
 

 

 

 

 

Object Detection in Omnidirectional Images 

 

 

Master degree in Computer Engineering - Mobile Computing 

 

 

Francisco António Agostinho Henriques 

 

 

Dissertation under the supervision of Professors Catarina Silva, Joana Costa and Pedro 

Assunção 

 

Leiria, November of 2020 

 





iii 

Originality and Copyright 

This dissertation is original, made only for this purpose, and all authors whose studies and 

publications were used to complete it are duly acknowledged. 

Partial reproduction of this document is authorized, provided that the Author is explicitly 

mentioned, as well as the study cycle, i.e., Master degree in Computer Engineering - Mobile 

Computing, 2019/2020 academic year, of the School of Technology and Management of the 

Polytechnic of Leiria, and the date of the public presentation of this work. 

 

 

          



iv 

Dedication 

This dissertation is dedicated to my parents, Carlos Henriques and Elsa Oliveira, who 

supported and motivated me to finish the masters, and to my girlfriend, Sara Dionísio who 

inspired every day with her determination. 

 

 

  



v 

Acknowledgments  

This work was partially supported by project ARoundVision CENTRO-01-0145-FEDER-

030652, Instituto de Telecomunicações - Delegação de Leiria. 

 



vi 

Abstract  

Nowadays, computer vision (CV) is widely used to solve real-world problems, which pose 

increasingly higher challenges. In this context, the use of omnidirectional video in a growing 

number of applications, along with the fast development of Deep Learning (DL) algorithms 

for object detection, drives the need for further research to improve existing methods 

originally developed for conventional 2D planar images. However, the geometric distortion 

that common sphere-to-plane projections produce, mostly visible in objects near the poles, 

in addition to the lack of omnidirectional open-source labeled image datasets has made an 

accurate spherical image-based object detection algorithm a hard goal to achieve. 

This work is a contribution to develop datasets and machine learning models particularly 

suited for omnidirectional images, represented in planar format through the well-known 

Equirectangular Projection (ERP). To this aim, DL methods are explored to improve the 

detection of visual objects in omnidirectional images, by considering the inherent distortions 

of ERP. An experimental study was, firstly, carried out to find out whether the error rate and 

type of detection errors were related to the characteristics of ERP images. Such study 

revealed that the error rate of object detection using existing DL models with ERP images, 

actually, depends on the object spherical location in the image.  

Then, based on such findings, a new object detection framework is proposed to obtain a 

uniform error rate across the whole spherical image regions. The results show that the pre 

and post-processing stages of the implemented framework effectively contribute to reducing 

the performance dependency on the image region, evaluated by the above-mentioned metric. 
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Resumo 

O conceito de Computer Vision é, atualmente, utilizado para resolver problemas do 

quotidiano em diversas áreas da sociedade que estão, cada vez mais, a impor novos desafios 

e dificuldades. Neste contexto, a captura de imagens omnidirecionais através de câmaras 

360º, associada ao rápido desenvolvimento dos algoritmos de Deep Learning para detetar 

objetos, cria a necessidade de investigar novas formas de melhorar os métodos existentes, 

originalmente desenvolvidos para imagens planares 2D. No entanto, a distorção produzida 

pelos métodos de projetar a esfera em plano, em conjunto com a falta de datasets constituídos 

por imagens omnidirecionais, tem criado dificuldades na obtenção de um algoritmo de 

deteção de objetos neste tipo de imagens.  

Esta dissertação é uma contribuição para desenvolver datasets e modelos de Machine 

Learning, especificamente desenhados para imagens omnidirecionais, representadas através 

da projeção Equirectangular. Desta forma, os métodos de Deep Learning são explorados 

para melhorar deteção de objetos em imagens omnidirecionais, tendo em conta a distorção 

causada por esta forma de projetar a esfera no plano. Em primeiro lugar, um estudo 

experimental foi executado de forma a identificar a taxa de erro e os tipos de erros associados 

às características das imagens equiretangulares. Com base nesse estudo, está identificado 

que a performance dos modelos de Deep Learning está dependente da localização do objeto 

na imagem. 

Como consequência desta dependência, uma nova framework para detetar objetos com uma 

taxa de erro uniforme em todas as regiões esféricas da imagem é proposta. Esta dissertação 

mostra que a framework implementada permite que a taxa de erro seja independente da 

região da imagem onde está o objeto, através do seu fluxo de execução diferente das 

frameworks tradicionais. 
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 Introduction 

In this chapter, we focus on the dissertation’s contextualization and goals along with its 

concerning motivation. Furthermore, contributions to the related community, as well as the 

document structure is presented. 

1.1. Context and Motivation 

Visual perception is one of the most important human senses, materialized when the eyes 

receive light patterns that are transformed into neural signals and then transmitted through 

the huge neural network that constitutes the human brain [1]. This process creates a huge 

amount of information used by humans to recognize and identify multiple objects, which is 

usually carried out through a process of learning and recognition.  

Over the last decades, computer vision technology, through traditional or intelligent 

approaches, has been widely explored to solve real-world problems and improve life quality 

in many different domains, such as self-driving cars, accurate health diagnoses, agriculture 

operations improvement, etc [2].  The focus lies on trying to develop smart mechanisms 

capable of automatically interpreting visual content through image processing and, 

providing the same output as the human visual system would, preferably faster and more 

accurately. The computational process usually entails extracting relevant features from 

images or videos to identify patterns. 

Generally, such technology aims to execute one of these three tasks: image classification, 

object detection, and semantic or instance segmentation  [3]. Image classification refers to a 

process in computer vision that can classify an image according to its visual content, i.e., 

association with a category within some predefined set [4]. On the other hand, object 

detection methods aim to locate an object by returning bounding boxes or pixel masks. 

Finally, semantic or instance segmentation algorithms associate each image pixel with a 

given object label. 

Such tasks are usually based on 2-dimensional (2D) images. However, new application 

requirements and fast technological advances are continuously posing new challenges which 

cannot be met by 2D cameras. Their limited field-of-view (FOV) and, subsequently, blind 
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spots do not allow all view directions, including all-around from the ground, mid-level above 

ground to sky, to be efficiently monitored. 

Therefore, omnidirectional vision is increasingly a requirement on computer vision tasks: to 

identify people, vehicles, animal, etc., at the ground-level; monitor buildings, balconies, or 

windows at the mid-level; detect sky-level objects such as unmanned aerial vehicles (UAVs), 

which consists of autonomously or remote-controlled vehicles to fly over pre-defined areas. 

In addition to the above-mentioned requirement has been flooding into people daily life, 

according to [5], the 360º camera market for media and entertainment is estimated to reach 

USD (United States Dollar) 1,569.2 million by 2023 from USD 473.6 million by 2018, at a 

compound annual growth rate of 27.1% between 2018 and 2023.  

Given the above-mentioned facts, to overcome such requirements, an efficient 

omnidirectional image-based objection detection algorithm is increasingly becoming 

mandatory. Nevertheless, with 360º images,  new challenges have been created: huge 

resolution to keep high fidelity along 360 x 180º range; very high frame-rate to avoid motion 

sickness of viewers; distortions produced by the most common sphere-to-plane projections 

(equirectangular, cubemap projection, truncated square pyramid, and craster parabolic 

projection) [6]. 

1.2. Contributions 

Computer vision approaches have been heavily studied in the last few years and, nowadays, 

several frameworks are capable of providing reasonable performance in many image and 

video processing tasks. However, currently available frameworks were usually designed to 

use 2D images as input, while specific solutions for omnidirectional data are still open for 

further improvement and performance optimization. 

Experimental studies on detecting object regions in omnidirectional images, representing the 

spherical domain as planar images through the well-known Equirectangular projection 

(ERP), denoted that the error depends on the object spherical location in the image. 

Therefore, this dissertation aims to emphasize the main differences between omnidirectional 

and 2D image-based object detection algorithms’ performance and propose a new 

framework to obtain uniform error rate across the whole spherical image regions. 
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The main contributions of this work include: 

• State-of-the-art computer vision approaches for object detection on omnidirectional 

images. 

• Omnidirectional and 2D image-based object detection algorithms’ comparative 

analysis. 

• Improved omnidirectional image-based object detection framework proposal. 

• Evaluation of the proposed framework. 

Moreover, a paper entitled “Object Detection in Equirectangular Images” was published at 

the 26th Portuguese Conference on Pattern Recognition (RECPAD) which aims to promote 

the collaboration between the Portuguese scientific community in the fields of Pattern 

Recognition, Image Analysis, and Processing, Soft Computing. 

1.3.  Outline of the document 

The remainder of this document is structured as follows:  

After this introductory chapter, Chapter 2 includes the background on omnidirectional 

vision. Within the scope of that chapter, omnidirectional image and 360º video technology 

is presented along with the description of the most common approaches for project spherical 

images onto 2D planes. Omnidirectional and 2D image datasets for object detection are 

detailed at the end of the chapter. 

Then, Chapter 3 presents an overview of object detection tasks with intelligent approaches 

of Machine Learning (ML), namely Deep Learning (DL), which is introduced followed by 

a detailed explanation of the improvements and differences that DL approaches have brought 

when compared to the previous methods. Afterward, object detection algorithms are 

presented to allow to grasp the main challenges of applying such algorithms on 

omnidirectional images. 

In Chapter 4, the research problem in addition to the methodology guidelines is presented to 

understand the motivation behind the need of detecting object regions in omnidirectional 

images. Then, the proposed procedure to develop an efficient framework is defined. 

Moreover, a comparative performance evaluation of 2D image-based object detection 

algorithms on 2D and omnidirectional image datasets is carried out. 
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Then, after presenting the experimental analysis, Chapter 5 focuses on providing a 

framework for enhancing object detection in omnidirectional images. This chapter starts by 

demonstrating a domain-specific approach for improving object detection results above-

achieved. Then, a new framework that allows optimizing such results is proposed. 

Furthermore, to provide the reader with the information needed concerning the framework 

deployment, some considerations on the DL algorithm decision-making process are 

presented. 

Finally, in Chapter 6, the work developed in this dissertation is summarized and the future 

work is presented. 
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 Background on Omnidirectional Vision 

In this chapter, general aspects of image capture are, firstly, introduced. Then, 360º image 

and video technology, as well as the most common approaches of mapping spherical points 

to 2D planes, are detailed to provide the reader with the main challenges that this technology 

brings. Succeeding the above-mentioned section, 2D image datasets for object detection and 

the process to produce an omnidirectional image dataset are described. 

2.1.  Introduction 

During the nineteenth century, through a lightproof box with a pinhole on one side and a 

translucent screen on the other, named camera obscura (Figure 1), the first photographic 

image was taken. Later, with improvements in the above-mentioned process, the word 

“photography” was introduced to name the method of recording images by the action of light 

on sensitive material [7].  

 

Figure 1 - Camera Obscura [8] 

At that time, the image capture process used to take a long time to be completed, given that 

the acquisition of each image required a long light exposure time. However, the creation of 

a short focal lens enabled that time to be significantly reduced. Meanwhile, the process kept 

being improved until 1981, when the world’s first digital electronic camera was presented, 

already similar to nowadays’ cameras. Since then, this technology has been evolving with 

several improvements in image quality. 

Despite substantial advances since the camera obscura conception, today’s traditional 

cameras rely on the same principles to produce an image: when light rays pass through the 
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center of the lens or effective pinhole they are projected onto a sensor array to provide a 

linear perspective image [9]. 

After a couple of years from the capture process invention,  capturing all view directions in 

a single image faster became one of the research goals. Therefore, the next section aims to 

explore the technology behind cameras with omnidirectional view capabilities. 

2.2.  360º Image and Video Technology 

Camera manufacturers introduced omnidirectional cameras in 1958. Those cameras -  

depicted in Figure 2 -, commonly referred to as 360º or panoramic cameras,  can capture the 

full 360º surroundings in a single picture of a video clip [10], putting in a single image left, 

right, and sky-level content. Moreover, depending on the display type, such technology may 

provide an immersive visual experience. 

Despite its beginning as a non-consensual technology, 360º cameras have recently increased 

in popularity given that such cameras have become more affordable and easier to use at the 

consumer level. The 360º camera global market for media and entertainment is estimated to 

reach USD 1,569.2 million by 2023 from USD 473.6 million by 2018, at a compound annual 

growth rate of 27.1% between 2018 and 2023 [5]. 

 

Figure 2 - 360 º Camera (Insta360 Pro 2) [11] 

In contrast to 2D images, 360º images are typically captured through a set of multiple 

cameras or a camera that contains multiple lenses. Then, a software-based post-processing, 

namely panorama stitching, which consists of merging multiple images with overlapping 

regions, is required to provide a spherical image. This is demonstrated in Figure 3. 
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Figure 3 - Panorama stitching example [12] 

Generally, the resulting image, referred to as omnidirectional or 360º image, provides an 

immersive experience by covering the whole 360 x 180 º sphere, different from conventional 

images that only cover a limited plane. Therefore, any viewing angle at a given point can be 

recreated which leads to great opportunities to improve the visual experience and expand the 

functionalities of currently available applications. 

