715 research outputs found

    Real-time indoor assistive localization with mobile omnidirectional vision and cloud GPU acceleration

    Full text link
    In this paper we propose a real-time assistive localization approach to help blind and visually impaired people in navigating an indoor environment. The system consists of a mobile vision front end with a portable panoramic lens mounted on a smart phone, and a remote image feature-based database of the scene on a GPU-enabled server. Compact and elective omnidirectional image features are extracted and represented in the smart phone front end, and then transmitted to the server in the cloud. These features of a short video clip are used to search the database of the indoor environment via image-based indexing to find the location of the current view within the database, which is associated with floor plans of the environment. A median-filter-based multi-frame aggregation strategy is used for single path modeling, and a 2D multi-frame aggregation strategy based on the candidates’ distribution densities is used for multi-path environmental modeling to provide a final location estimation. To deal with the high computational cost in searching a large database for a realistic navigation application, data parallelism and task parallelism properties are identified in the database indexing process, and computation is accelerated by using multi-core CPUs and GPUs. User-friendly HCI particularly for the visually impaired is designed and implemented on an iPhone, which also supports system configurations and scene modeling for new environments. Experiments on a database of an eight-floor building are carried out to demonstrate the capacity of the proposed system, with real-time response (14 fps) and robust localization results

    Vision-based Assistive Indoor Localization

    Full text link
    An indoor localization system is of significant importance to the visually impaired in their daily lives by helping them localize themselves and further navigate an indoor environment. In this thesis, a vision-based indoor localization solution is proposed and studied with algorithms and their implementations by maximizing the usage of the visual information surrounding the users for an optimal localization from multiple stages. The contributions of the work include the following: (1) Novel combinations of a daily-used smart phone with a low-cost lens (GoPano) are used to provide an economic, portable, and robust indoor localization service for visually impaired people. (2) New omnidirectional features (omni-features) extracted from 360 degrees field-of-view images are proposed to represent visual landmarks of indoor positions, and then used as on-line query keys when a user asks for localization services. (3) A scalable and light-weight computation and storage solution is implemented by transferring big database storage and computational heavy querying procedure to the cloud. (4) Real-time query performance of 14 fps is achieved with a Wi-Fi connection by identifying and implementing both data and task parallelism using many-core NVIDIA GPUs. (5) Rene localization via 2D-to-3D and 3D-to-3D geometric matching and automatic path planning for efficient environmental modeling by utilizing architecture AutoCAD floor plans. This dissertation first provides a description of assistive indoor localization problem with its detailed connotations as well as overall methodology. Then related work in indoor localization and automatic path planning for environmental modeling is surveyed. After that, the framework of omnidirectional-vision-based indoor assistive localization is introduced. This is followed by multiple refine localization strategies such as 2D-to-3D and 3D-to-3D geometric matching approaches. Finally, conclusions and a few promising future research directions are provided

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    A non-holonomic, highly human-in-the-loop compatible, assistive mobile robotic platform guidance navigation and control strategy

    Get PDF
    The provision of assistive mobile robotics for empowering and providing independence to the infirm, disabled and elderly in society has been the subject of much research. The issue of providing navigation and control assistance to users, enabling them to drive their powered wheelchairs effectively, can be complex and wide-ranging; some users fatigue quickly and can find that they are unable to operate the controls safely, others may have brain injury re-sulting in periodic hand tremors, quadriplegics may use a straw-like switch in their mouth to provide a digital control signal. Advances in autonomous robotics have led to the development of smart wheelchair systems which have attempted to address these issues; however the autonomous approach has, ac-cording to research, not been successful; users reporting that they want to be active drivers and not passengers. Recent methodologies have been to use collaborative or shared control which aims to predict or anticipate the need for the system to take over control when some pre-decided threshold has been met, yet these approaches still take away control from the us-er. This removal of human supervision and control by an autonomous system makes the re-sponsibility for accidents seriously problematic. This thesis introduces a new human-in-the-loop control structure with real-time assistive lev-els. One of these levels offers improved dynamic modelling and three of these levels offer unique and novel real-time solutions for: collision avoidance, localisation and waypoint iden-tification, and assistive trajectory generation. This architecture and these assistive functions always allow the user to remain fully in control of any motion of the powered wheelchair, shown in a series of experiments

    Object Detection in Omnidirectional Images

    Get PDF
    Nowadays, computer vision (CV) is widely used to solve real-world problems, which pose increasingly higher challenges. In this context, the use of omnidirectional video in a growing number of applications, along with the fast development of Deep Learning (DL) algorithms for object detection, drives the need for further research to improve existing methods originally developed for conventional 2D planar images. However, the geometric distortion that common sphere-to-plane projections produce, mostly visible in objects near the poles, in addition to the lack of omnidirectional open-source labeled image datasets has made an accurate spherical image-based object detection algorithm a hard goal to achieve. This work is a contribution to develop datasets and machine learning models particularly suited for omnidirectional images, represented in planar format through the well-known Equirectangular Projection (ERP). To this aim, DL methods are explored to improve the detection of visual objects in omnidirectional images, by considering the inherent distortions of ERP. An experimental study was, firstly, carried out to find out whether the error rate and type of detection errors were related to the characteristics of ERP images. Such study revealed that the error rate of object detection using existing DL models with ERP images, actually, depends on the object spherical location in the image. Then, based on such findings, a new object detection framework is proposed to obtain a uniform error rate across the whole spherical image regions. The results show that the pre and post-processing stages of the implemented framework effectively contribute to reducing the performance dependency on the image region, evaluated by the above-mentioned metric
    • 

    corecore