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ABSTRACT

This master thesis addresses the LPV control of a quadrotor system. The quadorotor model

is first transformed to a LPV model respresentation starting from the nonlinear physical model.

Then, using the LPV gain-scheduling control theory, several LPV controller schemes are designed.

They are based on static state feedback control with or without reference model. Stability and

performance will be established by means of LMIs. Finally, the implemented control solution will

be tested in a quadorotor system in a simulation environment using the non-linear model. To

assess the performances of those controllers, several scenarios have been simulated.
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CHAPTER 1

INTRODUCTION

The aim of this chapter is to describe the main motivations which have inspired this

Master Thesis, whose objective is to design and compare several LPV techniques used

to control a quadrotor. Finally, the organization of the thesis is presented and the

content of the rest of chapters is summarized.

1.1 Motivation

In the recent years, flying robots have attracted a lot of attention and have gained in popularity.

Those robots, such as minihelicopters, have a large range of applications, from filming to visual

inspection of elements in a building. Therefore, there is a strong research in those kind of aircraft

and its control.

An example of these autonomous flying systems is the quadrotor. This rotorcraft is an un-

maned aerial system lifted and propelled by four rotors. The rotor mechanics and its configura-

tion make quadrotors an attractive benchmark in control research.

FIGURE 1.1: Quadrotor

A quadrotor is an underactuated system, while it has potentially six degrees of freedom, it
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2 1.2. OBJECTIVES

has only four actuators. Quadrotors present a highly non-linear dynamics with highly coupled

variables. Those are the main challenges that must be faced to control it. Thus, quadrotors have

been used as a test bench for various control techniques.

In this thesis, a LPV control approach is proposed. This kind of technique is well suited to

control dynamic systems with parameter variations due to the non-linear dynamics. The use

of this approach allows to control in an unified framework systems that change the dynamics

with the operating point. Using this technique, the nonlinearities that the system may have are

represented in quasi-linear manner by embedding the non-linearities in the parameters.

The controller is designed by solving a LMI optimisation problem. This is a convex optimiza-

tion method that can be efficiently solved with the current solvers. Using LMIs, its possible

to find the closed-loop poles that satisfy a set of constraints related to disturbance rejection,

performance and stability conditions.

1.2 Objectives

This master thesis addresses the LPV control of a quadrotor system using three different control

laws. The quadorotor model is first transformed into a LPV model representation from the non-

linear physical model. Then, using the LPV gain-scheduling control theory, the LPV controllers

are designed in order to implement a static state feedback control with or without a reference

model. Stability and performance conditions will be established by means of LMIs. Finally, the

implemented control solution will be tested in aquadrotor system in a simulation environment

using the non-linear model.

1.3 Outline of the Thesis

This dissertation is organized as follows:

Chapter 2: Background

This chapter provides the background on quadrotors. Then, various techniques used to con-

trol this system are reviewed. And finally, the LPV techniques are introduced. In this last section,

the theory about the LPV models and control design using LMI pole placement is revised.

Chapter 3: LPV Model of a Quadrotor

In this chapter, the nonlinear model has been derived. This has been done using the physical

relationships. Then, the nonlinear model has been turned into a LPV model. In order to avoid

time varying parameters in the input system matrix, a prefilter has been used. Finally, the LPV

parameters have been bounded in order to transform the LPV model to its polytopic form.

Chapter 4: LPV Control of a Quadrotor
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In this chapter, the design of the control law has been assessed. Three different approaches

have been used. Then, for each of them, a trajectory planner has been designed.

Chapter 5: Results Discussion

This chapter presents the control results obtained with the proposed approaches. Three

different control schemes are implemented and compared in simulation in order to see which

performs better.

Chapter 6: Conclusions

This chapter summarizes the main contributions of this thesis and presents possible future

research extensions.
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CHAPTER 2

BACKGROUND

This chapter introduces background on the topics used in this thesis. First of all, an

introduction to quadrotors is provided. Then, some interesting works using this kind

of systems are reviewed and finally the LPV control theory is introduced.

2.1 Introduction to a Quadrotor

A quadrotor, or quadcopter, is a multirotor helicopter that is lifted and propelled by four rotors.

The lift force is generated by a set of rotating airfoils.

The quadrotor will be modelled with its four rotors in cross configuration. The structure that

connects them will be assumed to be rigid, so the only variable that can vary is the speed of the

propellers. In this case, all the possible movements of the quadcopter will be directly related to

the rotor velocities (Ω).

FIGURE 2.1: Simplified Quadrotor

The front and rear rotors rotate counter-clockwise, while the left and right ones turn clock-

wise. In this way, there is no yaw rotation in hovering and the tail rotor, which is used in

standard helicopters, is not required.

5



6 2.1. INTRODUCTION TO A QUADROTOR

Despite the quadrotor potential six degrees of freedom, since it is equipped with four pro-

pellers, it can only reach the set-point in four degrees. These are related usually with the basic

movements that allow the quadrotor to reach a certain altitude and attitude and correspond the

vehicle orientation

• Throttle: This movement is provided by varying all the propeller rotations by the same

amount. In the case that the quadrotor’s pitch and roll orientation are null providing a

vertical acceleration in the inertial frame.

• Roll: This movement is provided by increasing the rotation of the right propeller while

decreasing the rotation of the left one, or the opposite. It produces a torque with respect to

the Xb axis (see Figure 2.1).

• Pitch: This movement is similar to the roll, but in this case it is produced increasing the

velocity of the front propeller and decreasing the velocity of the rear one. In this case, it

produces a torque with respect to the Yb axis (see Figure 2.1).

• Yaw: Provided by increasing the velocity of the clockwise rotation propellers while decreas-

ing the velocity of the counter-clockwise ones.

FIGURE 2.2: Basic Attitude and Altitude control

However, there are some techniques that can be used to reach the desired set-point or follow

a trajectory in all the coordinates.
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2.2 Works on Quadrotor Control

The quadrotor is a classical benchmark for control because of the large number of applications

in which it is used and difficulties to control it. Quadrotors have a simple structure with complex

dynamics, since it is an under-actuated system. There are a wide variety of algorithms of control

proposed in the literature going from PID control to nonlinear techniques.