The well-known Virtual Reality (VR) and Augmented Reality (AR) are among the most 

common applications of omnidirectional vision that attempts to simulate real-life 

experiences by merging different types of visual content. Thereby, its users, usually through 

headsets (Figure 4), can turn their heads in any direction and see programmed content, just 

like a human does in the real-world [13]. 

 

Figure 4 - Virtual Reality Headsets [13] 

The growing development of 360º technology allows AR/VR to be optimized in the same 

way considering that AR/VR consists of 360º videos rendered via head-mounted displays, 

as the VR headsets. The ability to get immersive experiences through VR headsets has been 
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introduced as a mainstream technology since the boom of smartphones with high-density 

displays and 3D graphics capabilities which were a key-step on major advances.  

Although this technology is still too expensive, multiple areas of people’s daily tasks such 

as education where students’ knowledge is acquired through virtual experiences, can have a 

huge positive impact. For instance, ClassVR, a product from Avantis Systems company, 

provides educational resources through a student-friendly interface by using a standalone 

VR headset, since 2017 [14]. 

Despite the opportunities and experiences provided by 360º technology, new challenges have 

also been raised. Given that omnidirectional images present a high level of detail - image 

resolution - and 360º videos require a high frequency of images to appear on display – frame-

rate - to cover the whole sphere with high fidelity and avoid motion sickness, storage, and 

transmission issues are introduced because of the inherent very high file size. Then, to solve 

such issues, data can be transformed by mapping a sphere onto a plane, on a process called 

sphere-to-plane projection. 

2.3.  Sphere-to-Plane Projections 

For many years, mathematicians and physicists needed to represent spheres on the plane. It 

started when mathematical principles were applied to get a globe’s representation which 

gave rise to hundreds of map projections proposals. Figure 5 presents an example of globe 

representation on the plane. Despite the distortion caused by all sphere-to-plane projections, 

projection of an image onto a plane is required, particularly, when we are attempting to store, 

process, or transmit them. 
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Figure 5 - Globe Representation on Plane example [15] 

Then, in this section, the most common sphere-to-plane approaches are described to allow 

the reader to understand how omnidirectional image points are mapped to a 2D plane in 

computer graphics. The following projections are included: Equirectangular Projection 

(ERP); Cubemap Projection (CMP); Segmented Sphere Projection (SPP) and Craster 

Parabolic Projection (CPP). 

2.3.1. Equirectangular Projection 

Equirectangular projection, the most popular way to store and transmit 360º content, defines 

each sphere point by a horizontal angle 𝜃 𝜖 [−𝜋, 𝜋[  and vertical angle 𝜃 𝜖 [−𝜋/2, 𝜋/2[, as 

detailed in Figure 6. Then, given a sphere ∑, an equirectangular image 𝑃 is obtained as 

follows: 

 

𝑃(𝑖, 𝑗) =  ∑ (𝜃𝑖, 𝜙𝑗) 

with ∀𝑖, 𝜃𝑖 −  𝜃𝑖+1 =  𝛿𝜃 and ∀𝑗 , 𝜙𝑗 −  𝜙𝑗+1 =  𝛿𝜙  [16] 
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Figure 6 - Equirectangular Representation [16] 

Despite this approach has become the standard sphere-to-plane projection, severe visual 

distortions can be caused by non-uniform sampling distance, i.e., the non-constant distance 

between two points. The mid-region (blue region in Figure 6) is defined with much fewer 

pixels than poles (red region in Figure 6), i.e., the pixel density is quite different leading to 

geometric distortions. 

2.3.2. Cubemap Projection 

Different from the ERP approach, Cubemap representation consists of decomposing the 

sphere into independent subregions. Generally speaking, the center of the cube is used to 

perform a perspective projection of the sphere on each face of the cube (Figure 7) [16]. 

Although this solution provides less radial distortion than ERP, it creates frontiers in the 

image which may lead to object split sometimes. Consequently, the same object may appear 

in more than one face of the cube at the same time. 

 

Figure 7 - Cubemap Representation [16] 

 

2.3.3. Segmented Sphere Projection 

Another method of mapping an omnidirectional image onto a 2D plane, namely Segmented 

Sphere Projection, aims at providing 3 different segments of the sphere: the north pole, the 
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equator, and the south pole. While north and south poles are mapped into 2 circles, the 

equatorial segment into 4 squares, as detailed in Figure 8. 

   

Figure 8 - Segmented Sphere Projection [17] 

Notice that regions labeled as “0” and “1” are north and south poles, respectively. On the 

other hand, regions from “2” to “5” in Figure 8 belong to the equatorial segment, where the 

same projection as ERP is applied. Furthermore, to map a point (𝑚, 𝑛) on the face to a point 

(𝜙, 𝜃) on the sphere, a different mathematical equation is used, depending on the face [17]. 

2.3.4. Craster Parabolic Projection 

Craster Parabolic Projection (CPP) implements an algorithm that, given a sphere with radius 

𝑅 = 1 and a spherical point (𝜃, 𝜙) that needs to be mapped to a 2D point (𝑚, 𝑛), the 

following equation is applied [17]: 

𝑚 = 𝑅𝜃 ⌊(2 cos
2𝜙

3
) − 1⌋ 

𝑛 =  𝜋𝑅 sin
𝜙

3
  

Similar to other projections, CPP also produces distortion after being applied, more 

precisely, near outer meridians at high latitudes, where the distortion is severe, as depicted 

in Figure 9. 
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Figure 9 - Craster Parabolic Projection Example [6] 

2.4.  Image Datasets for Object Detection 

The appearance of digital cameras and the advancement of technology along with the 

development of communication infrastructures have made photography fairly easy for any 

user. Nowadays, almost every single person at any time and anywhere can take a picture 

with suitable digital equipment, such as a smartphone. Therefore, large digital data volumes 

have become available from heterogeneous sources in a fast way and, according to 

International Data Corporation (IDC) report, the volume of data will reach 90 Zettabytes1 in 

2025 [18]. 

The resulting data started to be structured to meet requirements across a wide range of 

applications. One of those applications, deeper analyzed in Chapter 3, involves developing 

Computer Vision (CV) techniques to locate and identify objects in images. Such technology 

usually requires a large amount of image data, referred to as image datasets, to achieve 

efficient results [19]. However, the higher availability of 2D image-based capture devices 

when compared to devices with omnidirectional capabilities tends to make open-source 

omnidirectional image datasets more difficult to find out. Therefore, this section aims to 

provide the reader with an overview of the 2D and omnidirectional image datasets used 

within the scope of this dissertation, focusing on their main characteristics. 

In recent years, to improve and study CV algorithms, the list of available 2D image datasets 

has largely increased. This list includes datasets like PASCAL Visual Object Classes (VOC)  

[20], ImageNet [21], Common Objects in Context (COCO) [22], Modified National Institute 

of Standards and Technology (MNIST) [23] and, Cityscapes [24] datasets. Although the 

 
1 1 Zettabyte = 1 000 000 000 000 Gigabytes 
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wide diversity of available datasets, we just focus on those that were used in our experiments: 

ImageNet, Microsoft COCO, and Cityscapes datasets. 

2.4.1. ImageNet 

ImageNet [21] is an ongoing effort to provide researchers open access to an image database 

that is organized according to the WordNet nouns hierarchy. WordNet [25] is a large lexical 

database of English that labels the semantic relationships among words. As a result, the 

nouns hierarchy consists of a collection of nodes (entities), starting at a root node. 

Furthermore, this lexical database distinguishes between types (common nouns) and 

instances (specific persons, countries, or geographic entities) where instances are always 

terminal nodes in their hierarchies [26]. For example, Lionel Richie is an instance of a singer 

while an armchair is a type of chair. 

ImageNet includes 1000 nodes (object labels) with an average of over five hundred images 

per node to fill the need for structured data from the researches [21]. In Figure 10, ImageNet 

examples are depicted, representing the cycling noun hierarchy. The cycling node belongs 

to the sports and athletics root node which has three leaves (terminal) nodes: bicycling, dune 

cycling, and motorcycling. Besides, information about the number of pictures in this node 

and its distribution is also provided. In this particular case, 1.364 pictures are available, most 

of them labeled as motorcycling or bicycling. 

 

Figure 10 - ImageNet database examples [21] 

This database offers a huge number of images in an attempt to reach a great diversity, given 

that objects may have different appearances, positions, viewpoints, poses, and backgrounds. 

Furthermore, to correctly label each image, when a dataset is created, it needs to be reviewed 

by humans. In the ImageNet case, a voting system was introduced to link an image with an 

object label and then, an image was considered positive only if it got a convincing majority 
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of votes [27]. In addition to associate object labels to images, the exact location of objects is 

also stored in bounding box format - coordinates of the rectangular border that fully encloses 

an object.  

Generally, it has been a useful resource to help the community in the research field of CV to 

overcome the lack of 2D labeled image data that those algorithms usually use as input in 

object detection tasks. 

2.4.2. COCO 

Microsoft Common Objects in Context (COCO) [22] is another large-scale dataset that 

contains 330.000 images, of which 220.000 are labeled. In opposition to ImageNet, COCO 

only provides 80 object categories. However, it has more instances per category. This dataset 

was also labeled with object categories (person, chair, car…) and also “stuff” categories 

(sky, street, grass…) given that those categories could provide relevant contextual 

information. 

Likewise, in the ImageNet database, the COCO dataset also stores objects’ location in an 

image, however, the COCO dataset goes deeper: it associates each pixel of an image to a 

category. Figure 11 depicts some examples of images from the COCO dataset to demonstrate 

how can each pixel be labeled with one category. 

 

Figure 11 - COCO dataset examples [22] 

As hinted by the name, its images are taken from everyday scenes thus attaching “context” 

to the objects captured in the scenes. Then, objects are not isolated in the image which allows 

CV algorithms fed by the COCO dataset to take advantage of the given data to be more 

accurate. 
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2.4.3. Cityscapes 

Additionally, the investigation process behind this dissertation led us to study open-source 

available labeled datasets related to the urban environment. Despite the wide range of 

available datasets that the resulting research provided, the Cityscapes dataset [24], due to its 

huge diversity and application scenarios seemed to be a wise choice. The selected dataset 

was a researchers’ effort for semantic urban scene understanding tasks by proposing a dataset 

that exceeds previous attempts in terms of size, annotation richness, and scene variability 

and complexity. 

This dataset provides 25.000 annotated images captured among 50 cities for several months 

to get different weather conditions. Moreover, image frames included in the dataset were 

manually selected to guarantee a large number of dynamic objects with a high diversity of 

layouts and backgrounds. Dataset examples as well as their corresponding semantic 

annotations are depicted in Figure 12. 

 

Figure 12 - Cityscapes dataset examples [24] 

The above-mentioned dataset includes 30 classes (including road, person, car, sky, traffic 

sign, etc.) clustered into 8 groups (flat, human, vehicle, construction, object, nature, sky, and 

void). However, given the high dataset diversity that was not necessary for our research, a 

subset of the Cityscapes dataset was proposed, only involving images that include objects 

belonging to the person, car, truck, bus, and motorcycle labels. 
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Consequently, the resulting subset provided 3451 images, containing 31822 car, 21413 

person, 888 motorcycle, 582 truck, and 483 bus instances, producing a label distribution as 

demonstrated in Figure 13. 

 

Figure 13 - Cityscapes Subset Label Distribution 

In opposition to the original dataset, in this subset, a bounding box conversion process was 

required to keep the same format as the previous datasets. This conversion process was 

implemented, simultaneously, with the label filtering process, by selecting not only the 

minimum x and y values but also polygon maximum x and y values of each object location 

to produce, respectively, bounding box top left and bottom right coordinates. 

Despite the acquisition of the above-mentioned 2D image datasets, the lack of open-source 

labeled omnidirectional image datasets was still not solved after the investigation process. 

That fact led us to create an omnidirectional dataset by ourselves, accepting all the work 

behind the procedure: video and image capturing and labeling process. 

2.4.4. Omnidirectional Image Dataset 

To gather content for acquiring the proposed omnidirectional image-based dataset, different 

approaches to collect videos through an Ultra High-Definition (UHD) 360º video camera 

was carried out. The 360º video camera was used to capture an urban environment to include 

different visual objects of all possible regions of spherical images in the dataset. For that 

purpose, the camera was, firstly, placed on a highly congested traffic location to produce 

58%

39%

1% 1% 1%

Cityscapes Subset Label Distribution

Car Person Motorcycle Truck Bus
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video recordings where people and vehicles were visible. Then, to enrich the dataset with 

high diversity viewpoints, object poses, and weather conditions, the same camera was 

mounted on the roof of a car, and videos were recorded while the car was moving. Finally, 

to fill the lack of aerial objects, an unmanned aerial vehicle was controlled over pre-defined 

regions, simulating aerial intrusion in a private property, while the 360º camera was 

recording, playing the role of an omnidirectional surveillance camera. 

Succeeding the initial capturing process, to make the image dataset diversified, video frames 

had to be extracted from the resulting video content. At this stage, it was important to keep 

in mind that not all video frames were required to be grabbed given that differences between 

consecutive frames could not be relevant to achieve the desired diversity. Furthermore, the 

very-high-resolution videos that 360º cameras, usually, provide, needed to be taken into 

consideration. 

