13 research outputs found

    Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults

    Get PDF
    A solution for fault tolerant control (FTC) of a quadrotor unmanned aerial vehicle (UAV) is proposed. It relies on model reference-based control, where a reference model generates the desired trajectory. Depending on the type of reference model used for generating the reference trajectory, and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. These error models are suitable for passive FTC, active FTC and hybrid FTC, the latter being able to merge the benefits of active and passive FTC while reducing their respective drawbacks. The controller is generated using results from the robust linear parameter varying (LPV) polytopic framework, where the vector of varying parameters is used to schedule between uncertain linear time invariant (LTI) systems. The design procedure relies on solving a set of linear matrix inequalities (LMIs) in order to achieve regional pole placement and H8 norm bounding constraints. Simulation results are used to compare the different FTC strategies.Peer ReviewedPostprint (published version

    Evaluation of a sliding mode fault tolerant controller on the MuPAL-α research aircraft

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordThis paper presents piloted flight test results of a sliding mode fault tolerant control scheme implemented on the Japan Aerospace Exploration Agency's MuPAL-α research aircraft. These results represent unique piloted validation tests of a sliding mode fault tolerant control allocation scheme on a full-scale aircraft operating in the presence of actuator faults. The control law used here does not require the presence of a fault detection and isolation unit and therefore in the event of faults/failures, the actuator effectiveness levels are unknown. In the absence of this information, a fixed control allocation mechanism has been used in order to retain nominal fault-free performance. The control scheme has been implemented on the lateral-directional motion and incorporated within the experimental fly-by-wire system. Piloted flight test results show that close to nominal tracking performance can be maintained despite the presence of unknown actuator faults as well as actuator uncertainties.European UnionJapan New Energy and Industrial Technology Development Organizatio

    Hardware-in-the-loop evaluation of an LPV sliding mode fixed control allocation scheme on the MuPAL-α research aircraft

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThis paper develops a sliding mode fault tolerant control scheme based on an LPV system representation of the plant. The scheme involves a control allocation component, which is capable of fully utilizing the available actuators in the face of actuator faults. In this paper, information about the actuator faults is assumed not to be available and therefore a fixed control allocation structure is utilised in the event of faults. The proposed scheme is validated using the Japanese Aerospace Exploration Agency's Multi-Purpose Aviation Laboratory (MuPAL-α) research aircraft. This paper describes initial hardware-in-the-loop (HIL) tests which serve as a precursor to upcoming real flight tests. The validation results show good lateral-directional state tracking performance in the fault free case with no visible performance degradation in the presence of (aileron) faults. Successful HIL tests demonstrate the potential of the proposed scheme which will be flight tested later this year.European CommissionJapan New Energy and Industrial Technology Development Organizatio

    Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability

    Get PDF
    A major goal in modern flight control systems is the need for improving reliability. This work presents a health-aware and fault-tolerant control approach for an octorotor UAV that allows distributing the control effort among the available actuators based on their health information. However, it is worth mentioning that, in the case of actuator fault occurrence, a reliability improvement can come into conflict with UAV controllability. Therefore, system reliability sensitivity is redefined and modified to prevent uncontrollable situations during the UAV’s mission. The priority given to each actuator is related to its importance in system reliability. Moreover, the proposed approach can reconfigure the controller to compensate actuator faults and improve the overall system reliability or delay maintenance tasks.Peer ReviewedPostprint (published version

    LPV Control of a Quadrotor

    Get PDF
    This master thesis addresses the LPV control of a quadrotor system. The quadorotor model is first transformed to a LPV model respresentation starting from the nonlinear physical model. Then, using the LPV gain-scheduling control theory, several LPV controller schemes are designed. They are based on static state feedback control with or without reference model. Stability and performance will be established by means of LMIs. Finally, the implemented control solution will be tested in a quadorotor system in a simulation environment using the non-linear model. To assess the performances of those controllers, several scenarios have been simulated

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Articles indexats publicats per investigadors del Campus de Terrassa: 2015

    Get PDF
    Aquest informe recull els 284 treballs publicats per 218 investigadors/es del Campus de Terrassa en revistes indexades al Journal Citation Report durant el 2015Postprint (published version

    Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults

    No full text
    This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0).A solution for fault tolerant control (FTC) of a quadrotor unmanned aerial vehicle (UAV) is proposed. It relies on model reference-based control, where a reference model generates the desired trajectory. Depending on the type of reference model used for generating the reference trajectory, and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. These error models are suitable for passive FTC, active FTC and hybrid FTC, the latter being able to merge the benefits of active and passive FTC while reducing their respective drawbacks. The controller is generated using results from the robust linear parameter varying (LPV) polytopic framework, where the vector of varying parameters is used to schedule between uncertain linear time invariant (LTI) systems. The design procedure relies on solving a set of linear matrix inequalities (LMIs) in order to achieve regional pole placement and H∞ norm bounding constraints. Simulation results are used to compare the different FTC strategies.This work has been funded by the Spanish MINECO through the project CICYT SHERECS (ref. DPI2011-26243), by the European Commission through the contract i-Sense (ref. FP7-ICT-2009-6-270428), by AGAUR through the contracts FI-DGR 2013 (ref. 2013FIB00218) and FI-DGR 2014 (ref. 2014FI_ B1 00172), and by the DGR of Generalitat de Catalunya (SAC group ref. 2014/SGR/374).Peer Reviewe

    Robust Quasi–LPV Model Reference FTC of a Quadrotor Uav Subject to Actuator Faults

    No full text
    A solution for fault tolerant control (FTC) of a quadrotor unmanned aerial vehicle (UAV) is proposed. It relies on model reference-based control, where a reference model generates the desired trajectory. Depending on the type of reference model used for generating the reference trajectory, and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. These error models are suitable for passive FTC, active FTC and hybrid FTC, the latter being able to merge the benefits of active and passive FTC while reducing their respective drawbacks. The controller is generated using results from the robust linear parameter varying (LPV) polytopic framework, where the vector of varying parameters is used to schedule between uncertain linear time invariant (LTI) systems. The design procedure relies on solving a set of linear matrix inequalities (LMIs) in order to achieve regional pole placement and H∞ norm bounding constraints. Simulation results are used to compare the different FTC strategies

    Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults

    No full text
    A solution for fault tolerant control (FTC) of a quadrotor unmanned aerial vehicle (UAV) is proposed. It relies on model reference-based control, where a reference model generates the desired trajectory. Depending on the type of reference model used for generating the reference trajectory, and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. These error models are suitable for passive FTC, active FTC and hybrid FTC, the latter being able to merge the benefits of active and passive FTC while reducing their respective drawbacks. The controller is generated using results from the robust linear parameter varying (LPV) polytopic framework, where the vector of varying parameters is used to schedule between uncertain linear time invariant (LTI) systems. The design procedure relies on solving a set of linear matrix inequalities (LMIs) in order to achieve regional pole placement and H8 norm bounding constraints. Simulation results are used to compare the different FTC strategies.Peer Reviewe
    corecore