

Object Detection in Omnidirectional Images

Master degree in Computer Engineering - Mobile Computing

Francisco António Agostinho Henriques

Dissertation under the supervision of Professors Catarina Silva, Joana Costa and Pedro

Assunção

Leiria, November of 2020

iii

Originality and Copyright

This dissertation is original, made only for this purpose, and all authors whose studies and

publications were used to complete it are duly acknowledged.

Partial reproduction of this document is authorized, provided that the Author is explicitly

mentioned, as well as the study cycle, i.e., Master degree in Computer Engineering - Mobile

Computing, 2019/2020 academic year, of the School of Technology and Management of the

Polytechnic of Leiria, and the date of the public presentation of this work.

iv

Dedication

This dissertation is dedicated to my parents, Carlos Henriques and Elsa Oliveira, who

supported and motivated me to finish the masters, and to my girlfriend, Sara Dionísio who

inspired every day with her determination.

v

Acknowledgments

This work was partially supported by project ARoundVision CENTRO-01-0145-FEDER-

030652, Instituto de Telecomunicações - Delegação de Leiria.

vi

Abstract

Nowadays, computer vision (CV) is widely used to solve real-world problems, which pose

increasingly higher challenges. In this context, the use of omnidirectional video in a growing

number of applications, along with the fast development of Deep Learning (DL) algorithms

for object detection, drives the need for further research to improve existing methods

originally developed for conventional 2D planar images. However, the geometric distortion

that common sphere-to-plane projections produce, mostly visible in objects near the poles,

in addition to the lack of omnidirectional open-source labeled image datasets has made an

accurate spherical image-based object detection algorithm a hard goal to achieve.

This work is a contribution to develop datasets and machine learning models particularly

suited for omnidirectional images, represented in planar format through the well-known

Equirectangular Projection (ERP). To this aim, DL methods are explored to improve the

detection of visual objects in omnidirectional images, by considering the inherent distortions

of ERP. An experimental study was, firstly, carried out to find out whether the error rate and

type of detection errors were related to the characteristics of ERP images. Such study

revealed that the error rate of object detection using existing DL models with ERP images,

actually, depends on the object spherical location in the image.

Then, based on such findings, a new object detection framework is proposed to obtain a

uniform error rate across the whole spherical image regions. The results show that the pre

and post-processing stages of the implemented framework effectively contribute to reducing

the performance dependency on the image region, evaluated by the above-mentioned metric.

Keywords: Computer Vision, Deep Learning, Object Detection, Equirectangular

Projection, Omnidirectional images;

vii

This page has been intentionally left blank.

viii

Resumo

O conceito de Computer Vision é, atualmente, utilizado para resolver problemas do

quotidiano em diversas áreas da sociedade que estão, cada vez mais, a impor novos desafios

e dificuldades. Neste contexto, a captura de imagens omnidirecionais através de câmaras

360º, associada ao rápido desenvolvimento dos algoritmos de Deep Learning para detetar

objetos, cria a necessidade de investigar novas formas de melhorar os métodos existentes,

originalmente desenvolvidos para imagens planares 2D. No entanto, a distorção produzida

pelos métodos de projetar a esfera em plano, em conjunto com a falta de datasets constituídos

por imagens omnidirecionais, tem criado dificuldades na obtenção de um algoritmo de

deteção de objetos neste tipo de imagens.

Esta dissertação é uma contribuição para desenvolver datasets e modelos de Machine

Learning, especificamente desenhados para imagens omnidirecionais, representadas através

da projeção Equirectangular. Desta forma, os métodos de Deep Learning são explorados

para melhorar deteção de objetos em imagens omnidirecionais, tendo em conta a distorção

causada por esta forma de projetar a esfera no plano. Em primeiro lugar, um estudo

experimental foi executado de forma a identificar a taxa de erro e os tipos de erros associados

às características das imagens equiretangulares. Com base nesse estudo, está identificado

que a performance dos modelos de Deep Learning está dependente da localização do objeto

na imagem.