Due to its ability to transform and filter multimedia content and its high-portability which 

allows running across Linux, Mac OS X, and Microsoft Windows2, the FFmpeg [28] 

framework was used to overtake both concerns. On the first hand, the acquired UHD 360º 

videos were resized to a Full HD resolution (1980x1080 pixels). Later, one video frame was 

grabbed per second (which means a frame-rate of 1 FPS3) and the resulting image was 

projected onto a 2D plane with the ERP approach. Figure 14 depicts an image produced by 

the described process. 

 

Figure 14 - Example of a 360º video frame projected onto a 2D plane with ERP approach. 

 
2 Operating Systems 
3 Frame per second 
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After finishing processing the whole acquired video content, the image dataset had to be 

labeled. This process, as above-referred, consists of identifying objects in an image and save 

their location as well as their corresponding label class, in a human-readable format. To 

reduce the manual effort this task requires, LabelImg [29], an annotation tool, was used to 

facilitate the labeling process, providing a graphical image tool to create and save bounding 

boxes for each image. 

Generally, this tool allows the selection of a working directory that contains the image 

dataset that needs to be labeled, as demonstrated in Figure 15. Then, a rectangle box could 

be drawn for each identified object, associating an object label class to each one and saving 

the final output in the most suitable format. 

 

Figure 15 - LabelImg Dashboard 

Object labels could be stored in PascalVOC or YOLO format. On the first hand, PascalVOC 

stores the annotation in Extensible Markup Language (XML) format and it includes 

information about the data source, image size, and location of the identified object as well 

as its classification. The object location was defined as a bounding box that includes four 

fundamental values: xmin, ymin, xmax, ymax. In opposition, in the YOLO format, each file 

line corresponds to each object instance. Each object is defined with 5 values: index of label 

class, x, y, width, and height, where the last four values consist of float values relative to the 

image width and height, and x and y values represent the center of the rectangle box. 

Moreover, the YOLO format does not store absolute values, using the relative format of each 

one. Both formats are depicted in Figure 16. 
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Figure 16 - Image labels file example. The left side demonstrated the PascalVOC format, while the right side 

shows the YOLO format. 

At the end of the acquisition and labeling stages, the omnidirectional image dataset followed 

a label distribution as presented in Figure 17, containing a total of 779 images distributed by 

six object label classes: car, truck, bus, motorcycle, person, and unmanned aerial vehicle 

where the prevailing class is the car. 

 

Figure 17 - Resulting omnidirectional image dataset object classes distribution 

The resulting dataset allows the initial lack of omnidirectional image dataset to be overtaken 

and it was an effort to help the CV community to further investigate object detection 

techniques on this image type. 
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2.5.  Final Remarks 

Since the first camera invention, image acquisition technology has been completely 

transformed, however, the principles to produce an image are still the same. Although in the 

digital era, the vast majority of people have access to digital equipment, such as smartphones, 

allowing images to be captured from diverse perspectives, omnidirectional view capabilities 

are increasingly a requirement in the most demanding applications to overcome the blind 

spots that 2D image-based capture devices usually have. 

In a virtual-reality perspective, the possibility of moving around at a concert or festival to 

find the position that users prefer comes up with a set of 360º cameras that were strategically 

positioned. Moreover, immersive adventures at stadiums for experiencing an event as if a 

user is there, are also potential applications where this technology plays a crucial role [30]. 

Additionally, in a non-entertainment perspective, professional 360º camera rigs allow video 

surveillance to be more efficient. However, given that CV approaches to automatically detect 

objects on such surveillance systems are usually fed by 2D images, omnidirectional image-

based systems require further investigation. Such technology usually involves a large 

amount of data to make the system more efficient. For that reason, initial research on both 

2D and omnidirectional image datasets was carried out. 

Consequently, this chapter presented an overview of three of the most common 2D image 

dataset, namely ImageNet, Microsoft COCO, and Cityscapes. With regards to 

omnidirectional content, the lack of open-source labeled data made an omnidirectional 

image dataset to be proposed. The acquisition process required video content to be captured 

across diverse conditions and the resulting image data to be labeled. 

As a result of the initial research has been completed, the next chapter aims to give the reader 

the knowledge needed about object detection approaches to understanding not only the 

research problem behind this dissertation but also the experiments carried out. 
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 Object Detection with Deep Learning 

The goal of this chapter is to present an overview of object detection approaches with Deep 

Learning (DL), a field that has attracted much research attention in the last years. The chapter 

starts with an introduction to DL, followed by an explanation of the DL concept along with 

a description of popular DL frameworks used by the community. Object detection with DL 

applied to 2D images is, then, introduced to describe the state-of-the-art methods for 

detecting objects in omnidirectional images. Finally, the evaluation metrics to measure and 

compare object detection models’ performance used in this dissertation are defined and 

explained. 

3.1.  Before Deep Learning 

Nowadays, a relevant application of CV deals with functions for recognizing and identifying 

specific objects in images, such as a person or a road, attempting to replicate the human 

being able to identify objects through vision, memory, and knowledge [31]. This technology 

aims to produce meaningful information from an image and it usually includes methods for 

acquiring, processing, and understanding images to achieve its goal [32]. 

There are many CV applications such as object detection and identification, video tracking, 

object pose estimation, motion estimation, and image restoration [32]. This thesis focuses 

on object detection algorithms through ML approaches, which have been receiving a lot of 

attention in recent years, not only in academia but also in industry. 

Machine Learning is a subfield of Artificial Intelligence (AI) that uses computational 

algorithms to turn data into usable models [33] and the associated methods are, generally, 

classified as supervised or unsupervised.  Supervised learning methods aim at developing 

predictive models from a labeled dataset to make predictions in an unlabelled set of samples. 

Each sample in the learning dataset has an associated label, which consists of the desired 

forecast for that sample. For example, a label representing the character “4” can be associated 

with the sample in Figure 18. 
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Figure 18 - Example of a sample and corresponding label 

In opposition, unsupervised approaches try to identify patterns without access to the labeled 

dataset. Generally, such methods aim at grouping learning data with inherent similarities and 

classifying each group with its corresponding label [34]. 

To perform object detection tasks, traditional algorithms of ML were, firstly, developed. 

Identifying an object in a given image requires each object region to be located along with 

those identified regions to be classified. To achieve these goals, traditional methods are 

usually subdivided into three sub-steps: informative region selection, feature extraction, and 

classification [3]. The informative region selection stage consists of scanning the whole 

image with a multi-scale sliding window because objects differ in position, aspect ratio, or 

size. Usually, this task is computationally expensive due to the large number of windows 

needed to cover all possibilities. 

Succeeding the informative region selection, the second sub-step produces a semantic and 

robust image representation, such as Histograms of Oriented Gradient (HOG) and Haar-like, 

through feature extraction algorithms. Finally, to associate a category to an object and 

improve the representations for visual recognition, in the classification stage, Support Vector 

Machine, AdaBoost, and Artificial Neural Networks are often chosen as classifiers. 

3.1.1. Histograms of Oriented Gradient and Haar-like 

Paul Viola and Michael Jones proposed a feature-based image representation that operates 

much faster than a pixel-based representation. The well-known Haar algorithm is commonly 

used to identify objects in images, however, it has been demonstrated to be very useful on 

face detection tasks. 

The implemented system uses three types of features: two-rectangle feature, which value is 

the difference between the sum of the pixels within two rectangular regions; three-rectangle 

feature that computes the sum within two outside rectangles subtracted from the sum in a 

center rectangle; four-rectangle feature, representing the difference between diagonal pairs 

of rectangles [35]. Figure 19 depicts an example of features extracted from a person's face. 
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Figure 19 - Haar algorithm. Features that allow defining a face.  [35] 

Through a different approach, Histograms of Oriented Gradients (HOG) is also a feature-

based image representation.  It is calculated by computing vertical and horizontal gradients 

and then, gradient magnitude and angle to find the structure of the object. This feature 

representation outperforms human detection tasks [36], as illustrated in Figure 20. 

 

Figure 20 - HOG detectors cue mainly on silhouette contours [36]. Human body feature representation is depicted.  

3.1.2. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are inspired by human brain-behavior to gain abilities 

to solve problems. Like the human brain, ANNs are composed of a large set of weighted 

connections of units (neurons) where each one is responsible for performing a specific task  

[37]. Figure 21 depicts an example of an ANN architecture. 
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Figure 21 - ANN architecture example [38]. Three neuron layers are depicted: input layer; hidden layer; output 

layer. Input layer neurons (i1; i2) are weighted connected to hidden layer neurons (h1; h2) which are weighted 

connected to output layer neurons (o1; o2). At the bottom, two bias neurons are illustrated. 

Each artificial neuron has one or more indispensable activation functions in the intermediary 

layers. Generally, an activation function calculates a weighted sum from the input layers, 

and it adds a bias. Depending on the function used, the result value can be different, however, 

it is usually mapped between 0 to 1 or -1 to 1. 

The structure of ANN depends on its type. Nevertheless, we focus on a multilayer 

feedforward network, which consists of three types of layers: input, output, and hidden. The 

input layer receives the input in the form of a multidimensional vector and transfers it to the 

hidden layers. Then, each hidden layer will make decisions and weigh up the level of impact 

that a hypothetical change has on the final output based on the previous layer. In the end, 

after data had been processed, output layers receive the final output [38]. 

In object detection problems, training multilayer feedforward networks with a 

backpropagation algorithm is a common approach. The backpropagation algorithm, 

illustrated in Figure 22, aims at optimizing the weights so that the neural network can 

correctly associate inputs to outputs. This process consists of two stages: the forward pass 

and the backward pass. The forward pass keeps the values of the weights unchanged and 

output layers values are computed from the input data. On the other hand, in the backward 

pass, the computed error is propagated back to the previous layers. Both stages together 

make one iteration. 
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Figure 22 - Backpropagation algorithm example 

Therefore, in the backpropagation process, an error is computed with the backpropagated 

data by each artificial neural network neuron and weights values are, then, updated. The 

process is repeated until reaching the input layer. 

Even though ANN can be trained through supervised or unsupervised learning approaches, 

this research work focuses on the supervised method. This approach requires an output 

vector to be known for each of the input vectors. Then, to compute the error value, the 

difference between ANN output and known output is calculated. Therefore, the learning 

algorithm on this method is responsible for learning a mapping function that allows us to 

receive an input and provide the correct output. 

Object detection algorithms that this dissertation implements are different from the above-

mentioned ANN by their depth, as their name implies: DL networks. In Section 3.2, a better 

understanding of the DL concept is provided. 

3.1.3. Support Vector Machines and AdaBoost 

Support Vector Machines (SVMs), introduced by Vapnik [39], are supervised Machine 

Learning algorithms very often used in classification problems. Generally, SVM aim at 

finding an optimal hyperplane to separate a dataset into two classes in an n-dimensional 

space, as presented in Figure 23. Mathematically, the problem can be described as follows. 

Given a set of training data (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) where 𝑥𝑖 belongs to 𝑅𝑑, a d-

dimensional space, and the data is labeled according to an unknown probability distribution 
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𝑃(𝑥, 𝑦) and a loss function V(𝑦, 𝑓(𝑥, 𝑦)) is defined to measure the error, when, for a given 

𝑥, 𝑓(𝑥) is calculated instead of the actual value 𝑦 [40]. 

 

Figure 23 - Support Vector Machine [41].  An Optimal Hyperplane Separation (OHS) with a higher possible 

margin between both classes is proposed. 

This algorithm has provided new solutions to important real-world problems and specific 

application scenarios. For instance, in 1999, it was proposed to apply a set of SVM classifiers 

to medical Tuberculosis from photomicrographs of Sputum smears, the first time it was used 

in medical problems, which has allowed medical experts to be supported on their very 

important decisions [42]. 

On the other hand, another approach for solving a classification problem was proposed, 

namely, Adaptive Boosting (AdaBoost) which allows the creation of a strong and robust 

classifier from a set of weak classifiers through an iterative learning algorithm [43], as 

denoted in Figure 24. 

 

Figure 24 - Adaboost Algorithm [44] 
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In Adaboost’s process,  the weight of a sample misclassified by the previous decision tree is 

boosted so that the previously misclassified sample is correctly classified by the subsequent 

tree. As long as more weak classifiers are added in series to the model, classification 

accuracy increases [44]. 

3.2.  Deep Learning 

Deep Learning is part of a wide range of ML methods, which aims at replicating the human 

of learning from multiple levels of information using layer-based approaches. Before the DL 

emergence, feature engineering was required to extract descriptive information from images 

through CV techniques, as demonstrated in Figure 25. Moreover, it was necessary to select 

which information was relevant to train ML algorithms. 

 

Figure 25 - Traditional Computer Vision (a) vs Deep Learning (b) [45] 

In opposition to traditional techniques, DL methods, based on ANNs, have introduced the 

end-to-end learning concept. Essentially, the learning algorithm architecture allows 

automating the hand-crafted feature extraction and selection. Consequently, a unified 

learning framework is provided instead of a multiple-step approach.  

