture concepts from 2D semantic segmentation of images have been brought forward into the 

3D realm. For example, relational reasoning about the atomic units under a probabilistic 

framework with models such as the CRF (Kahler and Reid 2013), (Rusu et al. 2009) or SSVM 

(Anand et al. 2012), feature representation with popular image descriptors (extended to 3D) 

and even vector quantisation techniques such as bag of visual (and the analogous depth) 

words (Hernandez-Vela et al. 2012). Intuitively, the role of structured prediction remains the 

same as with 2D segments. A smoothness prior for instance encourages similar segments to 

have the same label. The difference is that the measure of similarity now captures both visual 
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appearance as well as surfaceness such as the coplanarity and convexity between segments 

(Anand et al. 2012). Conversely, some characteristic novel features and novel point cloud de-

scriptors have also been developed in a bid to better capture saliency of 3D atomic units. One 

notable such example is the fast point feature histogram (FPFH) (Rusu, Blodow and Beetz 

2009), a point descriptor that captures surface saliency based on the point normals of a neigh-

bourhood. The FPFH descriptor is independent of the view point and has been found to pro-

vide good discrimination between primitive geometric surfaces by Arbeiter et al. (2012) and 

particularly in conjunction with a structured learning framework by Rusu et al. (2009). Moreo-

ver, it does not consider the distance between points as a feature which makes it suitable for 

datasets where far away points are inherently further spaced from each other. The ramifica-

tion of such studies will be propagated later in the thesis to achieve semantic segmentation in 

outdoor scenes both in natural and urban environments.  
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 Learning algorithms 

3.1 Variables of interest 

To begin with, this chapter introduces notations for variables of interest used throughout the 

thesis and shared by learning algorithms in their formalisms. With few distinct algorithms in-

troduced, the mathematical notations used here follow those of Kae et al. (2013) very closely. 

 Assume that an image 𝐼 (or point cloud for that matter) is comprised of 𝑆(𝐼) atomic 

units or segments, with 𝑆(𝐼) not necessarily constant over different images or point 

clouds. In conjuction with algorithms that resemble probabilistic graphical models such 

as the logistic regression and the more general conditional random field, assume that 

these segments correspond to nodes in an undirected graph. Although most learning 

algorithms have a probabilistic interpretation, segments used elsewhere will merely 

correspond to data samples.  

 Let 𝑉(𝐼) = {1,… , 𝑆(𝐼)} denote the set of segment nodes of 𝐼. 

 Let 𝐸(𝐼) = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈  𝑉(𝐼) 𝑎𝑛𝑑 𝑖, 𝑗 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠} denote the set of segment 

edges. 

  Let 𝐺(𝐼) = {𝑉(𝐼), 𝐸(𝐼)} be the undirected graph corresponding to 𝐼. 

 Let 𝑋𝑉
(𝐼)

= {𝑥𝑠
𝑛𝑜𝑑𝑒 ∈ ℝ𝐷𝑛 , 𝑠 ∈  𝑉(𝐼)} denote the set of node features corresponding 

to 𝐼. 
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 𝐷𝑛 denotes the dimension of the node features 

 Let 𝑋𝐸
(𝐼)

= {𝑥𝑖,𝑗
𝑒𝑑𝑔𝑒

∈ ℝ𝐷𝑒 , (𝑖, 𝑗) ∈ 𝐸(𝐼)} denote the set of edge features corresponding 

to 𝐼. 

 𝐷𝑒 denotes the dimension of the edge features 

 Let 𝑋(𝐼) = {𝑋𝑉
(𝐼)

, 𝑋𝐸
(𝐼)

} denote the set of node and edge features extracted from 𝐼. 

 Let 𝑌(𝐼) = {𝑦𝑠 ∈ {0,1}𝐿, 𝑠 ∈ 𝑉(𝐼): ∑ 𝑦𝑠𝑙 = 1𝐿
𝑙=1 } denote the set labels corresponding to 

the nodes of 𝐼. Note that some algorithms might tailor their target values 𝑦𝑠 differently 

to help formulate objective functions, but is should be clear from the context. 

 𝐿 denotes the number of labels and throughout this thesis is either 8 for pre-

dominantly natural environments (i.e. {grass, trees, sky, dirt, gravel, shrubs, 

tarmac and void}) or 2 for urban environments (i.e. {tarmac and void}). 

The remainder of this chapter argues in favour of discriminative models. Moreover, it briefly 

shows how the predicting hypothesis specific to each algorithm is learned as well as how the 

actual predictions (i.e. inference and labelling) come about given the segment features. 

3.2 Discriminative vs generative models 

 

By simply inspecting Bayes probability rule it can be observed that labelling 𝑌 of the object we 

are trying to predict given some features 𝑋 can be achieved in two ways. Either by directly 

modelling a conditional distribution of labels given the features 𝑃(𝑌|𝑋) or by modelling an 

intermediate joint distribution of labels and features 𝑃(𝑌, 𝑋) from which 𝑃(𝑌|𝑋) can be even-

tually reasoned using Bayes formula. The former approach is called discriminative, while the 

latter approach is called generative. Assuming that such probability distributions are learned 
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given some amount of training data, a discriminative learning model is able to only sample 

hidden variables (i.e. labels) given the observed variables or features. On the other hand, a 

generative approach is able to sample (or generate) instances of any variable in the model.  

 𝑃(𝑌|𝑋) =
𝑃(𝑌, 𝑋)

𝑃(𝑋)
 (3.1) 

 𝑃(𝑌, 𝑋) = 𝑃(𝑋|𝑌)𝑃(𝑌) (3.2) 

While both models can be utilised for a given classification problem, a generative model would 

typically require modelling of 𝑃(𝑋|𝑌) as an intermediate step, that is the distribution across 

features given the labels. Assuming independence among such observations given the possible 

states will impact classification accuracy, particularly if features have unaccounted correlations 

(Sutton and McCallum 2006). In contrast, classification under a discriminative approach follows 

𝑃(𝑌|𝑋) directly without a need for modelling 𝑃(𝑋|𝑌). In this work, a number of discriminative 

algorithms will be utilised to achieve semantic segmentation of superpixels from image frames. 

Discriminative algorithms (as well as the generative) can be categorized into scalar and struc-

tured prediction algorithms. Discriminative scalar prediction algorithms such as support vector 

machine (SVM), random forest (RF) and logistic regression (LR) will assign a label to a single 

superpixel at each prediction step. In contrast, with each discriminative structured prediction 

using the conditional random field (CRF) model, all segments within an image frame (or point 

cloud) will be classified. 

3.3 Scalar prediction 

Scalar predictors use only the set of node features 𝑋𝑉 towards their predictions and for every 

labelling 𝑌 they do not take context information into consideration. 
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3.3.1 Support vector machine 

Support vector machine (SVM) is a popular discriminative learning algorithm that has the abil-

ity to learn optimal separation between classes in a high dimensional space. Learning an opti-

mal hyper plane parameterisation is cast as a constrained optimisation problem by considering 

the distance or proximity of training examples (support vectors) with respect to a hypothesis in 

addition to minimising the training error. Generally it draws on the benefit of using kernel 

tricks (essentially mapping feature vectors into higher dimensions) in order to separate nonlin-

early separable classes. Distance is frequently defined in the Euclidean sense as the 𝑙2 norm. 

Besides the myriad of works on the topic of SVM learning the reader is invited to explore the 

work of Chapelle, Haffner and Vapnik (1999) where the authors advocate the use of SVMs for 

classification of images represented using histograms. Motivated by this study, an SVM with 

radial basis function (RBF) kernel has been used for multi-label classification of superpixels in 

the one-vs.-one setting. This multi-label strategy constructs 
𝐿(𝐿−1)

2
 classifiers each being fitted 

for a pair of classes. During testing, all classifiers vote for a class and the class receiving the 

majority of votes becomes the prediction. The SVM implementation of Pedregosa et al. (2011) 

has been used for experiments throughout this work. 

3.3.1.1 Learning and prediction 

For every pair of classes, learning requires their corresponding 𝑁 training segments of the 

form {(𝑥𝑠, 𝑦𝑠) ∶ 𝑥𝑠 ∈ ℝ𝐷𝑛 , 𝑦𝑠 ∈ {−1,1}}𝑠=1
𝑁  from the original training set, where 𝑦𝑠 is the class 

label of sample 𝑥𝑠. Note that for this binary classification the negative class is represented with 

−1 instead of 0. For nonlinear SVM, features 𝑥𝑖 and 𝑥𝑗 of segments indexed with 𝑖 and 𝑗 are 

never explicitly mapped into a high dimensional space since the required dot product of their 

mapping is more easily obtainable using a Mercer kernel 𝐾(𝑥𝑖 , 𝑥𝑗). The Mercer kernel of choice 

is the Gaussian RBF and the SVM is trained by maximizing: 
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 𝑊(𝛼) = ∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)

𝑁

𝑖,𝑗=1

 (3.3) 

 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒
(−𝛾‖𝑥𝑖−𝑥𝑗‖

2
)
, 𝛾 > 0 (3.4) 

Here 𝛼 is a vector of 𝑁 non negative Lagrange multipliers corresponding to constraints and 

data samples with 𝛼𝑖 > 0 are called support vectors. To make a prediction with one of the 

𝐿(𝐿−1)

2
 classifiers for a new (i.e. unseen) segment with feature 𝑥′𝑠 a hypothesis function ℎ(𝑥′𝑠) 

is evaluated: 

 ℎ(𝑥′𝑠) = 𝑠𝑔𝑛 (∑𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥′𝑠) + 𝑏

𝑁

𝑖=1

) (3.5) 

The class receiving the majority of votes from classifier evaluations wins. To label an entire 

image 𝐼 (or point cloud) this process must be repeated for all segments with 𝑥′𝑠 ∈ 𝑋𝑉
(𝐼)

. 

3.3.2 Random forest 

Random forest (RF) classifier (Breiman 2001) is an ensemble learning method that grows a 

collection of tree classifiers, subsequently contributing towards class prediction via a majority 

voting procedure. Creating bootstrap samples from a training set (i.e. sampling with replace-

ment) to grow each tree followed by plurality voting for classification is often called tree bag-

ging. Departing from this, random forests use random feature selection to make splits at each 

node while growing the tree. The resulting classifier is faster than other ensemble learning 

methods such as plain tree bagging or boosting and robust to outliers and noise. Adding more 

trees does not result in overfitting, in fact it allows for an upper bound to be placed on the 

generalisation error at the expense of increased run-time complexity for the classification pro-

cess. Motivated by the work of Khan, Komma and Zell (2011), a number of 100 forest estima-

tors have been selected to label every segment unit (e.g. superpixel). The RF implementation 

of Pedregosa et al. (2011) has been used for experiments throughout this work. 
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3.3.2.1 Learning and prediction 

Starting with a set of 𝑁 training segments of the form {(𝑥𝑠, 𝑦𝑠) ∶ 𝑥𝑠 ∈ ℝ𝐷𝑛 , 𝑦𝑠 ∈ {1,… , 𝐿}}𝑠=1
𝑁  

the objective is to train 𝑇 classification trees that can predict a label for unseen samples 𝑥′𝑠 

with their corresponding hypotheses {ℎ1(𝑥′𝑠), … , ℎ𝑇(𝑥′𝑠)}. Individual hypotheses are aggre-

gated into a combined hypothesis ℎ𝑐(𝑥′𝑠) in order to predict a segment label by plurality vot-

ing. The procedure for the learning phase of a random forest is as follows: 

 For each classification tree 𝑡 ∈ {1,… , 𝑇} choose a random subset of 𝑛 < 𝑁 training 

segments with replacement from the original training set. 

 Grow the tree without pruning by randomly choosing a subset of 𝑚 < 𝐷𝑛 features to 

make the best split at each node untill a maximum tree depth is attained. 

 Return {ℎ1, … ℎ𝑇}. 

To label an entire image 𝐼 (or point cloud) the hypothesis ℎ𝑐(𝑥′𝑠) must be evaluated for all 

segments with 𝑥′𝑠 ∈ 𝑋𝑉
(𝐼)

. 

3.3.3 Logistic regression 

In its simplest form, logistic regression (LR) is a scalar binary classifier that can be regarded as a 

special case of a more general conditional random field. In fact the segments of an entire im-

age 𝐼 (or point cloud) can be labelled using the energy function of a conditional random field 

by omitting the energy terms accounting for links (i.e. with edge features 𝑋𝐸) between the 

unobserved nodes. Features extracted for each segment are simply the node features 𝑋𝑉  thus 

only the unary potentials of segments are used for labelling. The LR implementation of Kae et 

al. (2013) has been used for experiments throughout this work. 
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 For more intuition, consider the simple example where the most probable binary label 

𝑦 needs to be estimated for a segment 𝑥. In general if some 𝑃(𝑦 = 1) = 𝑝 and 𝑃(𝑦 =

0) = 1 − 𝑝, a Bernoulli distribution can be used to express this compactly: 

 𝑃𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦) = 𝑝𝑦(1 − 𝑝)1−𝑦, 𝑦 ∈ {0,1} (3.6) 

 𝑃𝐿𝑅(𝑦 = 1|𝑥) =
𝑒𝑥𝑝(𝛽𝑥)

1+𝑒𝑥𝑝(𝛽𝑥)
= 𝑝  (3.7) 

 Where 𝛽 denotes a vector of parameters that are learned using training data.  

 𝑃𝐿𝑅(𝑦|𝑥) = (
𝑒𝑥𝑝(𝛽𝑥)

1 + 𝑒𝑥𝑝(𝛽𝑥)
)

𝑦

(1 −
𝑒𝑥𝑝(𝛽𝑥)

1 + 𝑒𝑥𝑝(𝛽𝑥)
)

1−𝑦

=
𝑒𝑥𝑝(𝑦𝛽𝑥)

1 + 𝑒𝑥𝑝(𝛽𝑥)
 (3.8) 

 

3.3.3.1 Learning and prediction 

To label a collection of segments, the most probable labels must be selected given the node 

features and the learned parameters 𝛤 ∈ ℝ𝐿×𝐷𝑛. 

 𝑃𝐿𝑅(𝑌|𝑋) ∝ 𝑒𝑥𝑝(−𝐸𝑛𝑒𝑟𝑔𝑦𝐿𝑅(𝑌, 𝑋)) (3.9) 

 𝐸𝑛𝑒𝑟𝑔𝑦𝐿𝑅(𝑌, 𝑋) = 𝐸𝑛𝑒𝑟𝑔𝑦𝑛𝑜𝑑𝑒(𝑌, 𝑋𝑉) (3.10) 

 

 𝐸𝑒𝑛𝑒𝑟𝑔𝑦𝑛𝑜𝑑𝑒(𝑌, 𝑋𝑉) = −∑∑ ∑ 𝑦𝑠𝑙𝛤𝑙𝑑𝑥𝑠𝑑

𝐷𝑛

𝑑=1

𝐿

𝑙=1𝑠∈𝑉

 (3.11) 

Note the similarities between the numerator of Equation (3.8) and Equation (3.11). Given the 

training data {𝑌(𝑚), 𝑋(𝑚)}𝑚=1
𝑀  comprised of 𝑀 segmented images (or point clouds) parameters 

𝛤 are learned by maximising the conditional log likelihood 𝐿. 

 𝐿 = max
𝛤

∑ log𝑃𝐿𝑅(𝑌(𝑚)|𝑋(𝑚))

𝑀

𝑚=1

 (3.12) 
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𝜕𝐿

𝜕𝛤𝑙𝑑
=

1

𝑀
∑ ( ∑ 𝑦𝑠𝑙

𝑠∈𝑉(𝑚)

𝑥𝑠𝑑 − ∑ 𝑃(𝑦𝑠𝑙|𝑥)

𝑠∈𝑉(𝑚)

𝑥𝑠𝑑)

𝑀

𝑚=1

 (3.13) 

To estimate the posterior probability of labelling segment 𝑠 with label 𝑙 given the segment 

feature 𝑥𝑠: 

 𝑓𝑠𝑙
𝑛𝑜𝑑𝑒(𝑋𝑉, 𝛤) = ∑𝑥𝑠𝑑𝛤𝑑𝑙

𝑑

 (3.14) 

 𝑃𝐿𝑅(𝑦𝑠 = 𝑙|𝑥𝑠) =
𝑒𝑥𝑝(𝑓𝑠𝑙

𝑛𝑜𝑑𝑒)

∑ 𝑒𝑥𝑝𝑙′ (𝑓𝑠𝑙
𝑛𝑜𝑑𝑒)

 (3.15) 

 

3.4 Structured prediction 

Structured predictors use both the set of node features 𝑋𝑉 and the set of edge features 𝑋𝐸 

towards their predictions, taking context information into consideration for every labelling 𝑌. 

Frequently encountered algorithms in the semantic segmentation literature are the condition-

al random field (CRF) (Lafferty, McCallum and Pereira 2001) and the structural support vector 

machine (SSVM) (Tsochantaridis et al. 2005). Details of the former will be provided here. 

3.4.1 Conditional random field 

Conditional random field (Lafferty, McCallum and Pereira 2001), (Sutton and McCallum 2006) 

is particularly useful for structured prediction problems and has been used intensively for se-

mantic segmentation of images (Krahenbuhl and Koltun 2012), (Li and Sahbi 2011), (Sturgess et 

al. 2009). It models a conditional joint distribution by accounting for the relationship between 

neighbouring segments represented by a Markov network on graph 𝐺(𝑉(𝐼), 𝐸(𝐼)). Here 𝑉 in-

cludes the unobserved and observed nodes within the random field of 𝐼 and 𝐸 is the set of 

edges (𝑖, 𝑗) relating adjacent segments. 𝑋 is comprised of both node features 𝑋𝑉 and edge 

features 𝑋𝐸. Edge potentials are typically formulated to promote local smoothness among 

neighbouring segments. A label transition between segments that share a boundary takes into 
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account how similar and conversely how dissimilar their saliency is by means of a penalty term. 

The CRF implementation of Kae et al. (2013) has been used for experiments throughout this 

work. 

3.4.1.1 Learning and prediction 

To label a collection of segments, the most probable labels must be selected given the node 

and edge features as well as the learned parameters 𝛤 and 𝛹 . 

 𝑃𝐶𝑅𝐹(𝑌|𝑋) ∝ 𝑒𝑥𝑝(−𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑅𝐹(𝑌, 𝑋)) (3.16) 

 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑅𝐹(𝑌, 𝑋) = 𝐸𝑛𝑒𝑟𝑔𝑦𝑛𝑜𝑑𝑒(𝑌, 𝑋𝑉) + 𝐸𝑛𝑒𝑟𝑔𝑦𝑒𝑑𝑔𝑒(𝑌, 𝑋𝐸) (3.17) 

 𝐸𝑛𝑒𝑟𝑔𝑦𝑛𝑜𝑑𝑒(𝑌, 𝑋𝑉) = −∑∑ ∑ 𝑦𝑠𝑙𝛤𝑙𝑑𝑥𝑠𝑑

𝐷𝑛

𝑑=1

𝐿

𝑙=1𝑠∈𝑉

 (3.18) 

 𝐸𝑛𝑒𝑟𝑔𝑦𝑒𝑑𝑔𝑒(𝑌, 𝑋𝐸) = − ∑ ∑ ∑ 𝑦𝑖𝑙𝑦𝑗𝑙′𝛹𝑙𝑙′𝑒𝑥𝑖𝑗𝑒

𝐷𝑒

𝑒=1

𝐿

𝑙,𝑙′=1(𝑖,𝑗)∈𝐸

 (3.19) 

In this formulation, 𝛤 ∈ ℝ𝐿×𝐷𝑛 are the node weights and 𝛹 ∈ ℝ𝐿×𝐿×𝐷𝑒 are the edge weights, 

with 𝐿 being the number of labels, 𝐷𝑛 and 𝐷𝑒 the dimensions of the node and edge features. 

Defining node and edge potentials for larger segments (e.g. superpixels in an image or super-

voxels in a point cloud) rather than smaller atomic units (e.g. pixels or voxels) allows for a sim-

pler graph and makes the approximate inference more efficient. Edges are connecting only 

adjacent (i.e. neighbouring) segments within 𝐼. Because loops may now be present in the 

graph, only approximate inference is possible and there are several techniques typically used. 

These include variational approaches, loopy belief propagation and Markov-chain Monte Carlo 

(MCMC). As pointed by Kae et al. (2013) for this inference scenario, a variational approach (i.e. 

mean-field inference) (Saul, Jaakkola and Jordan 1996) is suitable since it is guaranteed to con-

verge usually to some local optimum, unlike loopy belief propagation. Moreover, it is faster 

than MCMC approaches albeit less accurate. Parameter learning given some training data 
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{𝑌(𝑚), 𝑋(𝑚)}𝑚=1
𝑀  consisting of 𝑀 segmented images (or point clouds) is performed by maximis-

ing the conditional log likelihood (Kae et al. 2013): 

 𝐿 = max
𝛤,𝛹

∑ log𝑃𝐶𝑅𝐹(𝑌
(𝑚)|𝑋(𝑚))

𝑀

𝑚=1

 (3.20) 

 
𝜕𝐿

𝜕𝛤𝑙𝑑
=

1

𝑀
∑ ( ∑ 𝑦𝑠𝑙

𝑠∈𝑉(𝑚)

𝑥𝑠𝑑 − ∑ 𝑃(𝑦𝑠𝑙|𝑥)

𝑠∈𝑉(𝑚)

𝑥𝑠𝑑)

𝑀

𝑚=1

 (3.21) 

 
𝜕𝐿

𝜕𝛹𝑙𝑙′𝑒
=

1

𝑀
∑ ( ∑ 𝑦𝑖𝑙𝑦𝑗𝑙′𝑥𝑖𝑗𝑒

(𝑖,𝑗)∈𝐸(𝑚)

− ∑ 𝑃(𝑦𝑖𝑙|𝑥)𝑃(𝑦𝑗𝑙|𝑥)𝑥𝑖𝑗𝑒

(𝑖,𝑗)∈𝐸(𝑚)

)

𝑀

𝑚=1

 (3.22) 

Using a variational approach 𝑃𝐶𝑅𝐹(𝑌|𝑋) is approximated by a simpler graphical model 𝑄(𝑌; 𝜇) 

which is parameterized by minimising the Kullback-Leibler divergence (𝐾𝐿) between the two 

probability distributions:  

 𝐾𝐿(𝑄(𝑌; 𝜇)||𝑃𝐶𝑅𝐹(𝑌|𝑋)) (3.23) 

For the purpose of mean field inference it is assumed that nodes of the approximating graph-

ical model 𝑄(𝑌; 𝜇) are independent:  

 𝑄(𝑌; 𝜇) = ∏𝑄(𝑦𝑠)

𝑠∈𝑉

 (3.24) 

 𝑄(𝑦𝑠 = 𝑙) = 𝜇𝑠𝑙  (3.25) 

Parameters 𝜇𝑠𝑙
(𝑖)

are basically the posterior probability estimates of labelling segment 𝑠 with 

label 𝑙 and get updated over a number of iterations (i.e. until convergence or predefined) in-

dexed by 𝑖. To start with 𝜇𝑠𝑙
(0)

is initialized with the logistic regression estimates using only the 

node energies 𝑓𝑠𝑙
𝑛𝑜𝑑𝑒, followed by subsequent updates using both node and edge ener-

gies 𝑓𝑠𝑙
𝑒𝑑𝑔𝑒

. 

 𝑓𝑠𝑙
𝑛𝑜𝑑𝑒(𝑋𝑉, 𝛤) = ∑𝑥𝑠𝑑𝛤𝑑𝑙

𝑑

 (3.26) 
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 𝑓𝑠𝑙
𝑒𝑑𝑔𝑒(𝜇; 𝑋𝐸 , 𝐸, 𝛹) = ∑ ∑𝜇𝑗𝑙′

𝑙′,𝑒𝑗:(𝑠,𝑗)∈𝐸

𝛹𝑙𝑙′𝑒𝑥𝑠𝑗𝑒  (3.27) 

 𝜇𝑠𝑙
(0)

=
𝑒𝑥𝑝(𝑓𝑠𝑙

𝑛𝑜𝑑𝑒)

∑ 𝑒𝑥𝑝𝑙′ (𝑓𝑠𝑙′
𝑛𝑜𝑑𝑒)

 (3.28) 

 𝜇𝑠𝑙
(𝑖+1)

=
𝑒𝑥𝑝 (𝑓𝑠𝑙

𝑛𝑜𝑑𝑒 + 𝑓𝑠𝑙
𝑒𝑑𝑔𝑒

(𝜇(𝑖)))

∑ 𝑒𝑥𝑝 (𝑓𝑠𝑙′
𝑛𝑜𝑑𝑒 + 𝑓

𝑠𝑙′
𝑒𝑑𝑔𝑒(𝜇(𝑖)))𝑙′

 (3.29) 

Note that the mean field inference procedure is also used at train time to approximate quanti-

ties of interest within the partial derivatives of the conditional log likelihood 𝐿(𝛤,𝛹). 