In the case of the PID control, Tommaso Bresciani et al [4] uses a simplified model to design

the control algorithm. In his work, different control structures for the different attitude variables

are proposed. As a result, his method proves to be able to stabilize attitude and height. To

follow a trajectory, a higher level controller should be implemented. Another PID control work

[6] develops a trajectory tracking controller. In order to be able to use planners that do not take

into account dynamic feasibility or that provide feedforward inputs, an algorithm that modify the

speed profile input paths to guarantee the feasibility of the planned trajectory is proposed. This

method has been tested in indoor and outdoor environments with good results.

In the case of nonlinear control, Chowdhary et al [5] compile various nonlinear control tech-

niques that are used for developing flight controllers for UAVs. These techniques are gain

scheduling, model predictive control, backstepping, dynamic inversion based control, model ref-

erence adaptive control and model based fault tolerant control. In [7], a nonlinear technique

based on dynamic feedback is used in order to transform the closed-loop part of the system into

a linear, controllable and decoupled subsystem. The system used is divided into two cascade

partial parts. Sang-Hyung Lee et al [13] propose to design an attitude controller and a position

controller based on feedback linearisation. In this way, the system turns into two fully-controlled

subsystems and using the Euler angles it is possible to control the position regardless of the yaw

angle. Another nonlinear technique is used by Fouad Yacef et all [15], based on a non-linear

state feedback controller which stability and pole placement requirements have been fullfiled by

means of the Lyapunov direct method. The modelization has been made using a Takagi-Sugeno

model. This control has been applied to the nonlinear system, that has been simulated using the

multiple model approach.

In this work, a LPV approach will be used. It is used because allows embedding the system

nonlinearities in the varying parameters, such that gain-scheduling control of nonlinear systems

can be performed using an extension of linear techniques. A similar approach was proposed in

order to control a Twin-Rotor MIMO System (TRMS) [9]. In this case, the model was approx-

imated in a polytopic way and identified using non-linear least squares identification. Then,

an LPV state observer and state-space controller were designed using a pole placement method

based in LMI regions. Samarathunga and Whidborne’s work [12] describes a LPV controller

design for a quadrotor vehicle. The controller synthesis requires the LPV plant model which is

obtained by linearisation of the modelling equations. This representation is transformed into

to a convex polytopic form. The H∞ self gain scheduling control method has been applied to

obtain a LPV controller which is tested using a simplified nonlinear model of the quadrotor. The

LPV controller performance was compared with a H∞ controller and exhibited significant close

tracking capabilities with respect to the H∞ controller.

Rotondo et al [8] proposes a solution that relies on model based control, where a reference

model generates the desired trajectory. This approach is used for the design of the Fault Tolerant
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Control (FTC) of a quadrotor using the LPV Polytopic framework. The controller is designed

solving the LMIs in order to achieve regional pole placement and H∞. A further paper [10, 11],

added a reference model that describes the desired trajectory. Abdullah and Zibri [1] proposed

to use this kind of reference as a the principle to the design of a LPV model reference whose

space-state matrices depend on a set of parameter varying parameters that are bounded and

available online.

2.3 Introduction to LPV

The LPV paradigm was introduced in the PhD Thesis of Shamma [14] for the analysis of the con-

trol design practice of ”gain-scheduling”. The nonlinear system is described as a parameterized

linear system, where these parameters depend on some measurable scheduling variables. These

systems can be formulated as

ẋ = A(ρ(t))x +B(ρ(t))u, ρ(t) ∈ S (2.1)

where ρ(t) is the parameter varying vector in the region S.

The parameters ρ(t) vary in function of scheduling variables p(t). These scheduling variables

should be exogenous to the system. When the scheduling variables are inner variables as the

states, then the model (2.1) is known as quasi-LPV. The function that relates the variation of the

parameters with the scheduling variables is known as the scheduling function ρ(t) = σ(p(t)). The

parameter scheduling functions should be defined to have a LPV description that is as close as

possible to the nonlinear for all the values in the region S.

Finding a LPV description from a nonlinear system is a non-trivial task. One method is to

hide the nonlinearities in parameters. So, depending how these parameters are defined, a system

can have different LPV descriptions. One of the most used approaches, known as the non-linear

embedding approach aims to hide the non-linearities in the parameters such the LPV description

and the nonlinear system are equivalent

A(ρ(t))x +B(ρ(t))u = f(x, u), ρ(t) ∈ S (2.2)

This property ensures that the trajectories of the original nonlinear system are also trajectories

of the LPV system.

A LPV system might be seen as an extension of a linear time invariant (LTI) system as they

coincide when the parameters are frozen in a given time instant at a given operating point.

The variation of parameter ρ(t) vector can be bounded using a bounding box that bounds the

parameter scheduling function in the region of parameter variation

ρ(t) ∈ Γ = {ρ(t)|ρ̄i(t) ≤ ρi(t) ≤ ρ̄i(t), i = 1, ..., N}, ∀t ≥ t0 (2.3)

where N is the number of varying parameters.
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The time derivative of the parameter could be assumed to be bounded also in the same man-

ner. By means of the bounding box approximation, the LPV model can be transformed into a

interpolation of the vertices of Γ called polytopic representation of the LPV system. In this project,

the LPV model of the system will be approximated is such manner

A(ρ(t)) =

Nρ
∑

i=1

πi(p(t))Ai (2.4)

where πi are polytopic coordinates of each submodel Ai in function of the scheduling variables p(t)

and is determined by the weighted distance to the vertices of Γ. Nρ is the number of submodels

that is equal to the number of vertices of Γ, that is, Nρ = 2N . In a polytropic LPV system, Ai is

given by the evaluation of the space-state matrix in the vertices and πi satisfies

Nρ
∑

i=1

πi(p(t)) = 1, πi(p(t)) > 0 (2.5)

The polytopic coordinates πi are computed using the vertex interpolation using the method pro-

posed by Apkarian [2]. Every Ai corresponds to frozen ρi for some given value of the scheduling

variables p(t) corresponding to the i-th operating point. The system matrices A(ρ(t)) in that op-

erating point are constant. So, a polytopic LPV system is designed by interpolating Nρ operating

functions defined as stated before in (2.4). In the particular case in which Nρ = 1, the polytopic

LPV model turns into a LTI one.