Deep Learning approaches have become more popular due to major advances in network 

structures and training approaches. In 1997, in [23], the authors proposed to replace the hand-

crafted feature extraction step by operating directly on pixel images. This approach applied 

to a character recognition research problem proves that was possible to develop accurate 

machine learning algorithms without a manual extraction and selection and it brings huge 

research efforts on this topic. 
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Over the last decades, different Deep Neural Networks types have been developed: 

Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM), Auto Encoders 

(AE), etc. However, we focus on Convolutional Neural Networks (CNNs). Convolutional 

Neural Network is a multiple layer architecture inspired by the natural visual perception 

mechanism of living creatures that usually consists of a set of three types of layers: 

convolutional, pooling, and fully connected layer [46]. Different from the other neural 

networks, neurons in CNN are arranged in width, height, and depth dimensions, as depicted 

in Figure 26. 

 

Figure 26 - Typical CNN architecture in aircraft structural health monitoring [46]. 

Convolutional layers, as the name implies, are a crucial part of CNN operation mode. Their 

main goal is extracting features from the given input through multiple convolutional kernels 

that learn feature representations. The convolutional kernel or filter consists of an array of 

numbers that represent a certain pattern in its area. This filter slides around the input image, 

multiplying, and adding the values in the filter with the image pixels. This sliding process is 

also known as the convolving process and it starts at the top left corner. The final feature 

map results from applying an activation function on the convolved results. The most used 

activation functions are sigmoid, ReLu, and tanh. Therefore, the above-depicted figure 

demonstrates a set of convolutional layers with ReLu activation function. 

The above-mentioned process is demonstrated in Figure 27, where a 2D pixelated image is 

received as input and the convolutional process is applied, with a kernel size of 5x5 to 

produce a feature map. 
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Figure 27 - 5x5 convolution to produce a feature map [47] 

A convolutional layer is usually followed by a pooling layer which aims at reducing the 

number of elements of feature maps computed from the previous layer. As well as 

convolutional layers, such layers also require a kernel size to be defined. Max or mean 

pooling are some examples of commonly used filters. In Figure 28, a max-pooling with a 

2x2 kernel size is demonstrated, where the maximum number in every subregion where the 

filter convolves is chosen. 

 

Figure 28 - Example of Maxpool with a 2x2 kernel size [47] 

Finally, fully connected layers produce an n-dimensional vector output from a given input, 

where N represents the number of possible classes. For example, if we were developing a 

CNN for recognizing Latin alphabet characters, the N value would be 26 (Latin alphabet 

length). This layer usually uses an output function to normalize the output vector of CNN. 

In the architecture represented in Figure 26, the softmax output function is used. 

To train a DL model, a labeled dataset is required. Both ImageNet and MS COCO datasets 

are commonly used for training models, given that they offer a huge amount of image labeled 

data. When a model has never been trained before, a random initialization of weights is 

performed, which is often known as a train from scratch.  
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Given that training a model from scratch is computationally expensive, the transfer learning 

approach is mostly used. This process consists of taking a pre-trained model on a large 

dataset and fine-tuning the model with our dataset. The main idea is taking advantage of the 

feature extracting ability of the pre-trained model and replacing the classifier. Considering 

the Latin alphabet example, rather than training the whole network, we can use a pre-trained 

model on ImageNet (which has 1000 classes) and train it on an alphabet character images 

dataset (with only 26 classes). 

Object detection models based on CNN architecture enable CV engineers to achieve better 

accuracy in complex tasks when comparing to traditional approaches. By eliminating the 

manual feature extracting step, the less expert analysis given that it is not necessary to choose 

which features are important in each image. Additionally, the emergence of DL approaches 

was also promoted by the DL frameworks. 

3.2.1. Deep Learning Frameworks 

Due to the growth of the DL community, a lot of open-source frameworks have been 

introduced to facilitate the execution of the most common DL algorithms. Each one aims at 

trying to optimize ML algorithms' performance through different implementations. This 

section focuses thereby on benchmarking the most popular DL frameworks by identifying 

the main advantages and disadvantages of each one and explaining their implementation. 

Recent advances in hardware technology have enabled research across different 

implementations to explore deep learning algorithms' performance over different hardware 

environments. Despite the Central Processing Unit (CPU) is the mainstream technology, the 

Graphics Processing Unit (GPU) outperforms on neural network training given that their 

internal cache, high-speed bandwidth, and quick parallel performances. Furthermore, like 

GPU, both Field Programmable Gate Array (FPGA) and Application Specific Integrated 

Circuit (ASIC) devices can accelerate model training due to their parallel computing 

capacity [48]. 

Depending on the goal and domain of the task, each hardware device can take advantage. 

On the first hand, ASIC has an optimized architecture to achieve low-energy consumption, 

low latency, computing performance, and scalability. On the other hand, FPGA takes 

advantage given its chip price. Finally, GPU is also able to achieve energy efficiency and 

outperforms on compatibility, upgradability, and ubiquitous computing. 
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Mainstream DL frameworks have different compliant hardware platforms and base 

implementations. Thus, their main characteristics and differences are below-described to 

understand each implementation [49]. 

Different DL frameworks have, obviously, different compliant hardware platforms and base 

implementation. To better understanding the main ideas behind each framework, five 

toolkits are bellow described. Generally, we include the most popular frameworks amongst 

the researchers, according to [50]: TensorFlow, Microsoft Cognitive Toolkit, PyTorch, 

Caffe, and Keras. 

• TensorFlow [51], developed by Google Brain, provides a flexible architecture 

through a single data flow graph that expresses all numerical computations, including 

mathematical and communicational operations. Furthermore, it supports distributed 

training given that computation can be deployed to one or more CPUs or GPUs on 

different hardware. 

Although is written in Python programming language, math operations are written as 

high-performance C++ binaries. Python is easy to learn and works with and it 

provides high-level programming abstractions, which justifies TensorFlow 

implementation. 

 

• Microsoft Cognitive Toolkit (CNTK) [52] is an open-source toolkit, which aims at 

providing tools for training and testing neural networks through multiple GPUs. Due 

to its effective way to manage memory resources, this framework is computationally 

very efficient. 

Microsoft-CNTK was one of the first DL frameworks to support an open-source 

model representation for framework interoperability and shared optimization, known 

as Open Neural Network Exchange (ONNX). 

 

• PyTorch [53] is a Python-based ML framework based on a prior framework know 

as Torch [54]. In opposition to frameworks like TensorFlow, which requires a 

computational graph to be designed before running the model, in PyTorch, the graph 

can be dynamic. 



Object Detection in Omnidirectional Images 

32 

 

This ML framework provides users with CPU and GPU neural network training 

options. Moreover, it offers great flexibility and speed due to its optimal 

implementation. 

 

• Caffe [55] provides researchers and engineers with a DL framework to train and 

deploy DL algorithms which have been maintained and developed by the Berkeley 

Vision and Learning Center (BVLC) and its GitHub4 community. 

Its main advantages include its modularity and speed given that the Caffe framework 

it allows to be extended to new data formats and network layers. However, it is not 

efficient in a wide range of domains. The main application area is computer vision 

or image classification problems. 

 

• Keras [56] is an open-source DL library, written in python that works on top of other 

DL frameworks such as TensorFlow or Microsoft-CNTK. Generally, it facilitates the 

process of prototyping neural networks and it supports a wide range of network 

layers. 

 

Keras Application Programming Interface (API) development reduces cognitive load 

given that it is user-friendly and easy to extend. Moreover, new modules are simple 

to add. 

3.3.  Object Detection 

In recent years, precisely determining the location of objects contained in each image by 

outputting the bounding box around the object has been attracting much attention. This task, 

referred to as object detection, provides a lot of opportunities in real-world scenarios. 

However, it also faces hard challenges such as partial occlusion; different illumination 

conditions, poses, and scale [57]. This subsection aims at clarifying DL-based object 

detection approaches to understand how this task is performed. 

Deep Learning algorithms for object detection can be mainly subdivided into two types of 

approaches. In the first type, the algorithm has two-steps, including a regional proposal 

 
4  Distributed version control and source code management tool 
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generation and a classification stage. On the other hand, the second approach consists of just 

one step. The first pipeline, as shown in Figure 29, consists of three modules. From the input 

image, around 2000 regions are extracted and then proposed, producing a set of candidate 

regions. The second module takes as input each region and computes features through a 

CNN that is later associated with a class on the third module where a set of SVMs are 

available [58].  

 

Figure 29 - Regional proposal framework pipeline [58] 

This architecture was the basis for Regions with CNN features (R-CNN), in 2014, which 

brought accurate results when compared to the previous methods. Later, this algorithm was 

subsequently upgraded with the introduction of SPP-net that becomes more efficient on 

object detection tasks due to its improvements in locating objects with different scales. 

Despite the implemented changes in the initial architecture, new solutions were continuously 

developed until reach most recent solutions: Region-based Fully Convolutional Network (R-

FCN), Feature Pyramid Network (FPN), and Mask R-CNN [3].  

Therefore, R-FCN, by adding a new network layer, has improved its inference time due to 

the generation of scores for each proposal region. On the other hand, FPN architecture has 

been widely used to achieve better results on scale invariance scenarios in object detection 

systems. Finally, Mask R-CNN provides a two-step architecture to detect all objects in an 

image and perform an instance segmentation. 

In contrast to this approach, the second object detection pipeline, based on global 

regression/classification, does not split the process into two stages, allowing the direct 

extraction of bounding boxes with associated classes from input images and, consequently, 

reduce time expenses. Mainstream object detection frameworks based on this pipeline 

include You Only Look Once (YOLO) and Single Shot Detection (SSD). 

In the YOLO framework pipeline, illustrated in Figure 30, the process starts by dividing the 

input image into a grid of S x S dimension. Then, the grid cell that contains the center of an 
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object takes the responsibility of detecting it. Moreover, each grid cell produces bounding 

boxes and confidence scores or, in other words, how confident that the model is that the box 

contains an object. Besides, at the same time, a class probability map is computed where 

each grid cell predicts the class associated with an object [59]. 

 

Figure 30 - YOLO framework pipeline [59] 

Considering, now, the YOLO model architecture, its first version has 24 convolutional layers 

for feature extraction, followed by 2 fully connected layers for computing predictions, 

however, the last improved version of YOLO, YOLOv3, consists of 53 convolution layers. 

This structure provides great results on image processing in real-time scenarios: 45 Frames 

Per Second (FPS) with 320x320x3 input size YOLOv3 version and 220 FPS with a 

simplified version. 

On the other hand, the SSD framework is also based on a feed-forward convolution network 

that aims to detect objects in images, producing bounding boxes and confidence scores, as 

the YOLO framework does. Despite their common goal, the SSD framework pipeline 

consists of receiving an input image with ground truth boxes which are computed by a set 

of convolutional layers, where the above-mentioned feature extraction process is performed. 

After this step is completed, the feature map obtained is computed and bounding boxes of 

different sizes and aspect ratios are returned. Finally, confidence scores (“conf” in the 

Figure) are calculated for each bounding box (“loc” in the Figure), as depicted in Figure 31 

[60]. 
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Figure 31 - SSD framework pipeline [60] 

Different from YOLO, the SSD model architecture consists of a truncated base network 

followed by a set of convolutional layers whose size is decreased progressively, providing 

predictions at multiple scales. Then, feature maps computed are going through a 3x3 

convolution to produce bounding boxes. 

As a result of the diversity of DL model architectures, different open-source frameworks 

have been developed to achieve good performance on object detection. However, the fact 

that such frameworks are usually fed by 2D images, led recent research works to evaluate 

object algorithms on omnidirectional images. 

3.3.1. Object Detection in Omnidirectional Images 

Object detection in 2D images with DL approaches was a great achievement that technology 

advances have promoted to solve prior challenges. However, due to the emergence of 360º 

technology, new challenges have been created. The first challenge results from the need of 

projecting a 360º image onto a 2D plane which can be achieved through different methods, 

as mentioned in Chapter 2. 

Given its simple approach to convert a spherical plane into a cartesian grid, the ERP has 

been established as the mainstream sphere-to-plane conversion method for project 360º 

content. Therefore, this dissertation relies on the ERP approach rather than on the cubemap, 

SPP, or CPP projections. Consequently, this section provides an overview of state-of-art 

algorithms and frameworks for detecting objects in ERP images. 

Unfortunately, ERP applied to images captured from 360º capture devices create severe 

distortion that is mostly visible in objects near the poles [61]. In Figure 32, an ERP image 

example is depicted, followed by the poles region identification, in Figure 33. The visible 
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distortion can hamper the use of 2D image-based object detection models in omnidirectional 

images. 

 

Figure 32 - Equirectangular image example 

 

Figure 33 - Poles Regions Identification. The top and bottom red overlay regions represent the north and south 

pole, respectively. 

In addition to the visual changes that ERP produces, another issue has been identified by 

state-of-the-art researches. The difficulty to overtake the lack of omnidirectional open-

source labeled image datasets, as already denoted in our initial research experiments, makes 

an accurate omnidirectional image-based object detection algorithm a hard goal to achieve. 

These problems led the DL community to propose different approaches to keep a good object 

detection performance even facing ERP image challenges. “Object Detection in 

Equirectangular Panoramas” [61] and “Pano-RSOD Dataset” [62] were two of the first 

research works that have been pursued focusing on this field. 

