141 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods

    A review on automatic mammographic density and parenchymal segmentation

    Get PDF
    Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast cancer. There are more than 70 common genetic susceptibility factors included in the current non-image-based risk prediction models (e.g., the Gail and the Tyrer-Cuzick models). Image-based risk factors, such as mammographic densities and parenchymal patterns, have been established as biomarkers but have not been fully incorporated in the risk prediction models used for risk stratification in screening and/or measuring responsiveness to preventive approaches. Within computer aided mammography, automatic mammographic tissue segmentation methods have been developed for estimation of breast tissue composition to facilitate mammographic risk assessment. This paper presents a comprehensive review of automatic mammographic tissue segmentation methodologies developed over the past two decades and the evidence for risk assessment/density classification using segmentation. The aim of this review is to analyse how engineering advances have progressed and the impact automatic mammographic tissue segmentation has in a clinical environment, as well as to understand the current research gaps with respect to the incorporation of image-based risk factors in non-image-based risk prediction models

    A Bottom-Up Review of Image Analysis Methods for Suspicious Region Detection in Mammograms.

    Get PDF
    Breast cancer is one of the most common death causes amongst women all over the world. Early detection of breast cancer plays a critical role in increasing the survival rate. Various imaging modalities, such as mammography, breast MRI, ultrasound and thermography, are used to detect breast cancer. Though there is a considerable success with mammography in biomedical imaging, detecting suspicious areas remains a challenge because, due to the manual examination and variations in shape, size, other mass morphological features, mammography accuracy changes with the density of the breast. Furthermore, going through the analysis of many mammograms per day can be a tedious task for radiologists and practitioners. One of the main objectives of biomedical imaging is to provide radiologists and practitioners with tools to help them identify all suspicious regions in a given image. Computer-aided mass detection in mammograms can serve as a second opinion tool to help radiologists avoid running into oversight errors. The scientific community has made much progress in this topic, and several approaches have been proposed along the way. Following a bottom-up narrative, this paper surveys different scientific methodologies and techniques to detect suspicious regions in mammograms spanning from methods based on low-level image features to the most recent novelties in AI-based approaches. Both theoretical and practical grounds are provided across the paper sections to highlight the pros and cons of different methodologies. The paper's main scope is to let readers embark on a journey through a fully comprehensive description of techniques, strategies and datasets on the topic

    Machine learning methods for the analysis and interpretation of images and other multi-dimensional data

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Advancing the Clinical Potential of Carbon Nanotube-enabled stationary 3D Mammography

    Get PDF
    Scope and purpose. 3D imaging has revolutionized medicine. Digital breast tomosynthesis (DBT), also recognized as 3D mammography, is a relatively recent example. stationary DBT (sDBT) is an experimental technology in which the single moving x-ray source of conventional DBT has been replaced by a fixed array of carbon nanotube (CNT)-enabled sources. Given the potential for a higher spatial and temporal resolution compared to commercially-available, moving-source DBT devices, it was hypothesized that sDBT would provide a valuable tool for breast imaging. As such, the purpose of this work was to explore the clinical potential of sDBT. To accomplish this purpose, three broad Aims were set forth: (1) study the challenges of scatter and artifact with sDBT, (2) assess the performance of sDBT relative to standard mammographic screening approaches, and (3) develop a synthetic mammography capability for sDBT. Throughout the work, developing image processing approaches to maximize the diagnostic value of the information presented to readers remained a specific goal. Data sources and methodology. Sitting at the intersection of development and clinical application, this work involved both basic experimentation and human study. Quantitative measures of image quality as well as reader preference and accuracy were used to assess the performance of sDBT. These studies imaged breast-mimicking phantoms, lumpectomy specimens, and human subjects on IRB-approved study protocols, often using standard 2D and conventional 3D mammography for reference. Key findings. Characterizing scatter and artifact allowed the development of new processing approaches to improve image quality. Additionally, comparing the performance of sDBT to standard breast imaging technologies helped identify opportunities for improvement through processing. This line of research culminated in the incorporation of a synthetic mammography capability into sDBT, yielding images that have the potential to improve the diagnostic value of sDBT. Implications. This work advanced the evolution of CNT-enabled sDBT toward a viable clinical tool by incorporating key image processing functionality and characterizing the performance of sDBT relative to standard breast imaging techniques. The findings confirmed the clinical utility of sDBT while also suggesting promising paths for future research and development with this unique approach to breast imaging.Doctor of Philosoph
    • …
    corecore