 

3.5 Discussion 

The scalar predictors of choice will be used in the following chapters as part of a no prior classi-

fier only strategy to solve the problem of semantic segmentation applied to terrain and road 

terrain. The majority of works on semantic segmentation of natural environments reviewed in 

chapter 2 refrain from making assumptions about classes, including terrains. This is not surpris-

ing given the unstructured nature of such environments as pointed by Manduchi et al. (2005). 

Finally, within a structured output learning framework, the mere intuition that neighbouring 

segments of similar saliency are likely part of the same class is formalized using a probabilistic 

graphical a model. 
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 Scalar and structured pre-

diction of 2D atomic units 

4.1 Introduction 

From an image recognition perspective the forward driving scene of a vehicle is a blend of 

things and stuff (Heitz and Koller 2008). Things are objects that have a distinctive spatial extent 

or shape such as cars, pedestrians, cyclists and so on. Stuff on the other hand embodies mate-

rials of homogeneous or granularly repetitive patterns and of amorphous spatial extent such as 

grass, trees, sky and so on. When a clear distinction is made between the two it becomes obvi-

ous that one needs to seek a shape pattern (Dalal and Triggs 2005) to recognise things and 

texture or colour to recognise stuff (Fernandez-Maloigne and Bonnet 1995), (Khan, Komma 

and Zell 2011). This chapter explores ways in which the texture saliency of stuff (particularly 

terrain classes) can be extracted from images of a monocular colour camera in order to 

achieve accurate semantic segmentation and to serve as a prerequisite for a terrain response 

ADAS. To this end, images are pre-segmented into superpixels (Achanta et al. 2012) and each 

of these atomic units are represented by colour, rough position and most importantly a tex-

ture pattern obtained with bag-of-visual-words. Only the latter is subject to change as local 

binary patterns (Ojala, Pietikainen and Maenpaa 2002), textons (Kae et al. 2013), (Malik et al. 

1999) and daisy (Tola, Lepetit and Fua 2010) are among the texture descriptors computed at 

every pixel of an image. These flavours of textures are explored with several scalar predictors 
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such as support vector machine, random forest and logistic regression as well as with a struc-

tured predictor namely the conditional random field in a bid to find a winning texture and clas-

sification scheme for terrain recognition with monocular vision. The 2D analysis is performed 

in order to ensure that monocular vision is used effectively at an early stage. Useful guidelines 

can be established such as how to extract discriminative texture saliency. After all, visual sali-

ency is the main cue needed for terrain recognition. With the prospective introduction of 

depth, either from stereo vision or some other ranging sensor, terrain classification is going to 

be more computationally demanding as more time needs to be spent extracting the relevant 

features and evaluating prediction hypotheses. 

4.2 Related work 

Similar to the work of this chapter, Khan (2013) seeks to capture texture saliency from 2D 

atomic units with either genuine texture descriptors or interest point descriptors in order to 

achieve semantic segmentation of terrain classes such as gravel, asphalt/tarmac, grass and 

tiles using a monocular camera. To obtain 2D atomic units for classification, Khan (2013) rigidly 

partitions images into grid cells at a resolution of choice. While different texture flavours are 

indeed explored by Khan (2013), those based on interest point descriptors such as daisy (Tola, 

Lepetit and Fua 2010) are sparsely computed at chosen locations (e.g. at the centre pixel of 

each cell) to become features. In contrast this chapter takes a similar feature extraction ap-

proach to Kae et al. (2013) by partitioning the image into superpixels and describing each su-

perpixel with bag-of-visual-words (Gheorghe et al. 2015). Moreover the work of Khan (2013) 

does not tap into structured predictors with their texture flavours whereas the experiments of 

this chapter suggest that there is much to gain in terms of accuracy and the bulk of computa-

tional burden does not come from the structured predictor itself. 
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4.3 Experiments 

Experiments throughout this thesis have been carried on a workstation equipped with an Intel 

Xeon CPU (E5-2640) having a processor base frequency of 2.50 GHz and 24 GB of RAM. Having 

a dataset to validate the proposed classification methods is of paramount importance. To this 

end, a team composed of JLR engineers has been assembled to collect images in a forward 

driving perspective and log them during vehicle traversal of various terrain classes. Any subse-

quent calculations were made using the provided data. More specifically, the proprietary JLR 

dataset is composed of colour images recorded in a predominantly natural environment (i.e. 

containing likely types of terrains experienced by on-road and off-road capable vehicles) at the 

Jaguar Land Rover test track facilities of Gaydon in Warwickshire, England. Terrain classes have 

good intra-class variability and inter-class variability. The former refers to how different the 

training samples corresponding to a certain class are while the latter refers to how different 

the classes are among themselves. Throughout data logging the weather conditions ranged 

from sunny to cloudy and rainy across the span of an entire afternoon. Images are pre-

segmented into superpixels and the classification schemes outlined in Chapter 3 are used to 

predict the semantics of all the atomic units. The following subsections will clarify the various 

aspects of these experiments. For diagrams showing an overview of the 2D (i.e. image plane 

only) processing steps that a typical image undergoes in pursuit of semantics, the reader is 

referred to Appendix A, diagrams A.1 for scalar prediction and A.2 for structured prediction. A 

number of standard software libraries have been used in order to speed up experiments (as 

opposed to reimplementing functionality from scratch). Most notably OpenCV library 

(http://opencv.org) is written in C++ and provides facilities for manipulating images, extracting 

standard features and even machine learning (e.g. clustering and so on). Moreover, Scikit-

Learn (http://scikit-learn.org/stable/) is a collection of machine learning tools written in Py-

thon language (Pedregosa et al. 2011). In particular, the Scikit-Learn implementation of the 

http://opencv.org/
http://scikit-learn.org/stable/
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SVM and RF classifier algoritms described in Chapter 3 has been utilised for experiments. The 

reader is reffered to Appendix B, code snippet B.2 and code snippet B.3 for basic usage exam-

ple of these algorithms. The other classifier algorithms more intimately linked to probabilistic 

graphical models namely, LR and CRF (also described in Chapter 3) have been used as part of 

the GLOC Matlab code (http://vis-www.cs.umass.edu/GLOC/) developed by Kae et al. (2013). 

Again, the high level codes for the two algorithms as used throughout this thesis (for label pre-

dictions) are reproduced in Appendix B, code snippet B.4 and code snippet B.5. However, the 

interested reader seeking to make use of the respective LR and CRF implementations is strong-

ly encouraged to download GLOC using the link provided and follow/make use of the various 

subroutines spanning training and inference aspects.      

4.3.1 Superpixel segmentation 

 

 

Figure 4.1 SLIC superpixels overimposed on the 
original image 

Superpixels are regions of an image that capture redundancies by grouping locally similar pix-

els (Figure 4.1). They have become very popular for multi-class image segmentation (Fulker-

son, Vedaldi and Soatto 2009), (Li and Sahbi 2011) and are typically used to extract features 

locally. They are akin to building blocks that can be assembled together to form semantic ob-

jects. Simple linear iterative clustering (SLIC) proposed by Achanta et al. (2012) is an algorithm 

capable to generate superpixels efficiently by leveraging the K-means clustering algorithm in 

http://vis-www.cs.umass.edu/GLOC/
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the Lab colour space. It begins by initialising cluster centres as image pixels on a regular grid. 

These seed points are S pixels apart. 

 𝐶𝑘 = [𝐿𝑘 , 𝑎𝑘 , 𝑏𝑘 , 𝑥𝑘 , 𝑦𝑘]
𝑇 (4.1) 

The K-means search is restricted to a region of at most 2S x 2S centred around 𝐶𝑘. Pixels are 

assigned to clusters based on a distance measure designed to reflect both spatial and colour 

proximity as well as the relative importance between the two. In addition to being fast and 

memory efficient, SLIC has been found to exhibit good adherence to image boundaries com-

pared to other superpixel methods (Achanta et al. 2012). SLIC superpixels will be the 2D atom-

ic units through this entire work. 

4.3.2 Features 

Features are the lenses through which a learning algorithm will see the world, and therefore 

such features should be carefully selected in order to obtain good discrimination between 

classes of interest, regardless of the problem domain. This has traditionally been the case due 

to limited amounts of training data and processing burden. However, such paradigm is gradu-

ally being waived as more data becomes available and computation capabilities develop. In 

this work, feature representation will be considered in the classical hand engineered sense. 

Node features comprised of colour, position and texture are a suitable representation for eve-

ry superpixel and discriminative learning is able to leverage such representation. In addition to 

node features, edge features between adjacent superpixels capture context and can improve 

the accuracy when cast within a structured output learning framework (Figure 4.2). Such edge 

features are typically designed to preserve discontinuities in labelling of the atomic units. They 

include boundary information as well as measures of colour and texture dissimilarity. 
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Figure 4.2 Overview of the configurable models. Algorithms and features (seen in 
red boxes) are explored while the other components (seen in yellow boxes) re-

main fixed. Texture features can be toggled to use texture descriptors such as lo-
cal binary patterns (LBP), filter responses (textons) or two quantization levels of 
daisy key points. Edge features such as probability of boundary (𝑝𝑏), colour dis-

tance (𝑑𝑐𝑜𝑙𝑜𝑢𝑟) and texture distance (𝑑𝑡𝑒𝑥𝑡𝑢𝑟𝑒) only apply to structured prediction 
using the CRF. 

 

4.3.2.1 Node features 

 Colour histogram 

 

Colour histogram takes the bag-of-words approach to describe each superpixel as a bin 

count of colour prototypes in the Lab colour space. First a number of images are se-

lected from the training set and then clustering is applied in this space on the image 

pixels using K-means with 64 seed points. Unlike the standard algorithm, cluster initial-

isation is done in a probabilistic manner as suggested by Arthur and Vassilvitskii 

(2007). After convergence, each pixel can be assigned one of K prototypes depending 

on its proximity. The dimension of the colour histogram is tied to 64 bins for all feature 

representations of superpixels. 

 Position 

 

Partitioning the image into an 8 x 8 grid allows for each superpixel to have a degree of 

membership to its cells (Figure 4.3). A normalised histogram over the 64 bins is com-

puted to incorporate preliminary spatial cues from the image domain. 
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Figure 4.3 Position bins. Image is divided into 
64 cells with the same aspect ratio. Superpixel 
position features represent the normalised su-

perpixel distribution across the cells. 

 

 Texture histograms 

 

In order to capture the texture information of every superpixel a number of popular 

texture descriptors will be used in a bag-of-words fashion. The impact on the classifica-

tion accuracy in 2D will be the main decision factor in selecting a suitable descriptor 

towards further model improvements with 3D information.  

 

Local binary patterns 

 

 

Figure 4.4 Typical unit radius, 8 points LBP with {0, 1, 
origin} as {black, white, grey} circles 

 

Local binary patterns (Ojala, Pietikainen and Maenpaa 2002) are simple and efficient 

texture descriptors (Figure 4.4) that are robust to illumination changes and can be 

made rotationally invariant. Initially introduced for grayscale images, recent years have 

seen many variants of LBP emerge including descriptors that consider the colour chan-

nels (Zhu, Bichot and Chen 2010). They have successfully been used for a wide range of 

applications such as human detection (Wang, Han and Yan 2009), face and expression 
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recognition (Ahonen, Hadid and Pietikainen 2006), (Huang et al. 2011), (Liao et al. 

2006), pavement crack detection (Hu and Zhao 2010), visual terrain classification for 

robotic applications (Khan 2013), (Khan, Komma and Zell 2011) and more generally 

texture analysis (Ojala, Pietikainen and Maenpaa 2000), (Zolynski, Braun and Berns 

2008). At the most basic level the operator creates a binary pattern by comparing a 

central pixel or origin with its P neighbours sampled on a circle of radius R. Whenever 

the sampled points do not fall in the centre of a pixel the comparison is done with bi-

linearly interpolated pixel values. A total of 2𝑃 binary sequences are possible. 

 𝐿𝐵𝑃𝑃,𝑅 = ∑ 𝑠(𝑔𝑝 − 𝑔𝑐) ∗ 2𝑝

𝑃−1

𝑝=0

,               𝑠(𝑥) = {
1,   𝑥 ≥ 0
0,   𝑥 < 0

 (4.2) 

To compensate for image rotations that will inevitably change the operator’s output, 

binary sequences are shifted like a “rotary dial” such that a maximum number of bits 

are 0 beginning with the most significant. Out of these, the uniform patterns are fun-

damental properties of texture accounting for around 90% of all patterns (Ojala, Pie-

tikainen and Maenpaa 2002). For a pattern to be considered uniform it should contain 

no more than two transitions between 1 and 0 (Figure 4.5, line 1). 

 

Figure 4.5 For P=8 there are 36 unique rotation invariant patterns; first 9 patterns are 
uniform and the rest are non-uniform 

 𝑈(𝐿𝐵𝑃𝑃,𝑅) = |𝑠(𝑔𝑃−1 − 𝑔𝑐)| + ∑|𝑠(𝑔𝑝 − 𝑔𝑐) − 𝑠(𝑔𝑝−1 − 𝑔𝑐)|

𝑃−1

𝑝=1

 (4.3) 
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 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 = {

∑ 𝑠(𝑔𝑝 − 𝑔𝑐)

𝑃−1

𝑝=0

 𝑖𝑓 𝑈(𝐿𝐵𝑃𝑃,𝑅) ≤ 2

𝑃 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.4) 

 𝑠(𝑥) = {
1,   𝑥 ≥ 0
0,   𝑥 < 0

 (4.5) 

Vector quantization is done implicitly by simply assigning the pixels with a coded value 

ranging from 0 to 8 for the uniform patterns and 9 for all the others. This coding paves 

the way for describing the texture of each superpixel as a normalised histogram of 

prototypes spread across 10 bins. 

 

Dense daisy pixel descriptors 

 

 

Figure 4.6 Sparse daisy pixel descriptors for visualisation pur-
pose. Circle radius is proportional to the amount of Gaussian 

smoothing at different directions when computing the histogram 

 

Daisy pixel descriptors (Figure 4.6) have been introduced by Tola, Lepetit and Fua 

(2010) in the context of stereo vision research to enable the computation of dense 

depth and occlusion maps from image pairs with a wide baseline. Since then, they 

have been applied to solve problems outside their initial scope such as visual object 

recognition (Chao, Bichot and Liming 2011) and face recognition (Velardo and Dugelay 

2010). Similar to SIFT (scale invariant feature transform) (Lowe 2004), daisy relies on 
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gradient orientation histograms too. However, for descriptor use in dense scenarios 

daisy can be computed much faster than SIFT. Orientation maps 𝑀𝑜 = (
𝜕𝐼

𝜕𝑜
)+ can be 

computed given an image I for every quantized direction o by keeping only the positive 

values of the image gradient norm in order to preserve the polarity of the intensity 

changes. Each of these orientation maps is convolved with Gaussian kernels of increas-

ing ∑ to form convolved orientation maps. 

 𝐺𝑜
∑

= 𝑁∑ ∗  𝑀𝑜 (4.6) 

A great computational speedup is achieved here due to the fact that larger kernel con-

volutions can be obtained from smaller consecutive ones. Daisy descriptors use a cir-

cular grid as location for histogram calculations from all the values of 𝐺𝑜
∑

 at that cer-

tain orientation. This is in contrast to the regular grid used in SIFT as well as to the fact 

that SIFT relies on a triangular shaped kernel. Concentric circles around the pixel loca-

tion from the convolved orientation maps contribute with values to make up the de-

scriptor. The final descriptor is a concatenation of normalised histograms. In its default 

setting the daisy descriptor will assign each pixel with a 200D vector resulting in 640 × 

480 descriptors for each image present in the JLR data set. Again the bag of words ap-

proach is taken in order to have a fixed size feature vector to describe each superpixel. 

Firstly a number of training images have been set aside for clustering using an im-

proved K-means via probabilistic seeding (Arthur and Vassilvitskii 2007). Due to the 

fact that daisy descriptors can be computed densely and efficiently while being com-

petitive with SIFT in terms of performance, two sets of prototypes have been generat-

ed and tested: daisy 1 and daisy 2. For daisy 1, K-means has been run with 64 clusters 

while for daisy 2 with 300 clusters or prototypes. As for vector quantization, each su-

perpixel texture has been represented as a normalised histogram of bin counts based 
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on prototype proximity. Assigning each descriptor to its closest prototype was based 

on the Euclidean distance. 

Textons 

The literature describing textons is somewhat ambiguous (Zhu et al. 2005) but loosely 

the concept of textons refers to fundamental micro-structure or texture building 

blocks in images. Malik et al. (1999) define textons as frequently co-occurring combi-

nations of oriented linear filter outputs that can be learned using a K-means approach. 

It is this procedure that is appealing and enables each superpixel to be described by a 

normalised histogram of prototypes. Similar to Kae et al. (2013), Malik et al. (1999), a 

number of training images specific to each class are convolved with a bank of filters to 

get a vector of 36 responses for each pixel. These responses correspond to 12 filters of 

different orientation taken at 3 different scales. K-means with probabilistic cluster ini-

tialisation (Arthur and Vassilvitskii 2007) has been used generate 64 prototype vectors 

of filter responses as cluster centroids. Again, each superpixel is represented by a 

normalised histogram of texton counts based on the proximity of filter responses to 

their prototype vectors.  

4.3.2.2 Edge features 

Edge features have been used only for structured classification using the conditional random 

field (CRF): 

 Probability of Boundary 

 

In 𝑃(𝑏) images (Martin, Fowlkes and Malik 2002), each pixel of the original image is 

assigned a probability of belonging to a boundary (Figure 4.7). Probabilities that lie on 

the border of adjacent SLIC superpixels are summed to form an edge feature. Intuitive-

ly, superpixels with an image boundary between them are more likely to have differ-

ent labels. 
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Figure 4.7 Probability of boundary image. 
White indicates high probability to have a 

boundary and conversely darker regions are 
assigned lower probabilities 

 

 Colour 

After segmenting the images with SLIC and converting them to Lab colour space, the 

mean colour can be computed for each superpixel. 

 𝐿𝑎𝑏 =
1

𝑛
∑ 𝐿𝑖, 𝑎𝑖 , 𝑏𝑖

𝑖∈ 𝑠𝑝

 (4.7) 

The 𝑙2 distance is taken between the mean Lab colours of neighbouring superpixels. 

The more dissimilar their average colours, the more likely the superpixels are to have 

different labels. 

 𝑑𝑐𝑜𝑙𝑜𝑢𝑟 = √∑(𝐿𝑎𝑏1(𝑖) − 𝐿𝑎𝑏 2(𝑖))
2

3

𝑖=1

 (4.8) 

 Texture 

The chi-squared distance between texture histograms ℎ1 and ℎ2 of neighbouring su-

perpixels is computed similar to Huang, Narayana and Learned-Miller (2008), Kae et al. 

(2013). Texture histograms may have different dimensions depending on the texture 

feature and the number of prototypes 𝑝 used to describe each superpixel. Again, the 
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more dissimilar their texture, the more likely the superpixels are to have different la-

bels. 

 𝑑𝑡𝑒𝑥𝑡𝑢𝑟𝑒(ℎ1, ℎ2) =
1

2
∑

(ℎ1(𝑖) − ℎ2(𝑖))
2

ℎ1(𝑖) + ℎ2(𝑖)

𝑝

𝑖=1

, 𝑝 = {

64 𝑡𝑒𝑥𝑡𝑜𝑛𝑠 
10 𝐿𝐵𝑃          

 
64 𝑑𝑎𝑖𝑠𝑦 1   
300 𝑑𝑎𝑖𝑠𝑦 2

 (4.9) 

4.3.3 Evaluation 

In order to quantify the performance of structured prediction versus independent as well as 

the appropriateness of appearance measures (e.g. colour, position, texture and boundaries), a 

number of popular measures (Sokolova and Lapalme 2009) from the field of semantic labelling 

have been used in conjunction with the JLR dataset. 

4.3.3.1 JLR dataset and classification 

 

 Images  

Table 4.1 Typical training and testing images present in the JLR dataset 

 
 
 

A total of 430 images at a resolution of 640 × 480 where used during the experiments 

(Table 4.1). They have been recorded to contain terrain scenes and road scenes, with 

as little other human made structures as possible (i.e. predominantly natural environ-

ment). Different illumination conditions as well as good intra-class and inter-class vari-

ability are considered. Out of the total number of images 50% where used for training, 

20% for validation and 30% for testing. After initialising the SLIC parameters such as 



Scalar and structured prediction of 2D atomic units 

54 

the region size and a suitable trade-off between appearance and spatial regularity, 

each image has been partitioned into approximately 768 superpixels. While this is still 

an unbalanced dataset (due to omnipresent classes such as sky or grass), having a fine 

superpixel representation of each image is twofold. Firstly this ensures that real world 

boundaries are not violated by coarser superpixels and secondly it allows for a fairly 

substantial amount of samples representative for each class. 

 Ground truth 

Table 4.2 Colour coded labels using RGB values 

 
 

Pixels of original images have been manually labelled and colour coded (Table 4.2) us-

ing Gimp image editor (https://www.gimp.org/). In order to obtain superpixel rather 

than pixel ground truth, manually annotated images have been overimposed on SLIC 

segmented images. Each superpixel received a ground truth depending what label it 

spanned most via a majority vote strategy (Table 4.3). Subsequent training and evalua-

tion of the proposed methods took place entirely in the superpixel domain. 
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Table 4.3 From manually annotated pixel-wise ground truth (GT) to the superpixel 
ground truth used for evaluation 

 
 

 Classification results 

In order to show visually how each feature behaves under a different discriminative 

learning algorithm colour coded results are presented (Table 4.4). Structured predic-

tion with a CRF is able to filter out the outliers (or inconsistent patches of a certain 

class) and produce a smooth output without violating boundary constraints. Contextu-

al information is therefore important as isolated patches are possible but unlikely giv-

en the CRF parameterisation. On the other hand, the choice of a suitable texture de-

scriptor is also important. For example, structured prediction based on descriptors that 

do not capture texture intricacies yields lower performance than independent (i.e. sca-

lar) superpixel predictions based on descriptors that do. This becomes more obvious 

by inspecting Table 4.6 and Table 4.7. The scores present in these tables have been 

manually inputted after evaluating the classifiers described in Chapter 3 against their 

respective feature variants. The entries in both tables are sorted according to the 

overall superpixel classification accuracy obtained on the test data. Prior to these 

tests, the algorithms have been trained using the training subset of the JLR dataset and 

depending on the case some parameters have been further tuned using the validation 

subset. To compute the individual per-class accuracy, entries corresponding to recall 

(Table 4.6) and intersection-over union (Table 4.7), one needs to determine the 

amounts of true positives, false negatives and false positives. Such quantities are more 

easily understood and obtained from a confusion matrix. The following subsections 

will clarify these aspects. Furthermore, it will become more apparent why intersection-
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over-union is a better suited accuracy measure given its ability to penalise both over-

estimation and under-estimation. As basic texture descriptors, LBP have been found to 

perform poorly on the JLR dataset in comparison to the other descriptors. One possi-

ble explanation for these phenomena would be the quantisation mechanism assigning 

the same value for all non-uniform patterns and therefore restricting texture dissimi-

larity at an early stage. Furthermore, the standard LBP with 𝑃 = 8 neighbours around 

a central pixel resulted in a superpixel representation as a histogram of just 10 proto-

types. This is a fairly coarse texture resolution. In comparison, texture components 

across the other superpixel features are modelled by occurrences of at least 64 proto-

types. Having inspected Table 4.7 it is easy to envision how a certain model (i.e. algo-

rithm and visual saliency feature) would better serve in a particular scenario. For ex-

ample, terrain classes such as {dirt, gravel, shrubs and tarmac} are more accurately 

classified using CRF + daisy2. Along with the overall superpixel accuracy (i.e. from the 

least accurate to the most), the processing times of various stages ranging from fea-

ture extraction all the way to prediction, are detailed in Table 4.8. Such processing 

times are best visualised in relative terms as in Figure 4.11. 
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Table 4.4 Successful segmentation results on the JLR Dataset. Textons (quadrant 1), LBP (quad-
rant 2), daisy 1 (quadrant 3) and daisy 2 (quadrant 4) under different discriminative learning 

algorithms: SVM, RF, LR and CRF 
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4.3.3.2 Overall superpixel accuracy 

The overall superpixel accuracy is the fraction of all superpixels in the test set that have been 

correctly identified. 