The first work  [61] proposes a multi-projection variant of the YOLO detector that tries to 

solve identified problems through multiple stereographic sub-projections. In their 

experiments, a data set extracted from 22 4k-resolution videos with 6431 objects was 
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considered. The solution, as presented in Figure 34, consists of three stages: stereographic 

projection, detection, and bounding box post-processing.  

 

Figure 34 - First Research Process Pipeline [61] 

First, to cover the whole image two projections with a horizontal and vertical span of 180 

degrees are required. Nonetheless, in this implementation, object distortion is still large, and, 

for that reason, four sub-projections with an overlap of 90 degrees were defined for 

processing. After the stereo projection stage, each sub-projection is processed by the YOLO 

detector, producing a set of detections with bounding boxes, confidences, and class names 

associated. Finally, bounding boxes returned by the last step are re-aligned and results are 

presented. 

The second work [62] starts by creating a non-open-source dataset of 9402 images with 2048 

x 1024 pixels extracted from the streetscape of downtown Zhongshan City, Guangdong 

Province, China, and each image has 9 objects on average [63]. Then, through LabelImg 

open-source tool  [29], all the images have been labeled and reviewed and, finally, the dataset 

consisted of 4 categories with a total of 87542 bounding boxes. 

The authors evaluated different object detection algorithms based on both one-stage and two-

stage frameworks. Generally, YOLOv3 outperforms the other methods. In terms of speed, it 

performs better, reaching 13 milliseconds of processing time per detection. Furthermore, 

considering the accuracy metric, it achieved top performance,  1% above than the second-

best method, Faster R-CNN. The accuracy of car and person classes also obtained higher 

values when using the YOLOv3 algorithm, however, for sign and line categories, the highest 

values were reached with Faster R-CNN. 

Among the presented research works, the need for evaluating and comparing algorithms’ 

performance was pointed out. In the same way, this dissertation requires an overview of the 

performance metrics used to provide the researchers with useful information at the decision-
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making stage. Therefore, the next section aims to present a detailed explanation of such 

performance metrics’ computation. 

3.3.2. Performance Metrics 

Given the need for comparing object detection algorithms’ performance, a set of common 

evaluation metrics have been introduced. Therefore, the evaluation performance metrics 

section provides a useful explanation of mean average precision (mAP), intersection over 

union (IoU), and floating operation per second (FLOPs). These metrics along with a deep 

analysis of provided results, are fundamental to choose the solution that betters fits the target 

goal. 

First, one of the most common metrics used to analyze the accuracy of predictions produced 

by trained deep neural networks is the IoU. Generally, it computes the similarity between 

the bounding box predicted by the model and the ground truth bounding box (desired model 

output). This performance metric, as depicted in Figure 35, is calculated by dividing the 

overlapping area and the area of union. 

 

Figure 35 - Intersection over union calculation 

Taking into consideration a real example where the target is detecting traffic signs, the 

trained model has predicted the red bounding box demonstrated in Figure 36, while the 

desired output was the green bounding box. By applying the above-mentioned formula, the 

IoU is computed to evaluate the model’s performance. Its values are within the range 

between 0 and 1 (or 0 and 100 if we are looking at percentage values) and the more accurate 

prediction, the higher is IoU value. 
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Figure 36 - Real example of Intersection Over Union [64] 

In addition to IoU, mean average precision (mAP) has been a typical performance metric to 

evaluate the results produced by DL models. Before explaining the mAP, recall, and 

precision metrics and, subsequently, their inherent error types used should be clarified. 

Firstly, when we are facing a binary classification problem, there are four possible prediction 

outcomes: true positive (TP), false positive (FP), false negative (FN), and true negative (TN).  

Assuming that our trained model identifies the presence of a person in an image. Then, we 

have a positive class, person, and a negative class, no person. Therefore, a true positive 

occurs when the model correctly predicts the positive class. In the same way, a true negative 

is an outcome where the model correctly predicts the negative class. On the other hand, false-

positive is the given classification when the model incorrectly predicts a positive class, while 

false negative is the outcome when the negative class is incorrectly predicted. Table 1 

summarizes these concepts applied to the given scenario. 
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Table 1 - Confusion Matrix.  Actual class column labels correspond to the reality labels while predicted class 

columns correspond to the predicted labels. 

From these values, it is important to analyze not only the proportion of correct positive 

predictions (precision) but also the proportion of actual positives that were correctly 

identified (recall). The above-mentioned metrics, namely, precision and recall are computed 

as follows:  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

After understanding the above concepts, the standard performance measure for object 

detection, mAP, can be introduced. Although a consensual definition of the way it should be 

computed is not established yet among researchers, this dissertation follows the most 

common definition: the average of areas under the recall-precision curve (Average Precision 

- AP) for all the classes. In Figure 37, a precision-recall curve example is depicted. 

 

Figure 37 - Precision-Recall Curve example 
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As above-demonstrated, average precision (AP), which corresponds to just one label class, 

can be computed by finding the area below the precision-recall curve (orange line in Figure 

37). Finally, to compute the desired mAP, the average AP for all classes must be calculated. 

These metrics are usually associated with IoU. The IoU metric defines the minimum 

threshold to consider a correct prediction. For instance, “AP@0.5” means that the values of 

AP were measured considering that correct predictions have, at least, 0.5 of IoU.  

Lastly, to evaluate models’ performance, the floating-point operations per second (FLOPs) 

metric was also taken into consideration in this research. According to International Business 

Machines Corporation (IBM) [65], FLOPs value is a critical measure of computing power 

and speed. Consequently, hardware resources needed to perform predictions are usually 

estimated by analyzing this useful measure. 

3.4.  Final Remarks 

With the rapid development of technology, different approaches and tools have been recently 

introduced. Computer Vision approaches have been explored to provide algorithms that 

allow us to identify patterns through image feature extraction, creating new application 

scenarios, such as object detection. 

Object detection has been performed through traditional and DL approaches: traditional 

methods are subdivided into informative region selection, feature extraction, and 

classification steps, otherwise DL methods do not need a manual feature extracting process 

from raw input data. Due to this great advantage, DL has been mostly explored over 

traditional methods and, consequently, new DL methods have been introduced. 

Object detection with DL techniques that are based on 2D images has shown a reasonable 

performance. However, over the last few years, due to the 360º cameras market growth and 

the new requirements that the technology brings, an efficient object detection method is 

required. Current research works on this field identified the lack of omnidirectional image 

datasets and the distortion that ERP produces as the main challenges that current algorithms 

could face. 

For that purpose, we aim to evaluate the performance of 2D image-based algorithms on the 

omnidirectional image dataset acquired in the next chapter. Before that section, the research 

problem along with the methodology is described in detail. 
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 Research Problem, Methodology, and 

Comparative  Evaluation 

Chapter 4 focuses on providing a clear description of the proposed research problem and 

research methodology. Firstly, an introduction to the problem is carried out to give the reader 

the knowledge needed for understanding its motivation. Succeeding that section, the research 

problem is presented, followed by an explicit methodology definition, including well-

defined steps. 

Finally, a comparative evaluation of 2D image-based object detection algorithms on 2D and 

omnidirectional image datasets used as the baseline for our research is detailed. Then, the 

training process with the inherent steps, as well as the analysis of results is presented. 

4.1.   Research Problem 

Omnidirectional vision on object detection frameworks to capture the full field of view 

(FOV) of 360º is increasingly becoming a requirement on the most demanding systems. 

Technology advances in many areas made 2D cameras not enough to ensure the efficiency 

of a surveillance system. Their limited FOV and, subsequent blind spots, have to be covered 

to allow simultaneous surveillance in all view directions, including all-around from the 

ground, mid-level above ground to sky. 

Therefore, 2D video cameras no longer comply with the concept of an environment where 

everything should be possible to be observed, scrutinized, and identified (obviously subject 

to the legal conditions in force). For instance, the limited FOV and relatively low resolutions 

of most current systems, are constraining factors for such types of requirements, which may 

not allow achieving the target performance levels specified for systems with intelligent 

functionalities. 

Different view directions mean, obviously, different challenges. At the ground level, threats 

such as people, vehicles, animals, or door fronts require special attention. On the other hand, 

surveillance at the mid-level above ground allows buildings, windows, or balconies to be 

efficiently monitored. Finally, at the sky-level, it comes one of the most recent threats of 

privacy invasion, for instance: unmanned aerial vehicles (UAVs), depicted in Figure 38. 

These vehicles, which can be autonomously or remote-controlled, can fly over a target area 

which may lead to invasion of private properties, for example [66]. 
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Figure 38 - Privacy invasion cartoon [67]. UAVs can only be detected and identified using omnidirectional vision 

on the ground because they can appear from any direction. 

Although different view directions can be cover by multiple 2D capture devices, in the long 

term, investing in an omnidirectional camera is usually a better solution to reduce hardware 

costs. Additionally,  processing images from different sources requires object detection 

frameworks to be rearranged to aggregate the results from the execution of object detection 

tasks in each image. 

Given the fact that most object detection systems do not use omnidirectional, such format 

on its own poses implicit challenges to current DL algorithms. The main concerns are 

caused, not only by the huge resolution of each image but also by the inherent geometric 

distortions that may occur as a result of the planar projection used in their representation. 

Therefore, this work is a contribution to the DL community by exploring the well-known 

object detection algorithms applied to omnidirectional images. Then, the next section aims 

to describe the research methodology that was followed within the scope of this dissertation. 

4.2.  Research Methodology 

The initial investigation on 2D image datasets and the development of an omnidirectional 

dataset, stated in Section 2.4, allowed us to define the research methodology carried out in 

this dissertation, following the workflow demonstrated in Figure 39. 
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Figure 39 - Research Methodology Stages 

As depicted in the above Figure, this research consisted of three fundamental stages 

comprised of multiple sub-steps. On the first hand, a comparative performance evaluation of 

object detection algorithms trained in 2D image datasets on 2D and omnidirectional datasets 

had to be performed to allow identifying the main drawbacks and differences between the 

execution of object detection tasks on both image types. For that purpose, the 

omnidirectional image dataset and the Cityscapes subset were defined as the source data to 

develop the comparative performance evaluation on recognizing “urban objects” in 

omnidirectional images. 

Then, after proceeding to the analysis of results achieved in the previous stage, a set of 

diversified object detection algorithms were trained in the acquired omnidirectional image 

dataset. This stage allowed us to carry out a domain-specific approach to improve object 

detection accuracy when compared to 2D image-based methods. The resulting DL 

algorithms were benchmarked to provide the DL community with the information needed to 

understand each algorithm’s behavior. 

Moving on to the final stage, the development of a framework for enhancing object detection 

accuracy on omnidirectional was carried out. This stage involved identifying and denoting 

the main failure points of trained algorithms and investigating an optimized approach to 

overcome such problems. Finally, the proposed framework was evaluated and compared to 

the previous methods. 

4.3.  Comparative Performance Evaluation 

This section aims to establish the comparative performance evaluation of currently available 

networks trained on conventional resolutions and FOV when compared to an 

omnidirectional image dataset. Firstly, not only the definition of DL algorithms to be used 

but also a short justification for each choice is provided. At this stage, the main differences 

between networks are demonstrated.  
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The evaluation environment was still the same on both datasets and the goal was measuring 

two Key Performance Indicators (KPIs): mAP and IoU. Moreover, all network configuration 

parameters used are described to repeat this experiment several times, but not consecutively 

(e.g. one month later). Finally, performance results and specific aspects analysis, as well as 

similarities and differences between evaluation experiments, were registered. 

4.3.1. Training Process 

To perform the training process for the comparative evaluation, Single Shot MultiBox 

Detector (SSD) in addition to You Only Look Once (YOLO) version 3 (v3) were selected. 

On the first hand, the SSD [60] approach, due to its unified framework, training and inference 

speed, and accuracy performance demonstrated on COCO and PascalVOC datasets were 

used during this experiment. Our implementation of the SSD algorithm follows an open-

source Keras-based implementation [68] and it consists of retraining the model on the 

Cityscapes subset. Therefore, by getting model weights from the ImageNet dataset training 

process and using the parameters described in Table 2, the training process was carried out. 