2.3.1 LMI Control and Pole Placement

Let us consider that the system will be controlled using a state feedback controller with tracking

reference input. Then, the control law can be expressed as

u(t) = ur(t) +Kd(ρ(t))(x(t) − xr(t)) (2.6)

where the state x(t) ∈ R
nx and the feedforward control action ur(t) ∈ R

nu corresponds to an

equilibrium point in the reference, xr(t). The control matrix Kd(ρ(t)) ∈ R
nx×nu is the gain of

the LPV controller. This matrix is designed in order to satisfy the specifications of placing the

closed-loop poles in a region of the complex plane using a LMI approach.

By constraining the eigenvalues inside a predetermined region, stability is guaranteed and a

satisfactory transient response is ensured. A subset D of a complex plane is an LMI region if

there exist a symmetric matrix α and a matrix β such that

D = {Z ∈ C : fD(Z) < 0} (2.7)

where fD(Z) is the characteristic function of D(Z) and is defined as
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fD(Z) = α+ Zβ + Z̄βT (2.8)

where α and β are real matrices such that α = αT . This characteristic function can be modified

in order to define several regions, for instance

• fD(Z) < 2a ensures that Re(Z) < a

• a disk centered at (−q, 0) with a radius R is defined as

fD(Z) =

[

−R q + Z

q + Z̄ −R

]

(2.9)

• a conic section with its apex in the origin and a inner angle 2Θ is defined as

fD(Z) =

[

sinΘ(Z + Z̄) cosΘ(Z − Z̄)

cosΘ(Z̄ − Z) sinΘ(Z + Z̄)

]

(2.10)

It is possible to use several LMI regions such that the results LMI region will be the inter-

section. A real matrix Y , will be D(Z)-stable, all its spectrum belongs to the region D(Z), if

exists a matrix X, that is symmetric and positive definite. In this region, the pole placement is

characterized as

ZD(X,Y ) := α⊗X + β ⊗ (Y X) + βT ⊗ (Y X)T < 0 (2.11)

where ⊗ is the Kronecker product of two matrices.

Let us a LPV system described by

ẋ(t) = A(ρ(t))x(t) +Bu(t) (2.12a)

y(t) = Cx(t) (2.12b)

where C = I, i.e., all the states are measured. If it is not the case, then an observer should be

used.

In this system, the feedback control law u(t) = Kd(ρ(t))(x(t) − xr(t)) will be used as an input.

In order to design this controller, a state-space gain Kd must scheduled by ρ(t) that places the

closed-loop poles of the system (2.12) in some LMI region (2.7) with characteristic function fD

(2.8).

This pole placement constraint is satisfied if exists a symmetrical positive defined matrix X

such that

{αX + β[A(ρ(t)) +BKd(ρ(t))]X + βX [A(ρ(t)) +BKd(ρ(t))]
T } < 0 (2.13)

This relationship must be satisfied for all the values of ρ(t). Using the auxiliary variable
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γ = Kd(ρ(t))X, the matrix inequality (2.13) becomes an LMI, that will be solved using convex

optimisation techniques

{αX + β[A(ρ(t))X +Bγ] + βX [A(ρ(t))X +Bγ]T } < 0 (2.14)

In order to reduce the LMI constraints, the system is modelled as a LPV. In this paper, the

model will be expressed in a polytopic way as in (2.4) such that the control law (2.6) can be

expressed in a polytopic way as well

u(t) = ur(t) +

Nρ(t)
∑

i=1

πi(p(t))Ki(x(t) − xr(t)) (2.15)

where πi provides the polytopic coordinates in function of the scheduling variables p(t).

Then, this design problem, consists in computing a state-feedback Kd matrix and a single

Lyapunov matrix X such that ZD(Ai +BKd,i, X) < 0.
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CHAPTER 3

LPV MODEL OF A QUADROTOR

This chapter introduces the nonlinear equations of the system as shown in the work

of Bresciani [3]. Then, a method to transform them into a polytopic LPV model is

introduced. Finally, the quadrotor LPV model is obtained.

3.1 Deriving the Nonlinear System

In order to obtain the nonlinear model of this system, two different frames are used as shown in

the figure 3.1

• The earth inertial frame

• The body-fixed frame

The kinematics of a generic six degree of freedom body can be defined as

ξ̇ = JΘδ (3.1)

where ξ̇ is the generalized velocity vector with respect to the earth inertial frame, δ is the one with

respect to the body-fixed frame and JΘ is the generalized matrix. ξ is composed of the quadrotor

linear and angular position with respect to the earth inertial frame

ξ = [X Y Z φ θ ψ]T (3.2)

Similarly, δ is composed of the quadrotor linear and angular velocity with respect the body-

fixed frame

δ = [u v w p q r]T (3.3)

In addition, JΘ is composed of 4 sub-matrices

JΘ =

[

RΘ 03×3

03×3 TΘ

]

(3.4)

13
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FIGURE 3.1: Basic Attitude and Altitude control

where 03×3 is a 3 by 3 matrix filled with zeros, RΘ is is the 3 by 3 rotation matrix and TΘ is the 3

by 3 transfer one.

The rotation and transfer matrices are defined as

RΘ =







cψcθ −sψcθ + cψsθsφ sψsθ + cψsθcφ

cψcθ cψcθ + sψsθsφ −cψsθ + sψcθcφ

−sθ cθsφ cθcφ






(3.5)

TΘ =







1 −tθsφ tθsφ

0 cψ −sψ

0 sψ/cθ cψ/cθ






(3.6)

where ck, sk and tk represent the cosinus, sinus and tangent, respectively. The dynamics of

the generic degree of freedom rigid-body takes into account the mass of the body,m [kg], and its

inertia matrix, I [N ms2], and is described by

[

mI3x3 03x3

03x3 I

][

V̇ B

ω̇B

]

+

[

ωb ×mV B

ωB × IωB

]

=

[

FB

τB

]

(3.7)
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where I3x3 is a 3 by 3 identity matrix, V̇ B is the linear acceleration vector [m s−2] with respect

to the body-fixed frame, ω̇B is the angular acceleration vector [rad s−2] with respect to the same

frame, FB is the quadrotor forces vector [N ] and τB is the quadrotor torques vector [N m] with

respect the body-fixed frame.

Then, it is assumed that the origin of the body-fixed frame is coincident with the center of mass

and that the inertial matrix is diagonal.

A generalized force vector can be defined as

∆ = [Fx Fy Fz τx τy τz]
T (3.8)

Using this equation, the dynamics can be rewritten as

MB v̇ + CB(v)v = ∆ (3.9)

where v̇ is the generalized acceleration vector with respect to the body-fixed frame, MB is the

inertia matrix and CB(v) is the Coriolis-centripeta matrix, both with respect the body-fixed frame.