Como consequência desta dependência, uma nova framework para detetar objetos com uma

taxa de erro uniforme em todas as regiões esféricas da imagem é proposta. Esta dissertação

mostra que a framework implementada permite que a taxa de erro seja independente da

região da imagem onde está o objeto, através do seu fluxo de execução diferente das

frameworks tradicionais.

ix

This page has been intentionally left blank.

x

Contents

Originality and Copyright ... iii

Dedication ... iv

Acknowledgments .. v

Abstract ... vi

Resumo .. viii

List of Figures ... xiii

List of Tables ... xvi

List of Abbreviations and Acronyms .. xviii

 Introduction ... 1

1.1. Context and Motivation .. 1

1.2. Contributions ... 2

1.3. Outline of the document ... 3

 Background on Omnidirectional Vision ... 5

2.1. Introduction ... 5

2.2. 360º Image and Video Technology ... 6

2.3. Sphere-to-Plane Projections ... 8

2.3.1. Equirectangular Projection .. 9

2.3.2. Cubemap Projection .. 10

2.3.3. Segmented Sphere Projection .. 10

2.3.4. Craster Parabolic Projection .. 11

2.4. Image Datasets for Object Detection ... 12

2.4.1. ImageNet ... 13

2.4.2. COCO .. 14

2.4.3. Cityscapes .. 15

2.4.4. Omnidirectional Image Dataset ... 16

2.5. Final Remarks ... 20

 Object Detection with Deep Learning ... 21

3.1. Before Deep Learning ... 21

3.1.1. Histograms of Oriented Gradient and Haar-like ... 22

xi

3.1.2. Artificial Neural Networks .. 23

3.1.3. Support Vector Machines and AdaBoost .. 25

3.2. Deep Learning .. 27

3.2.1. Deep Learning Frameworks .. 30

3.3. Object Detection .. 32

3.3.1. Object Detection in Omnidirectional Images .. 35

3.3.2. Performance Metrics.. 38

3.4. Final Remarks .. 41

 Research Problem, Methodology, and Comparative Evaluation 43

4.1. Research Problem .. 43

4.2. Research Methodology .. 44

4.3. Comparative Performance Evaluation .. 45

4.3.1. Training Process .. 46

4.3.2. Analysis of Results .. 52

4.4. Final Remarks .. 55

 Framework for Enhancing Object Detection in Omnidirectional images 57

5.1. Omnidirectional Image Dataset Training ... 57

5.1.1. Training Process .. 57

5.1.2. Analysis of Results .. 63

5.2. Improved Framework ... 67

5.2.1. Analysis of Results .. 69

5.3. Framework Deployment ... 71

5.3.1. Real-world scenarios ... 73

5.4. Final Remarks .. 75

 Conclusion and Future Work ... 76

Bibliography ... 78

xii

This page has been intentionally left blank.

xiii

List of Figures

Figure 1 - Camera Obscura [8] ... 5

Figure 2 - 360 º Camera (Insta360 Pro 2) [11] .. 6

Figure 3 - Panorama stitching example [12] .. 7

Figure 4 - Virtual Reality Headsets [13].. 7

Figure 5 - Globe Representation on Plane example [15] ... 9

Figure 6 - Equirectangular Representation [16] .. 10

Figure 7 - Cubemap Representation [16]... 10

Figure 8 - Segmented Sphere Projection [17] .. 11

Figure 9 - Craster Parabolic Projection Example [6] ... 12

Figure 10 - ImageNet database examples [21] .. 13

Figure 11 - COCO dataset examples [22].. 14

Figure 12 - Cityscapes dataset examples [24] ... 15

Figure 13 - Cityscapes Subset Label Distribution ... 16

Figure 14 - Example of a 360º video frame projected onto a 2D plane with ERP approach. 17

Figure 15 - LabelImg Dashboard... 18

Figure 16 - Image labels file example. The left side demonstrated the PascalVOC format, while the right side

shows the YOLO format. .. 19

Figure 17 - Resulting omnidirectional image dataset object classes distribution .. 19