 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐 (𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) =  
1

𝑛𝑠𝑢𝑝𝑒𝑟𝑝𝑖𝑥𝑒𝑙𝑠
∑ 1(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑦𝑡𝑟𝑢𝑒)

𝑛𝑠𝑢𝑝𝑒𝑟𝑝𝑖𝑥𝑒𝑙𝑠

𝑖=1

 (4.10) 

    1(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) = {
1 𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒

   0 𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑓𝑎𝑙𝑠𝑒 
 (4.11) 

 

4.3.3.3 Confusion matrix 

 

A confusion matrix allows visualisation of the model performance in the form of a table depict-

ing actual labels and predictions. For a given true class within the test set the confusion matrix 

shows how likely any of the possible labelling is. It is therefore a strong indicator that the fea-

ture space as parameterised (or partitioned) by a learning algorithm might be overlapping be-

tween certain classes (Figure 4.8). For sample code on how to generate a confusion matrix 

using Scikit-Learn in Python language (Pedregosa et al. 2011) such as those present in Figure 

4.8 see Appendix B, code snippet B.1. 
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Figure 4.8 Confusion matrices obtained with different configurations of discriminative algo-
rithms and texture representations. Structured prediction has the advantage of smoothing out 
some previously misclassified examples given the superpixel dissimilarity measures. In particu-

lar, the chi-squared difference 𝑥2 is able to produce a significant improvement with daisy 2. 

4.3.3.4 Error reduction 

Error reduction is computed with respect to a baseline, in this case the accuracy of SVM in con-

junction with textons obtained as bag-of-visual-words from filter responses in the image do-

main. 

 𝐸(𝑚𝑜𝑑𝑒𝑙) =
[100 − 𝑎𝑐𝑐(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)] − [100 − 𝑎𝑐𝑐(𝑚𝑜𝑑𝑒𝑙)]

100 − 𝑎𝑐𝑐(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
× 100           (4.12) 

 

 

 

4.3.3.5 Recall, Intersection-over-union 
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Confusion matrix entries are classified into four categories: true positives (𝑇𝑃), false nega-

tives (𝐹𝑁), true negatives (𝑇𝑁) and false positives (𝐹𝑃). These entries can be used to evalu-

ate the accuracy (recall and intersection-over-union) of each class. Given a particular class 𝑗, 

true positives (𝑇𝑃𝑗) are those manually labelled examples of 𝑗 that have been correctly identi-

fied. The false negatives (𝐹𝑁𝑗) are those manually labelled examples of 𝑗 that should have 

been correctly identified. True negatives (𝑇𝑁𝑗) are all the other manually labelled examples 

that have been correctly classified. False positives (𝐹𝑃𝑗) are those predicted 𝑗 examples that 

disagree with the ground truth. For example if grass is under scrutiny, the following table of 

confusion (Table 4.5) can be created. 

Table 4.5 Confusion for {grass} 

tr
u

e
 la

b
e

l gr
as

s 𝑻𝑷𝒈𝒓𝒂𝒔𝒔 

(actual grass that was correctly 
classified as grass) 

𝑭𝑵𝒈𝒓𝒂𝒔𝒔 

(grass that was incorrectly 
classified as other e.g. tree, 

sky, dirt etc.) 

o
th

e
r 

𝑭𝑷𝒈𝒓𝒂𝒔𝒔 

(other classes e.g. tree, sky, dirt 
etc. that were incorrectly classi-

fied as grass) 

𝑻𝑵𝒈𝒓𝒂𝒔𝒔 

(all the other classes correctly 
classified as non-grass) 

 

grass other 

predicted label 

 

For each class recall accuracy is defined as the number of superpixels correctly classified by the 

learning algorithm divided by the number of superpixels being tested. In other words recall is 

the correctly labelled fraction of the ground truth. 

Another per-class accuracy measure (i.e. intersection-over-union) is obtained as the number of 

superpixels correctly identified divided by the union between the ground truth and predicted 

superpixels. Subsequently, the average of each measure is computed as the arithmetic mean 

of individual class accuracies (i.e. the macro-average). 
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 𝑟𝑒𝑐𝑎𝑙𝑙𝑗 =
𝑇𝑃𝑗

𝑇𝑃𝑗 + 𝐹𝑁𝑗
 (4.13) 

 𝑟𝑒𝑐𝑎𝑙𝑙 =
1

𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠
∑ 𝑟𝑒𝑐𝑎𝑙𝑙𝑗

𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑗=1

 (4.14) 

 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛/𝑢𝑛𝑖𝑜𝑛𝑗 =
𝑇𝑃𝑗

𝑇𝑃𝑗 + 𝐹𝑁𝑗 + 𝐹𝑃𝑗
 (4.15) 

 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛/𝑢𝑛𝑖𝑜𝑛 =
1

𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠
∑ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛/𝑢𝑛𝑖𝑜𝑛𝑗

𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑗=1

 (4.16) 

Intersection-over-union is however a more appropriate accuracy measure than recall under 

the given scenario. In the following example (Figure 4.9) if the class “void” is under scrutiny the 

recall measure yields maximum accuracy thereby favouring over-estimation. Conversely, the 

intersection-over-union assigns a low accuracy to “void” thus allowing for an independent per 

class measurement by penalising both over-estimation and under-estimation (Figure 4.10). 

 

Figure 4.9 Hypothetical labelling 

 

 
 

Figure 4.10 Recall and intersection-over-union accuracy measures 
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Table 4.6 Recall accuracies; models are sorted in ascending order of their overall accuracy 

model 
overall 

acc 
E(model) grass tree sky dirt gravel shrubs tarmac void 

average 
recall 

LR + [LBP] 85.57 -30.83 92.17 87.15 99.46 22.27 66.38 40.12 67.85 70.09 68.19 

SVM + [LBP] 86.31 -24.12 92.52 88.44 99.12 25.96 68.99 40.87 67.27 75.78 69.87 

RF + [LBP] 86.75 -20.13 93.07 86.91 99.27 27.13 73.47 38.60 73.10 74.49 70.76 

LR + [daisy 1] 86.77 -19.95 92.65 87.56 99.47 28.52 76.33 40.33 64.86 74.45 70.52 

CRF + [LBP] 87.40 -14.23 91.42 89.38 99.30 17.68 72.86 45.40 84.13 69.73 71.24 

SVM + [daisy 1] 87.72 -11.33 92.55 89.01 99.33 31.98 78.22 42.94 68.61 77.48 72.52 

LR + [daisy 2] 87.94 -9.34 92.24 87.13 99.31 35.49 80.57 46.82 71.50 75.73 73.60 

LR + [textons] 88.25 -6.53 92.70 89.51 99.24 40.58 80.60 47.12 69.29 75.07 74.26 

RF + [daisy 1] 88.44 -4.81 93.79 89.48 99.29 33.69 80.97 40.77 76.51 76.77 73.91 

SVM + [daisy 2] 88.48 -4.44 92.99 88.98 99.12 40.08 82.09 47.47 69.94 77.54 74.78 

RF + [textons] 88.59 -3.45 93.48 89.62 99.28 43.86 85.84 39.37 69.86 76.54 74.73 

CRF + [textons] 88.89 -0.73 92.33 89.17 99.23 55.42 77.89 50.31 73.85 77.86 77.00 

RF + [daisy 2] 88.95 -0.18 94.01 90.13 99.36 37.56 84.30 38.45 78.75 76.48 74.88 

SVM + [textons] 88.97 0 93.09 90.26 99.29 47.19 82.15 48.18 68.20 79.22 75.95 

CRF + [daisy 1] 89.08 1.00 91.96 91.49 99.29 41.25 82.50 45.30 86.46 67.59 75.73 

CRF + [daisy 2] 90.56 14.42 92.56 90.25 99.22 59.74 84.67 50.04 88.81 77.39 80.34 
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Table 4.7 Intersection-over-union accuracies; models are sorted in ascending order of their 
overall accuracy 

model 
overall 

acc 
E(model) grass tree sky dirt gravel shrubs tarmac void 

average 
∩/∪ 

LR + [LBP] 85.57 -30.83 81.04 74.33 97.19 19.51 49.34 27.73 48.86 55.62 56.70 

SVM + [LBP] 86.31 -24.12 80.73 75.57 97.57 19.88 53.88 28.14 50.54 59.69 58.25 

RF + [LBP] 86.75 -20.13 80.06 72.27 97.97 23.93 58.05 27.85 55.30 58.77 59.27 

LR + [daisy 1] 86.77 -19.95 82.12 74.95 97.62 23.33 57.20 28.79 50.36 59.88 59.28 

CRF + [LBP] 87.40 -14.23 80.30 75.98 97.68 16.79 54.49 33.59 62.23 59.39 60.06 

SVM + [daisy 1] 87.72 -11.33 81.12 76.37 97.51 24.57 62.64 29.91 54.91 65.48 61.56 

LR + [daisy 2] 87.94 -9.34 82.07 75.18 97.60 30.10 61.88 33.43 60.11 60.70 62.64 

LR + [textons] 88.25 -6.53 82.31 76.95 98.29 32.15 62.86 32.20 61.90 59.85 63.31 

RF + [daisy 1] 88.44 -4.81 80.79 73.78 98.11 28.17 66.51 30.59 60.68 67.30 63.24 

SVM + [daisy 2] 88.48 -4.44 81.33 76.19 96.89 33.56 65.78 33.72 61.22 65.57 64.28 

RF + [textons] 88.59 -3.45 80.98 75.20 98.26 35.26 69.48 27.65 62.88 63.55 64.16 

CRF + [textons] 88.89 -0.73 81.23 77.30 98.35 46.51 66.15 34.50 67.28 57.66 66.12 

RF + [daisy 2] 88.95 -0.18 80.26 74.47 98.18 33.51 68.19 30.01 64.47 67.50 64.57 

SVM + [textons] 88.97 0 82.01 77.80 98.45 32.16 67.27 33.20 62.28 66.55 64.96 

CRF + [daisy 1] 89.08 1.00 81.02 76.52 98.11 35.90 66.51 34.04 68.54 61.20 65.23 

CRF + [daisy 2] 90.56 14.42 81.68 77.23 98.25 53.51 71.85 38.39 78.78 65.27 70.62 
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4.3.3.6 Processing time 

Table 4.8 Prediction times of various models on a JLR image frame 
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LR + [LBP] 138 n/a 768 0.164 0.001 0.184 n/a n/a n/a 0.001 0.350 

SVM + [LBP] 138 n/a 768 0.164 0.001 0.184 n/a n/a n/a 4.688 5.037 

RF + [LBP] 138 n/a 768 0.164 0.001 0.184 n/a n/a n/a 0.044 0.393 

LR + [daisy 1] 192 n/a 768 0.164 0.001 2.167 n/a n/a n/a 0.001 2.333 

CRF + [LBP] 138 3 768 0.164 0.001 0.184 60.658 0.002 0.005 0.949 61.963 

SVM + [daisy 1] 192 n/a 768 0.164 0.001 2.167 n/a n/a n/a 6.212 8.544 

LR + [daisy 2] 428 n/a 768 0.164 0.001 2.806 n/a n/a n/a 0.001 2.972 

LR + [textons] 192 n/a 768 0.164 0.001 1.364 n/a n/a n/a 0.001 1.530 

RF + [daisy 1] 192 n/a 768 0.164 0.001 2.167 n/a n/a n/a 0.045 2.377 

SVM + [daisy 2] 428 n/a 768 0.164 0.001 2.806 n/a n/a n/a 13.627 16.598 

RF + [textons] 192 n/a 768 0.164 0.001 1.364 n/a n/a n/a 0.045 1.574 

CRF + [textons] 192 3 768 0.164 0.001 1.364 60.658 0.002 0.007 0.905 63.101 

RF + [daisy 2] 428 n/a 768 0.164 0.001 2.806 n/a n/a n/a 0.069 3.040 

SVM + [textons] 192 n/a 768 0.164 0.001 1.364 n/a n/a n/a 5.781 7.310 

CRF + [daisy 1] 192 3 768 0.164 0.001 2.167 60.658 0.002 0.007 0.886 63.885 

CRF + [daisy 2] 428 3 768 0.164 0.001 2.806 60.658 0.002 0.011  0.888 64.530 
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Figure 4.11 Processing times should be observed in relative terms as test plat-
form and image resolution might change 

 

Processing times are measured for various steps ranging from feature extraction all the way to 

prediction in order to identify where the bulk of computational burden comes from (Table 4.8). 

Pinpointing processing times in this fashion encourages future method optimisation to consid-

er a trade-off between accuracy and computation demands. For the time being, it is obvious 

that the structured predictor improves the accuracy given the right texture saliency. While the 

total processing time for an image frame under such model is seen to soar (Figure 4.11), most 

of this time is spent extracting one of the discontinuity preserving features, namely the proba-

bility of boundary (Martin, Fowlkes and Malik 2002). 

4.3.4 Comparison to prior work 

SVM and bag-of-visual-words has been used for benchmarking (SVM + [textons]), a model that 

resembles the work of Filitchkin and Byl (2012), where terrain was classified into {tarmac, 

grass, gravel, mud, soil and woodchips}. In addition to this baseline, the model RF + [textons] 

resembles the work of Angelova et al. (2007) where colour and textons histograms are used in 

conjunction with an ensemble classifier. Angelova et al. (2007) use a variable length represen-

tation for terrain patch classification into classes such as {sand, soil, grass, gravel, tarmac, 

woodchips and mixed}. 

0
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4.4 Discussion 

 

Figure 4.12 CRF results with different texture. Best results are obtained with daisy 2 

 

In this chapter terrain recognition for driver assistance applications has been casted as a se-

mantic segmentation task. Several texture saliency flavours have been tested with discrimina-

tive learning schemes in a bid to use monocular vision to maximum advantage. A method to 

segment the road scene in front of a vehicle has been fielded based on the well-established 

framework of discriminative graphical models. Good results have been obtained using a condi-

tional random field (CRF) with edge potentials based on histograms of daisy texture de-

scriptors with a large number of prototypes. Edge potentials are able to leverage on the in-

creased texture granularity of daisy descriptors via the chi-squared measure. This provides for 

higher accuracy by considering a more refined dissimilarity measure between neighbouring 

superpixels. Gains are particularly reflected by the ability to discriminate between classes with 

more subtle texture differences such as fine gravel and dirt. The two classes are likely to coex-

ist but it comes down to exceeding a certain dissimilarity threshold before accepting non 

smooth patches within an image region. Experimental evidence suggests that the selection of 

appropriate texture descriptors as well as fine representation with a larger number of proto-

types (Figure 4.12) for vector quantization acts as an accuracy bottleneck. This is one of the 

key findings that have emerged from experimenting with different quantisation levels of daisy 
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as texture. Other novel aspects presented in this chapter include pairing structured output 

learning with bag of daisy prototypes as texture features to label superpixels of terrain classes. 

It builds on top of previous work presented by Gheorghe et al. (2015). This time both scalar 

and structured output learning algorithms are tested with bag of daisy prototypes. Another 

notable distinction of this chapter with respect of Gheorghe et al. (2015) is the terrain visual 

saliency variant obtained using bag of textons (i.e. filter responses).    

. 



 

68 

 Scalar and structured pre-

diction using 3D information 

5.1 Introduction 

The success of a number of ADAS applications (Geronimo et al. 2010), (Vahidi and Eskandarian 

2003) is owed to vehicle’s ability to tap into range information with the aid of a ranging sensor. 

This chapter explores ways to incorporate 3D surface saliency towards refined semantic seg-

mentation of terrain types (i.e. stuff) using stereo vision. To this end the top performing tex-

ture saliency devised in Chapter 4 using daisy (Tola, Lepetit and Fua 2010) is kept fixed while 

the attention is shifted to exploring terrain surface saliency alongside both scalar predictors 

and the structured predictor of choice. Since stereo reconstructed point clouds spanning large 

distances are sparse, they are not easily partitioned into segments with standard supervoxeli-

zation methods (Douillard et al. 2011b), (Papon et al. 2013), (Xu and Corso 2012). To overcome 

this problem a direct correspondence is assumed between the SLIC generated superpixels 

(Achanta et al. 2012) on the left (reference) image and the real world subspaces they span 

when reconstructed with stereo. This leads to a pseudo-supervoxelization of the entire point 

cloud. The atomic units can be regarded as supervoxels altogether or as superpixels augment-

ed with corresponding point cloud information. Two surface saliency flavours are proposed 

both of which are obtained with bag-of-spatial-words, summarizing the surface statistics of 

every atomic unit. One uses the fast point feature histograms (FPFH) of Rusu, Blodow and 
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Beetz (2009) and the other uses the height coordinates of point clouds. Again all classification 

schemes of Chapter 3 are employed in order to establish how to use stereo vision to maximum 

advantage. Note that the main developments of this chapter are not tied to passive ranging 

with stereo but generally applicable to more accurate ranging sensors, if calibrated. 

5.2 Related work 

Terrain recognition using a ranging sensor has been cast as a semantic segmentation task in 

the work of Lalonde et al. (2006) by considering LIDAR voxels as atomic units and classifying 

them into three classes, namely scatter, linear and surface. The scatter class amounts to po-

rous volumes such as grass and foliage, linear amounts to small tree trunks and thin branches 

while surface amounts to ground, rocks and large tree trunks. Saliency features are extracted 

from covariance matrices of point neighbourhoods. Subsequently these spatial statistics are 

fitted by Gaussian mixture models (GMM). Similarly, in this chapter one of the saliency fla-

vours of terrain classes is obtained using statistics of point descriptors (Rusu, Blodow and 

Beetz 2009) based on normals which in turn are obtained from covariance matrices of point 

neighbourhoods. However the atomic units differ, individual terrain classes are modelled ex-

plicitly and classification schemes are discriminative in nature. In addition the saliency features 

incorporate visual appearance and are tested with both scalar and structured output learning 

whereby smooth labelling is enforced. 

5.3 Stereo vision 

Stereo cameras have emerged as a cheap and often simple solution to extract 3D information 

in front of the vehicle. In essence, they are comprised of two (or more) slightly offset cameras 

by a baseline that undergoes further calibration and rectification to compensate for image 

rotation and distortion. After image rectification, pixel correspondence between pairs of imag-
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es (Figure 5.1) is established line by line. This is due to the fact that coinciding left and right 

camera planes lead to simplified epipolar geometry (Grewe and Kak 1994). Similar to human 

vision (left and right eye), it works by triangulating points based on their 2D projections in left 

and right images (Figure 5.2). For every projected point, the amount of pixel shift between the 

two images is inversely proportional to the distance from it. Since digital images are discrete 

representations of continuous images, the smallest possible disparity is one pixel. In practice 

disparity map is computed with sub-pixel accuracy. This limiting factor affects the reconstruc-

tion of points that are far away. Close range points reconstruction is typically accurate and 

dense. However, as distance increases reconstruction becomes sparse and the accuracy dete-

riorates rapidly (Figure 5.3). Stereo vision is in itself a vast field of research involving hardware 

as well as software development. Finding disparity between pixels in left and right image is a 

hard task due to the fact that correlation schemes can find false correspondences. This is par-

ticularly problematic in non-textured images or images with repetitive and ambiguous texture.  

Bumblebee2 stereo rig is factory calibrated and uses fast correlation based on a matching win-

dow centred on the pixel of interest. Specifically, it uses the sum of absolute differences (SAD). 

It is a suitable off-the-shelf candidate for automotive research. 

 𝑆𝐴𝐷(𝑑) = ∑ |𝐼𝑅(𝑥, 𝑦) − 𝐼𝐿(𝑥 + 𝑑, 𝑦)|

(𝑥,𝑦) ∈ 𝑤𝑖𝑛𝑑𝑜𝑤

 (5.1) 

 

Figure 5.1 Left and right images from Bumblebee2 sensor 
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Figure 5.2 Epipolar geometry 

 

Figure 5.3 Reconstructed point cloud example 

 

 

Assuming that point 𝑋𝑌𝑍 is projected in both left and right images at locations (𝑥𝐿 , 𝑦𝐿) and 

(𝑥𝑅 , 𝑦𝑅) the world coordinates can be estimated using similar triangles. Let 𝑏 denote the base-

line and 𝑓 the focal length of the two cameras where the following holds true.  

 
𝑥𝐿

𝑓
=

𝑋 + 𝑏/2

𝑍
 (5.2) 

 
𝑥𝑅

𝑓
=

𝑋 − 𝑏/2

𝑍
 (5.3) 

 
𝑦𝐿

𝑓
=

𝑦𝑅

𝑓
=

𝑌

𝑍
 (5.4) 
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The origin of the world coordinate system is located on the baseline half way between the two 

lens centres. Previous quantities can be manipulated to obtain expressions for three-

dimensional reconstruction of the scene point. 

 𝑋 =
𝑏(𝑥𝐿 + 𝑥𝑅)/2

𝑥𝐿 − 𝑥𝑅
 (5.5) 

 𝑌 =
𝑏(𝑦𝐿 + 𝑦𝑅)/2

𝑥𝐿 − 𝑥𝑅
 (5.6) 

 𝑍 =
𝑏𝑓

𝑥𝐿 − 𝑥𝑅
 (5.7) 

 

Where denominator 𝑥𝐿 − 𝑥𝑅 is the disparity (previously denoted by 𝑑) and is computed as a 

difference between a seed location in the left image and its corresponding match in the right 

image. This search takes place on the epipolar line and is usually cast as an optimisation prob-

lem. Stereo matching is an active field of research with popular benchmarking data (Scharstein 

and Szeliski 2002) and methods ranging from local window correlation (Einecke and Eggert 

2014) to global methods, incorporating smoothness (i.e. on Markov random field lattice) (Sun, 

Zheng and Shum 2003) as well as methods that try to match popular descriptors (e.g. SIFT, 

daisy, edges) (Tola, Lepetit and Fua 2010). As there can be multiple matches for ambiguous 

structures, a lot of effort goes into defining an appropriate optimisation function or energy 

that best reflects prior knowledge about the problem domain. Often times, the most accurate 

disparity is estimated by finding an approximate solution of the energy function. However such 

methods are prohibitively expensive to compute and that renders them unusable for visually 

demanding automotive applications. Three-dimensional reconstruction is a milestone towards 

environment perception which is of utmost importance for any driving assist. Subsequent fea-

ture extraction and evaluation builds on the complexity of the stereo algorithm. Therefore a 

simple and efficient stereo algorithm is highly desirable. With Bumblebee2 this energy function 
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is cast as a sum of absolute pixel differences and the solution is exact. Although in practice 

there is a lot of room for improving disparity estimation, the stereo camera offers a good bal-

ance between speed and accuracy.  

 

Figure 5.4 Reconstruction volume can be adjusted by restricting disparity search  

 

Points of same corresponding disparity value are coplanar. The reconstruction space is com-

posed of as many parallel planes as there are disparities. Disparity map is typically interpolated 

to obtain sub-pixel values towards a better discretization. The range field (Figure 5.4) can be 

constrained by selection of a disparity interval [𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥]. Far away points are not informa-

tive of the class they are representing and are best discarded. Restricting the range field 

speeds up computation and limits spurious point reconstruction. In a forward driving scenario 

the road scene contains points for which pixel correspondence is ambiguous. Sky, pothole re-

flections of sky and points approaching the vanishing line are virtually impossible to recon-

struct (Figure 5.5). Moreover, the error of range information obtained via stereo grows quad-

ratically with the distance (Bajracharya et al. 2008). 
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Figure 5.5 Stereo reconstruction and potholes 

5.4 Experiments 

Table 5.1 Examples of images with corresponding point clouds used for training and testing 

 

Experiments of this chapter use the same setup, dataset and colour coding conventions as out-

lined in Chapter 4. The original JLR dataset was recorded with a colour stereo camera hence 

every frame that was previously used is merely the left reference frame of a stereo pair. More 

specifically, it is still the frame contributing with visual appearance features towards every 

atomic unit used for evaluation. In effect, the train, validation and test sets (Table 5.1) now 

have corresponding point clouds. For diagrams showing an overview of the 2D (i.e. image 

plane) and 3D (i.e. point cloud) processing steps that a typical image undergoes in pursuit of 

semantics, the reader is referred to Appendix A, diagrams A.3 for scalar prediction and A.4 for 
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structured prediction. Moreover, the reader is referred to Appendix B code snippet B.6 for 

code related to related to feature extraction from point clouds using Point Cloud library 

(http://pointclouds.org/) in conjunction with Triclops application program interface. The latter 

is used at an early stage to reconstruct point clouds from left and right image sequences and to 

manipulate the Bumblebee2 stereo camera (https://www.ptgrey.com/triclops). 

5.4.1 Features 

Two types of features are computed for superpixels (or equivalently supervoxels): node and 

edge features (Figure 5.6). Node features are extracted from each superpixel individually and 

therefore can be utilised by all discriminative learning algorithms (i.e. SVM, RF, LR and CRF). 

Conversely, the edge features are extracted between adjacent pairs of superpixels making 

them exclusively tailored for a structured output prediction framework (Figure 5.7).  