MB =

[

mI3x3 03x3

03x3 I

]

(3.10)

Thanks to the assumptions made before, this is diagonal and constant.

CB(v) =

[

03x3 −mS(V B)

03x3 −mS(ωB)

]

(3.11)

where S(K) is defined as a skew-symmetric operator, that given a three dimension vector is

defined as follows.

S(K) =







0 −K3 K2

k3 0 −K1

−K2 K3 0






, K =

[

K1 K2 K3

]T

(3.12)

In the case of a quadrotor, the generalized force vector ∆ in (3.8) can be divided in three

different vectors according to which of the quadcopter contributions describes.

The first of all is the gravity vector, GB(ξ) given by the acceleration due to the gravity g [ms−2].

GB(ξ) = mg[sθ − cθsφ − cθcφ τx τy τz]
T (3.13)

The second contribution corresponds to gyroscopic effects due to the propeller rotation, since

two rotates clockwise and the other two counterclockwise. Thus, there is an imbalance when the

sum of the rotation is not zero. There is also a contribution of the pitch and the roll
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OB(v)











Ω1

Ω2

Ω3

Ω4











= JTP











03x1

−q

p

0











Ω (3.14)

where Ω is defined as the overall speed of the propeller [rad s−1], OB is the gyroscopic propeller

matrix, JTP is the total rotational moment of inertia around the propeller axis calculated in the

next section [N ms2]. Additionally Ωj is the speed of the propeller j as defined in the Figure 1.1.

Ω = Ω2 +Ω4 − Ω1 − Ω3 (3.15)

The third contribution takes into account the forces and torques produced by the main move-

ment inputs. From aerodynamics consideration, it follows that both torques and forces are

proportional to the square of the speed of the propellers. Therefore, the movement vector is

defined as follows

UB = [0 0 U1 U2 U3 U4]
T (3.16)

where U1, U2, U3 and U4 are the throttle, roll, pitch and yaw, respectively

U1 = b(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4) (3.17a)

U2 = bl(Ω2
4 − Ω2

2) (3.17b)

U3 = bl(Ω2
3 − Ω2

1) (3.17c)

U4 = d(Ω2
2 +Ω2

4 − Ω2
1 − Ω2

3) (3.17d)

In these relationships b is defined as the thrust factor [N s2] , d is the drag factor [N ms2] and

l is the distance between the center of the quadcopter and the center of the propeller [m].

These relationships are written in respect to the body-fixed frame. This reference is widely

used in six degree of freedom rigid bogy equations. However, in this case the equations will be

expressed in terms of a hybrid frame that mixes the frames introduced previously. That reference

will be used because it allows to express easily the dynamics combined with the control. In this

frame a generalized velocity vector, ζ, would be defined following the next equation

ζ = [Ẋ Ẏ Ż p q r]T (3.18)

The dynamics in the hybrid frame can be rewritten as follows
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MB ζ̇ + CH(ζ)ζ = GH +OH(ζ)











Ω1

Ω2

Ω3

Ω4











+ UH (3.19)

The system inertia with respect the hybrid frame is equal to the one with respect the fixed-

body frame, so OB = OH . The Coriolis-centripetal matrix is defined as

CH(ζ) =

[

03x3 0

03x3 −S(IωB)

]

(3.20)

The gravitational contribution with respect the hybrid frame is

GH = −[0 0 mg 0 0 0]T (3.21)

The gyroscopic effects by the propeller rotation are unvaried because it affects only the angu-

lar equations referred to the body-fixed frame. Finally, the movement vector is different because

the input U1 affects all the linear equations through the rotation matrix

UH(Ω) =

[

RΘ 03x3

03x3 TΘ

]

UB(Ω) (3.22)

Isolating the derivate of the generalized velocity in the dynamics equation with respect to the

hybrid frame, the system leads to the following equations

ẍ = (cosφ senθ cosψ + senφ senθ)
U1

m
(3.23a)

ÿ = (cosφ senθ senψ + senφ cosθ)
U1

m
(3.23b)

z̈ = −g + (cosθ cosφ)
U1

m
(3.23c)

φ̈ = θ̇ψ̇
Iyy − Izz
Ixx

−
JTP
Ixx

φ̇Ω+
U2

Ixx
(3.23d)

θ̈ = φ̇ψ̇
Izz − Ixx
Iyy

−
JTP
Iyy

θ̇Ω+
U3

Iyy
(3.23e)

ψ̈ = φ̇θ̇
Ixx − Iyy
Tzz

+
U4

Izz
(3.23f)

3.2 Polytopic LPV Model

In this work, it will only be taken into account the attitude and altitude relationships (3.23d)-

(3.23f). It will be assumed that all the states are measured.
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3.2.1 Transforming the Non linear model into a LPV one

Considering the nonlinear model as

ẋ = f(x(t), u(t)) (3.24a)

y = g(x(t), u(t)) (3.24b)

in order to automatically transform it into a LPV one, each row of (3.24) is expanded into its

summands.

ẋi =

rx
∑

j=1

fij(x, u), i = 1, .., nx (3.25a)

yi =

ry
∑

j=1

gij(x, u), i = 1, .., ny (3.25b)

where rxi
and ryi are the number of summands in each row of (3.24).

Then, those terms are decomposed into its denominator and nominator and a constant factor

ẋi =

rxi
∑

j=1

kij
nij(x, u)

dij(x, u)
, i = 1, .., nx (3.26)

This decomposition is applied also to the input function in a similar way. This number

is factored in order to determine the possibility of hiding nonlinearities in the parameters. This

factor classifies a term into two possible kinds:

• Constant or non-factorizable numerator, K0. A factor of the state or input cannot be chosen.

• Arbitrary positive power of factor, Kp. A factor of the state or the control can be chosen.

Parameters components, according to the classification, can be chosen as

ϑaij = kij
nij(x, u)

dij(x, u)xl
, l = 1, .., nx (3.27a)

ϑbij = kij
nij(x, u)

dij(x, u)ul
, l = 1, .., nx (3.27b)

Then, the parameters are defined depending of the type. If the numerator is K0, the parameter

can be taken using nx possible assigments of the system matrix A and nu possible assigments of

the system matrix B. In the case of a Kp numerator, the parameter is a factor of the numerator.