Property Description Value 

Network Parameters 

img_height Network input height 512 

img_width Network input width 512 

img_channels Network input channels 3 

swap_channels 
The color channel order 

(BGR, RGB,…) 
[2, 1, 0] 

scales 
List of anchor boxes 

scaling factors 

0.07 

0.15 

0.3 

0.45 
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0.6 

0.75 

0.9 

1.05 

aspect_ratios 
List of aspect ratios for the 

anchor boxes 

[1.0, 2.0, 0.5], 

[1.0, 2.0, 0.5, 3.0, 

0.33333333], 

[1.0, 2.0, 0.5, 3.0, 

0.33333333], 

[1.0, 2.0, 0.5, 3.0, 

0.33333333] 

[1.0, 2.0, 0.5, 3.0, 

0.33333333], 

[1.0,  2.0, 0.5], 

[1.0,  2.0, 0.5] 

normalize_coords 
Use relative instead of 

absolute coordinates 
True 

batch_size 
Number of images 

processed in one batch 
8 

final_epochs Max. number of epochs 100 

n_classes 
Number of output label 

classes 
5 

Optimizer Parameters 

optimizer --- Adam 
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learning rate 
The initial learning rate for 

training 
0.001 

beta_1 

The exponential decay rate 

for the first moment 

estimates 

0.9 

beta_2 

The exponential decay rate 

for the second-moment 

estimates 

0.999 

epsilon 
Constant for numerical 

stability 
1−8 

decay 

How the learning rate of 

the optimizer changes over 

time 

0.0 

Loss Function Parameters 

Loss Function --- SSD_Loss 

neg_pos_ratio 

The maximum ratio of 

negative to positive ground 

truth boxes to include in 

the loss computation 

3 

n_neg_min 

The minimum number of 

negative ground truth 

boxes to enter the loss 

computation, per batch 

0 

alpha 

A factor to weight the 

localization loss in the 

computation of the total 

loss 

1 

Model Checkpoint Callback Parameters 

save_best_only 
Save all models or only the 

best 
True 
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save_only_weights 
Save the whole model or 

only weights 
False 

monitor Metric to be monitored val_loss 

Table 2 - SSD Model Training Parameters 

Initial experiments on the SSD training process demonstrated that using our local hardware 

resources was not a feasible option to proceed with the process, as a consequence of 

exhaustive hardware resource consumption. Then, a cloud-based solution was implemented, 

allowing to manipulate on-demand computing-accelerated instances, according to the 

approach’s needs. 

One of the most-known cloud-based solution provider, Amazon Web Services (AWS) [69], 

offers computing instances to enable individuals or organizations to train machine learning 

models through their Sagemaker service [70]. After performing a cost-benefit analysis, 

ml.p2.xlarge instance seemed to be the most appealing instance to be selected. This instance 

provides 4 virtual CPU (vCPU), 1 K80 GPU, 61 Gibibytes (GiB) memory, and high network 

performance. 

Following a recommended implementation, Sagemaker service was used along with Simple 

Cloud Storage Service (S3), also provided by AWS. Both services combined allowed model 

training progress to be more dynamic given that, best models were, successively, uploaded 

to the storage service at the time they are available. 

Although Sagemaker service offers pre-built object detection frameworks that provide high-

level abstraction during the training stage, a Sagemaker algorithm was implemented for 

controlling more efficiently the whole process. Therefore, the implementation involved 

developing a lightweight, standalone, executable package of software  (known as docker 

container) that contains everything needed to run an application, including code, system 

libraries, settings, etc. [71]. This approach is very helpful when we are attempting to isolate 

the application from its running environment. 

The above-mentioned Keras-based source code implementation of SSD was modified to 

produce a docker container, a process known as dockerizing an application. Finally, after its 

rearrangement, the resulting Docker container was published to another AWS service, 
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Elastic Container Registry (ECR) [72], which allows SSD model training in Sagemaker 

service. 

In addition to SSD DL model training implementation, the YOLOv3 [73] training framework 

was also used to enhance the diversity of the proposed reference performance. Our YOLOv3 

implementation follows an open-source repository implementation which also provides a 

step-guide to train this neural network on a custom dataset through transfer-learning 

techniques. Given the above-mentioned implementation requires a specific framework to be 

executed, Darknet  [74] was locally compiled and, subsequently, installed. This open-source 

neural network framework, written in C and CUDA supports both CPU and GPU 

computation. 

During the initial stage of pipeline implementation, Cityscapes subset annotations, stored in 

PascalVOC format for the first training process, were converted to YOLO format and then, 

validated to ensure conversion process efficiency. Afterward, neural network parameters 

were adjusted to our dataset. These parameters are identified in Table 3. 

Property Description Value 

Network Parameters 

img_height Network input height 512 

img_width Network input width 512 

img_channels Network input channels 3 

momentum 
How much history affects the 

further change of weights 
0.9 

batch 
Number of images processed 

in one batch 
64 

subdivisions 
Number of mini-batches to be 

processed by the GPU at once 
32 

decay 

Weaker updating of weights 

for eliminating disbalance in 

the dataset 

0.0005 

angle 
Random changes on images 

rotation on training 
0 

saturation 
Random changes on images 

saturation on training 
1.5 

exposure 
Random changes on images 

brightness on training 
1.5 
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hue 
Random changes on images 

color on training 
0.1 

learning rate 
The initial learning rate for 

training 
0.001 

burn_in 

For the first X batches, 

slowly increase the learning 

rate until its initial value 

defined above. 

1000 

max_batches Max. number of iterations 10000 

policy 
Policy for changing the 

learning rate 
steps 

steps 

At these number of iterations, 

the learning rate is multiplied 

by the scales factor 

8000, 9000 

scales --- 0.1, 0.1 

classes 
Number of output label 

classes 
5 

anchors 

Object bounding box ratios. 

Each pair of values is, 

respectively, height and 

width. 

7, 18,  18, 26,  10, 48,  32, 

47,  19, 93,  56, 80,  38,186,  

96,136, 133,279 

Table 3 - YOLOv3 Model Training Parameters 

YOLOv3 training process was computationally hard to accomplish through available 

hardware resources, identically to the SSD training process. However, at this time, AWS 

Sagemaker service, due to its associated costs, was replaced by Google Colaboratory (or 

Colab) [75]. Colab is an open-source framework that allows notebooks to be executed on 

Google’s could servers, providing hardware accelerators, including Tensor Processing Unit 

(TPU) and GPU options. 

The final training pipeline consisted of, firstly, downloading the Darknet framework from 

its repository to Google Drive, which was the storage service used to replace the AWS S3 

service. Then, after preparing the labeled dataset and changing the YOLOv3 network 

configuration parameters file to include the above-described parameters, a Python 3 

notebook was created in Google Colab along with the GPU hardware accelerator option 

enabled. Later, our Google Drive was mounted in Colab’s notebook to share resources 

between both services. Finally, by providing a neural network with pre-trained weights for 
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the convolutional layers, the DL model was trained with, successive weights uploads to the 

drive. 

4.3.2. Analysis of Results 

The comparative performance results analysis section aims to present the main drawbacks 

identified as well as the defined metrics results to show the behavior of trained models 

resulting from the training process above-demonstrated. 

Firstly, the resulting model provided by the SSD training was evaluated on the Cityscapes 

subset. This experiment did not require a cloud-based approach given that the inference 

process needs less sophisticated hardware requirements than DL training. Therefore, the 

resulting performance for SSD implementation was achieved through a local approach with 

a Personal Computer (PC) with the following hardware specifications: Intel Core i7-8750h 

CPU @ 2.20GHz-2.21 GHz; 16GB RAM; GeForce GTX 1050. On the other hand, YOLOv3 

inference analysis was still executed on Google Colab by using the last trained weights and 

DL neural network configurations of the training process. 

Performance results of DL models on defined Cityscapes subset are demonstrated in Table 

4. Values for both AP and mAP values were computed with a minimum intersection over 

union (IoU) threshold of 0.5, represented in table column headers as AP@0.5 and mAP@0.5, 

respectively. 

 AP@0.5 (%) mAP@0.5 

(%) car truck bus motorcycle person 

SSD 73.2 64.2 65.8 50.1 74.3 65.5 

YOLOv3 76.3 63.8 67.1 51.9 75.3 66.9 

Table 4 - Performance results on Cityscapes subset with DL models trained on 2D image-based dataset. 

The results table shows that in terms of IoU and mAP metrics, the YOLOv3 DL model 

outperforms the SSD model. While the first-mentioned model achieved a mAP@0.5 of 

66.9%, the other only achieved 65.5%. One of the pieces of evidence that led us to find a 

good reason for this outperforming scenario is the neural network input size that was defined 

for each one. The most accurate model, YOLOv3, has an input size bigger (608x608) than 

SSD (512x512), which could be a fundamental aspect to achieve the final results. 
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Going deeper into the analysis, car and person labels are the most accurate labels on both 

models due to their higher number of samples on the training dataset. In opposition, given 

the lack of motorcycle samples, it was the most inaccurate label. In Figure 40, some 

examples of detections are depicted. On the left side, two people who were walking around 

were successfully detected although their proximity. On the other hand, the right side shows 

efficient car detection, even in difficult conditions such as small objects located at the mid-

level. 

     

Figure 40 - Cityscapes subset detection examples with DL models trained on 2D images 

After analyzing trained model results on the Cityscapes subset, the same models were, then, 

evaluated on the omnidirectional presented dataset. Given that the acquired dataset does not 

contain all object classes covered by DL models, evaluation results only contain the 

performance for car, bus, and person labels. Table 5, which provides performance results on 

the 360º dataset, follows the same data pattern that was used on the previous evaluation 

results table. 

 AP@0.5 (%) mAP@0.5 

(%) car bus person 

SSD 47.1 28.3 41.5 39.0 

YOLOv3 49.6 30.1 44.7 47.7 

Table 5 - Performance results on omnidirectional image dataset with DL models trained on 2D image-based 

dataset. 

Comparing with the evaluation performed on the Cityscapes dataset, the current performance 

on the omnidirectional dataset has dramatically decreased. Deep learning models have 

shown clear difficulties to detect an object in this type of image. Car and person labels, the 
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most accurate classes in the previous experiment, have changed from 76.3 and 75.3 to 49.6 

and 44.7 AP@0.5 values in the YOLOv3 case-study, respectively. In the SSD model, the 

performance impact was very similar, given that AP@0.5 values have decreased from 73.2 

and 44.3 to 47.1 and 41.5. An image example of an evaluation performance experiment is 

depicted in Figure 41, which contains a well-detected car, driving in a roundabout. 

 

Figure 41 - Omnidirectional image detection example with a DL model trained on a 2D image dataset (1) 

Although the Cityscapes subset includes cars, buses, and people in different poses, 

viewpoints, and climate conditions, omnidirectional images have particular aspects that can 

lead DL models not to detect objects with high accuracy. Firstly, ERP makes images to 

contain objects in an unusual view pose which made the detection procedure, an unstable 

process. On the other hand, the object size at the images’ mid-region is usually lower.  

By splitting the image into three regions (left, center and right), we noted that 63% of non-

detected objects are at the center, while just 37% of the remaining failures are distributed by 

the other regions. These results are demonstrated in Table 6 and led us to conclude that the 

most problematic objects are located at the center of the image. 

Left Center Right 

16% 63% 21% 

Table 6 - Non-detected objects by image region with a DL model trained on a 2D image dataset 

Figure 42 and Figure 43 depict the above-mentioned identified problem. Even though the 

left and right image region objects were well identified, cars located at the mid-level were 

not. As demonstrated, at the mid-level of images, objects are usually smaller and trained-

models’ inaccuracy was even more clear. 
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Figure 42 - Omnidirectional image detection example with a DL model trained on a 2D image dataset (2) 

 

 

Figure 43 - Omnidirectional image detection example with a DL model trained on a 2D image dataset (3) 

As long as object detection algorithms based on 2D images did not meet the accuracy 

requirements needed in the most demanding contexts,  new approaches to optimize the 

acquired results were investigated.  

4.4.  Final Remarks 

In most recent years, the object detection field has been perhaps one of the most researched 

topics. People's daily routine has been impacted by such technology however, new 
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challenges have been raised.  Due to 2D camera limitations, UHD 360º cameras have been 

proposed to perform computer vision tasks to overcome those challenges. 

This chapter presented and described the research problem to provide the DL community 

with a useful research study about object detection and recognition in omnidirectional 

images. Therefore, three fundamental stages were defined: comparative performance 

evaluation, domain-specific DL algorithms’ training and, proposal of a framework for 

improving results of object detection accuracy in this image type. 

The comparative performance carried out in this chapter denoted that the accuracy 

significantly decreases from 2D to omnidirectional image dataset, as expected. Moreover, 

both 2D image-based algorithms demonstrated more difficulty to detect objects near the 

image center than elsewhere. Given the lack of stability, the next chapter presents 

mechanisms for improving the achieved results, starting with a domain-specific training 

approach. 
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 Framework for Enhancing Object Detection in 

Omnidirectional images 

In this chapter, a framework for improving object detection algorithms in omnidirectional 

images is proposed. Firstly, domain-specific DL training experiments to overcome the 

problematic situations identified in the comparative performance evaluation is carried out. 

Then, the resulting omnidirectional image-based algorithms are benchmarked to understand 

the main differences between such models.  

Following that section and taking as input the analysis of results from the above-mentioned 

experiments, an improved framework architecture is presented and evaluated. Finally, 

aspects concerning the deployment of the proposed framework are considered to provide the 

reader with the fundamental considerations of the DL algorithms in the decision-making 

stage. 

5.1.  Omnidirectional Image Dataset Training 

This section details the training experiments specifically applied to the omnidirectional 

image dataset which was used as input. The same above-used network architectures were 

selected: SSD and YOLO. However, at this time, we evaluated different versions of each 

one along with a new architecture: Mask R-CNN.  

Different network input sizes were verified, attempting to establish a relationship between 

performance metrics and network input size and complexity. In terms of performance 

metrics used, mAP, model complexity, and FLOPs were taken into consideration. Moreover, 

as in the previous experiments, due to the lack of hardware resources to perform required 

experiments, AWS and GoogleColab cloud-computing providers were used to accelerate the 

training process.  