 

Figure 5.6 Overview of the configurable models. Algorithms and fea-
tures (seen in red boxes) are explored while the other components 
(seen in yellow boxes) remain fixed. Stereo surface saliency can be 

toggled to use FPFH or height. Edge features only apply to structured 
prediction (i.e. CRF) and the probability of boundary feature can be 

used or discarded 

 

http://pointclouds.org/
https://www.ptgrey.com/triclops
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Figure 5.7 Atomic units are pseudo-supervoxels and smooth labelling is encouraged using 
structured output learning with CRF 

5.4.1.1 Node features 

 Colour, position, texture 

The part of the superpixel node feature [𝑐𝑜𝑙𝑜𝑢𝑟, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑡𝑒𝑥𝑡𝑢𝑟𝑒] accounting for 

colour, texture and position is kept unchanged from the previous experiments as fol-

lows: colour is summarised using 64 𝐿𝑎𝑏 prototypes, superpixel location is distributed 

across 64 image positions and texture is summarised using 300 daisy prototypes (daisy 

2).  

 3D information 

The real world information generated by stereo has been exploited as part of the full 

node (or superpixel) feature [𝑐𝑜𝑙𝑜𝑢𝑟, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑡𝑒𝑥𝑡𝑢𝑟𝑒, 𝑠𝑡𝑒𝑟𝑒𝑜] in two different 

ways: in one approach, a superpixel feature is generated using a 3D descriptor, in the 

other simply using the raw height coordinate of the point cloud. In both cases the su-

perpixel pattern is described as a histogram of prototypes. Features computed using 

the real world domain are summarised using a bag of spatial words as opposed to vis-

ual. To allow feasible computation time for 3D descriptors the point cloud is typically 

downsampled. The point cloud generated by the stereo camera is downsampled using 

a voxel grid. Voxel grid downsampling works by partitioning the space into 3D boxes 
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and approximating each box by the centroid of the points it encompasses. This proce-

dure not only reduces the number of points but has also the advantage of filtering the 

initial noisy stereo reconstruction. If 3D descriptors are to be informative of the sur-

face they represent they should capture the true underlying properties of their class 

and not be influenced by the inherent stereo outliers. After downsampling the point 

cloud represents the same world space albeit in a more discrete fashion. Points can be 

reprojected into the left reference image and likewise any 3D descriptors or cloud co-

ordinates can be tied to pixels as a way to augment the available information in the 

image domain. To give an example, if the image resolution is 𝑚 × 𝑛 and the descriptor 

has 𝑝 dimensions then the end data structure is represented as 𝑚 × 𝑛 × 𝑝. Similarly, if 

height is used the data structure becomes 𝑚 × 𝑛 × 1. Stereo is not able to reconstruct 

all points that are present as pixels in the reference image so a one to one corre-

spondence cannot be established between pixels and 3D descriptors or height coordi-

nates. It might be due to the well-known stereo disadvantages of non-textured or am-

biguous regions. In addition to that, given the length of the baseline, some parts of an 

object may not be visible in both cameras altogether. In that case certain patches will 

appear as shadows in the disparity map. These shortcomings are overcome by initialis-

ing the data structure with a default value and then augmenting with only those de-

scriptors or height coordinates for which points could be reconstructed and reproject-

ed at the same location where they came from (Figure 5.8). 
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Figure 5.8 Left reference image pixels can be reconstructed into real world coordi-
nates given the valid disparity values. The reconstructed space and features thereaf-

ter can be used to enhance pixel information back in the image domain  

  

Normal estimation 

Once the point cloud has been downsampled, another important milestone in the 

computation of most 3D descriptors is normal estimation (Figure 5.9). Estimating the 

normal of each point within a cloud requires that points around it be taken into ac-

count. One of the simplest methods to find point normals is to analyse the eigenvalues 

and eigenvectors of the covariance matrix that summarizes the spread of points within 

a neighbourhood. This is equivalent to finding the normal of a plane that is tangent to 

the point cloud surface. Plane fitting with a cost function such as least squares can be 

solved using principle component analysis. The covariance matrix is computed for a 

neighbourhood of points that are encapsulated within a sphere of predefined size de-

pending on how much support is actually needed for normal estimation. Assuming 

that 𝑘 points are present within the sphere which is centred at point 𝑝𝑖  then the covar-

iance matrix becomes:  

 𝐶𝑜𝑣(𝑝𝑖) =
1

𝑘
∑(𝑝𝑖 − 𝑝)(𝑝𝑖 − 𝑝)𝑇
𝑘

𝑖=1

,    𝑝 =
1

𝑘
 ∑𝑥𝑖

𝑘

𝑖=1

, 𝑦𝑖 , 𝑧𝑖    (5.8) 

 𝐶𝑜𝑣 ∙ 𝑣𝑗⃗⃗⃗  = 𝜆𝑗 ∙ 𝑣𝑗⃗⃗⃗  ,    𝑗 ∈ {0, 1, 2} (5.9) 
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The normal at point 𝑝𝑖  becomes one of the covariance eigenvectors 𝑣𝑗⃗⃗⃗  , specifically the 

eigenvector that has the smallest corresponding eigenvalue 𝜆𝑗. 

 

Figure 5.9 Point cloud normal estimation 

 

Fast point feature histograms (FPFH) 

Fast point feature histograms (Rusu, Blodow and Beetz 2009) are pose invariant 3D de-

scriptors computed for each point in the cloud. They capture surface saliency by means 

of relative angular variation between the point normals of a predefined neighbour-

hood. Although somewhat misleading due to being referred to as histograms these de-

scriptors are not counting occurrences across prototypes (in the bag-of-words sense) 

but across value ranges. FPFH are an improved version of the previous point feature 

histograms (PFH) descriptors (Rusu et al. 2008a), (Rusu et al. 2008b). Just as the previ-

ous descriptors, FPFH requires the estimation of angular variations between certain 

pairs of point normals in a neighbourhood. This is achieved by defining a Darboux 

frame (Figure 5.10) for every selected pair of points 𝑝𝑖  and 𝑝𝑗  with corresponding 

normals 𝑛𝑖 and 𝑛𝑗. Assuming that the normal 𝑛𝑖 is making a smaller angle with the line 

joining the points than 𝑛𝑗, the Darboux frame becomes (𝑢 = 𝑛𝑖, 𝑣 = (𝑝𝑗 − 𝑝𝑖) ×

𝑢,𝑤 = 𝑢 × 𝑣). Angular variations of the pair 𝑛𝑖, 𝑛𝑗 can be expressed subsequently: 

 𝛼 = 𝑣 ∙ 𝑛𝑗 (5.10) 
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 𝜙 = (𝑢 ∙ (𝑝𝑗 − 𝑝𝑖))/‖𝑝𝑗 − 𝑝𝑖‖2
 (5.11) 

 𝜃 = arctan(𝑤 ∙ 𝑛𝑗, 𝑢 ∙ 𝑛𝑗) (5.12) 

 

 

Figure 5.10 Point normals in a Darboux frame 

The original descriptors contained a fourth dimension characterising the Euclidean dis-

tance between points in addition to the angular variations. This has been removed al-

together without affecting robustness since in most cases points that are far away 

from the view point are further apart from each other (Rusu, Blodow and Beetz 2009). 

Previous formalisms are common to both FPFH and PFH, however they differ in the 

manner they leverage point pairs within the proximity of a seed towards the final de-

scriptor. The original PFH computes 𝛼, 𝜙, 𝜃 for every possible pair of points within a 

sphere of predefined radius centred on a seed point. This results in a theoretical com-

plexity of 𝑂(𝑛𝑘2) for a cloud of 𝑛 points each having 𝑘 neighbours. In spite of its dis-

criminative power reported by the literature, processing times were a major drawback 

(Rusu et al. 2008a), (Rusu et al. 2008b). Adjustments were made to the original PFH 

that resulted in a faster descriptor (i.e. FPFH) as follows. First a simplified point feature 

histogram (SPFH) is computed for all points. This is done by considering only the point 

pairs formed between a seed point and its 𝑘 neighbours. Then for each point the SPFH 

is merged with a weighted SPFH average of its 𝑘 neighbours within a sphere to create 

the FPFH descriptors. If the sphere has a specified radius 𝑟 then points as far as 2𝑟 can 
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contribute towards the estimation of FPFH (Figure 5.11). In effect this is a way to re-

capture some of the pairs or connections that were present in the original PFH de-

scriptor. The weighting parameter 𝜔𝑗 considers a distance measure between the seed 

and its neighbours essentially making close points matter more than those further. 

This has been experimentally proved to be just as effective whilst having a reduced 

theoretical computational complexity of 𝑂(𝑛𝑘). 

 𝐹𝑃𝐹𝐻(𝑝𝑖) = 𝑆𝑃𝐹𝐻(𝑝𝑖) +
1

𝑘
∑

1

𝜔𝑗
∙

𝑘

𝑗=1

𝑆𝑃𝐹𝐻(𝑝𝑗) (5.13) 

 𝜔𝑗 = ‖𝑝𝑖 − 𝑝𝑗‖2
 (5.14) 

 

 

Figure 5.11 Point neighbourhoods 
are captured in circles (spheres in 
3D) towards the computation of 

FPFH at point 𝑝𝑖  

Each of the three angular variations 𝛼, 𝜙, 𝜃 is binned using 11 subdivisions. Individual 

histograms are concatenated resulting in a final descriptor with 33 dimensions for 

each point in the cloud. Similar to their 2D descriptor counterpart, a fraction of the 

training point clouds with their corresponding 3D descriptors are set aside. Clustering 

using the same probabilistic variant of K-means as before learns 300 prototypes. Sub-

sequently the surface saliency within a supervoxel (or augmented superpixel) can be 

summarised as a bin count across those prototypes. This approach stems entirely from 
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the classical bag of words albeit from a research venue consecrated to indoor envi-

ronments and RGB-D acquiring sensors (Hernandez-Vela et al. 2012).  

Height 

Height is one of the real world dimensions and is densely estimated. Representation of 

height information as a normalised histogram is robust to outliers even without 

downsampling the point cloud. Most height coordinates would be close to their real 

world value with occasional outliers sprinkled across the supervoxel. Sky does not have 

height information and that makes it the most likely class to keep the default de-

scriptor value. Ideally if height is to be used as a descriptor, left and right camera coin-

ciding planes should be perfectly perpendicular to the horizontal real world (i.e. road 

plane) in which objects lie. This is to ensure that an object’s height does not vary with 

distance and it is a rather intrinsic property of the class. For example, the real world 

height of a shrub should remain constant or within its typical tolerance as the vehicle 

approaches or departs from it. The standard procedure is to rotate and translate the 

point cloud. This however is not practical for a moving vehicle for a number of reasons. 

Road topography might change drastically from a region to another. Since the stereo 

rig is fitted onto a vehicle, the camera plane is subject to road contact via suspensions 

which renders rotation and translation parameters unusable from one frame to an-

other. Traditionally to overcome this problem parameters are estimated at each frame 

by matching key-points within successive point clouds. Daunting processing times as 

well as having the emphasis on terrain types, within a likely off-road scenario as op-

posed to objects, only exacerbate the need to avoid cloud transformations. Rather 

than getting a narrow range of height distribution across a class, a broader but still in-

formative range is preferred. To achieve this, the stereo camera should only be lightly 

tilted with respect to a typical flat road and disparity search should be restricted to 
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limit cloud reconstruction. Minimum disparity 𝑑𝑚𝑖𝑛 controls the maximum reconstruc-

tion distance. Partitioning the space in such a manner makes height not only con-

sistent in its range for each class but also more reliable. Recall that with stereo the re-

construction accuracy drops for distant points. From a number of such training point 

clouds K-means clustering with probabilistic seeding is applied to discover 64 height 

prototypes. Subsequently each superpixel is described by a height histogram across 

those prototypes. 

5.4.1.2 Edge features 

Edge features are computed between neighbouring superpixels. The same formalisms that 

were previously applied to generate edge features can now be extended to incorporate real 

world measurements. With the exception of the 3D information from stereo for which an extra 

dimension is introduced in the edge features, the other dimensions are brought forward from 

the 2D realm. 

 Probability of boundary, colour, texture 

The first three dimensions of the edge features are kept as the best performing trio 

[𝑝𝑏, 𝑑𝑐𝑜𝑙𝑜𝑢𝑟 , 𝑑𝑡𝑒𝑥𝑡𝑢𝑟𝑒] in the left reference image experiment described in chapter 4. 

The probability of boundary can now be interpreted as both a measure of superpixel 

adjacency as well as a measure of supervoxel adjacency. Because image boundaries 

are not necessarily real world boundaries, experiments are carried out both 𝑤𝑖𝑡ℎ and 

𝑤𝑖𝑡ℎ𝑜𝑢𝑡 the probability of boundary as part of the edge feature. The discrete choice 

aforementioned is also motivated by the huge computation overhaul of such a feature 

even if it were to be estimated using the real world point cloud. Colour dissimilarity is 

again computed as the Euclidean distance between the average 𝐿𝑎𝑏 values of neigh-

bouring superpixels. Only the best texture configuration from previous experiments is 
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carried forward. Namely the texture dissimilarity is measured as a chi-squared distance 

between histograms of 300 daisy prototypes, previously denoted by 𝑑𝑎𝑖𝑠𝑦 2. 

 3D information 

The complete edge feature is of the form [𝑝𝑏][𝑑𝑐𝑜𝑙𝑜𝑢𝑟 , 𝑑𝑡𝑒𝑥𝑡𝑢𝑟𝑒, 𝑑𝑠𝑡𝑒𝑟𝑒𝑜] where 

𝑑𝑠𝑡𝑒𝑟𝑒𝑜 denotes a distance measure between the statistics of neighbouring super-

voxels. Again these statistics are summarised by histograms of descriptor prototypes 

obtained from the point clouds. The intersection kernel (Barla, Odone and Verri 2003) 

has been found to be the most appropriate distance measure among a handful of oth-

er candidates such as correlation, chi-squared and Bhattacharyya distance. The selec-

tion of a metric was guided by the performance that could be leveraged experimental-

ly. 

 𝑑𝑠𝑡𝑒𝑟𝑒𝑜(ℎ1, ℎ2) = ∑min (ℎ1(𝑖), ℎ2(𝑖))

𝑝

𝑖=1

,       𝑝 = {
300 𝐹𝑃𝐹𝐻
64 ℎ𝑒𝑖𝑔ℎ𝑡 

 (5.15) 

 

5.4.2 Evaluation 

The JLR dataset, described previously in Chapter 4, has been utilized throughout these experi-

ments for evaluating the quality of semantic segmentation. The ground truth for superpixels in 

image domain has remained the same. The most notable difference is that now there is addi-

tional saliency coming from stereo reconstruction. In order to evaluate the performance of 

scalar and structured output learning in conjunction with flavours of surface saliency from a 

ranging sensor (e.g. stereo camera) the same measures (Sokolova and Lapalme 2009) have 

been used as in Chapter 4, namely overall superpixel accuracy, confusion matrix, error reduc-

tion, recall and intersection-over-union. The baseline and the top performing model of Chapter 

4 are replicated here (for comparison) in order to establish if stereo does indeed lead to more 
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accurate semantic segmentation of terrain types and what is a good learning scheme to 

achieve that. The following tables allow for a model comparison of per-class accuracies ex-

pressed as recall (Table 5.2) and intersection-over-union (Table 5.3) as well as their average 

across all classes. Entries are sorted according to overall accuracies and error reduction of each 

model with respect to a baseline. Just as suggested in Chapter 4, the intersection-over-union is 

a better suited per class accuracy measure since it penalises both under-estimation and over-

estimation. Same labelling outside the natural borders of a certain class should be penalised, 

from the perspective of an accuracy scoring criteria, even if the labelling within the borders is 

accurate. Therefore, Table 5.3 should be considered as primary guideline when selecting a par-

ticular model to predict semantics across a range of classes. Looking at intersection-over-union 

outside the 2D band, classes such as {dirt, gravel, shrubs, tarmac} show large performance 

gains with minor improvements for {grass}, while {tree, sky} compare favourably with the top 

performing configurations. The accuracies across some classes may appear to be similar re-

gardless of the used model. This suggests that accuracy is due to texture and stereo does not 

help discriminate even further. The best overall accuracy across the test set is obtained using 

structured prediction with texture and stereo. Texture saliency is obtained with bag-of-visual-

words using a vocabulary of 300 daisy prototypes while surface saliency is obtained with bag-

of-spatial-words using a vocabulary of 64 height values. The structured learning framework 

appears to alleviate the need to use probability of boundary when stereo information is pre-

sent. In particular the surface saliency variant based on simple height is both fast and discrimi-

native, leading to improvements in the quality of semantic segmentation. Confusion matrices 

(Figure 5.12 and Figure 5.13) clarify the gains even further and colour coded results can be 

visually inspected in Table 5.4 and Table 5.5. 

 



Scalar and structured prediction using 3D information 

86 

Table 5.2 Recall accuracies; models are sorted in ascending order of their overall accuracy: (a) 
RF + [daisy 2, FPFH], (b) SVM + [daisy 2, FPFH], (c) LR + [daisy 2, FPFH], (d) LR + [daisy 2, height], 

(e) SVM + [daisy 2, height], (f) RF + [daisy 2, height], (g) SVM + [textons], (h) CRF + [daisy 2] + 
[pb], (i) CRF + [daisy 2, FPFH] + [pb], (j) CRF + [daisy 2, FPFH], (k) CRF + [daisy 2, height] + [pb], 

(l) CRF + [daisy 2, height] 

 model overall acc E(model) grass tree sky dirt gravel shrubs tarmac void 
average 
 recall 

3
D

 

(a) 88.10 -7.89 93.98 90.36 99.31 35.18 81.57 36.61 72.22 75.07 73.04 

(b) 88.12 -7.71 92.66 88.37 99.18 40.44 80.18 46.62 70.24 76.26 74.24 

(c) 88.18 -7.16 92.20 86.40 99.34 37.74 80.90 47.49 75.06 76.00 74.39 

(d) 88.22 -6.80 91.45 86.54 99.32 39.95 81.12 44.69 76.66 77.11 74.61 

(e) 88.40 -5.17 91.31 88.38 99.18 43.09 79.79 46.18 73.62 79.04 75.07 

(f) 88.65 -2.90 93.86 90.29 99.30 36.98 83.36 33.85 79.98 76.27 74.24 

2
D

 (g) 88.97 0 93.09 90.26 99.29 47.19 82.15 48.18 68.20 79.22 75.95 

(h) 90.56 14.42 92.56 90.25 99.22 59.74 84.67 50.04 88.81 77.39 80.34 

3D
 

(i) 90.69 15.59 93.80 90.11 99.26 54.79 84.18 50.71 94.66 74.46 80.25 

(j) 90.73 15.96 94.15 90.20 99.26 55.15 84.73 47.91 94.84 75.55 80.23 

(k) 90.81 16.68 92.21 89.27 99.26 60.82 84.59 52.36 93.56 77.17 81.15 

(l) 90.92 17.68 93.18 90.75 99.23 60.19 84.72 51.57 93.66 75.22 81.06 

 

 

Table 5.3 Intersection/union accuracies; models are sorted in ascending order of their overall 
accuracy: (a) RF + [daisy 2, FPFH], (b) SVM + [daisy 2, FPFH], (c) LR + [daisy 2, FPFH], (d) LR + 

[daisy 2, height], (e) SVM + [daisy 2, height], (f) RF + [daisy 2, height], (g) SVM + [textons], (h) 
CRF + [daisy 2] + [pb], (i) CRF + [daisy 2, FPFH] + [pb], (j) CRF + [daisy 2, FPFH], (k) CRF + [daisy 

2, height] + [pb], (l) CRF + [daisy 2, height] 

 model overall acc E(model) grass tree sky dirt gravel shrubs tarmac void 
average  
∩/∪ 

3
D

 

(a) 88.10 -7.89 79.08 73.70 98.17 31.03 67.79 27.56 55.47 66.04 62.36 

(b) 88.12 -7.71 80.83 75.55 96.07 34.84 64.71 33.39 60.52 64.86 63.85 

(c) 88.18 -7.16 82.03 74.87 97.61 32.18 63.77 33.72 62.54 60.82 63.44 

(d) 88.22 -6.80 81.51 74.38 97.68 35.53 63.81 32.55 63.86 60.63 63.74 

(e) 88.40 -5.17 80.40 75.80 96.01 37.99 65.69 33.63 63.05 65.68 64.78 

(f) 88.65 -2.90 79.64 73.85 98.18 33.62 67.02 27.00 63.93 66.99 63.78 

2
D

 (g) 88.97 0 82.01 77.80 98.45 32.16 67.27 33.20 62.28 66.55 64.96 

(h) 90.56 14.42 81.68 77.23 98.25 53.51 71.85 38.39 78.78 65.27 70.62 

3D
 

(i) 90.69 15.59 81.68 77.40 98.22 50.75 72.34 39.88 78.04 65.77 70.51 

(j) 90.73 15.96 81.61 77.45 98.12 50.72 72.44 38.48 79.46 66.32 70.58 

(k) 90.81 16.68 81.51 76.79 98.23 56.62 72.85 40.36 81.13 65.49 71.62 

(l) 90.92 17.68 81.54 77.37 98.27 56.36 72.66 40.10 80.61 66.72 71.70 
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Figure 5.12 Confusion matrices of scalar predictors with surface saliency flavours 

 

Figure 5.13 Confusion matrices of structured output learning with 
surface saliency flavours, using and discarding probability of bound-

ary 
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Table 5.4 Colour coded results. From left to right: input image, RF + [daisy 2, height], SVM + 
[textons], CRF + [daisy 2] + [pb], CRF + [daisy 2, FPFH] + [pb], CRF + [daisy 2, FPFH], CRF + [daisy 

2, height] + [pb], CRF + [daisy 2, height] 
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Table 5.5 Colour coded results (continued). From left to right: input image, RF + [daisy 2, 
height], SVM + [textons], CRF + [daisy 2] + [pb], CRF + [daisy 2, FPFH] + [pb], CRF + [daisy 2, 

FPFH], CRF + [daisy 2, height] + [pb], CRF + [daisy 2, height] 
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5.4.2.1 Processing time 

Experiments have been run on the same machine as the setup described in Chapter 4. Again 

various processing steps are timed in order to establish the computational expenditure of vari-

ous milestones along the path of prediction (Table 5.6). As expected, capturing surface saliency 

from stereo vision using one of the raw point cloud coordinates (i.e. height) is the cheaper 

alternative. Structured output learning configured with daisy 2 and height bag-of-features 

achieves not only the best overall superpixel accuracy but also competitive computation time 

(Figure 5.14) among the tested learning schemes.  

Table 5.6 Processing times in s; models are sorted in ascending order of their overall accuracy: 
(a) RF + [daisy 2, FPFH], (b) SVM + [daisy 2, FPFH], (c) LR + [daisy 2, FPFH], (d) LR + [daisy 2, 

height], (e) SVM + [daisy 2, height], (f) RF + [daisy 2, height], (g) SVM + [textons], (h) CRF + [dai-
sy 2] + [pb], (i) CRF + [daisy 2, FPFH] + [pb], (j) CRF + [daisy 2, FPFH], (k) CRF + [daisy 2, height] + 

[pb], (l) CRF + [daisy 2, height] 
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(a) 728 n/a 768 0.164 0.001 2.806 3.620 n/a n/a n/a n/a 0.097 6.688 

(b) 728 n/a 768 0.164 0.001 2.806 3.620 n/a n/a n/a n/a 27.262 33.853 

(c) 728 n/a 768 0.164 0.001 2.806 3.620 n/a n/a n/a n/a 0.001 6.592 

(d) 492 n/a 768 0.164 0.001 2.806 0.258 n/a n/a n/a n/a 0.001 3.230 

(e) 492 n/a 768 0.164 0.001 2.806 0.258 n/a n/a n/a n/a 17.384 20.613 

(f) 492 n/a 768 0.164 0.001 2.806 0.258 n/a n/a n/a n/a 0.076 3.305 

2D
 (g) 192 n/a 768 0.164 0.001 1.364 n/a n/a n/a n/a n/a 5.781 7.310 

(h) 428 3 768 0.164 0.001 2.806 n/a 60.658 0.002 0.011 n/a  0.888 64.530 

3
D

 

(i) 728 4 768 0.164 0.001 2.806 3.620 60.658 0.002 0.011 0.002 0.848 68.112 

(j) 728 3 768 0.164 0.001 2.806 3.620 n/a 0.002 0.011 0.002 0.925 7.531 

(k) 492 4 768 0.164 0.001 2.806 0.258 60.658 0.002 0.011 0.001 0.857 64.758 

(l) 492 3 768 0.164 0.001 2.806 0.258 n/a 0.002 0.011 0.001 0.844  4.087 
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Figure 5.14 CRF + [daisy 2, height] is competitive in terms of processing time and 
achieves best accuracy on the JLR Dataset. Computation times are representative for a 

JLR frame of 640 x 480 pixels. Such times should be regarded in relative terms since 
both the image resolution and the test platform may change  

5.4.3 Comparison to prior work 

Table 5.7 Annotated classes present in the proprietary JLR dataset vs. the public KITTI dataset  
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Comparison to previous work has been done using two different datasets, namely the proprie-

tary JLR dataset and the public KITTI dataset (Table 5.7). Typical image samples corresponding 

to the two datasets can be visually inspected in Appendix C. Firstly on the JLR dataset a num-

ber of algorithms and features have been tested and compared with a baseline made up of an 

SVM classifier and bag-of-visual-words very similar to the work of Filitchkin and Byl (2012). 