Finally, the elements of the matrices A and B and the corresponding parameters ρ(t) need

to be derived from the parameter components (3.27). The final state space matrix is given by

superposition.

Taking into account the nonlinear relationships of the rotational and altitude coordinates

(3.23d)-(3.23f), the LPV parameters can be defined as
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ρ1 = Ω1, ρ2 = Ω2, ρ3 = Ω3, ρ4 = Ω4 (3.28a)

ρ5 = cos(φ) cos(θ), ρ6 = φ̇, ρ7 = θ̇, ρ8 = ψ̇ (3.28b)

and considering

x1 = ż, x2 = z (3.29a)

x3 = φ̇, x4 = φ (3.29b)

x5 = θ̇, x6 = θ (3.29c)

x7 = ψ̇, x8 = ψ (3.29d)

u1 = Ω1, u2 = Ω2, u3 = Ω3, u4 = Ω4 (3.29e)

Using this method, the nonlinear system turns into,































ẋ1

ẋ2

ẋ3

ẋ4

ẋ5
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ẋ7

ẋ8































= A(ρ(t))































x1

x2

x3

x4

x5

x6

x7

x8































+B(ρ(t))











u1

u2

u3

u4











(3.30)

where

A(ρ(t)) =































1 0 0 0 0 0 0 0

0 a23 0 a25 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 a46 0 a48

0 0 0 0 0 1 0 0

0 0 0 a64 0 0 0 a68

0 0 0 0 0 0 0 1

0 0 0 a84 0 a86 0 0































(3.31)

a23 =
−g

2max{|x3|, ǫ}
(3.32)

a25 =
−g

2max{|x5|, ǫ}
(3.33)

a46 = x8
Iyy − Izz
2Ixx

(3.34)

a48 = x6
Iyy − Izz
2Ixx

(3.35)
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a64 = x8
Izz − Ixx

2Iyy
(3.36)

a68 = x4
Izz − Ixx

2Iyy
(3.37)

a84 = x6
Ixx − Iyy

2Izz
(3.38)

a86 = x4
Ixx − Iyy

2Izz
(3.39)

B(ρ(t)) =































0 0 0 0

b1 b2 b3 b4

0 0 0 0

b5 b6 b7 b8

0 0 0 0

b9 b10 b11 b12

0 0 0 0

b13 b14 b15 b16































(3.40)

in which

b1 = cosx3cosx5
b

m
u1 (3.41a)

b2 = cosx3osx5
b

m
u2 (3.41b)

b3 = cosx3cosx5
b

m
u3 (3.41c)

b4 = cosx3cosx5
b

m
u4 (3.41d)

b5 = b7 =
JTP
Ixx

x6 (3.41e)

b6 =
JTP
Ixx

x6 −
lb

Ixx
u2 (3.41f)

b8 =
JTP
Ixx

x6 +
lb

Ixx
u4 (3.41g)

b9 = −
JTP
Iyy

x4 −
lb

Ixx
u1 (3.41h)

b10 = b12 =
JTP
Iyy

x4 (3.41i)

b11 = −
JTP
Iyy

x4 +
lb

Ixx
u3 (3.41j)

b13 =
d

Izz
u1 (3.41k)

b14 =
d

Izz
u2 (3.41l)

b15 =
d

Izz
u3 (3.41m)
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b16 =
d

Izz
u4 (3.41n)

3.2.2 Apkarian Filter

In order to apply the LPV control design methodology described in Chapter 3, the LPV model

should be transformed in order to avoid the parameter dependence on B. To this aim, the

prefiltering prefiltering proposed in [2] is used. To do that, a new input variable w is defined.

ẋu(t) = Auxu(t) +Bw(t) (3.42)

u(t) = Cuxu(t) (3.43)

where Au is stable and the LPV system will be described by

(

ẋ

ẋu

)

=

(

A(ρ(t)) B(ρ(t))Cu

0 Au

)(

x

xu

)

+

(

0

Bu

)

w(t) (3.44)

LPV Model with the Apkarian Filter applied

In the quadrotor case, the matrix Au will be considered as a diagonal with fast poles compared

to the quadrotor ones. Thus,

Au =











−100 0 0 0

0 −100 0 0

0 0 −100 0

0 0 0 −100











(3.45)

u = xu (3.46)

Then, using (3.44) the system will be expressed as follows
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(3.47)

A(ρ(t)) =


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0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 a46 0 a48 a49 a410 a411 a412

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 a64 0 0 0 a68 a69 a610 a611 a612

0 0 0 0 0 0 0 1 0 0 0 0
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(3.48)

where,

a23 =
−g

2max{|x3|, ǫ}
(3.49a)

a25 =
−g

2max{|x5|, ǫ}
(3.49b)

a29 = cosx3cosx5
b

m
u1 (3.49c)

a210 = cosx3cosx5
b

m
u2 (3.49d)

a211 = cosx3cosx5
b

m
u3 (3.49e)

a212 = cosx3cosx5
b

m
u4 (3.49f)

a46 = x8
Iyy − Izz
2Ixx

(3.49g)

a48 = x6
Iyy − Izz
2Ixx

(3.49h)

a49 = a411 =
JTP
Ixx

x6 (3.49i)
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a410 =
JTP
Ixx

x6 −
lb

Ixx
u2 (3.49j)

a412 =
JTP
Ixx

x6 +
lb

Ixx
u4 (3.49k)

a64 = x8
Izz − Ixx

2Iyy
(3.49l)

a68 = x4
Izz − Ixx

2Iyy
(3.49m)

a69 = −
JTP
Iyy

x4 −
lb

Ixx
u1 (3.49n)

a610 = a612 =
JTP
Iyy

x4 (3.49o)

a611 = −
JTP
Iyy

x4 +
lb

Ixx
u3 (3.49p)

a84 = x6
Ixx − Iyy

2Izz
(3.49q)

a86 = x4
Ixx − Iyy

2Izz
(3.49r)

a89 =
d

Izz
u1 (3.49s)

a810 =
d

Izz
u2 (3.49t)

a811 =
d

Izz
u3 (3.49u)

a812 =
d

Izz
u4 (3.49v)
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(3.50)

The LPV parameters are bounded since the states and controls are bounded

xi ∈ [−0.5, 0.5], i = 4, 6 (3.51a)

xj ∈ [−π/3, π/3], j = 3, 5 (3.51b)



24 3.2. POLYTOPIC LPV MODEL

uk ∈ [100, 500], k = 1, 2, 3, 4 (3.51c)

The LPV parameters bounds can be obtained in a straightforward manner using state and

control bounds. From these bounds, the LPV polytopic model can be obtained using the bound-

ing box approach proposed by Apkarian [2].