5.1.1. Training Process 

Firstly, different variations of YOLO were trained on the omnidirectional image dataset. 

Trained models include the standard version of YOLOv4 and YOLOv3 with an input size of 

608x608x3, a faster and less complex version of YOLO, called Tiny-YOLO, in both third 

and fourth versions with an input size of 416x416x3 and, finally, standard YOLOv4 with an 
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input size of 800x448x3. Neural networks’ parameters that were used during YOLO models’ 

training are depicted in Table 7 and Table 8. 

Property YOLOv3 YOLOv4 
YOLOv4 

(800x448) 

Network Parameters 

img_height 608 608 800 

img_width 608 608 448 

img_channels 3 3 3 

momentum 0.9 0.9 0.9 

batch 64 64 64 

subdivisions 16 16 16 

decay 0.0005 0.0005 0.0005 

angle 0 0 0 

saturation 1.5 1.5 1.5 

exposure 1.5 1.5 1.5 

hue 0.1 0.1 0.1 

learning rate 0.001 0.0013 0.0013 

burn_in 1000 1000 1000 

max_batches 12000 12000 12000 

policy steps steps steps 

steps 9600, 10800 9600, 10800 9600, 10800 

scales 0.1, 0.1 0.1, 0.1 0.1, 0.1 

mosaic ----- 5 1 1 

classes 6 6 6 

anchors 

12, 16, 19, 36, 40, 

28, 36, 75, 76, 55, 

72, 146, 142, 110, 

192, 243, 459, 401 

12, 16, 19, 36, 40, 

28, 36, 75, 76, 55, 

72, 146, 142, 110, 

192, 243, 459, 401 

12, 16, 19, 36, 40, 

28, 36, 75, 76, 55, 

72, 146, 142, 110, 

192, 243, 459, 401 

Table 7 - Standard YOLOv3 and YOLOv4 and YOLOv4 (800x448) network parameters 

 

 
5 YOLOv3 model does not support ‘mosaic’ parameter 
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 Property Tiny-YOLOv3 Tiny-YOLOv4 

Network Parameters 

img_height 416 416 

img_width 416 416 

img_channels 3 3 

momentum 0.9 0.9 

batch 64 64 

subdivisions 16 16 

decay 0.0005 0.0005 

angle 0 0 

saturation 1.5 1.5 

exposure 1.5 1.5 

hue 0.1 0.1 

learning rate 0.001 0.00261 

burn_in 1000 1000 

max_batches 12000 12000 

policy steps steps 

steps 9600, 10800 9600, 10800 

scales 0.1, 0.1 0.1, 0.1 

classes 6 6 

anchors 
10,14,  23,27,  37,58,  81,82,  

135,169,  344,319 

10,14,  23,27,  37,58,  

81,82,  135,169,  344,319 

Table 8 - Tiny YOLOv3 and YOLOv4 network parameters 

In addition to YOLO model experiments, SSD architecture was also evaluated. Experiments 

included two variations of this architecture, modifying not only the network input size but 

also loss function attributes. As well as demonstrated for YOLO models, Table 9 presents 

SSD with 300x300x3 of input size and SSD with 512x512x3 of input size network 

parameters. 
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Property SSD 300x300 SSD 512x512 

Network Parameters 

img_height 300 512 

img_width 300 512 

img_channels 3 3 

swap_channels [2, 1, 0] [2, 1, 0] 

scales 

0.07, 

0.15, 

0.3, 

0.45, 

0.6, 

0.75, 

0.9, 

1.05 

0.07, 

0.15, 

0.3, 

0.45, 

0.6, 

0.75, 

0.9, 

1.05 

aspect_ratios 

[1.0, 2.0, 0.5], 

[1.0, 2.0, 0.5, 3.0, 

0.33333333], 

[1.0, 2.0, 0.5, 3.0, 

0.33333333], 

[1.0, 2.0, 0.5, 3.0, 

0.33333333], 

[1.0, 2.0, 0.5], 

[1.0, 2.0, 0.5] 

[1.0, 2.0, 0.5], 

[1.0, 2.0, 0.5, 3.0, 

0.33333333], 

[1.0, 2.0, 0.5, 3.0, 

0.33333333], 

[1.0, 2.0, 0.5, 3.0, 

0.33333333] 

[1.0, 2.0, 0.5, 3.0, 

0.33333333], 

[1.0,  2.0, 0.5], 

[1.0,  2.0, 0.5] 

normalize_coords True True 

batch_size 8 8 

final_epochs 100 100 

n_classes 6 6 

Optimizer Parameters 

optimizer SGD Adam 

learning rate 0.001 0.001 

momentum 0.9 ---- 
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beta_1 ---- 0.9 

beta_2 ---- 0.999 

epsilon ---- 1−8 

nesterov false ---- 

decay 0.0 0.0 

Loss Function Parameters 

Loss Function SSD_Loss SSD_Loss 

neg_pos_ratio 3 3 

n_neg_min 0 0 

alpha 1 1 

Model Checkpoint Callback Parameters 

save_best_only True True 

save_only_weights False False 

monitor val_loss val_loss 

Table 9 - SSD 300x300 and SSD 512x512 network parameters 

Finally, an instance segmentation DL network, namely Mask R-CNN, was prepared to 

provide the models’ benchmarking analysis with diversified network structures. For that 

purpose, an open-source online available implementation [77] to adjust the provided solution 

to our context and dataset was extended. The model’s parameters used in the training stage 

are described in Table 10. The process was dramatically accelerated by using transfer-

learning techniques by taking pre-trained weights as a starting point for our train. In this 

specific case, we took advantage of weights provided by a Mask R-CNN train on the MS 

COCO dataset. 

 Mask R-CNN 

Property Value 

num_classes 6 

gpu_count 1 

images_per_gpu 2 

backbone resnet101 

compute_backbone_shape None 

backbone_strides [4, 8, 16, 32, 64] 
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fpn_classif_fc_layers_size 1024 

top_down_pyramid_size 256 

rpn_anchor_scales (32, 64, 128, 256, 512) 

rpn_anchor_ratios [0.5, 1, 2] 

rpn_anchor_stride 1 

rpn_nms_threshold 0.7 

rpn_train_anchors_per_image 256 

pre_nms_limit 6000 

post_nms_rois_training 2000 

post_nms_rois_inference 1000 

use_mini_mask True 

mini_mask_shape (56, 56) 

image_resize_mode square 

image_min_dim 800 

image_max_dim 1024 

image_min_scale 0 

image_channel_count 3 

mean_pixel np.array([123.7, 116.9, 103.9]) 

train_rois_per_image 200 

roi_positive_ratio 0.33 

pool_size 7 

mask_pool_size 14 

mask_shape [28, 28] 

max_gt_instances 100 

rpn_bbox_std_dev np.array([0.1, 0.1, 0.2, 0.2]) 

bbox_std_dev np.array([0.1, 0.1, 0.2, 0.2]) 

detection_max_instances 100 

detection_nms_threshold 0.3 

learning_rate 0.001 

learning_momentum 0.9 

weight_decay 0.0001 
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loss_weights 

{“rpn_class_loss”: 1., 

“rpn_bbox_loss”: 1., 

“mrcnn_class_loss”: 1., 

“mrcnn_bbox_loss”: 1., 

“mrcnn_mask_loss”: 1.} 

use_rpn_rois True 

train_bn False 

Table 10 - Mask R-CNN network parameters 

5.1.2. Analysis of Results 

The analysis of results section focuses on providing a detailed evaluation of the trained 

models' report. As previously referred, three fundamental performance metrics were 

measured: mAP, to evaluate models’ accuracy, FLOPs, for taking into consideration the 

computation cost of each deep neural network, and, finally, the model complexity, given by 

the number of learning parameters. Furthermore, each model inference speed was computed 

by measuring the elapsed time between the exact moment when the algorithm receives an 

image and the moment when its predictions are available. 

To be possible getting a nonsubjective analysis, the evaluation environment was still the 

some for measuring all the performance metrics: a Windows 10 machine with Intel® Core™ 

i7-8750H CPU @2.20GHz 2.21 GHz; 16,0 GB RAM; NVIDIA GeForce GTX 1050.  

Results were later aggregated so that it is easier to compare each one accordingly to different 

criteria. Figure 44 and Figure 45 present the final report of the deep neural networks 

evaluation process. The first figure relates the models’ mAP@0.5 (y-axis) with their 

computational cost (x-axis), as well as their complexity (circle diameter). On the other hand, 

the second figure depicts not only the relationship between the models’ mAP and computed 

inference time but also their complexity. 

 



Object Detection in Omnidirectional Images 

64 

 

Figure 44 - Ball chart reporting models' mean average precision (mAP) vs computational complexity 

In regard to mAP, the Mask R-CNN DL algorithm provided the highest score (89%), 

whereas Tiny YOLOv3 seemed to have more difficulties in detecting objects, given that it 

only achieved 59% of mAP. In the same way as the less accurate model, SSD 300x300 and 

Tiny YOLOv4 did not efficiently detect objects with high accuracy. Afterward, standard 

YOLOv3 and YOLOv4 800x448 reached a similar result: 80% and 82%, respectively. In 

opposition, standard YOLOv4 models outperformed the aforementioned methods by 

providing 86% of mAP. Finally, the remaining model, SSD 512x512, demonstrated some 

problems in getting a high-level accuracy rate, by achieving a 73% mAP.   

In terms of complexity, three groups of similar models were identified. Firstly, Tiny 

YOLOv4, followed by the Tiny YOLOv3 DL algorithm belongs to the less complex group, 

having a measured complexity of around 25 megabytes (MB). Different from the first group, 

the medium-complexity group just includes the SSD 300x300 model with about 100 MB. 

Lastly, the group where the vast majority of models fit aggregates models that have a 

measured complexity close to 250 MB. That group contains the standard YOLOv3 and 

YOLOv4, YOLOv4 800x448, SSD 512x512, and Mask R-CNN. 
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Unfortunately, no satisfactory correlation between the number of parameters of models and 

mAP was found. However, models with fewer parameters tend to be ineffective at detecting 

objects. Concerning the relation between mAP and computational complexity, we noticed 

that the model which requires more complex hardware resources is also the most accurate. 

The same pattern was not followed by the remaining models given that, in some cases, less 

complex models outperformed more complex models. For instance, Tiny YOLOv4 was 

more accurate than SSD 300x300, although its minimal cost in terms of hardware resources. 

 

Figure 45 - Ball chart reporting models' mean average precision (mAP) vs inference time 

In opposition to the previous figure, Figure 45 shows the relation between the mAP and the 

time each model needs to detect objects in a single image, referred to as inference time. As 

above-described, the evaluation conditions of all models were the same to ensure the 

validation of analysis and comparison of results. To clarify such results, Table 11 presents 

each trained DL model associated with the measured inference time as well as its standard 

deviation.  
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DL Model Inference Time (ms) 

Tiny-YOLOv4 171 ± 3.21 

Tiny-YOLOv3 193 ± 2.98 

SSD 300x300 220 ± 5.46 

Standard YOLOv4 349 ± 5.83 

Standard YOLOv3 398 ± 6.41 

YOLOv4 - 800x448 403 ± 5.95 

SSD 512x512 451 ± 8.23 

Mask R-CNN 2011 ± 4.23 

Table 11 - Inference Time Results. DL model name presented in the first column, associated with the measured 

inference time, in the second column. 

By comparing each model individually, Mask R-CNN was undoubtedly the model that 

requires more time to return its detection results (2011 ms). Despite the long processing time, 

these results were more accurate in comparison to the remaining models. On the other hand, 

for the models with the lowest inference time, the values are usually the least accurate, which 

tends to be a pattern on the results obtained in this study. Tiny-YOLOv4, Tiny-YOLOv3 

and, SSD 300x300 belong to the fastest models’ group, however that group is characterized 

by its lack of accuracy.  

Moving on to the mid-level algorithms, their measured inference time was very similar, 

ranging between 349 and 451 ms. In this final group, standard YOLOv4 reached better 

inference time and accuracy values, while SSD 512x512 did not ensure high-accuracy values 

and it required more time to process an image.  Finally, standard YOLOv3 and YOLOv4 - 

800x448 achieved 398 and 403 ms, respectively. 

Although omnidirectional image-based DL algorithms demonstrated to be more accurate 

than 2D image-based models, the middle region of images is still the most problematic. As 

seen in Table 12, objects located at the center tend to be more difficult to detect, while left 

and right-positioned objects are easier detected.  

Left Center Right 

25% 42% 33% 

Table 12 - Non-detected object by region in omnidirectional images 
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When compared to Table 6, where the same metric for 2D image-based algorithm was 

depicted, results followed a more uniform distribution given that the mid-region error rate 

decreased from 63% to 42%. With regards to the remaining regions, the left and right 

regions’ error rate increased from 16% to 25% and 21% to 33%, respectively. 

However, current values for the above-presented performance measure did not allow an 

omnidirectional image-based object detection framework to fulfill current requirements on 

most common applications. Then, a framework for making the non-detected objects’ rate 

more uniform is proposed in the next section. 