From a scenario perspective this is an appealing and critical comparison since the method de-

scribed by Filitchkin and Byl (2012) is tailored for the classification of various terrain classes 
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(i.e. {tarmac, grass, gravel, mud, soil and woodchips}). Secondly, the best performing method 

on the JLR dataset has been benchmarked on the challenging KITTI urban road dataset albeit 

by only considering classification of two classes: tarmac and void (i.e. road and non-road, ac-

cording to the KITTI class naming convention). Comparison to KITTI is motivated by both the 

need to prove method versatility from a similar ADAS standpoint as well as by the fact that 

terrain datasets with all required classes and desired intra-class variance are hard to come by. 

Existing datasets contain only a subset of the required classes and often lack stereo data. First 

comparison (i.e. JLR dataset) reveals superior performance of the proposed structured predic-

tion model. The introduction of 3D stereo improves the overall classification accuracy and 

benefits the majority of classes. The rest only suffer a minor setback and are still performing 

close to the best reported superpixel intersection-over-union. It is not a surprise that stereo 

does not help with sky recognition. Perhaps not so obvious is why tree performance is margin-

ally worsened by the introduction of stereo information. Recall that the smoothness assump-

tion (i.e. prior) leverages similarities among superpixel statistics belonging to the same class. 

Texture and colour are likely to be smooth in image regions depicting trees. While trees are 

easily reconstructed by the stereo algorithm, the real world statistics attributed to each super-

pixel may vary greatly within a given neighbourhood. For example, in a tree collection foliage 

and branches might have different point cloud surfaces and since they are erected from the 

ground their height varies greatly too. In a second round of comparisons the suggested ap-

proach is benchmarked on the state of the art KITTI dataset resulting in improvements over a 

number of previous approaches. Although pixel labelling results for images can be queried in 

both perspective and birds eye view (BEV), KITTI comparisons make use of specific BEV pixel 

accuracy scoring (Fritsch, Kuhnl and Geiger 2013) as this is more relevant to spatial occupancy 

of the scene. Pixel based metrics include maximum F1-measure, average precision, precision, 
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recall, false positive rate and false negative rate. The mathematical formulations of such 

measures are reproduced here for completeness. 

 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (5.16) 

 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 (5.17) 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.18) 

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.19) 

 𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5.20) 

For methods whose outputs are confidence maps instead of binary maps a threshold 𝑡 is cho-

sen that will give rise to a maximum F1 measure. In fact the KITTI road benchmark ranks the 

evaluated methods according to such measure (Fritsch, Kuhnl and Geiger 2013). 

 𝐹𝑚𝑎𝑥 = max
𝑡

𝐹1 (5.21) 

The average interpolated precision is expressed as an average of interpolated precisions taken 

across 11 recall levels r namely {0%, 10%,…, 100%}. This measure is used to summarize the 

shape of the precision\recall curve. 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) = max
�̃� ≥ 𝑟

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(�̃�) (5.22) 

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

11
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)

𝑟 ∈ 0,0.1,…1

 (5.23) 

The KITTI road data set contains 289 training and 290 testing images. After training and testing 

the proposed method, results have been obtained in the following relevant categories: {urban 

marked, urban multiple marked lanes, urban unmarked} road. Both CRF + [daisy 2, height] and 

CRF + [daisy 2, FPFH] methods labelling superpixel atomic units have been benchmarked and 

publicly ranked on the challenging KITTI road dataset under the acronyms SCRFH and 



Scalar and structured prediction using 3D information 

94 

SCRFFPFH respectively. Accuracy tables with KITTI metrics (Tables 5.8, 5.9 and 5.10) as well as 

sample visual results (i.e. overlaid image labelling) of the two proposed methods are provided 

(Tables 5.11, 5.12 and 5.13). Full table results with all benchmark entries can also be inspected 

online (http://www.cvlibs.net/datasets/kitti/eval_road.php).  

Table 5.8 Urban marked road. MaxF: Maximum F1-
measure, AP: Average precision, PRE: Precision, REC: 
Recall, FPR: False Positive Rate, FNR: False Negative 

Rate 

Method Setting MaxF AP PRE REC FPR FNR 

… … … … … … … … 

ARSL-AMI  
 (Passani, Yebes and Bergasa 2014) 

monocular 71.97% 61.04% 78.03% 66.79% 8.57% 33.21% 

SCRFFPFH stereo 70.78% 64.76% 83.88% 61.22% 5.36% 38.78% 

SCRFH stereo 69.34% 60.30% 84.47% 58.81% 4.93% 41.19% 

ANN 
 (Vitor et al. 2013) 

stereo 62.83% 46.77% 50.21% 83.91% 37.91% 16.09% 

 

Table 5.9 Urban multiple marked lanes road. MaxF: Max-
imum F1-measure, AP: Average precision, PRE: Precision, 
REC: Recall, FPR: False Positive Rate, FNR: False Negative 

Rate 

Method Setting MaxF AP PRE REC FPR FNR 

… … … … … … … … 

SPlane 
(Einecke and Eggert 2014) 

stereo 82.28% 82.83% 76.85% 88.53% 29.32% 11.47% 

SCRFH stereo 82.08% 80.37% 90.87% 74.83% 8.26% 25.17% 

SPlane + BL 
(Einecke and Eggert 2014) 

stereo 82.04% 85.56% 75.11% 90.39% 32.93% 9.61% 

ANN 
 (Vitor et al. 2013) 

stereo 80.95% 68.36% 69.95% 96.05% 45.35% 3.95% 

SCRFFPFH stereo 79.75% 80.37% 90.87% 71.06% 7.85% 28.94% 

BL 
 (Fritsch, Kuhnl and Geiger 2013) 

monocular 76.02% 78.82% 65.71% 90.17% 51.72% 9.83% 
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Table 5.10 Urban unmarked road. MaxF: Maximum F1-
measure, AP: Average precision, PRE: Precision, REC: Re-

call, FPR: False Positive Rate, FNR: False Negative Rate  

Method Setting MaxF AP PRE REC FPR FNR 

… … … … … … … … 

BL 
 (Fritsch, Kuhnl and Geiger 2013) 

monocular 69.50% 73.87% 65.87% 73.56% 12.42% 26.44% 

SCRFFPFH stereo 64.97% 55.97% 82.13% 53.74% 3.81% 46.26% 

SCRFH stereo 64.00% 55.99% 82.16% 52.41% 3.71% 47.59% 

ANN 
 (Vitor et al. 2013) 

stereo 54.07% 36.61% 39.28% 86.69% 43.67% 13.31% 

 

Table 5.11 Urban marked visual results of CRF + [daisy 2, FPFH] and 
CRF + [daisy 2, height]. Red: false negatives, blue: false positives, 

green: true positives 
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Table 5.12 Urban multiple marked lanes visual results of CRF + [daisy 2, 
FPFH] and CRF + [daisy 2, height]. Red: false negatives, blue: false posi-

tives, green: true positives 

 
 
 

Table 5.13 Urban unmarked visual results of CRF + [daisy 2, FPFH] and 
CRF + [daisy 2, height]. Red: false negatives, blue: false positives, 

green: true positives 
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5.5 Discussion 

As the distance increases, it becomes difficult to find support regions (or proximity) for three-

dimensional descriptor estimation. Even if these descriptors were to be made adaptive in 

terms of the local evidence they require, the information contained would be unreliable due to 

both sparse and noisy distant reconstruction. Height is the most informative and appropriate 

quantity towards road scene classification with stereo under the given scenario. It is easier to 

compute than FPFH and easily transformed into a superpixel feature using vector quantisation. 

It does not require proximity evidence, and is the only basic dimension that changes with the 

class. In real world coordinates there is a subtle height difference between the similarly tex-

tured shrubs and trees but a more obvious difference between grass and trees. Likewise, tar-

mac appearance can vary but its height tends to be constant. The other two dimensions, 

namely horizontal and distance displacements are affected by the vehicle position rather than 

class. The error reduction measure comparing different approaches for classification suggests 

that the mere introduction of three-dimensional information does not necessarily improve 

prediction accuracy of amorphous classes, as is the case. Indeed, the image baseline made up 

of SVM and bag-of-visual-words (Filitchkin and Byl 2012) outperforms the other independent 

(i.e. scalar) prediction models incorporating real world measures of point clouds. It is only via a 

structured prediction framework that three-dimensional measures can truly be leveraged. Un-

der this framework segments described by histograms of prototypes are likely to have similar 

statistics if they belong to the same class. Pairwise terms impose smoothness and affect the 

final labelling of the CRF. Smoothness has been shown to be a valid assumption for terrain 

classes not only in the 2D domain but also in 3D. In real world coordinates, distributions across 

prototypes of height are similar between the segments of the same amorphous class (e.g. 

grass, dirt, gravel, shrubs and tarmac). This is also the case for distributions across prototypes 

of local 3D descriptors (e.g. FPFH). They are however invariably more expensive to compute 
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than height. For example, assigning each frame with FPFH prototypes scales the time it takes 

to assign it with height prototypes by a factor of approximately 14. Classification of a tree col-

lection does not benefit from the introduction of stereo (as the intersection-over-union meas-

ure suggests) but reasonable classification accuracy suggests that smoothness may hold for 

saliency of visual appearance only. Reduced superpixel size enables individual atomic units to 

accurately puzzle together to make up the real world, while still reducing the complexity of the 

graphical model. The suggested over-segmentation technique makes structured prediction 

possible using long range stereo. Noisy stereo reconstruction is not easily partitioned into lo-

cally coherent segments. Rather than performing over-segmentation at the point cloud level, 

this pre-processing step is done prior to stereo reconstruction. SLIC partitions the left refer-

ence image into superpixels or segments. Subsequently superpixels span the subspace of cor-

responding supervoxels when going from 2D to 3D and vice versa. Novel aspects presented in 

this chapter include capturing terrain surface saliency using bag of spatial words and in particu-

lar FPFH prototypes. The fact that a surface dissimilarity measure can alleviate the need for a 

visual dissimilarity measure as part of a CRF framework is among the most notable findings of 

this chapter, as suggested by experimental evidence. While lacking the sophistication of FPFH 

descriptors, the mere height coordinates of a point cloud lead to a more discriminative surface 

signature in natural environments. FPFH descriptors are better suited for urban environments. 
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 Urban road terrain classifi-

cation using compositional high order 

pattern potentials (CHOPP) 

6.1 Introduction 

Road classification in a typical urban scenario benefits from the integration of prior knowledge 

into model predictions. Existing works make use of priors to predict either scalar labels or 

structured under the umbrella of semantic segmentation of atomic units. Among the works 

with scalar labelling a road location prior is most frequently used. For example it is assumed 

that the road is located in the bottom part of the image (Alvarez et al. 2012a) or below the 

horizon line and towards the vanishing point (Alvarez, Gevers and Lopez 2010). As an alterna-

tive to such hard assumptions, road location prior has been learned in the work of Alvarez et 

al. (2013) by using ground truth annotations of training examples. Structured prediction allows 

the integration of prior knowledge, towards the labelling of road atomic units, in different 

ways. One prevalent approach in the literature is to assume smooth labelling and attempt to 

find ways to preserve discontinuities (Alvarez et al. 2012b), (Passani, Yebes and Bergasa 2014), 

(Sturgess et al. 2009), (Zhang, Wang and Yang 2010). Loosely these priors reflect the 

knowledge that atomic units with similar saliency are likely just parts of the same object (e.g. 

road). Tarmac as a terrain class falls under the enlarged family of possible road surfaces that a 
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car might adhere to at any given time and it can hugely benefit not just from smoothness but 

also shape information since tarmac roads are designed for vehicles with Ackermann steering. 

To this end two additional models have been derived from the CRF models of Chapter 5, re-

sulting in substantial improvements over the CRF baseline and other existing work bench-

marked on the KITTI dataset. These additional methods impose a global shape prior for tarmac 

roads on top of the existing smoothness prior. The CRF can easily distinguish between {road} 

and {other} classes (possibly traffic participants such as cars) because their superpixels have 

quite different appearance and surface signatures. However it is much harder to achieve cor-

rect labelling when different classes emit similar appearance and surface signatures. In such 

case a global shape prior improves the semantic segmentation quality on the basis that roads 

exhibit shape in a typical urban environment. 

6.2 Related work 

Introduced in the context of semantic segmentation of face images, the global and local 

(GLOC) model auguments a sparsely connected pairwise CRF with Boltzmann machine shape 

priors (Kae et al. 2013). Work published simultaneously by Yujia, Tarlow and Zemel (2013) de-

fines a class of compositional high order pattern potentials (CHOPP) that can be used to aug-

ment the conventional CRF. It has been identified that the RBM is a special case of CHOPP and 

therefore the GLOC model is equivalent to a CHOPP augmented CRF. There are however some 

differences between the works of Kae et al. (2013) and Yujia, Tarlow and Zemel (2013). For 

instance the atomic units are superpixels in the work of Kae et al. (2013) and pixels in the work 

of Yujia, Tarlow and Zemel (2013) which render the virtual pooling layer of GLOC unnecessary 

since the number of pixels remains constant in all images. In this case the labels of all the 

atomic units map directly onto the visible units of the RBM. The other notable difference is 

that Kae et al. (2013) modelled multinomial label shapes while Yujia, Tarlow and Zemel (2013) 
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modelled binary label shapes. The GLOC model will be utilised for semantic segmentation of 

road terrain scenes on KITTI road dataset albeit for binary classification of superpixel atomic 

units into road and non-road. Such model is able to strike a good balance between consistent 

labelling and road silhouette or global shape. Loosely the model formulation integrates the 

prior knowledge that units of similar saliency are likely just parts of the same object (i.e. should 

have the same label) and but labelling must also conform to a certain pattern of global shape.  

6.3 CHOPP augmented CRF 

Going beyond adjacent atomic units (i.e. using long range dependencies) allows the predic-

tions of a structured model such as the CRF framework to benefit from more contextual infor-

mation and two different approaches exist: 

• Augmenting sparsely connected CRFs with higher order potential terms in addition to 

pairwise potentials such as smoothness in higher order neighbourhoods and more recently 

CHOPP.  

• Fully connecting the graph in order to better capture relations between regions with 

different labels in addition to smoothness. 

Consider the general class of compositional high order pattern potentials that is formulated by 

Yujia, Tarlow and Zemel (2013) and used to model binary label shapes. An equivalence be-

tween such potentials and the RBM is established: 

 𝑓𝑇(𝑌) = −𝑇 log (∑𝑒𝑥𝑝(
1

𝑇
∑ (𝑏𝑘 + ∑ 𝑤𝑟𝑘𝑦𝑟

𝑅

𝑟=1

)

𝐾

𝑘=1

ℎ𝑘)

𝐻

) (6.1) 

Here 𝐾 represents the number of hidden variables and 𝑅 represents the number of visible var-

iables while the summation over 𝐻 is a marginalisation over all possible configurations of hid-
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den variables. By setting the temperature parameter 𝑇 = 1 this becomes equivalent to the 

RBM high order potential. 

 𝑓𝑇=1(𝑌) = − log (∑𝑒𝑥𝑝(∑ (𝑏𝑘 + ∑ 𝑤𝑟𝑘𝑦𝑟

𝑅

𝑟=1

)

𝐾

𝑘=1

ℎ𝑘)

𝐻

) (6.2) 

 𝑓𝑇=1(𝑌) = − ∑ log (1 + 𝑒𝑥𝑝(𝑏𝑘 + ∑ 𝑤𝑟𝑘𝑦𝑟

𝑅

𝑟=1

))

𝐾

𝑘=1

 (6.3) 

Adding this CHOPP alongside a bias term directly to the energy function of a sparsely connect-

ed pairwise CRF (i.e. with unary potentials 𝜓𝑢 and pairwise potentials 𝜓𝑝) yields a conditional 

distribution of labells 𝑌 given features 𝑋 which is equivalent to the GLOC model of Kae et al. 

(2013). 

 𝑃(𝑌|𝑋) =
1

𝑍(𝑋)
𝑒𝑥𝑝(𝜓𝑢 + 𝜓𝑝 + ∑𝑐𝑟𝑦𝑟

𝑟

+ 𝑓𝑇=1(𝑌)) (6.4) 

 𝑃(𝑌|𝑋) = ∑𝑃(𝑌,𝐻|𝑋)

𝐻

 (6.5) 

 𝑃(𝑌,𝐻|𝑋) =
1

𝑍(𝑋)
𝑒𝑥𝑝 (𝜓𝑢 + 𝜓𝑝 + ∑𝑐𝑟𝑦𝑟

𝑟

+ ∑𝑤𝑟𝑘𝑦𝑟ℎ𝑘

𝑟𝑘

+ ∑𝑏𝑘ℎ𝑘

𝑘

) (6.6) 

6.3.1 GLOC model 

Table 6.1 Semantic segmentation results reproduced from Kae (2014). Colour coding shows 
green for skin, red for hair and blue for background. In this 3 class labelling problem CRF is 

shown to produce smooth labelling. GLOC enforces not only smoothness but also shape result-
ing in a more realistic labelling than CRF when compared to the ground truth. Superpixels act 

as 2D atomic units.   

Image CRF GLOC Ground Truth 
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GLOC (i.e. global and local) has initially been proposed in Kae et al. (2013) and consists of a CRF 

augmented with CHOPP to model multinomial label shapes. In particular, it has been used in 

the context of facial recognition cast as semantic segmentation of skin, hair and background 

(Table 6.1). Its specifics will be discussed here whereby the formalisms of Chapter 3 will be 

carried forward and updated for clarity, to include details about learning and prediction as 

described by Kae (2014). To label a collection of segments, the most probable labels must be 

selected given the node and edge features as well as the learned parameters 𝛤, 𝛹,𝑊, 𝐵, 𝐶. 

 𝑃𝐺𝐿𝑂𝐶(𝑌|𝑋) ∝ ∑𝑒𝑥𝑝(−𝐸𝑛𝑒𝑟𝑔𝑦𝐺𝐿𝑂𝐶(𝑌, 𝐻, 𝑋))

𝐻

 (6.7) 

 𝐸𝑛𝑒𝑟𝑔𝑦𝐺𝐿𝑂𝐶(𝑌, 𝐻, 𝑋) = 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑅𝐹(𝑌, 𝑋) + 𝐸𝑛𝑒𝑟𝑔𝑦𝑅𝐵𝑀(𝑌, 𝐻) (6.8) 

 𝐸𝑛𝑒𝑟𝑔𝑦𝑅𝐵𝑀(𝑌, 𝐻) = −∑ ∑𝑐𝑟𝑙𝑦𝑟𝑙

𝐿

𝑙=1

𝑅

𝑟=1

− ∑ ∑ ∑ 𝑤𝑟𝑙𝑘𝑦𝑟𝑙ℎ𝑘

𝐾

𝑘=1

𝐿

𝑙=1

𝑅

𝑟=1

− ∑ 𝑏𝑘ℎ𝑘

𝐾

𝑘=1

 (6.9) 

In the energy formulation of the RBM 𝑦𝑟 ∈ {0,1}𝐿 represent the visible units and ℎ𝑘 ∈ {0,1} 

the hidden units while 𝑐𝑟𝑙  and 𝑏𝑘 are their corresponding bias. The weights between visible 

and hidden units are 𝑊 ∈ ℝ𝑅×𝐿×𝐾. This would suffice (Yujia, Tarlow and Zemel 2013) except 

for the fact that RBM needs a fixed number of visible nodes 𝑅 and the number of superpixels 

𝑆(𝐼) might be different across different 𝐼. To deal with such problem Kae et al. (2013) intro-

duced a virtual pooling layer that maps each superpixel label node into a fixed layer of visible 

nodes (on a grid with 𝑅 elements) deterministically, using a projection matrix of size 𝑅 × 𝑆 

containing elements 𝑝𝑟𝑠. 

 𝑝𝑟𝑠 =
𝐴𝑟𝑒𝑎(𝑅𝑒𝑔𝑖𝑜𝑛(𝑠) ∩ 𝑅𝑒𝑔𝑖𝑜𝑛(𝑟))

𝐴𝑟𝑒𝑎(𝑅𝑒𝑔𝑖𝑜𝑛(𝑟))
 (6.10) 

 ∑𝑝𝑟𝑠 = 1

𝑆

𝑠=1

 (6.11) 
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 �̅�𝑟𝑙 = ∑𝑝𝑟𝑠𝑦𝑠𝑙

𝑆

𝑠=1

 (6.12) 

 𝐸𝑛𝑒𝑟𝑔𝑦𝑅𝐵𝑀(𝑌, 𝐻) = −∑ ∑𝑐𝑟𝑙�̅�𝑟𝑙

𝐿

𝑙=1

𝑅

𝑟=1

− ∑ ∑ ∑ 𝑤𝑟𝑙𝑘�̅�𝑟𝑙ℎ𝑘

𝐾

𝑘=1

𝐿

𝑙=1

𝑅

𝑟=1

− ∑ 𝑏𝑘ℎ𝑘

𝐾

𝑘=1

 (6.13) 

Parameter learning given some training data {𝑌(𝑚), 𝑋(𝑚)}𝑚=1
𝑀  consisting of 𝑀 segmented im-

ages is performed by maximising the conditional log likelihood however Kae et al. (2013) advo-

cate in favour of pretraining the individual components first corresponding to LR, CRF and RBM 

(training of the latter requires contrastive divergence (Hinton 2002) to approximate the pa-

rameter gradients). While the training and inference procedures of the other components 

have been outlined in Chapter 3, those associated with RBMs will be introduced here for the 

sake of completeness. If parameters are learned, inference in RBMs is done by performing a 

block Gibbs sampling. This requires sampling of all hidden and then all visible units, given the 

other units. In general, learning of the RBM parameters involves maximising the log likelihood 

of some 𝑀 training data {𝑌(𝑚)}𝑚=1
𝑀 . 