CHAPTER 4

LPV CONTROL OF A QUADROTOR

This chapter introduces the LPV control method selected and then analyzes how to

input the trajectory to the controller. In order to control the quadrotor using the LPV

model presented in previous chapter and the LPV approach introduced in Chapter 2,

the method proposed in the article of Ali Abdullah and Mohamed Zribi will be used [1].

In this chapter, an introduction to this method, various control law design proposals

will be presented an applied to the quadrotor.

4.1 Introduction

Considering a LPV model as defined in the previous chapter

ẋ(t) = A(ρ(t))x(t) +Bu(t) (4.1)

y(t) = Cx(t) (4.2)

expressing the relationships in polytopic form as explained in Section 2.3 and assuming that all

the states are measured, C = I.

A reference model controller whose output y(t) converges to a desired reference output ȳ(t)

asymptotically will be designed following the approach proposed in Ali Abdullah and Mohamed

Zribi [1]. This reference is obtained following a LPV reference model such as

˙̂x(t) = Â(ρ(t))x̂(t) + B̂û(t) (4.3)

ŷ(t) = Ĉx̂(t) (4.4)

25
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Â(ρ(t)) =

Nρ
∑

i=1

π(t)i(p(t))Âi (4.5)

Considering a control law given by,

u = K(ρ(t))[x−Gx̄] +M(ρ(t))x̄ +Qū (4.6)

where the matrices G, Q, M(ρ(t)) and Q are matrices that satisfy the following relations

C̄ = CG (4.7)

GB̄ = BQ (4.8)

GĀ(ρ(t)) = BM(ρ(t)) +A(ρ(t))G (4.9)

K(ρ(t)) = L(ρ(t))L−1 (4.10)

The matrix L(ρ(t)) and the positive definite symmetric matrix P are the solucions of the fol-

lowing inequality

H(ρ(t)) := A(ρ(t))P +BL(ρ(t)) + (A(ρ(t))P +BL(ρ(t)))T < 0 (4.11)

The control law applied to a LPV system guarantees that the system output converges to the

reference asymptotically. Solving this equations using the LMI method in a region the desired

pole placement is obtained (see Figure 4.1), for the considered quadrotor system.

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
−100

−80

−60

−40

−20

0

20

40

60

80

100

 

 

FIGURE 4.1: Pole Placement

In this thesis, three different parametrizations of the control law (4.6) will be used to control

the same system and will be compared. According the equation (4.11), the feedback controller

will be the same in all the cases.
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4.1.1 Feedback Control with feedforward

The first case corresponds to a particular case of (4.6) that only uses the a feedback control. This

method is the same explained in the background. The feedforward control problem is solved

designing a control law with a feedforward component (4.12)

FIGURE 4.2: Feedback Control with Feedforward Component

u(t) = ū(t) +Kd(ρ(t))(x(t) − x̄(t)) (4.12)

This control law can be approached as the particular case in which M = 0 and G = Inx and

Q = Inu , where In is a n times n identity matrix.

In order to implement the control law (4.12), a trajectory r(t), that will be designed such that

the angles and the altitude will follow a desired path, is transformed into a state space reference

x̄(t) and a feedforward control action ū(t). Let us consider these desired trajectories as φr(t), θr(t),

ψr(t) and zr(t). These desired values and the actual ones will be used to obtain the reference for

the velocity. Then, using a similar procedure, the desired acceleration of each angle is computed.

These accelerations are used to be able to drive the system from the actual point to a desired

one.

The state reference is given by the vector x̄(t) = [φ̇r(t), φ̈r(t), θ̇r(t), θ̈r(t), ψ̇r(t), ψ̈r(t), φ̇r(t), z̈r(t), żr(t)]
T

and the control feedforward is given by ū = [u1, u2, u3, u4]
T . These values are computed using the

model (3.23d)-(3.23f).

4.1.2 Model Reference Control

In this case, the reference will be computed using a reference model. This model will be exactly

the same as the nonlinear one but expressed in LPV form. The control law will be similar as the

one explained before.

In order to be able to define the input reference, the model should be converted into the error

model exi
= x̄i − xi. As the reference model is defined as the real one, the reference relationships
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FIGURE 4.3: Reference Model

are defined using the same expressions as the real ones (3.23d)-(3.23f).

¨̄z = −g + (cosθ cosφ)
V1
m

(4.13a)

¨̄φ = ( ˙̄θψ̇ + θ̇ ˙̄ψ)
Iyy − Izz
2Ixx

−
JTP
Ixx

φ̇Ω̄ +
V2
Ixx

(4.13b)

¨̄θ = ( ˙̄φψ̇ + φ̇ ˙̄ψ)
Izz − Ixx

2Iyy
−
JTP
Iyy

θ̇Ω̄ +
V3
Iyy

(4.13c)

¨̄ψ = ( ˙̄φθ̇ + φ̇ ˙̄θ)
Ixx − Iyy

2Izz
+
V4
Izz

(4.13d)

where Vi are the reference input control laws. Then, using the relationship exi
= x̄i−xi, the error

model is computed. It is assumed that the reference model uses the actual pitch and roll angles,

so the trajectory will be computed on line

ëz = (cosθ cosφ)
W1

m
(4.14a)

ëφ = ( ˙̄θψ̇ + θ̇ ˙̄ψ)
Iyy − Izz
2Ixx

− θ̇ψ̇
Iyy − Izz
Ixx

−
JTP
Ixx

φ̇Ω̄ +
JTP
Ixx

φ̇Ω +
W2

Ixx
(4.14b)

ëθ = ( ˙̄φψ̇ + φ̇ ˙̄ψ)
Izz − Ixx

2Iyy
− φ̇ψ̇

Izz − Ixx
Iyy

−
JTP
Iyy

θ̇Ω̄ +
JTP
Iyy

θ̇Ω +
W3

Iyy
(4.14c)

ëψ̇ = ( ˙̄φθ̇ + φ̇ ˙̄θ)
Ixx − Iyy

2Izz
− φ̇θ̇

Ixx − Iyy
Tzz

+
W4

Izz
(4.14d)

where Wi is the difference between the desired control input and the desired one.
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4.1.3 Model Reference Control with Model Matching

Finally, a reference model that has a simpler dynamic behaviour than the real one has been

used. This case needs a model matching controller in order to compare both models and control

the system using the error.