5.2. Improved Framework 

The improved framework proposed in this section is explained utilizing specific mechanisms 

to uniformize the error rate across the whole spherical image regions. The initial architecture 

is, firstly, presented, followed by the second version of the framework, which was devised 

to overcome the initial drawbacks. 

In opposition to left and right regions, objects located at the center have a propensity to be 

smaller, which could be a crucial fact to justify the results of the previous experiments. For 

that reason, the proposed framework involves applying two parallel pipelines: the first one 

focusing on the whole image, and the second just concentrating on the middle region.  

The first pipeline follows the same pattern as traditional object detection frameworks, where 

the whole image is processed by a given DL algorithm and the inherent predictions are 

returned. On the other hand, only the image mid-region is processed in the second stage, 

however, instead of processing that region once, the proposed framework requires the mid-

region to be separated into two blocks, as depicted in Figure 46.  
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Figure 46 - Omnidirectional mid-region image first division 

As long as two image blocks are provided by the second pipeline, multiple inference 

processes are also required. Given that multiple object detection processes produce multiple 

results, the final prediction output requires such results to be rearranged in a post-processing 

stage. The proposed framework architecture, presented in Figure 47,  shows both parallel 

pipelines with a pre-processing step in the bottom pipeline which crops image mid-region 

into sub-images. All images are processed by the DL algorithms and all results are later 

aggregated in the framework’s last stage. 

 

 

Figure 47 - Proposed framework initial architecture 

Although the initial expectations on the framework results, such experiments demonstrated 

that an eventual issue concerning objects located at the second pipeline sub-division blocks 

could invalidate its success. The identified issue occurs when an object instance overlaps 

both sub-regions at the same time, eventually producing multiple object counts to the final 
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results. Consequently, a new framework version was proposed, following a workflow as 

depicted in Figure 48. 

 

Figure 48 - Proposed framework final architecture 

The new version introduces a third subdivision which covers the initial regions intersection 

limit to prevent errors associated with objects at such limit. Therefore, objects detected from 

the DL algorithms in both top and bottom sub-regions that are almost touching the block’s 

bottom and top, are discarded. On the other hand, mid-region predictions remain to be later 

aggregated in the post-processing stage. 

To evaluate the proposed framework efficiency, we focused not only on comparing its 

inference time but also on non-detected objects' error rate by image region, the same metrics 

presented in the previous experiments. 

5.2.1. Analysis of Results  

This section aims to demonstrate evaluation results through the above-presented object 

detection framework architecture. To ensure testing veracity, the evaluation environment 

was still the same. 

In terms of inference time, given the higher complexity when compared to the conventional 

object detection frameworks, we expected the inference time performance to decrease which 

was verified, as depicted in Table 13. Object detection in omnidirectional images increased 

from 349 ms to 1152 ms through the proposed framework. 
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Traditional Framework Proposed Framework 

Inference Time (ms) 

349 ± 5.83 1152 ± 8.45 

Table 13 - Inference time results through the traditional and proposed object detection framework. 

Considering the non-detected objects’ rate by image region, the proposed framework 

improved that evaluation metric value from 42% to 39%, providing a more uniform error 

distribution. Left and right regions achieved 27% and 34%, respectively, as depicted in  

Table 14. 

 Left Center Right 

Traditional 

Framework 

25% 42% 33% 

Proposed 

Framework 

27% 39% 34% 

Table 14 - Non-detected objects by image region through the traditional and proposed object detection 

framework. 

Although the object detection framework’s inference time increased when compared to the 

traditional framework, some mid-region located object instances which were not previously 

detected were detected through this new approach. Figure 49 supports this sentence by 

depicting an example where the traditional framework did not identify mid-region located 

cars, probably, because of their small size, are now successfully detected through the 

proposed framework. 
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Figure 49 - Proposed framework predictions example (1) 

After presenting the results concerning DL models trained on ERP images through both 

traditional models and the proposed framework previously presented, the next section 

describes the framework deployment and DL algorithms that better fit a given scenario.  

5.3.  Framework Deployment 

Nowadays, not only in object detection domain problems but also in most cases involving 

technology, scalability is a mandatory requirement. The ability to ensure the availability of 

service is maintained according to the number of users, available hardware resources, or 

even, from a business-level perspective, the financial plan offered for the project are 

important aspects, upon which the final decision relies. 

Consequently, to develop a technological product, some imposed constraints drastically 

change how the project proceeds. In terms of hardware resources, three main approaches are 

usually available depending on financial and connectivity constraints. In a non-existent or 

weak internet connection scenario, or when the latency is critical to ensure the operation's 

success,  physical (non-cloud-based) hardware resources are a wise option.  Moreover, prices 

are usually lower than cloud-based solutions, although their inherent maintenance costs. 

Automatically associating object detection tasks with high-computational resources tends to 

overestimate the required hardware to perform such tasks. However, tiny, low cost and 

credit-card-sized devices, such as Raspberry Pi 4 Model B (Figure 50) [78], are ready to run 

less complex DL algorithms. In opposition, given the limited resources available on these 
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devices, deploying algorithms that execute a large number of operations and require a 

considerable time to provide detected objects is not a feasible task.  

  

Figure 50 - Raspberry Pi 4 Model B [78] 

Different from those simple devices, more powerful computers that let object detection tasks 

to be performed through multiple neural network parallel execution [79] are also a good 

physical framework option. This device group of devices includes Jetson Nano (Figure 51), 

developed by NVIDIA, which allows more complex DL models, to be run through GPU 

acceleration at an accessible cost. It is also important to note that both Raspberry Pi and 

Jetson Nano support camera modules to facilitate image capture which is a fundamental 

stage on object detection tasks. 

 

Figure 51 - Jetson Nano Developer Kit [79] 

Still regarding local devices, however, in a higher budget level, local servers are also a 

suitable option for DL algorithms deployment scenarios that require high-computational 

hardware resources. A local server provides different computational capabilities, depending 

on its specifications and pricing. Figure 52 depicts an example of a local server, namely, 

PowerEdge R240 Dell Server. 
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Figure 52 - PowerEdge R240 Dell Server [80] 

In situations that do not require low-latency values and internet connection is not a typical 

issue, cloud-based frameworks make scalability, management, and simple deployment easier 

to achieve. Given their organized infrastructures, they allow to dynamically change the 

machine which hosts the framework without any concerns about its maintenance. 

Furthermore, cloud-based frameworks are new deployment compliant in terms of logistics 

which facilitates new product releases. 

Despite cloud-based frameworks' advantages, their cost is not always affordable to 

companies’ budgets, and, depending on requirements, they could not be the most suitable 

solution. 

5.3.1. Real-world scenarios 

Considering that is not possible to select a single model for meeting all established 

requirements, this section presents a list of scenarios with real-world application to 

understand the situation where each DL algorithm presented in this dissertation outperforms 

the others. 

The first scenario is described as a non-critical situation whose main goal consists of 

automatically recognizing and locating cars, motorcycles, trucks, and buses for later extract 

some kind of statistical metrics to identify rush hours. On that premise, a medium-value of 

accuracy is enough to mitigate the initial problem due to the error-margin allowed. In 

addition to the above-mentioned fact, there are no strict time limits for performing object 

recognition tasks. For that last reason, DL models’ selection range is very wide however, to 

minimize framework costs, algorithms that require less computational hardware resources, 

such as Tiny-YOLOv4, Tiny-YOLOv3, or SSD 300x300 seem to be an optimal choice. 

Taking into consideration the deployment environment, any constraint that forces a cloud or 

non-cloud/local deployment was defined, so it depends on the system architecture as well as 

the financial plan associated with the project. 



Object Detection in Omnidirectional Images 

74 

Secondly, the next scenario requires an automatic framework for detecting UAVs, people, 

and vehicles to avoid the invasion of privacy issues which means that real-time alerting is a 

mandatory requirement. In opposition to the first example, a non-detected object is a critical 

point of failure on the system and puts the whole system efficiently at risk. 

In this specific example, high object detection accuracy rather than minimizing solution’ 

cost defines the framework architecture. Moreover, finding a sweet spot between 

processing/inference time and accuracy is the first goal given that one of the pre-defined 

constraints includes real-time monitoring. Subsequently, an alarm should be triggered as 

soon as possible to minimize the reaction time. 

From the previously demonstrated experiments, the high-mAP model group is comprised of 

Mask R-CNN, standard YOLOv3 and YOLOv4, and YOLOv4 800x448. Although in terms 

of this performance metric, Mask R-CNN outperforms the remaining algorithms, Table 11 

shows that it is also the model that requires more time for processing a single image. 

Therefore, the framework development should start with standard YOLOv4 by itself 

evaluation, followed by an analysis of standard YOLOv4 through this dissertation proposed 

framework. Depending on accuracy results, a choice should be taken, considering that the 

system efficiency must not be negotiated. Generally, critical scenarios require a higher 

hardware resources investment so that results are available near real-time with the minimum 

error associated, which tends to make non-cloud deployment a not suitable option. 

Finally, the last presented scenario involves developing an Application Programming 

Interface (API) for locating vehicle license plates. As a consequence of requiring an online 

availability, a cloud-based deployment through any cloud solution existing in the market has 

to be considered. Besides, accurate and fast results should be provided to guarantee the 

financial return. 

Given the above-mentioned constraints, standard YOLOv4 with a cloud-based deployment 

seems to fulfill specified requirements. It provides satisfactory accuracy results with 

reasonable inference time measured and it does not require high-computational resources 

which allows saving cloud resources costs. 

Summing up, considering that a DL model is better in general terms is not fair. All presented 

models have their applications where their main advantages could be emphasized to achieve 

project requirements. 
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5.4.  Final Remarks 

In this chapter, for improving object detection algorithms on detecting objects in 

omnidirectional images, a domain-specific training stage was carried out. That stage 

involved training multiple DL algorithms fed by omnidirectional images. 

Although the resulting models’ accuracy performance increased when compared to the 

previous experiments, we noted that the error rate by image region is still not uniform across 

the whole spherical image regions. For that reason, a framework for improving results and 

reducing the error rate was proposed. In opposition to traditional frameworks, two parallel 

stages are performed: the whole image processing and middle image sub-regions predictions 

processing. Additionally, the framework introduces a post-processing stage for results 

aggregation. 

Performance results concerning the above-mentioned framework were analyzed, by 

measuring not only the error rate associated with both traditional and proposed approaches 

but also the average inference time measured for image processing. As long as the 

framework requires more processing time, inference time increased. However, in terms of 

error rate by image region, we were able to improve the previous experiments’ results. 

Finally, to provide the reader with more information on the DL model decision-making, a 

set of real-world scenarios were presented. Then, each algorithm was associated with the 

presented scenarios to explain that is not fair to considerer a model better than the other, 

everything depends on the scenario. 
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  Conclusion and Future Work 

In this dissertation, a new method for improving object detection in omnidirectional images 

was proposed. Such research study required an omnidirectional image dataset acquisition 

stage which involved 360º video capture and image labeling given that open-source labeled 

omnidirectional image datasets on the urban environment were not easily available. 

Initial experiments on comparing 2D image-based DL algorithms' accuracy on 2D planar 

and omnidirectional images provided interesting results. That comparative performance 

allowed us to note not only an accuracy performance decrease from 2D to omnidirectional 

image dataset but also a non-uniform error rate across the whole spherical image regions. 

Such fact led our research to focus on a domain-specific DL model training process. 

Then, a benchmarking report of DL algorithms trained with the omnidirectional acquired 

image dataset was presented and analyzed. The results achieved supported our initial 

thoughts of providing more accurate results through a domain-specific approach when 

compared to a generic algorithm. Moreover, a comparison between a set of DL algorithms 

in terms of accuracy, complexity, and inference time was demonstrated to understand the 

main differences between DL models. 

Although the resulting DL algorithms from the above-mentioned training provided more 

accurate results, the error rate was still not uniform across the whole image regions. Objects 

located at both left and right image regions tended to be easier to identify than mid-region 

objects which led us to propose a new approach to overcome the identified issue. 

The proposed approach consists of adding pre and post-processing stages to the traditional 

object detection framework across two parallel pipelines. The first pipeline focuses on the 

whole image and follows the same pattern as traditional object detection frameworks, where 

the whole image is processed by a given DL algorithm and the inherent predictions are 

returned. On the other hand, only the image mid-region is processed in the second stage. 

However, instead of processing that region once, the proposed framework requires that 

region to be divided into three blocks which are individually processed to return predictions. 

All predictions are aggregated in the post-processing stage. 
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This framework allowed the error rate to be more uniform across the whole image regions 

however, given that more processing is involved in the framework, the inference time 

increased, as demonstrated in the results section. 

Regarding future work, implementing this solution in a real-world scenario and evaluate its 

accuracy would be the first step to take, since the actual procedure was only evaluated in a 

controlled environment. Further evaluation could create opportunities for identifying issues 

on the current framework and, consequently, add more robustness to the implemented 

approach.  

Then, taking as input the evaluation results and after implementing the inherent 

improvements, an automatic video surveillance system with capabilities of detecting objects 

in all view directions would be developed. That system could completely transform current 

video surveillance systems and solve security and privacy issues imposed by the recent 

technological advances. 
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