 𝐿 = max
𝑊,𝐵,𝐶

∑ log(∑𝑃𝑅𝐵𝑀(𝑌(𝑚), 𝐻)

𝐻

)

𝑀

𝑚=1

 (6.14) 

 
𝜕𝐿

𝜕𝑤𝑟𝑙𝑘
= (

1

𝑀
∑ 𝑦𝑟𝑙

(𝑚)
𝑃(ℎ𝑘|𝑦

(𝑚))

𝑀

𝑚=1

) − 𝑃(𝑦𝑟𝑙 , ℎ𝑘) (6.15) 

 
𝜕𝐿

𝜕𝑏𝑘
= (

1

𝑀
∑ 𝑃(ℎ𝑘|𝑦

(𝑚))

𝑀

𝑚=1

) − 𝑃(ℎ𝑘) (6.16) 

 
𝜕𝐿

𝜕𝑐𝑟𝑙
= (

1

𝑀
∑ 𝑦𝑟𝑙

(𝑚)

𝑀

𝑚=1

) − 𝑃(𝑦𝑟𝑙) (6.17) 

Once the individual components are pretrained, the CHOPP augmented CRF (i.e. GLOC) is 

trained to maximize the conditional log likelihood. 
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 𝐿 = max
𝛤,𝛹,𝑊,𝐵,𝐶

∑ log𝑃𝐺𝐿𝑂𝐶(𝑌
(𝑚)|𝑋(𝑚))

𝑀

𝑚=1

 (6.18) 

As pointed by Kae et al. (2013), the variational parameters 𝜇𝑠𝑙  and 𝛾𝑘 corresponding to poste-

rior labelling estimates of superpixels and estimates of the hidden units can be updated over a 

number of iterations indexed by 𝑖 (until convergence or predefined) using mean field infer-

ence. Node, edge and RBM energies are as follows: 

 𝑓𝑠𝑙
𝑛𝑜𝑑𝑒(𝑋𝑉, 𝛤) = ∑𝑥𝑠𝑑𝛤𝑑𝑙

𝑑

 (6.19) 

 𝑓𝑠𝑙
𝑒𝑑𝑔𝑒(𝜇; 𝑋𝐸 , 𝐸, 𝛹) = ∑ ∑𝜇𝑗𝑙′

𝑙′,𝑒𝑗:(𝑠,𝑗)∈𝐸

𝛹𝑙𝑙′𝑒𝑥𝑠𝑗𝑒  (6.20) 

 𝑓𝑠𝑙
𝑅𝐵𝑀(𝛾; {𝑝𝑟𝑠},𝑊, 𝐶) = ∑𝑝𝑟𝑠(𝑤𝑟𝑙𝑘𝛾𝑘 + 𝑐𝑟𝑙)

𝑟,𝑘

 (6.21) 

Subsequent updates of the variational parameters (Kae et al. 2013) are preceded by initialisa-

tion as follows: 

 𝜇𝑠𝑙
(0)

=
𝑒𝑥𝑝(𝑓𝑠𝑙

𝑛𝑜𝑑𝑒)

∑ 𝑒𝑥𝑝𝑙′ (𝑓𝑠𝑙′
𝑛𝑜𝑑𝑒)

 (6.22) 

 𝛾𝑘
(0)

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (∑(∑𝑝𝑟𝑠

𝑠

𝜇𝑠𝑙
(0)

)

𝑟,𝑙

𝑤𝑟𝑙𝑘 + 𝑏𝑘) (6.23) 

 𝜇𝑠𝑙
(𝑖+1)

=
𝑒𝑥𝑝 (𝑓𝑠𝑙

𝑛𝑜𝑑𝑒 + 𝑓𝑠𝑙
𝑒𝑑𝑔𝑒

(𝜇(𝑖)) + 𝑓𝑠𝑙
𝑅𝐵𝑀 (𝛾𝑘

(𝑖)
))

∑ 𝑒𝑥𝑝 (𝑓𝑠𝑙′
𝑛𝑜𝑑𝑒 + 𝑓

𝑠𝑙′
𝑒𝑑𝑔𝑒(𝜇(𝑖)) + 𝑓𝑠𝑙′

𝑅𝐵𝑀 (𝛾𝑘
(𝑖)

))𝑙′

 (6.24) 

 𝛾𝑘
(𝑖+1)

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (∑(∑𝑝𝑟𝑠𝜇𝑠𝑙
(𝑖+1)

𝑠

)𝑤𝑟𝑙𝑘 + 𝑏𝑘

𝑟,𝑙

) (6.25) 

6.3.2 Experiments 

Experiments have been run and benchmarked on the challenging KITTI road dataset across all 

categories namely {urban marked, urban multiple marked lanes, urban unmarked} road using 
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all 289 training and 290 test images just as in Chapter 5. The atomic units are SLIC generated 

superpixels and the models CRF + [daisy 2, height] and CRF + [daisy 2, FPFH] are augmented 

with global shape priors (GSP) resulting in substantial relative improvements (i.e. over the CRF 

baselines before augmentation with CHOPP) as well as improvements over various other 

methods that are publicly ranked on the KITTI dataset. The acronyms under which the perfor-

mance of these models can be publicly inspected are SCRFHGSP and SCRFFPFHGSP. Again 

these initials stand for the key elements that the model is composed of (e.g. Superpix-

els/Supervoxels under a Conditional Random Field with saliency from Fast Point Feature Histo-

grams and Global Shape Priors). The GLOC implementation of Kae et al. (2013) has been used 

throughout this experiment. The reader is invited to inspect Appendix B, code snippet B.7 

showing the general steps and routines utilised for the experiments of this chapter. Just as in 

the case of LR and CRF, this code snippet requires various components present in the GLOC 

source code in order to work properly. 

6.3.2.1 Features 

Features are similar to those used in Chapter 5 for the CRF + [daisy 2, height] and CRF + [daisy 

2, FPFH] models without the position feature and correspond to nodes (i.e. superpixels) and 

edges (i.e. adjacent superpixels) of a random field. Node features capture the saliency of col-

our, texture and stereo surfaceness at each superpixel while the edge features are metrics of 

similarity between the saliency of adjacent superpixels. The common approach towards ex-

tracting node features is bag of words, a vector quantization technique that models saliency 

statistics across prototype vectors. While in general more prototypes enable better saliency 

representation there is also the risk of negatively impacting performance by overrepresenta-

tion (i.e. too many prototypes). In this work the number of prototypes has been fielded after 

heuristically experimenting with values around common quantization levels reported in the 

literature. 
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6.3.2.1.1 Node features 

 Colour histogram 

Each superpixel is represented by a normalised colour histogram using bag of colour 

words. This approach is essentially counting pixel occurrences across 64 bins corre-

sponding to nearest Lab colour prototypes. To obtain the colour prototypes a number 

of training images are set aside, converted to Lab and concatenated. This large collage 

of images becomes the search space of a K-means algorithm with 64 seed points ini-

tialised probabilistically (Arthur and Vassilvitskii 2007). After convergence, the cen-

troids of those 64 clusters become the colour prototypes. 

 Texture histogram 

Texture saliency of every superpixel is captured using bag of texture words obtained 

from daisy descriptors (previously named daisy 2 simply to denote the histogram vari-

ant with more daisy prototypes i.e. 300 bins). Again daisy descriptors are collaged to-

gether after being extracted at every pixel from a number of training images. Subse-

quently the same variant of K-means with probabilistic seeding is able to output 300 

daisy prototypes in the form of cluster centroids. At each superpixel texture saliency is 

then represented as a descriptor count across bins corresponding to nearest descriptor 

prototypes. 

 3D information 

What sets the two models apart namely the SCRFHGSP and SCRFFPFHGSP is how the 

surface saliency is encoded as part of the node features for each superpixel using ste-

reo vision. SCRFHGSP uses bag-of-height-words. A number of training point clouds are 

set aside and all reconstructed points have their height components combined into a 

new array. This is to create a pool of possible height values within the training set. 

Clustering these height values with K-means learns 64 height prototypes towards vec-
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tor quantization of surface saliency at every superpixel. Similarly, SCRFFPFHGSP uses 

bag-of-FPFH-words extracted from training point clouds towards vector quantization 

with 300 prototypes.  

6.3.2.1.2 Edge features 

 Colour 

The mean Lab colour is computed for each SLIC superpixel of an image and the 𝑙2 dis-

tance is taken between the mean Lab colours of neighbouring superpixels. The smaller 

this distance the more similar their colour saliency and the more likely the superpixels 

are to be part of the same object (e.g. road). 

 Texture 

Texture saliency similarity between neighbouring superpixels is computed as the chi-

squared distance between their texture histograms ℎ1 and ℎ2 similar to Huang, Nara-

yana and Learned-Miller (2008), Kae et al. (2013). Texture histograms have 300 dimen-

sions since daisy 2 is used to describe each superpixel. Again, the more similar their 

texture saliency, the more likely the superpixels are to be part of the same object 

class. 

 3D information 

Saliency similarity of 3D surfaceness between neighbouring superpixels is given by the 

intersection kernel (Barla, Odone and Verri 2003) which has been experimentally con-

firmed as the appropriate distance measure among a handful of candidates.  

In fact Rusu, Blodow and Beetz (2009) used the intersection kernel to show that FPFH 

alone are features able to discriminate among different primitive geometric surfaces 

of point clouds such as plane, sphere, cylinder, edge and corner. Depending on how 

the 3D information obtained via stereo vision is encoded as superpixel or node feature 
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(i.e. using height or FPFH descriptors), this edge feature will correspond to either the 

SCRFHGSP or SCRFFPFHGSP model. 

6.3.2.2 Evaluation 

The KITTI road evaluation benchmark makes use of specific pixel based metrics in BEV space 

namely, maximum F1-measure, average precision, precision, recall, false positive rate and false 

negative rate. In particular the F1 based metric is used towards ranking the methods. The 

reader is referred to the evaluation section of Chapter 5 where the mathematical formulations 

of these measures are provided. 

6.3.2.3 Comparison to prior work 

The proposed methods attain large improvements over their CRF baseline predecessors (i.e. 

SCRFH and SCRFFPFH can be inspected alongside their CHOPP augmented counterparts 

SCRFHGSP and SCRFFPFHGSP at http://www.cvlibs.net/datasets/kitti/eval_road.php). In addi-

tion to this comparison, the benchmark tables highlight relative improvements with respect to 

other recent methods in all sections namely {urban marked, urban multiple marked lanes, ur-

ban unmarked} road. While various other authors have submitted results of their methods 

anonymously, tables reproduced here include the relative improvements only over those 

works backed by available publications. More specifically, Table 6.2 presents the accuracy 

scores attained by the aforementioned methods on the urban marked road testing subset of 

the KITTI road evaluation dataset, alongside the scores of other benchmark participants. Simi-

larly, Table 6.3 and Table 6.4 show the accuracy scores attained across the urban multiple 

marked and urban unmarked testing subsets respectively. To evaluate (i.e. benchmark) a 

method, one needs to upload the classification results or confidence maps produced by such 

method across a KITTI test dataset. The KITTI road evaluation server will then process these 

results and convert them into accuracy scores internally. The ground truth labelling of the test 
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dataset in known only to the server. Subsequently, the method is ranked and displayed online 

alongside other such endeavours. Improvements with respect to the CRF baselines in all 

benchmark categories can also be visually inspected. Table 6.5 shows visual results across the 

urban marked road test subset labelled by CRF and CHOPP augmented CRF, both algorithms 

using bag of height words as surface saliency. Table 6.6 shows visual results across the same 

test subset and algorithms but this time using bag of FPFH words as surface saliency. In a simi-

lar fashion, Table 6.7 and Table 6.8 are dedicated to the urban multiple marked lanes test sub-

set while Table 6.9 and Table 6.10 are dedicated to the urban unmarked test subset. Visual 

results across the same test subset (i.e. {urban marked, urban multiple marked lanes or urban 

unmarked}) appear similar regardless of the surface saliency of choice. Large improvements 

are seen due to the CHOPP augmented CRF algorithm being able to enforce road silhouette. In 

this context the benefits of incorporating prior knowledge into model predictions in urban en-

vironments are apparent. Up to date full tables and ranked methods across all road categories 

are accessible online. Note that since the ground truth of the KITTI test set is not publicly avail-

able, the evaluation methodology previously used in Chapter 4 and Chapter 5 cannot be ex-

tended here. 
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Table 6.2 Urban marked road. MaxF: Maximum F1-measure, AP: Average precision, PRE: Preci-
sion, REC: Recall, FPR: False Positive Rate, FNR: False Negative Rate 

Method Setting MaxF AP PRE REC FPR FNR 

… … … … … … … … 

SCRFFPFHGSP stereo 83.73% 72.89% 82.13% 85.39% 8.47% 14.61% 

HistonBoost 
 (Vitor, Victorino and Ferreira 2014) 

stereo 83.68% 72.79% 82.01% 85.42% 8.54% 14.58% 

SCRFHGSP stereo 83.25% 72.41% 81.54% 85.04% 8.77% 14.96% 

BL 
 (Fritsch, Kuhnl and Geiger 2013) 

monocular 82.24% 85.30% 79.44% 85.24% 10.05% 14.76% 

BM 
 (Wang, Fremont and Rodriguez 2014) 

stereo 78.90% 66.06% 69.53% 91.19% 18.21% 8.81% 

SPlane 
(Einecke and Eggert 2014) 

stereo 78.19% 76.41% 72.03% 85.50% 15.13% 14.50% 

CN24 (without spatial prior) 
 (Brust et al. 2015) 

monocular 76.28% 79.29% 72.44% 80.55% 13.96% 19.45% 

CN 
(Alvarez et al. 2012a) 

monocular 73.69% 76.68% 69.18% 78.83% 16.00% 21.17% 

ARSL-AMI 
 (Passani, Yebes and Bergasa 2014) 

monocular 71.97% 61.04% 78.03% 66.79% 8.57% 33.21% 

SCRFFPFH stereo 70.78% 64.76% 83.88% 61.22% 5.36% 38.78% 

SCRFH stereo 69.34% 60.30% 84.47% 58.81% 4.93% 41.19% 

ANN 
 (Vitor et al. 2013) 

stereo 62.83% 46.77% 50.21% 83.91% 37.91% 16.09% 

 

 

Table 6.3 Urban multiple marked lanes road. MaxF: Maximum F1-measure, AP: Average preci-
sion, PRE: Precision, REC: Recall, FPR: False Positive Rate, FNR: False Negative Rate 

Method Setting MaxF AP PRE REC FPR FNR 

… … … … … … … … 

SCRFFPFHGSP stereo 87.96% 83.16% 90.01% 86.01% 10.50% 13.99% 

SCRFHGSP stereo 87.75% 83.53% 90.45% 85.21% 9.89% 14.79% 

CN 
 (Alvarez et al. 2012a) 

monocular 86.21% 84.40% 82.85% 89.86% 20.45% 10.14% 

SPlane 
(Einecke and Eggert 2014) 

stereo 82.28% 82.83% 76.85% 88.53% 29.32% 11.47% 

SCRFH stereo 82.08% 80.37% 90.87% 74.83% 8.26% 25.17% 

SPlane + BL 
(Einecke and Eggert 2014) 

stereo 82.04% 85.56% 75.11% 90.39% 32.93% 9.61% 

ANN 
 (Vitor et al. 2013) 

stereo 80.95% 68.36% 69.95% 96.05% 45.35% 3.95% 

SCRFFPFH stereo 79.75% 80.37% 90.87% 71.06% 7.85% 28.94% 

BL 
 (Fritsch, Kuhnl and Geiger 2013) 

monocular 76.02% 78.82% 65.71% 90.17% 51.72% 9.83% 
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Table 6.4 Urban unmarked road. MaxF: Maximum F1-measure, AP: Average precision, PRE: 
Precision, REC: Recall, FPR: False Positive Rate, FNR: False Negative Rate 

Method Setting MaxF AP PRE REC FPR FNR 

… … … … … … … … 

SCRFHGSP stereo 81.21% 70.94% 81.24% 81.17% 6.11% 18.83% 

SCRFFPFHGSP stereo 80.78% 70.80% 81.07% 80.50% 6.13% 19.50% 

BM 
 (Wang, Fremont and Rodriguez 2014) 

stereo 78.43% 62.46% 70.87% 87.80% 11.76% 12.20% 

HistonBoost 
 (Vitor, Victorino and Ferreira 2014) 

stereo 74.19% 63.01% 77.43% 71.22% 6.77% 28.78% 

SPlane + BL 
(Einecke and Eggert 2014) 

stereo 74.02% 79.61% 65.15% 85.68% 14.93% 14.32% 

SPlane 
(Einecke and Eggert 2014) 

stereo 73.30% 69.11% 65.39% 83.38% 14.38% 16.62% 

CN 
(Alvarez et al. 2012a) 

monocular 72.25% 66.61% 71.96% 72.54% 9.21% 27.46% 

ARSL-AMI 
 (Passani, Yebes and Bergasa 2014) 

monocular 70.33% 61.97% 83.33% 60.84% 3.97% 39.16% 

BL 
 (Fritsch, Kuhnl and Geiger 2013) 

monocular 69.50% 73.87% 65.87% 73.56% 12.42% 26.44% 

SCRFFPFH stereo 64.97% 55.97% 82.13% 53.74% 3.81% 46.26% 

SCRFH stereo 64.00% 55.99% 82.16% 52.41% 3.71% 47.59% 

ANN 
 (Vitor et al. 2013) 

stereo 54.07% 36.61% 39.28% 86.69% 43.67% 13.31% 
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Table 6.5 Urban marked road labelled by CRF (left) and CHOPP augmented CRF (right). Surface 
saliency within the point cloud is captured using bag of height words 
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Table 6.6 Urban marked road labelled by CRF (left) and CHOPP augmented CRF (right). Surface 
saliency within the point cloud is captured using bag of FPFH words 



Urban road terrain classification using compositional high order pattern potentials (CHOPP) 

115 

Table 6.7 Urban multiple marked lanes road labelled by CRF (left) and CHOPP augmented CRF 
(right). Surface saliency within the point cloud is captured using bag of height words 
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Table 6.8 Urban multiple marked lanes road labelled by CRF (left) and CHOPP augmented CRF 
(right). Surface saliency within the point cloud is captured using bag of FPFH words 
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Table 6.9 Urban unmarked road labelled by CRF (left) and CHOPP augmented CRF (right). Sur-
face saliency within the point cloud is captured using bag of height words 
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Table 6.10 Urban unmarked road labelled by CRF (left) and CHOPP augmented CRF (right). Sur-
face saliency within the point cloud is captured using bag of FPFH words 
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6.4 Discussion 

CHOPP augmented CRFs are still in their infancy but show great promise for a variety of se-

mantic segmentation tasks (Gould and He 2014). Here, the recently proposed GLOC model 

(Kae et al. 2013) has been used for binary labelling (i.e. road or non-road) of superpixels de-

picting urban road scenes. Unlike natural environments, urban road scenes exhibit structure 

and many objects of interest for ADAS applications exhibit shape (e.g. cars, pedestrians). Per-

haps not as intuitive but urban roads themselves exhibit shape too, even though tarmac falls 

into the stuff category and as a superclass (i.e. material) is typically amorphous. This is based 

on a simple real world remark regardless of the sensing technology of choice, namely that ur-

ban tarmac roads are designed for vehicles with Ackermann steering. Yujia, Tarlow and Zemel 

(2013) argue that performance of CHOPP augmented CRFs drops on high variability data. 

However, large performance gains with respect to the CRF baseline are attained here enabling 

accurate road recognition. Using the GLOC model for structured labelling of superpixel atomic 

units combines two types of prior knowledge (i.e. smoothness and global shape) into a single 

objective. When used jointly these priors ensure that road labelling is both locally consistent as 

well as globally coherent, resembling a likely road silhouette. As far as capturing surface salien-

cy from point clouds and attributing it to each superpixel individually both height and FPFH 

exhibit similar discriminative power, with bag of FPFH words performing marginally better than 

height across the overall test set. At the time of evaluation the overall ranks of SCRFFPFHGSP 

and SCRFHGSP were 13 and 14 respectively (out of 31 submitted methods) on the challenging 

KITTI road dataset. This chapter has presented the most notable contribution of the thesis. The 

novelty consists of using CHOPP augmented CRF towards binary labelling of urban environ-

ments into road and non-road semantics. In fact, this novelty is best observed by inspecting 

the literature review chapter, Table 2.1 and Table 2.2. 
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Conclusion and future work 

7.1 Achieved results 

In pursuit of a terrain response ADAS, prospective terrain recognition has been tackled using 

the mid-level vision task of semantic segmentation. This is in line with the main research objec-

tive of this thesis. Furthermore, desirable semantics considered include {grass, trees, sky, dirt, 

gravel, shrubs, tarmac and void}. Presegmenting images into small size superpixels results in a 

collection of atomic units that can adhere well to boundaries and overcome the rigidity of grid 

approaches while reducing the number of hypothesis evaluations or the complexity of a graph-

ical model. In search of a suitable terrain recognition approach, several predictors (i.e. SVM, 

RF, LR and CRF) and terrain saliency flavours have been tested. This is in line with the research 

objective seeking a suitable machine learning scheme and feature representation. Selections 

of appropriate texture descriptors as well as their granularity lead to a superior semantic seg-

mentation based on the CRF framework. Due to the unstructured character of a natural envi-

ronment only a pairwise smoothness prior is enforced on the final labelling in a sparsely con-

nected random field. Such pairwise potentials are able to encapsulate the smoothness con-

straint on neighbouring atomic units (i.e. superpixels or supervoxels) by using different 

measures of dissimilarity based on colour, texture and features from stereo reconstruction. 

Naturally, with the introduction of stereo vision smoothness is not a suitable assumption for all 

stuff classes present in forward driving scenes. Semantic segmentation of a collection of trees 

for example is marginally worsened with structured output learning since their atomic units 
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can exhibit different surface signatures locally (e.g. tree trunks, branches and foliage). In this 

case smoothness tends to hold up for the other saliency components based on colour and tex-

ture appearance. With structured output learning, stereo vision is also able to reduce the reli-

ance on some discontinuity preserving measures based purely on appearance such as the 

probability of boundary. In fact the presence of strong shadows amounts to false boundaries 

that are best discarded. This approach is generic in the sense that it can be used to label ter-

rain types in both natural and urban environments. However, unlike the natural environment, 

its urban counterpart is heavily constrained and structured. Often times the road terrain has 

shape since street roads are designed for vehicles with Ackermann steering. Exploiting such 

global shape information leads to superior semantic segmentation as demonstrated in the 

KITTI road benchmark. To this end previous pairwise CRF formulations are augmented with 

compositional high order pattern potentials (CHOPP) (Yujia, Tarlow and Zemel 2013) thus 

achieving two objectives with a single framework: global shape and local coherence (GLOC) as 

proposed by Kae et al. (2013). It is important that various road shapes and traffic situations are 

accounted for, as predictions across unseen samples (i.e. new images) will be smooth and re-

semble the most likely road shapes (Figure 7.1). The stated research objective of incorporating 

prior knowledge about the problem domain into model predictions has been attained by using 

the inherent smooth prediction of a CRF classifier to label natural environments and by using a 

CHOPP augmented CRF classifier to label urban environments (albeit modelling binary label 

shapes). The latter is able to enforce both smoothness and shape. The other stated research 

objectives demanding suitable feature representations (in 2D and 3D realms) or visual and 

spatial terrain saliency have been attained as part of a bag of features approach. While good 

texture and surface representations have been attained using daisy descriptors and FPFH de-

scriptors respectively, the pursuit of better descriptors or learning descriptors altogether re-

mains an open objective. 
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Figure 7.1 Labelling of an unseen sample image. While appearance and surface sali-
ency of most atomic units inside the red circle correspond to road/tarmac, labelling 

resembles a likely overall scene layout similar to those present in the training set 

 Remark

From an ADAS application point of view, at the core of the proposed framework lies 

the CRF which assumes that road scene is drawn from a multivariate probability distri-

bution and atomic units are piecewise smooth. Under this framework, other than de-

scriptor prototypes, node 𝛤 ∈ ℝ𝐿×𝐷𝑛 and edge 𝛹 ∈ ℝ𝐿×𝐿×𝐷𝑒 weights are all that is 

needed to make predictions when new input data is available. However, a particular 

dataset such as the JLR dataset (representative of the West Midlands area) does not 

fully span the variance of individuals within a class (e.g. grass, trees) since they are 

quite different from one geographical region to another. Fortunately, vehicles are pre-

configured and tailored to match different demands from around the world. Moreo-

ver, the current trend suggests that future vehicles might ship with internet connectiv-

ity as standard. Hence model parameterisation can be received wirelessly as an update 

given the geographical area, much like the present smartphone updates. To further 

automate this process the geographical area can be determined using the internet 

connectivity and further refined using a GPS sensor thus reducing or removing intru-

siveness of such ADAS completely.  
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7.2 Recommendations 

Concerning the possibility of having a prospective terrain recognition ADAS on a vehicle 

equipped with vision (i.e. monocular and stereo), several recommendations can be made 

based on evidence emerging from the experiments of this thesis: 

 Prospective terrain recognition is best achieved using the mid-level vision task of se-

mantic segmentation, as opposed to object detection. Firstly, this allows for granular 

classification results that are more localised than a mere bounding region. Secondly, 

the semantic segmentation makes it easier for contextual information to be included.  

 Consider features and algorithms when it comes to semantic segmentation of terrain 

classes. This is analogous to answering both questions: what and how to learn. Both 

routes can lead to superior accuracy.  

 Terrain classes are of amorphous special extent and contain granularly repetitive pat-

terns. Therefore, one needs to seek good visual saliency representation in the form of 

colour and most importantly texture. 

 Consider representing texture using bag of visual words approach. Select a state of the 

art key-point descriptor (e.g. SIFT, daisy etc.) and perform vector quantisation across a 

number of prototypes to create a pattern for each segment. Relevant literature should 

be reviewed do determine the initial number of prototypes as this may vary from one 

key-point descriptor to another for a typical segment. At this point, it is worth experi-

menting with various quantisation levels in a close vicinity. There are significant accu-

racy gains to be made this way. Such vicinity can be regarded as a band outside of 

which texture becomes less discriminative. 
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 Refrain from using prior knowledge or assumptions when semantically segmenting the 

natural environment, with the exception of smoothness as part of a CRF algorithm. 

Terrain classes are smooth in terms of visual saliency and surface signature.  

 Do consider using prior knowledge in addition to smoothness in order to semantically 

segment urban environment roads. Assuming that urban roads exhibit shape thus be-

ing fairly constrained is a sensible thing to do. Even more sensible would be to consid-

er road shape variability in conjunction with a CHOPP augmented CRF. 

 Select appropriate dissimilarity measures or edge features between segments (i.e. su-

perpixels or supervoxels). There are various ways to compute the notion of distance 

between histograms (e.g. chi-square distance, Euclidean distance, intersection etc.) 

and likewise this can potentially impact accuracy. The reliance on visual dissimilarity 

measures decreases with the introduction of spatial dissimilarity measures, particular-

ly if the visual ones are vulnerable to strong shadows. 

 For semantic segmentation in 3D space use a supervoxelisation algorithm to partition 

the point cloud into segments if the ranging sensor produces dense and accurate point 

clouds. In the case of stereo reconstruction an equivalence between superpixels and 

supervoxels may be assumed given the superpixel reconstruction.  