FIGURE 4.4: Reference Model

In this case, the reference model is simplified. In this master thesis, the nonlinear model

without the coupled angles and expressed in LPV form will be used

¨̄z = −g + (cosθ cosφ)
V1
m

(4.15a)

¨̄φ =
V2
Ixx

(4.15b)

¨̄θ =
V3
Iyy

(4.15c)

¨̄ψ =
V4
Izz

(4.15d)

where Vi are the reference input control laws. Using the relationship exi
= x̄i−xi, the error model

is computed. It is assumed that the reference model uses the actual pitch and roll angles, so the

trajectory will be computed on line

ëz = (cosθ cosφ)
W1

m
(4.16a)
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ëφ = −θ̇ψ̇
Iyy − Izz
Ixx

+
JTP
Ixx

φ̇Ω +
W2

Ixx
(4.16b)

ëθ = −φ̇ψ̇
Izz − Ixx
Iyy

+
JTP
Iyy

θ̇Ω+
W3

Iyy
(4.16c)

ëψ = −φ̇θ̇
Ixx − Iyy
Tzz

+
W4

Izz
(4.16d)

where Wi = Vi − Ui.



CHAPTER 5

RESULTS DISCUSSION

This chapter presents the results using the various control methods explained in pre-

vious chapter when applied to the quadrotor. Then, those results will be compared.

5.1 Introduction to the simulation scenarios

Various scenarios have been used in order to study the performances of the controllers and

compare them, focusing on the error and the control input. All the simulations used the non-

linear model presented in Chapter 3 as real plant and use the same initial states. The initial

pitch and roll is defined in a way that is inside the physical limits: cos(φ)cos(θ) ∈ [−1
4 ,

1
4 ] (See

equations (3.51a)-(3.51b)).

5.2 Scenario 1

The first scenario used is an oscillation that is inside the physical bounds, but it does not reach

any of them. The references used are the following ones

φ(t) =
π

4
sin(

πt

5
) (5.1a)

θ(t) =
π

4
sin(

πt

5
) (5.1b)

ψ(t) =
π

4
sin(

πt

5
) (5.1c)

z(t) = 2sin(
πt

5
) (5.1d)

31
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5.2.1 Feedback Control

As the Figure 5.1 shows, the attittude and altitude state trajectory follows the desired path. The

controller follows perfectly the dynamics of the reference computed using the method explained

in Section 4.1.1. It shows no periodical error and the controller is fast. In the worst case, the

settling time is around five seconds.
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FIGURE 5.1: Scenario 1: Angular position and altitude control using the feedback approach

The error between the reference and the states tends asymptotically to 0, as shown in the

Figure 5.2.
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FIGURE 5.2: Scenario 1: Feedback control error

5.2.2 Reference Model Control

The same reference has been used in the reference model presented in the Section 4.1.2.
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The Figure 5.4 shows the trajectory of the attitude and altitude states and the desired path.

The controller follows perfectly the dynamics of the reference. It shows a little periodical error in

the pitch response and its settling point is around six seconds in the worst-case scenario. The

error of every variable, as it is shown in the Figure 5.3, tends to 0.
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FIGURE 5.3: Scenario 1: Reference model error
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FIGURE 5.4: Scenario 1: Angular position and altitude control using the reference model ap-
proach

5.2.3 Reference Model Control with Model Matching

Figure 5.5 presents the path that will follow the attitude and altitude states and the desired

trajectory. The controller follows the dynamics of the reference computed using the method

explained in the Section 4.1.3. Its settling time is around seven seconds. As the Figure 5.6

shows, the error between the reference and system states tends to 0.
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FIGURE 5.5: Scenario 1: Angular position and altitude control using the reference model with
model matching approach

5.3 Scenario 2

As a second simulation scenario, a trajectory with a higher oscillation frequency has been used.

By doing this, the speed of the response of those controller has been tested.

φ(t) =
π

4
sin(2

πt

5
) (5.2a)

θ(t) =
π

4
sin(2

πt

5
) (5.2b)

ψ(t) =
π

4
sin(2

πt

5
) (5.2c)

z(t) = 2sin(
2πt

5
) (5.2d)

5.3.1 Feedback Control

First, the feedforward approach has been used. The Figure 5.7 shows the attitude and altitude

responses to the reference. As it is shown, the results are good. The controller follows perfectly

the dynamics of the reference computed using the method explained before. It shows no peri-

odical error and its settling time is about five seconds in the worst case. The error between the

desired and system trajectories has a similar pattern as in the Scenario 1 (See Figure 5.2).
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FIGURE 5.6: Scenario 1: Feedback control error
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FIGURE 5.7: Scenario 2: Angular position and altitude control using the feedback approach

5.3.2 Reference Model Control

The same reference has been used in the reference model approach described in Section 4.1.2.

Figure 5.8 presents the attitude and the altitude variables. It can be seen that the output follows

almost perfectly the desired path. The response time is relatively fast, as the worst case settling

time is around four seconds.
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FIGURE 5.8: Scenario 2: Angular position and altitude control reference model approach

As the Figure 5.9 shows, the error between the reference and the output is nearly zero. The

settling time in the worst-case is around four seconds.
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FIGURE 5.9: Scenario 2: Reference mode control error

5.3.3 Reference Model Control with Model Matching

Figure 5.10 presents the attitude and altitude state values in case of the reference model control

with model matching. The trajectory shows errors in the peaks and the valleys following the

reference path, specially in the roll case. The maximum relative error is around seven percent in

the case of the pitch angle and two degrees in the case of the roll. In the case of the yaw and the

altitude, the error is nearly zero. The response is fast. In the worst scenario, the settling time is

around five seconds.
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FIGURE 5.10: Scenario 2: Angular position and altitude control using the reference model control
with model matching

5.4 Scenario 3

Finally, a trajectory that reaches the bound of the pitch and roll angles is used.