Figure 18 - Example of a sample and corresponding label .. 22

Figure 19 - Haar algorithm. Features that allow defining a face. [35] ... 23

Figure 20 - HOG detectors cue mainly on silhouette contours [36]. Human body feature representation is

depicted. .. 23

Figure 21 - ANN architecture example [38]. Three neuron layers are depicted: input layer; hidden layer;

output layer. Input layer neurons (i1; i2) are weighted connected to hidden layer neurons (h1; h2) which are

weighted connected to output layer neurons (o1; o2). At the bottom, two bias neurons are illustrated. 24

Figure 22 - Backpropagation algorithm example .. 25

Figure 23 - Support Vector Machine [41]. An Optimal Hyperplane Separation (OHS) with a higher possible

margin between both classes is proposed. ... 26

Figure 24 - Adaboost Algorithm [44] .. 26

Figure 25 - Traditional Computer Vision (a) vs Deep Learning (b) [45] .. 27

xiv

Figure 26 - Typical CNN architecture in aircraft structural health monitoring [46]. 28

Figure 27 - 5x5 convolution to produce a feature map [47] ... 29

Figure 28 - Example of Maxpool with a 2x2 kernel size [47] .. 29

Figure 29 - Regional proposal framework pipeline [58] .. 33

Figure 30 - YOLO framework pipeline [59] .. 34

Figure 31 - SSD framework pipeline [60] .. 35

Figure 32 - Equirectangular image example .. 36

Figure 33 - Poles Regions Identification. The top and bottom red overlay regions represent the north and

south pole, respectively. ... 36

Figure 34 - First Research Process Pipeline [61] ... 37

Figure 35 - Intersection over union calculation.. 38

Figure 36 - Real example of Intersection Over Union [64] .. 39

Figure 37 - Precision-Recall Curve example ... 40

Figure 38 - Privacy invasion cartoon [67]. UAVs can only be detected and identified using omnidirectional

vision on the ground because they can appear from any direction. .. 44

Figure 39 - Research Methodology Stages .. 45

Figure 40 - Cityscapes subset detection examples with DL models trained on 2D images 53

Figure 41 - Omnidirectional image detection example with a DL model trained on a 2D image dataset (1) .. 54

Figure 42 - Omnidirectional image detection example with a DL model trained on a 2D image dataset (2) .. 55

Figure 43 - Omnidirectional image detection example with a DL model trained on a 2D image dataset (3) .. 55

Figure 44 - Ball chart reporting models' mean average precision (mAP) vs computational complexity 64

Figure 45 - Ball chart reporting models' mean average precision (mAP) vs inference time 65

Figure 46 - Omnidirectional mid-region image first division .. 68

Figure 47 - Proposed framework initial architecture .. 68

Figure 48 - Proposed framework final architecture .. 69

Figure 49 - Proposed framework predictions example (1) ... 71

Figure 50 - Raspberry Pi 4 Model B [78] ... 72

Figure 51 - Jetson Nano Developer Kit [79] .. 72

Figure 52 - PowerEdge R240 Dell Server [80] .. 73

xv

This page has been intentionally left blank.

xvi

List of Tables

Table 1 - Confusion Matrix. Actual class column labels correspond to the reality labels while predicted class

columns correspond to the predicted labels. .. 40

Table 2 - SSD Model Training Parameters .. 49

Table 3 - YOLOv3 Model Training Parameters .. 51

Table 4 - Performance results on Cityscapes subset with DL models trained on 2D image-based dataset. 52

Table 5 - Performance results on omnidirectional image dataset with DL models trained on 2D image-based

dataset. ... 53

Table 6 - Non-detected objects by image region with a DL model trained on a 2D image dataset 54