 Use bag of spatial words to summarise the surface signature corresponding to a super-

voxel. Experimental evidence suggests that vector quantisation across FPFH proto-

types is better suited for urban environments. Intuitively, tarmac roads are flat and the 

FPFH point descriptors have the ability to capture such surface saliency more accurate-

ly than simple height. Similarly, height may be utilised in a similar fashion to summa-

rise surface saliency of segments in natural environments. 
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 The recommended classification algorithms should remain unchanged, namely a sim-

ple pairwise CRF for natural environments and a CHOPP augmented CRF for urban en-

vironments. The atomic units should however be regarded as supervoxels and node

features should consist of a concatenation of histograms corresponding to visual sali-

ency and surface saliency. Conversely, the edge features must now be concatenated

with a surface dissimilarity measure. The intuition is that neighbouring supervoxels

with similar visual and surface saliency (e.g. convexity, irregularity etc.) are likely part

of the same class.

7.3 Future development 

With regards to the methodology proposed to solve the sematic labelling problem several fu-

ture research paths have been established given the current progress.  

 Better stereo data can be obtained using state of the art stereo methods and cameras.

Alternatively, LIDAR (or TOF) could be used to get more reliable depth information or

the two sensors can be fused together (Badino, Huber and Kanade 2011), (Zhu et al.

2008). To give an example, after calibrating the sensors into a common reference,

depth can be estimated as a weighted average of both sensors. Stereo cameras can

provide depth information predominantly from low albedo regions (i.e. dark patches)

and laser from everywhere else. In addition to that dense stereo estimation can com-

pensate for laser’s sparsity (Badino, Huber and Kanade 2011). The proposed frame-

work would benefit from any improvement in the reliability of the real world estima-

tion in two ways. Firstly, instead of estimating supervoxels solely in the image domain,

the real world can help filter the initial segments based on some real world criteria

(e.g. points with locally coherent normals, similar disparity range). Alternatively super-

voxelisation can be performed exclusively in the real world coordinates (Douillard et
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al. 2011b) though metrics describing point distance should be adaptive. Secondly, reli-

able features build on top of reliable sensor readings if they are to truly capture the 

underlying saliency of any class. 

 To achieve day and night functionality for such an ADAS application, it is worth explor-

ing multispectral cameras in the thermal IR as suggested by Manduchi et al. (2005).

 The proposed feature and algorithm configuration supports the inclusion of additional

amorphous classes depending on their relevance in the road scene. This can be used to

determine how a vehicle might negotiate other classes such as sand, snow and mud, to

name a few. Conversely, some classes can be trimmed from the model all together (i.e.

merge shrubs and trees).

 Instead of handcrafting features, a feature learning module could be used to learn

good representation from raw data in both the image domain (such as a convolutional

neural net) as well as in the real world domain discretised with point clouds (Lai, Bo

and Fox 2014). For example, single layer networks have been used to learn domain

specific features in an unsupervised way by Coates, Ng and Lee (2011).

 Temporal coherence between frames can be encouraged such as in the work of Kae

(2014) by adding temporal potentials to the model. To this end the current frame pre-

dictions can be influenced by a number of past frames with contributions weighted in

a decaying fashion. The application domain can be exploited even further to make this

mechanism more adaptable. It can be observed that steering angle position and steer-

ing angle velocity (accessible via the CAN bus) have a direct influence on the amount of

correlation between neighbouring frames, unless the environment is extremely am-

biguous (e.g. flat desert or snow until vanishing line). The more steering action, the
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less correlation and therefore a steeper decaying of weights can be applied at neigh-

bouring frames. 

 To increase the feature extraction speed all superpixels can be processed at the same 

time using multiple threads. Work presented here is highly parallelisable and amena-

ble to an FPGA implementation (Johnston, Gribbon and Bailey 2004) thus opening the 

path for a real time application. 

 The proposed framework can classify point clouds obtained using airborne ranging 

sensors such as LIDAR (Niemeyer, Rottensteiner and Soergel 2012) since point cloud 

descriptors are independent of the view point (i.e. FPFH). If such environments are un-

structured (and piecewise smooth) a sparsely connected graph with pairwise smooth-

ness prior would suffice. Alternatively if the environments are more structured, a 

higher order pattern potential such as one learned using RBM to model shape could 

improve classification accuracy. 
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Appendix A Models usage 

Diagram A.1 From image (2D) to semantic segmentation via scalar predictions. As part of a 
preprocessing stage SLIC algorithm partitions the original image into superpixels. Feature ex-
traction and scalar classification follow. The former relies on a concatenation of histograms 
capturing visual saliency (e.g. texture) of every superpixel while the latter relies on a scalar 

output learning algorithm of choice (i.e. SVM, RF or LR). To label an entire image all segments 
must be labelled individually. Each label is colour coded for better visualisation.  

Diagram A.2 From image (2D) to semantic segmentation via structured prediction. As part of a 
preprocessing stage SLIC algorithm partitions the original image into superpixels. Feature ex-

traction and structured classification follow. The former relies on two types of features: a con-
catenation of histograms capturing visual saliency (e.g. texture) of every superpixel (i.e. node 

features) and a concatenation of dissimilarity measures between adjacent superpixels (i.e. 
edge features or links between nodes). Classification is performed using a structured output 
learning algorithm of choice (i.e. CRF). All segments are classified by selecting the most likely 
labelling configuration across the entire image. Each label is colour coded for better visualisa-

tion.  
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Diagram A.3 From image (2D) and point cloud (3D) to semantic segmentation via scalar predic-
tions. The preprocessing stage is composed of two independent steps namely, superpixel parti-
tioning (SLIC on the original image) and stereo reconstruction. Reconstructed SLIC superpixels 
span the subspace of supervoxels in 3D. Feature extraction and scalar classification follow. The 
former relies on a concatenation of histograms capturing visual saliency (e.g. texture) and sur-
face saliency of every superpixel/supervoxel while the latter relies on a scalar output learning 
algorithm of choice (i.e. SVM, RF or LR). To label an entire image all segments must be labelled 

individually. Each label is colour coded for better visualisation.  

Diagram A.4 From image (2D) and point cloud (3D) to semantic segmentation via structured 
prediction. The preprocessing stage is composed of two independent steps namely, superpixel 
partitioning (SLIC on the original image) and stereo reconstruction. Reconstructed SLIC super-
pixels span the subspace of supervoxels in 3D. Feature extraction and structured classification 

follow. The former relies on two types of features: a concatenation of histograms capturing 
visual saliency (e.g. texture) as well as surface saliency of every superpixel/supervoxel (i.e. 
node features) and a concatenation of dissimilarity measures between adjacent superpix-

els/supervoxels (i.e. edge features or links between nodes). Classification is performed using a 
structured output learning algorithm of choice (i.e. CRF). All segments are classified by select-
ing the most likely labelling configuration across the entire image. Each label is colour coded 

for better visualisation.  
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Appendix B Code samples 

 

 

 

 

 

# predicted and true_labels are vectors known beforehand  

# i.e. machine learning/algorithm predictions and ground truth respectively   

# cm_location is the file location where confusion matrix is to be saved 

# see http://stackoverflow.com/questions/5821125  

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.metrics import confusion_matrix 

Y_pred_prep= predicted 

Y_test_prep= true_labels 

labels= ["grass", "tree", "sky", "dirt", "gravel", "shrubs", "tarmac", "void"] 

cm= confusion_matrix(Y_test_prep, Y_pred_prep) 

conf_arr = cm 

norm_conf = [] 

for i in conf_arr: 

 a = 0 

 tmp_arr = [] 

 a = sum(i, 0) 

 for j in i: 

  tmp_arr.append(float(j)/float(a)) 

 norm_conf.append(tmp_arr) 

fig = plt.figure() 

plt.clf() 

ax = fig.add_subplot(111) 

ax.set_aspect(1) 

res = ax.imshow(np.array(norm_conf), cmap=plt.cm.jet, interpolation="nearest") 

width = len(conf_arr) 

height = len(conf_arr[0]) 

for x in xrange(width): 

 for y in xrange(height): 

  ax.annotate(str(conf_arr[x][y]), xy=(y, x), horizontalalignment="center", 

verticalalignment="center") 

cb = fig.colorbar(res) 

plt.title("Confusion matrix") 

plt.ylabel("True label") 

plt.xlabel("Predicted label") 

plt.xticks(range(width), labels[:width]) 

plt.yticks(range(height), labels[:height]) 

plt.savefig(cm_location+"confusion_matrix.png", format="png") 

 Code snippet B.1 This Python code produces a single confusion matrix. It can be used in conjunction with 
any learning algorithm such as those presented in Chapter 3. 
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from sklearn import svm 

from sklearn.externals import joblib 

clf = svm.SVC() 

try: 

  clf = joblib.load(svm_location+"classifier_svm.pkl") 

  print "using trained model" 

except: 

  print "building new model" 

  clf.fit(X_train,Y_train) 

  joblib.dump(clf, svm_location+"classifier_svm.pkl") 

training_score =clf.score(X_train, Y_train) 

pred = clf.predict(x_test)

from sklearn.ensemble import RandomForestClassifier 

from sklearn.externals import joblib 

clf = RandomForestClassifier(n_estimators=100) 

try: 

  clf = joblib.load(rf_location+"classifier_rf.pkl") 

  print "using trained model" 

except: 

  print "building new model" 

  clf.fit(X_train,Y_train) 

  joblib.dump(clf, rf_location+"classifier_rf.pkl") 

training_score =clf.score(X_train, Y_train) 

pred = clf.predict(x_test)

Code snippet B.2 This Python code tries to load a trained SVM from a file. If not found, the SVM is trained 
using provided data (i.e. X_train, Y_train) and saved at svm_location. A prediction is made by evaluating the 

classifier for feature x_test. 

Code snippet B.3 This Python code tries to load a trained RF from a file. If not found, the RF is trained using 
provided data (i.e. X_train, Y_train) and saved at rf_location. A prediction is made by evaluating the classifier 

for feature x_test. 
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%Originally written by Andrew Kae (University of Massachusetts - Amherst) 

%Modified by Ionut Gheorghe (Coventry University) 

%Confusion matrix is generated in Python by using matpy to call Python from 

Matlab (http://algoholic.eu/matpy/) 

run('C:/Users/gheorghi/Desktop/JLRDataset/JLRDataset_features/vlfeat-

0.9.19/toolbox/vl_setup'); 

addpath('model/lr'); 

addpath('matpy/'); 

%%% --- default parameter values --- %%% 

config_lr; 

startup;

%number of segmentation labels 

nlabel = 8;

load('sds_large.mat','sds'); 

%load('esds_large.mat','esds'); 

fprintf('processing the features!!\n'); 

load('weights/lr_l2r0.001_rmposfeat0.mat', '-mat', 'w_lr'); 

verbose = 0; 

tot_err = 0; 

tot_sp = 0; 

tot_err_part = zeros(nlabel, 1); 

tot_sp_part = zeros(nlabel, 1); 

evaltime = 0; 

testList = testnames; 

testNums = testnums; 

%testList = [testnames validnames]; 

%testNums = [testnums validnums]; 

fprintf('total LR test images =  %d \n', length(testList)); 

gt_splabels_all=[]; 

pred_all=[]; 

for i = 1:length(testList),

% load full data 

gt_casename = sprintf('%s/%s/%s_%04d.dat', gt_dir, testList{i}, 

testList{i}, testNums(i)); 

gt_case = load(gt_casename); 

gt_case = gt_case + 1; 

gt_splabels = gt_case(2:end);   % the first value is the number of nodes 

gt_splabels_all = [gt_splabels_all; gt_splabels]; 

% read superpixel features 

[~, H , ~, ~] = getFeatures(testList{i}, testNums(i), features_dir); 

[~, num_sp] = size(H); 

if w_lr.params.rmposfeat, 

H(65:128,:) = []; 

end 

Code snippet B.4 Semantic segmentation of images using LR in conjunction with the extracted features. Col-
our coded and confusion matrix results can be saved in files. It contains both Matlab and Python code.  
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whiteH = H ./ repmat(sds, [1, num_sp]); % whiten the features 

feat = whiteH'; 

numFeat = size(feat, 1); 

feat = [feat ones(numFeat, 1)]; % add bias term 

feat = feat'; 

tS = tic; 

labelprob = inference_lr(feat, w_lr.nodeWeights); 

tE = toc(tS); 

evaltime = evaltime + tE; 

average_evaltime = evaltime/i; 

fprintf(' %d tic-toc %d average_evaltime %d\n  ', i, tE, aver-

age_evaltime); 

[~, pred] = max(labelprob ,[], 1); 

pred_all=[pred_all pred]; 

err = sum(pred(:) ~= gt_splabels(:)); 

tot_err = tot_err + err; 

tot_sp = tot_sp + num_sp; 

for p = 1:nlabel 

tpred = pred(gt_splabels == p); 

tsplabels = gt_splabels(gt_splabels == p); 

err = sum(tpred(:) ~= tsplabels(:)); 

tot_err_part(p) = tot_err_part(p) + err; 

tot_sp_part(p) = tot_sp_part(p) + numel(tpred); 

end 

if verbose, 

% acc ? 

fprintf('valid: [%d/%d] err: %d/%d, acc = %g\n', i, length(testList), 

err, numFeat, 100*(1-tot_err/tot_sp)); 

%load superpixel mat 

supmat_casename = sprintf('%s/%s/%s_%04d.dat', spmat_dir, testList{i}, 

testList{i}, testNums(i)); 

supmat_case = load(supmat_casename); 

%load raw images 

raw_casename = sprintf('%s/%s/%s/_%s_%04d.bmp', lfw_dir, testList{i}, 

'Rect_left', testList{i}, testNums(i)); 

raw_case = imread(raw_casename); 

%load ground truth image 

label_casename = sprintf('%s/%s/%s/_%s_%04d.bmp', label_dir, 

testList{i}, 'Rect_left', testList{i}, testNums(i)); 

label_case = imread(label_casename);

%create images directory if it doesn't exist 

if (~exist([imresult_dir '/LR'], 'dir')) 

mkdir([imresult_dir '/LR']); 

end 

Code snippet B.4 Continued 
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%location to save results 

results_casename = sprintf('%s/_%s_%04d', [imresult_dir '/LR'], 

testList{i}, testNums(i)); 

%colorImgWithLabels, visualiuzation and saving 

colorImgWithLabels(supmat_case, raw_case, pred, gt_splabels, la-

bel_case, results_casename);

else 

if ~mod(i,10), 

fprintf('.'); 

end 

if ~mod(i,100), 

fprintf('[%d/%d] ',i,length(testList)); 

fprintf('acc = %g\n',100*(1-tot_err/tot_sp)); 

end 

end   

end 

%results generation 

%1 grass 

%2 tree 

%3 sky 

%4 dirt 

%5 gravel 

%6 shrubs 

%7 tarmac 

%8 void 

acc_location=[imresult_dir '/LR_acc/']; 

%create cm directory if it doesn't exist 

if (~exist(acc_location, 'dir')) 

   mkdir(acc_location); 

end

fid = fopen([acc_location 'acc.txt'], 'w'); 

acc = 100*(1-tot_err/tot_sp); 

fprintf(fid, 'acc = %g\n', acc); 

class_names = {'grass', 'tree', 'sky', 'dirt', 'gravel', 'shrubs', 'tarmac', 

'void'}; 

for p = 1:nlabel 

acc = 100*(1-tot_err_part(p)/tot_sp_part(p)); 

fprintf(fid, 'acc of %s = %g\n', class_names{p}, acc); 

end 

fclose(fid); 

predicted=pred_all'; 

truelabels=gt_splabels_all; 

cm_location=[imresult_dir '/LR_cm/']; 

%create cm directory if it doesn't exist 

if (~exist(cm_location, 'dir')) 

   mkdir(cm_location); 

end

Code snippet B.4 Continued 
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py_export('predicted', 'truelabels', 'cm_location') 

stmt= sprintf(['import numpy as np\n'... 

'import matplotlib.pyplot as plt\n'... 

'from sklearn.metrics import confusion_matrix\n'... 

'from sklearn.metrics import accuracy_score\n'... 

'Y_pred_prep= predicted\n'... 

'Y_test_prep= truelabels\n'... 

'overall_acc= accuracy_score(Y_test_prep, Y_pred_prep)\n'... 

'labels= ["grass", "tree", "sky", "dirt", "gravel", "shrubs", "tarmac", 

"void"]\n'... 

'cm= confusion_matrix(Y_test_prep, Y_pred_prep)\n'... 

'conf_arr = cm\n'... 

'norm_conf = []\n'... 

'for i in conf_arr:\n'... 

' a = 0\n'... 

' tmp_arr = []\n'... 

' a = sum(i, 0)\n'... 

' for j in i:\n'... 

'  tmp_arr.append(float(j)/float(a))\n'... 

' norm_conf.append(tmp_arr)\n'... 

'fig = plt.figure()\n'... 

'plt.clf()\n'... 

'ax = fig.add_subplot(111)\n'... 

'ax.set_aspect(1)\n'... 

'res = ax.imshow(np.array(norm_conf), cmap=plt.cm.jet, interpola-

tion="nearest")\n'... 

'width = len(conf_arr)\n'... 

'height = len(conf_arr[0])\n'... 

'for x in xrange(width):\n'... 

' for y in xrange(height):\n'... 

'  ax.annotate(str(conf_arr[x][y]), xy=(y, x), horizontalalignment="center", 

verticalalignment="center")\n'... 

'cb = fig.colorbar(res)\n'... 

'plt.title("Confusion matrix LR")\n'... 

'plt.ylabel("True label")\n'... 

'plt.xlabel("Predicted label")\n'... 

'plt.xticks(range(width), labels[:width])\n'... 

'plt.yticks(range(height), labels[:height])\n'... 

'plt.savefig(cm_location+"confusion_matrix_LR.png", format="png")']); 

py('eval', stmt) 

py_import('overall_acc') 

Code snippet B.4 Continued 
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%Originally written by Andrew Kae (University of Massachusetts - Amherst) 

%Modified by Ionut Gheorghe (Coventry University) 

%Confusion matrix is generated in Python by using matpy to call Python from 

Matlab (http://algoholic.eu/matpy/) 

run('C:/Users/gheorghi/Desktop/JLRDataset/JLRDataset_features/vlfeat-

0.9.19/toolbox/vl_setup'); 

addpath('model/crf'); 

addpath('matpy/'); 

%%% --- default parameter values --- %%% 

config_crf; 

startup;

nlabel = 8; % number of segmentation labels 

load('sds_large.mat','sds'); 

load('esds_large.mat','esds'); 

fprintf('processing the features!!\n'); 

load('weights/lr_l2r0.001_rmposfeat0/crf_l2n0.001_l2e0.0001_rmposfeat0.mat', 

'-mat', 'w_crf'); 

verbose = 1; 

tot_err = 0; 

tot_sp = 0; 

tot_err_part = zeros(nlabel, 1); 

tot_sp_part = zeros(nlabel, 1); 

evaltime = 0; 

testList = testnames; 

testNums = testnums; 

%testList = [testnames validnames]; 

%testNums = [testnums validnums]; 

fprintf('total CRF test images =  %d \n', length(testList)); 

gt_splabels_all=[]; 

pred_all=[]; 

for i = 1:length(testList),

% load full data 

gt_casename = sprintf('%s/%s/%s_%04d.dat', gt_dir, testList{i}, 

testList{i}, testNums(i)); 

gt_case = load(gt_casename); 

gt_case = gt_case + 1; 

gt_splabels = gt_case(2:end);   % the first value is the number of nodes 

gt_splabels_all = [gt_splabels_all; gt_splabels]; 

% read superpixel features 

[numNodes, H , E, S] = getFeatures(testList{i}, testNums(i), fea-

tures_dir); 

X = struct('numNodes', numNodes, 'adjmat', {E}, 'nodeFeatures', {H}, 

'edgeFeatures', {S}); 

[~, num_sp] = size(X.nodeFeatures); 

Code snippet B.5 Semantic segmentation of images using CRF in conjunction with the extracted features. 
Colour coded and confusion matrix results can be saved in files. It contains both Matlab and Python code. 
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% scale features 

    if w_crf.params.rmposfeat, 

        X.nodeFeatures(65:128,:) = []; 

    end 

    X.nodeFeatures = bsxfun(@rdivide,X.nodeFeatures,sds); 

    X.nodeFeatures(end+1,:) = 1; 

     

    [xe, ye] = find(X.adjmat > 0); 

    for j=1:length(xe) 

        X.edgeFeatures{xe(j),ye(j)} = X.edgeFeatures{xe(j),ye(j)} ./ esds; 

        X.edgeFeatures{xe(j),ye(j)}(end+1) = 1; 

    end 

     

    tS = tic; 

    labelprob = inference_crf(w_crf, X, nlabel, 0); 

    tE = toc(tS); 

    evaltime = evaltime + tE; 

    average_evaltime = evaltime/i; 

    fprintf(' %d tic-toc %d average_evaltime %d\n  ', i, tE, aver-

age_evaltime); 

     

    [~, pred] = max(labelprob ,[], 1); 

    pred_all=[pred_all pred]; 

    err = sum(pred(:) ~= gt_splabels(:)); 

    tot_err = tot_err + err; 

    tot_sp = tot_sp + num_sp; 

     

     

    for p = 1:nlabel 

        tpred = pred(gt_splabels == p); 

        tsplabels = gt_splabels(gt_splabels == p); 

        err = sum(tpred(:) ~= tsplabels(:)); 

        tot_err_part(p) = tot_err_part(p) + err; 

        tot_sp_part(p) = tot_sp_part(p) + numel(tpred); 

    end 

     

     

     if verbose, 

        % acc ? 

        % fprintf('valid: [%d/%d] err: %d/%d, acc = %g\n', i, 

length(testList), err, numFeat, 100*(1-tot_err/tot_sp)); 

        %load superpixel mat 

        supmat_casename = sprintf('%s/%s/%s_%04d.dat', spmat_dir, testList{i}, 

testList{i}, testNums(i)); 

        supmat_case = load(supmat_casename); 

         

        %load raw images 

        raw_casename = sprintf('%s/%s/%s/_%s_%04d.bmp', lfw_dir, testList{i}, 

'Rect_left', testList{i}, testNums(i)); 

        raw_case = imread(raw_casename); 

         

        %load ground truth image 

        label_casename = sprintf('%s/%s/%s/_%s_%04d.bmp', label_dir, 

testList{i}, 'Rect_left', testList{i}, testNums(i)); 

        label_case = imread(label_casename); 

Code snippet B.5 Continued 
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%create images directory if it doesn't exist 

        if (~exist([imresult_dir '/CRF'], 'dir')) 

           mkdir([imresult_dir '/CRF']); 

        end 

 

        %location to save results 

        results_casename = sprintf('%s/_%s_%04d', [imresult_dir '/CRF'], 

testList{i}, testNums(i)); 

         

        %colorImgWithLabels, visualiuzation and saving 

        colorImgWithLabels(supmat_case, raw_case, pred, gt_splabels, la-

bel_case, results_casename); 

    else 

        if ~mod(i,10), 

            fprintf('.'); 

        end 

        if ~mod(i,100), 

            fprintf('[%d/%d] ',i,length(testList)); 

            fprintf('acc = %g\n',100*(1-tot_err/tot_sp)); 

        end 

     end    

end 

 

%results generation 

%1 grass  

%2 tree 

%3 sky  

%4 dirt  

%5 gravel 

%6 shrubs 

%7 tarmac 

%8 void  

 

acc_location=[imresult_dir '/CRF_acc/']; 

%create cm directory if it doesn't exist 

if (~exist(acc_location, 'dir')) 

   mkdir(acc_location); 

end     

 

fid = fopen([acc_location 'acc.txt'], 'w'); 

acc = 100*(1-tot_err/tot_sp); 

fprintf(fid, 'acc = %g\n', acc); 

class_names = {'grass', 'tree', 'sky', 'dirt', 'gravel', 'shrubs', 'tarmac', 

'void'}; 

for p = 1:nlabel 

    acc = 100*(1-tot_err_part(p)/tot_sp_part(p)); 

    fprintf(fid, 'acc of %s = %g\n', class_names{p}, acc); 

end 

fclose(fid); 

predicted=pred_all'; 

truelabels=gt_splabels_all; 

cm_location=[imresult_dir '/CRF_cm/']; 

%create cm directory if it doesn't exist 

if (~exist(cm_location, 'dir')) 

   mkdir(cm_location); 

end     

Code snippet B.5 Continued 
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 py_export('predicted', 'truelabels', 'cm_location') 

stmt= sprintf(['import numpy as np\n'... 

'import matplotlib.pyplot as plt\n'... 

'from sklearn.metrics import confusion_matrix\n'... 