φ(t) =
π

3
sin(

πt

4
) (5.3a)

θ(t) =
π

3
sin(

πt

4
) (5.3b)

ψ(t) =
π

2
sin(

πt

4
) (5.3c)

z(t) = 2sin(
πt

5
) (5.3d)

5.4.1 Feedback Control

First of all, this scenario has been tested using the feedback control with feedforward approach

described in the Section 4.1.1.
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FIGURE 5.11: Scenario 3: Angular position and altitude control using the feedback approach

Figure 5.11 shows the trajectory that the states follow. The controller follows perfectly the

dynamics of the reference computed using the method explained before. Its settling time is

about five seconds in the worst case. The error of every variable tends asymptotically to 0.

5.4.2 Reference Model Control

The same reference has been used in the second method proposed based on the reference model

approach.
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FIGURE 5.12: Scenario 3: Angular position and altitude control using the model reference ap-
proach

Figure 5.12 shows the attitude and altitude states and the desired path. The quadrotor

reaches the set-point in around four seconds in the worst case scenario. However, an error be-

tween the state and the reference of around twenty degrees in the pitch angle response appears.

This error, as shown in the Figure 5.13, present a periodical pattern. The other responses have

a much better performance.
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FIGURE 5.13: Error Pattern in the Scenario 3
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FIGURE 5.14: Scenario 3: Angular position and altitude control

5.4.3 Reference Model Control with Model Matching

Figure 5.14 shows the trajectory followed by the variables and the desired path. The controller

can follow the dynamics of the computed reference. However, it has an error between the refer-

ence and the system state of around nine degrees in the pitch case and ten degrees in the roll

case. It has, as in the previous scenario, a periodical pattern as shown in the Figure 5.15.
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FIGURE 5.15: Error Pattern in the Sceneraio 3 using the model reference with model matching
controller

5.5 Comparison

As it have been observed comparing the results obtained in the different simulation scenarios,

the feedback controller is the approach that obtained the best performances, as it is able to

follow the desired trajectory with the required dynamics. In all the scenarios, the error has a

asymptotic tendency to 0.

TABLE 5.1: Comparison of the three schemes results in the first scenario considering the worst case scenario

Settling Time [s] Overshoot [%] Maximum Absolute Error Maximum Relative Error [%]

Scheme 1 5.3 117 7.76 0.6

Scheme 2 6.4 120 0.31 0.9

Scheme 3 6.7 116 2 5.6

As it is shown in the Table 5.1, in the first scenario all the methods have achieved good

results. The reference model controller with model matching is the worst one because of a

periodical error in the maximum of the desired trajectory. The feedback controller has a higher

maximum settling time in the response to the pitch angle reference than the reference model.
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FIGURE 5.16: Control Inputs for the reference approach in the scenario 1
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FIGURE 5.17: Control Inputs for the model based approaches in the reference model approaches

As the Figures 5.16-5.17 show, the control inputs (3.15),(3.17) are similar among all the

schemes. The only one that has a difference is the reference model with model matching.

TABLE 5.2: Comparison of the three schemes results in the second scenario considering the worst case scenario

Settling Time [s] Overshoot [%] Maximum Absolute Error Maximum Relative Error [%]

Scheme 1 4.6 144 7.76 3.5

Scheme 2 3.9 146 0.96 0.5

Scheme 3 6.3 127 3 6.6

In the case of the second scenario, the results of the responses is simmilar to the first one,

as shown in the Table 5.2. The reference model with model matching has a periodical error in

the maximum of the reference and the reference model and the feedback controller ’s error tends

asymptotically to zero.
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TABLE 5.3: Comparison of the three schemes results in the third scenario considering the worst case scenario

Settling Time [s] Overshoot [%] Absolute Error Relative Error [%]

Scheme 1 5.9 144 14.41 3.5

Scheme 2 3.9 146 31 26

Scheme 3 6.3 127 3 6.6
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FIGURE 5.18: Control Inputs for the model based approaches in the reference model with model
matching case

As shown using the third scenario, the feedforward approach performs better in trajectories

near the physical bounds and with higher frequencies. In this scenario, as presented in Figure

5.18, it can be noticed that the control of the roll and pitch is a bit different and appearing peaks

in the same time step in which the error in the trajectory occurs. This error is relatively high.

However, in the case of the second control scheme, the error is nearly null in all the variables

but the pitch, in which is really high.



CHAPTER 6

CONCLUSIONS AND FURTHER

RESEARCH

This chapter summarizes the conclusions and main contributions of the thesis. It also

presents some proposals of possible future research.

6.1 Conclusions

This thesis has aimed at developing a controller for a quadrotor using LPV control techniques. To

achieve this goal, the quadrotor nonlinear model has been transformed into an LPV one. Then,

the system has been prefiltered in order to avoid to have parameter variances in the control

matrix.

Several LPV control schemes have been proposed. The first controller needed a feedforward

component in order to track a trajectory. This was computed using the model reference equa-

tions. The other two were model based controllers. In this case, the control used the error model

instead. The second model method used a reference model that was simplified. In order to be

able to compare dynamics, a model matching subsystem was used.

To compare the performances achieved with the different control schemes proposes, various

simulations have been done. The first simulation scenario corresponds to the case where the

desired reference path was inside the physical bounds. In this simulation scenario, all the

controllers showed really good results. The second scenario corresponds to a trajectory that

showed a higher frequency. In this case, the model reference based controllers showed small

periodical errors. Finally, in the last scenario, the reference used forces the quadrotor reached

the physical limits. In this simulation, the feedback control performed as before. However, the

model reference approaches′ error increased.

The feedback controller is the one that has performed better in the tests and the model

reference control with model matching had the worse results. The model reference control is the

scheme that showed a quicker settling time in all cases. However, its results near the settling

time are the worst. Despite all that, the control law performances is similar in all the cases.

43
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6.2 Ongoing and Further Research

The main objective would be to compare the proposed controllers using a real quadrotor and

then try it in a more complex helicopter. To do that, various steps must be followed:

• In this Master Thesis, it has been considered that all the states are measured. However,

that may not be true in a real quadrotor, so an observed should be designed.

• In order to have a quadrotor that is able to follow a desired trajectory, the x and y should

be controlled. To do so, the controller should be modified to control all the coordinates.

• Identification of the real parameters of the quadrotor are required in order the developed

controller could work.

• Modelling mismatches with the real quadrotor, errors in the identification of the model

and noise in the sensors will introduce disturbances in the system. Those effect should

be studied in order to see how they will affect the performance of the designed controllers

when applied to a real quadrotor.

• When the controller has been completed and the simulations show the results desired, it

should be implemented in the real system.
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