'from sklearn.metrics import accuracy_score\n'... 

'Y_pred_prep= predicted\n'... 

'Y_test_prep= truelabels\n'... 

'overall_acc= accuracy_score(Y_test_prep, Y_pred_prep)\n'... 

'labels= ["grass", "tree", "sky", "dirt", "gravel", "shrubs", "tarmac", 

"void"]\n'... 

'cm= confusion_matrix(Y_test_prep, Y_pred_prep)\n'... 

'conf_arr = cm\n'... 

'norm_conf = []\n'... 

'for i in conf_arr:\n'... 

' a = 0\n'... 

' tmp_arr = []\n'... 

' a = sum(i, 0)\n'... 

' for j in i:\n'... 

'  tmp_arr.append(float(j)/float(a))\n'... 

' norm_conf.append(tmp_arr)\n'... 

'fig = plt.figure()\n'... 

'plt.clf()\n'... 

'ax = fig.add_subplot(111)\n'... 

'ax.set_aspect(1)\n'... 

'res = ax.imshow(np.array(norm_conf), cmap=plt.cm.jet, interpola-

tion="nearest")\n'... 

'width = len(conf_arr)\n'... 

'height = len(conf_arr[0])\n'... 

'for x in xrange(width):\n'... 

' for y in xrange(height):\n'... 

'  ax.annotate(str(conf_arr[x][y]), xy=(y, x), horizontalalignment="center", 

verticalalignment="center")\n'... 

'cb = fig.colorbar(res)\n'... 

'plt.title("Confusion matrix CRF")\n'... 

'plt.ylabel("True label")\n'... 

'plt.xlabel("Predicted label")\n'... 

'plt.xticks(range(width), labels[:width])\n'... 

'plt.yticks(range(height), labels[:height])\n'... 

'plt.savefig(cm_location+"confusion_matrix_CRF.png", format="png")']); 

py('eval', stmt) 

py_import('overall_acc') 

Code snippet B.5 Continued 
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#include "mex.h" 

#include <iostream> 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include "pcl/io/pcd_io.h" 

#include "pcl/point_types.h" 

#include "pcl/visualization/cloud_viewer.h" 

#include "pcl/features/normal_3d.h" 

#include "pcl/features/fpfh.h" 

#include "pcl/filters/voxel_grid.h" 

#include "triclops.h" 

//triclopsXYZToRCD -- Converts true 3D points into image coordinates. 

// Print error and quit program 

#define _HANDLE_TRICLOPS_ERROR( description, error ){ \ 

if( error != TriclopsErrorOk ) { \ 

mexPrintf( "*** Triclops Error '%s' at line %d :\n\t%s\n", \ 

triclopsErrorToString( error ), \ 

__LINE__, description ); mexErrMsgTxt("An Error there was"); \ 

} } 

void ExitFcn(void); 

void DoInit(void); 

void MakeFPFHImage(  mxArray *plhs[] , pcl::PointCloud<pcl::PointXYZRGB>::Ptr 

cloudColor, pcl::PointCloud<pcl::FPFHSignature33>::Ptr descriptors_FPFH ); 

static bool inited = false; 

static int currres; 

static mwSize OutDims[2]; 

static TriclopsContext triclops; 

static TriclopsError te; 

static int outCol; static int outRow; 

static int minDisp; static int maxDisp; 

int rhsparse_new=0; 

void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] ) 

{ 

 char *cmd; 

 bool CommandAccepted = false; 

// Object for storing the original large cloud 

 pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud (new 

pcl::PointCloud<pcl::PointXYZRGB>); 

// Object for storing the FPFH descriptors for each point. 

pcl::PointCloud<pcl::FPFHSignature33>::Ptr descriptors_FPFH(new 

pcl::PointCloud<pcl::FPFHSignature33>()); 

 // Object for storing the normals. 

 pcl::PointCloud<pcl::Normal>::Ptr normals(new 

pcl::PointCloud<pcl::Normal>); 

 rhsparse_new = 0; 

Code snippet B.6 This code is used as part of the feature extraction process (e.g. FPFH) using Point Cloud 
library and Triclops application program interface. More specifically it is used to build a mex file that can be 

called as a function from within Matlab 
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if(nrhs<1) mexErrMsgTxt("Need command string input"); 

if (!mxIsChar(prhs[rhsparse_new]))   mexErrMsgTxt("Unrecognised command 

or none provided"); 

cmd = mxArrayToString(prhs[rhsparse_new++]); //get command string 

 if (!strcmp(cmd, "workit")) 

 { 

CommandAccepted = true; 

//this is a pointer to the entire cloud data 

int nrows=(int) mxGetM(prhs[1]); // M is number of rows 

int ncols=(int) mxGetN(prhs[1]); // 

float* data=(float*)mxGetData(prhs[1]); 

float x, y, z; 

unsigned char pr, pg, pb; 

pcl::PointXYZRGB point;

std::cout<<" Points # "<<nrows<<std::endl; 

//std::cout<<"ncols: "<<ncols<<std::endl;

int pointn = nrows; 

for (int i=0; i< pointn; i++) 

{ 

x=  data[i];

y=  data[i+1*nrows]; 

z=  data[i+2*nrows]; 

pr= data[i+3*nrows]; 

pg= data[i+4*nrows]; 

pb= data[i+5*nrows];  

point.x=x; 

point.y=y; 

point.z=z; 

uint32_t rgb = (static_cast<uint32_t>(pr) << 16 | 

static_cast<uint32_t>(pg) << 8 | static_cast<uint32_t>(pb)); 

point.rgb = *reinterpret_cast<float*>(&rgb); 

cloud->points.push_back (point); 

} 

 // Downsampling the cloud to speed up the computation 

 pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudColor (new 

pcl::PointCloud<pcl::PointXYZRGB>); 

 pcl::VoxelGrid<pcl::PointXYZRGB> sor; 

sor.setInputCloud (cloud); 

sor.setLeafSize (0.1f, 0.1f, 0.1f); 

sor.filter (*cloudColor); 

std::cout<<" Downsampling done !"<<std::endl; 

std::cout<<" Have # "<<cloudColor->size()<<std::endl; 

// Estimate the normals. 

 pcl::NormalEstimation<pcl::PointXYZRGB, pcl::Normal> normalEstimation; 

 normalEstimation.setInputCloud(cloudColor); 

 normalEstimation.setRadiusSearch(0.3); 

 pcl::search::KdTree<pcl::PointXYZRGB>::Ptr kdtree(new 

pcl::search::KdTree<pcl::PointXYZRGB>); 

 normalEstimation.setSearchMethod(kdtree); 

 normalEstimation.compute(*normals); 

Code snippet B.6 Continued 
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// FPFH estimation object. 

 pcl::FPFHEstimation<pcl::PointXYZRGB, pcl::Normal, 

pcl::FPFHSignature33> fpfh; 

 fpfh.setInputCloud(cloudColor); 

 fpfh.setInputNormals(normals); 

 fpfh.setSearchMethod(kdtree); 

 // Search radius, to look for neighbors. Note: the value given here has 

to be 

 // larger than the radius used to estimate the normals. 

 fpfh.setRadiusSearch(0.5); 

 fpfh.compute(*descriptors_FPFH); 

std::cout<<" FPFH descriptors done !"<<std::endl; 

// std::cout<<" Found # "<<descriptors_FPFH->size()<<std::endl; 

DoInit(); 

MakeFPFHImage(plhs, cloudColor, descriptors_FPFH ); 

mxFree (cmd); 

return; 

 } 

if (!CommandAccepted) 

 { 

mexErrMsgTxt("Unknown command"); 

} 

 mxFree(cmd); 

} 

void MakeFPFHImage(  mxArray *plhs[] , pcl::PointCloud<pcl::PointXYZRGB>::Ptr 

cloudColor, pcl::PointCloud<pcl::FPFHSignature33>::Ptr descriptors_FPFH ) 

{ 

//p, q, r as x, y, z 

float p, q, r, row, col, disp;  

int red, green, blue; 

int dptr=-1; 

float *Out3dPtr; 

void *newptr; 

Out3dPtr= (float*) mxMalloc((5 + 33)*480*640*sizeof(float)); // {row, 

col, red, green, blue}*rows*cols

for (int i = 0; i <cloudColor->size(); i++) 

{

//code here using triclops 

p= cloudColor->points[i].x; 

q= cloudColor->points[i].y; 

r= cloudColor->points[i].z; 

red= cloudColor->points[i].r; 

green= cloudColor->points[i].g; 

blue= cloudColor->points[i].b; 

triclopsXYZToRCD(triclops, p, q, r, &row, &col, &disp); 

dptr++; Out3dPtr[dptr] = (int)row; 

dptr++; Out3dPtr[dptr] = (int)col; 

dptr++; Out3dPtr[dptr] = red; 

dptr++; Out3dPtr[dptr] = green; 

dptr++; Out3dPtr[dptr] = blue; 

Code snippet B.6 Continued 
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   for (int pos = 0; pos < descriptors_FPFH->points[i].descriptorSize(); 

pos++) 

{ 

dptr++; Out3dPtr[dptr] = descriptors_FPFH-

>points[i].histogram[pos];

} 

}  

plhs[0] = mxCreateNumericMatrix(0, 0, mxSINGLE_CLASS, mxREAL); 

newptr = mxRealloc(Out3dPtr, 480*640*(5 + 33)*sizeof( float)); 

mxSetData(plhs[0], newptr); 

mxSetM(plhs[0], (5 + 33)); 

mxSetN(plhs[0], 480*640); 

} 

void DoInit(void) 

{ 

//minDisp = 0; 

//maxDisp = 160; 

outRow = 480; 

outCol = 640; 

char* szCalFile = "bumblebee11123884-current.cal"; 

// Get the camera calibration data 

te = triclopsGetDefaultContextFromFile( &triclops, szCalFile ); 

_HANDLE_TRICLOPS_ERROR( "triclopsGetDefaultContextFromFile(): Can't open 

calibration file", te ); 

// set output resolution to input resolution 

triclopsSetDisparity( triclops, minDisp, maxDisp ); 

triclopsSetResolution( triclops, outRow,  outCol ) ; 

triclopsSetStereoMask( triclops, 11 ); 

triclopsSetSubpixelInterpolation( triclops, true); 

   triclopsSetTextureValidation( triclops, false); 

OutDims[0]=(outCol); //always return single row matrix. 

OutDims[1]=(outRow); //setup appropriate output matrix size 

currres = outRow; 

mexAtExit( ExitFcn ); 

// _HANDLE_FLYCAPTURE_ERROR( "flycaptureInitialize()", fe ); 

inited = true; 

} 

void ExitFcn(void) 

{ 

te = triclopsDestroyContext( triclops ); 

//fe = flycaptureDestroyContext( flycapture ); 

_HANDLE_TRICLOPS_ERROR( "triclopsDestroyContext()", te ); 

} 

Code snippet B.6 Continued 
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%Originally written by Andrew Kae (University of Massachusetts - Amherst) 

%Modified by Ionut Gheorghe (Coventry University) 

%Confusion matrix is generated in Python by using matpy to call Python from 

Matlab (http://algoholic.eu/matpy/) 

run('C:/Users/gheorghi/Desktop/JLRDataset/JLRDataset_features/vlfeat-

0.9.19/toolbox/vl_setup'); 

addpath('model/crbm'); 

addpath('model/gloc'); 

addpath('matpy/'); 

%%% --- default parameter values --- %%% 

config_gloc; 

startup; % 

nlabel = 2; % number of segmentation labels 

load('sds_large.mat','sds'); 

load('esds_large.mat','esds'); 

fprintf('processing the features!!\n'); 

load('weights/slr_l2r0.0001_rmposfeat1_N16/gloc_LFW_nD429_nL2_N16_l2n0.0001_l2

e0.0001_rbm_R24_nH400_l2r0.0001_eps0.002308_CD30_ann0_bS289_0300.mat', '-mat', 

'w_gloc'); 

%slr_l2r0.0001_rmposfeat1_N16/gloc_LFW_nD429_nL2_N16_l2n0.0001_l2e0.0001_rbm_R

24_nH400_l2r0.0001_eps0.002308_CD30_ann0_bS289_0300.mat 

%for heightons 

%slr_l2r0.0001_rmposfeat1_N16/gloc_LFW_nD665_nL2_N16_l2n0.0001_l2e0.0001_rbm_R

24_nH400_l2r0.0001_eps0.002308_CD30_ann0_bS289_0300.mat 

%for FPFHtons 

w_gloc.vishidrs = re-

shape(w_gloc.vishid,size(w_gloc.vishid,1)*size(w_gloc.vishid,2),size(w_gloc.vi

shid,3)); 

w_gloc.visbiasrs  = re-

shape(w_gloc.visbiases,size(w_gloc.vishid,1)*size(w_gloc.vishid,2),1); 

w_gloc.nodeWeightsrs = re-

shape(w_gloc.nodeWeights,size(w_gloc.nodeWeights,1)*size(w_gloc.nodeWeights,2)

,size(w_gloc.nodeWeights,3)); 

w_gloc.vishidperm = re-

shape(w_gloc.vishid,size(w_gloc.vishid,1),size(w_gloc.vishid,2)*size(w_gloc.vi

shid,3)); 

verbose = 1; 

tot_err = 0; 

tot_sp = 0; 

tot_err_part = zeros(nlabel, 1); 

tot_sp_part = zeros(nlabel, 1); 

evaltime = 0; 

testList = testnames; 

testNums = testnums; 

Code snippet B.7 Semantic segmentation of images using GLOC in conjunction with the extracted features. 
Colour coded and confusion matrix results can be saved in files. It contains both Matlab and Python code. 
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fprintf('total GLOC test images =  %d \n', length(testList)); 

 

gt_splabels_all=[]; 

pred_all=[]; 

 

sds(65:128) = []; 

 

for i = 1:length(testList),     

     

    % load full data 

    gt_casename = sprintf('%s/%s_%06d.dat', gt_dir, testList{i}, testNums(i)); 

    gt_case = load(gt_casename); 

    gt_case = gt_case + 1; 

    gt_splabels = gt_case(2:end);   % the first value is the number of nodes 

    gt_splabels_all = [gt_splabels_all; gt_splabels]; 

     

     % read superpixel features 

    %[numNodes, H , E, S] = getFeatures(testList{i}, testNums(i), fea-

tures_dir); 

    [numNodes, H, E, S] = getFeatures(testList{i}, testNums(i), features_dir); 

    %w_gloc.params.rmposfeat 

          

    if w_gloc.params.rmposfeat, 

        H(65:128, :) = [];          

    end 

     

    % node features 

    H = bsxfun(@rdivide,H,sds); 

    H(end+1,:) = 1; % add bias term 

     

    % edge features 

    [xe, ye] = find(E > 0); 

    for j = 1:length(xe), 

        S{xe(j),ye(j)} = S{xe(j),ye(j)} ./ esds; 

        S{xe(j),ye(j)}(end+1) = 1; % add bias term 

    end 

    X = struct('numNodes', numNodes, 'adjmat', {E}, 'nodeFeatures', {H}, 

'edgeFeatures', {S}); 

    num_sp = numNodes; 

    % read superpixel data 

    spfile = sprintf('%s/%s_%06d.dat', spmat_dir, testList{i}, testNums(i)); 

    sp = load(spfile) + 1; 

     

    %load raw images to find size 

    raw_casename = sprintf('%s/%s_%06d.png', lfw_dir, testList{i}, test-

Nums(i)); 

    raw_case = imread(raw_casename); 

    sz = size(raw_case); 

    olddimy = sz(1); 

    olddimx = sz(2); 

Code snippet B.7 Continued 
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% read projection matrix 

[~, proj_sp] = create_mapping(sp,num_sp,sqrt(w_gloc.params.numNodes_crf), 

olddimy, olddimx); 

proj_crf = proj_sp; 

w_gloc.params.numNodes_crf 

% projection matrices 

[proj_blk, ~] = create_mapping(sp,num_sp,sqrt(w_gloc.params.numNodes_rbm), 

olddimy, olddimx); 

proj_rbm = proj_blk; 

w_gloc.params.numNodes_rbm 

tS = tic; 

labelprob = inference_gloc(X, w_gloc, w_gloc.params, proj_crf, proj_rbm); 

tE = toc(tS);

evaltime = evaltime + tE; 

average_evaltime = evaltime/i; 

fprintf(' %d tic-toc %d average_evaltime %d\n  ', i, tE, aver-

age_evaltime); 

[~, pred] = max(labelprob ,[], 1); 

pred_all=[pred_all pred]; 

err = sum(pred(:) ~= gt_splabels(:)); 

tot_err = tot_err + err; 

tot_sp = tot_sp + num_sp; 

for p = 1:nlabel 

tpred = pred(gt_splabels == p); 

tsplabels = gt_splabels(gt_splabels == p); 

err = sum(tpred(:) ~= tsplabels(:)); 

tot_err_part(p) = tot_err_part(p) + err; 

tot_sp_part(p) = tot_sp_part(p) + numel(tpred); 

end 

if verbose, 

% acc ? 

% fprintf('valid: [%d/%d] err: %d/%d, acc = %g\n', i, 

length(testList), err, numFeat, 100*(1-tot_err/tot_sp)); 

%load superpixel mat 

supmat_casename = sprintf('%s/%s_%06d.dat', spmat_dir, testList{i}, 

testNums(i)); 

supmat_case = load(supmat_casename); 

%load raw images 

raw_casename = sprintf('%s/%s_%06d.png', lfw_dir, testList{i}, test-

Nums(i)); 

raw_case = imread(raw_casename); 

%size(raw_case) 

Code snippet B.7 Continued 
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%load ground truth image 

%sprintf(fn, "%s/%s/%s%s_%s_%06d.png", label_dir.c_str(), "testing", 

"gt_" ,  s.substr(8, 11).c_str(), "road", n);

class_name = 'road'; 

category = 'testing/gt_image_2'; 

label_casename = sprintf('%s%s/%s_%s_%06d.png', label_dir ,category, 

testList{i}(16:18), class_name, testNums(i));

label_case = imread(label_casename); 

%size(label_case) 

%create images directory if it doesn't exist 

if (~exist([imresult_dir '/GLOC'], 'dir')) 

mkdir([imresult_dir '/GLOC']); 

end

if (~exist([imresult_dir '/GLOC/testing/'], 'dir')) 

mkdir([imresult_dir '/GLOC/testing/']); 

end 

if (~exist([imresult_dir '/GLOC/testing/image_2/'], 'dir')) 

mkdir([imresult_dir '/GLOC/testing/image_2/']); 

end 

%location to save results 

results_casename = sprintf('%s/%s_%06d', [imresult_dir '/GLOC'], 

testList{i}, testNums(i)); 

%colorImgWithLabels, visualiuzation and saving 

colorImgWithLabels(supmat_case, raw_case, pred, gt_splabels, la-

bel_case, results_casename); 

else 

  if ~mod(i,10), 

fprintf('.'); 

end 

if ~mod(i,100), 

fprintf('[%d/%d] ',i,length(testList)); 

fprintf('acc = %g\n',100*(1-tot_err/tot_sp)); 

end 

end   

end

Code snippet B.7 Continued 
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%results generation 

%1 grass  

%2 tree 

%3 sky  

%4 dirt  

%5 gravel 

%6 shrubs 

%7 tarmac 

%8 void  

 

acc_location=[imresult_dir '/GLOC_acc/']; 

%create cm directory if it doesn't exist 

if (~exist(acc_location, 'dir')) 

   mkdir(acc_location); 

end     

 

fid = fopen([acc_location 'acc.txt'], 'w'); 

acc = 100*(1-tot_err/tot_sp); 

fprintf(fid, 'acc = %g\n', acc); 

class_names = {'void', 'road'}; 

for p = 1:nlabel 

    acc = 100*(1-tot_err_part(p)/tot_sp_part(p)); 

    fprintf(fid, 'acc of %s = %g\n', class_names{p}, acc); 

end 

fclose(fid); 

 

predicted=pred_all'; 

truelabels=gt_splabels_all; 

cm_location=[imresult_dir '/GLOC_cm/']; 

%create cm directory if it doesn't exist 

if (~exist(cm_location, 'dir')) 

   mkdir(cm_location); 

end     

py_export('predicted', 'truelabels', 'cm_location') 

stmt= sprintf(['import numpy as np\n'... 

'import matplotlib.pyplot as plt\n'... 

'from sklearn.metrics import confusion_matrix\n'... 

'from sklearn.metrics import accuracy_score\n'... 

'Y_pred_prep= predicted\n'... 

'Y_test_prep= truelabels\n'... 

'overall_acc= accuracy_score(Y_test_prep, Y_pred_prep)\n'... 

'labels= ["void", "road"]\n'... 

'cm= confusion_matrix(Y_test_prep, Y_pred_prep)\n'... 

'conf_arr = cm\n'... 

'norm_conf = []\n'... 

'for i in conf_arr:\n'... 

' a = 0\n'... 

' tmp_arr = []\n'... 

' a = sum(i, 0)\n'... 

' for j in i:\n'... 

'  tmp_arr.append(float(j)/float(a))\n'... 

' norm_conf.append(tmp_arr)\n'... 

Code snippet B.7 Continued 
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'fig = plt.figure()\n'... 

'plt.clf()\n'... 

'ax = fig.add_subplot(111)\n'... 

'ax.set_aspect(1)\n'... 

'res = ax.imshow(np.array(norm_conf), cmap=plt.cm.jet, interpola-

tion="nearest")\n'... 

'width = len(conf_arr)\n'... 

'height = len(conf_arr[0])\n'... 

'for x in xrange(width):\n'... 

' for y in xrange(height):\n'... 

'  ax.annotate(str(conf_arr[x][y]), xy=(y, x), horizontalalignment="center", 

verticalalignment="center")\n'... 

'cb = fig.colorbar(res)\n'... 

'plt.title("Confusion matrix GLOC")\n'... 

'plt.ylabel("True label")\n'... 

'plt.xlabel("Predicted label")\n'... 

'plt.xticks(range(width), labels[:width])\n'... 

'plt.yticks(range(height), labels[:height])\n'... 

'plt.savefig(cm_location+"confusion_matrix_GLOC.png", format="png")']); 

py('eval', stmt) 

py_import('overall_acc') 

Code snippet B.7 Continued 
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Appendix C Data samples 

Sample images C.1 The JLR dataset 
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Sample images C.1 Continued 
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Sample images C.2 Continued 
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Superpixel based semantic segmentation for assistance in varying 

terrain driving conditions 
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Abstract. Vehicle drivability and maneuverability can be improved by increasing the environment 

awareness via sensory inputs. In particular, off-road capable vehicles possess subsystems which are 

configurable to the driving conditions. In this work, a vision solution is explored as a precursor to au-

tonomous toggling between different operating modes. The emphasis is on selecting an appropriate 

response to transitions from one terrain type to another. Given a forward facing camera, images are 

partitioned into pixel subsets known as superpixels in order to be classified. The quality of this se-

mantic segmentation is considered for classes such as {grass, tree, sky, tarmac, dirt, gravel, shrubs}. 

Colour and texture are combined together to form visual cues and address this image recognition 

problem with good segmentation results. 

Keywords: Terrain classification, semantic segmentation, superpixels, texture, colour, machine learn-

ing 
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Key learning features as means for terrain classification 
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{aa3719, ctac}@coventry.ac.uk 

Jaguar & Land Rover Research, University of Warwick, Coventry CV4 7AL, UK 
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Abstract. Modern vehicles seek autonomous subsystems adaptability to ever-changing terrain types 

in pursuit of enhanced drivability and maneuverability. The impact of key features on the classifica-

tion accuracy of terrain types using a colour camera is investigated. A handpicked combination of tex-

ture and colour as well as a simple unsupervised feature representation is proposed. Although the re-

sults are restricted to only four classes {grass, tarmac, dirt, gravel} the learned features can be tailored 

to suit more classes as well as different scenarios altogether. The novel aspect stems from the feature 

representation itself as a global gist for three quantities of interest within each image: background, 

foreground and noise.  In addition to that, the frequency affinity of the Gabor wavelet gist component 

to perspective images is mitigated by inverse homography mapping. The emphasis is thus on feature 

selection in an unsupervised manner and a framework for integrating learned features with standard 

off the shelf machine learning algorithms is provided. Starting with a colour hue and saturation histo-

gram as fundamental building block, more complex features such as GLCM, k-means and GMM 

quantities are gradually added to observe their integrated effect on class prediction for three parallel 

regions of interest. The terrain classification problem is tackled with promising results using a for-

ward facing camera.  

Keywords: Terrain classification, machine learning, gist, GLCM, texture, colour, homography 
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Abstract 

This paper describes the intelligent transportation systems (ITS) technologies, methods, com-

ponents and their application to traffic simulation and management. Examples of an agent 

based ITS mescopic simulator and a cloud based microscopic simulator are used to illustrate 

urban traffic management and incident response applications. 
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