Table 7 - Standard YOLOv3 and YOLOv4 and YOLOv4 (800x448) network parameters 58

Table 8 - Tiny YOLOv3 and YOLOv4 network parameters ... 59

Table 9 - SSD 300x300 and SSD 512x512 network parameters .. 61

Table 10 - Mask R-CNN network parameters .. 63

Table 11 - Inference Time Results. DL model name presented in the first column, associated with the

measured inference time, in the second column. .. 66

Table 12 - Non-detected object by region in omnidirectional images ... 66

Table 13 - Inference time results through the traditional and proposed object detection framework. 70

Table 14 - Non-detected objects by image region through the traditional and proposed object detection

framework. ... 70

xvii

This page has been intentionally left blank.

xviii

List of Abbreviations and Acronyms

2D 2-Dimensional

3D 3-Dimensional

AE Auto Encoders

AI Artificial Intelligence

ANN Artificial Neural Network

AP Average Precision

API Application Programming Interface

AR Augmented Reality

ASIC Application Specific Integrated Circuit

AWS Amazon Web Services

BVLC Berkeley Vision and Learning Center

CMP CubeMap Projection

CNN Convolutional Neural Network

CNTK Microsoft Cognitive Toolkit

COCO Common Objects in Context

CPP Craster Parabolic Projection

CPU Central Processing Unit

CV Computer Vision

DL Deep Learning

ECR Elastic Container Registry

ERP Equirectangular Projection

FLOP Floating Operation per Second

FN False Negative

FOV Field of View

FP False Positive

FPGA Field Programmable Gate Array

FPN Feature Pyramid Network

FPS Frames Per Second

GPU Graphics Processing Unit

HOG Histograms of Oriented Gradient

xix

IBM International Business Machines

IDC International Data Corporation

KPI Key Performance Indicator

LSTM Long-Short Term Memory

MB MegaBytes

ML Machine Learning

MS MicroSoft

OHS Optimal Hyperplane Separation

ONNX Open Neural Network Exchange

OS Operating System

PC Personal Computer

R-FCN Region-based Fully Convolutional Network

RNN Recurrent Neural Network

SPP Segmented Sphere Projection

SSD Single Shot Detection

SVM Support Vector Machine

TN True Negative

TP True Pegative

TPU Tensor Processing Unit

UAV Unmanned Aerial Vehicle

UHD Ultra High-Definition

USD United States Dollar

VOC Visual Object Classes

VR Virtual Reality

XML Extensible Markup Language

YOLO You Only Look Once

xx

This page has been intentionally left blank.

Object Detection in Omnidirectional Images

1

 Introduction

In this chapter, we focus on the dissertation’s contextualization and goals along with its

concerning motivation. Furthermore, contributions to the related community, as well as the

document structure is presented.

1.1. Context and Motivation

Visual perception is one of the most important human senses, materialized when the eyes

receive light patterns that are transformed into neural signals and then transmitted through

the huge neural network that constitutes the human brain [1]. This process creates a huge

amount of information used by humans to recognize and identify multiple objects, which is

usually carried out through a process of learning and recognition.

Over the last decades, computer vision technology, through traditional or intelligent

approaches, has been widely explored to solve real-world problems and improve life quality

in many different domains, such as self-driving cars, accurate health diagnoses, agriculture

operations improvement, etc [2]. The focus lies on trying to develop smart mechanisms

capable of automatically interpreting visual content through image processing and,

providing the same output as the human visual system would, preferably faster and more

accurately. The computational process usually entails extracting relevant features from

images or videos to identify patterns.

Generally, such technology aims to execute one of these three tasks: image classification,

object detection, and semantic or instance segmentation [3]. Image classification refers to a

process in computer vision that can classify an image according to its visual content, i.e.,

association with a category within some predefined set [4]. On the other hand, object

detection methods aim to locate an object by returning bounding boxes or pixel masks.

Finally, semantic or instance segmentation algorithms associate each image pixel with a

given object label.

Such tasks are usually based on 2-dimensional (2D) images. However, new application

requirements and fast technological advances are continuously posing new challenges which

cannot be met by 2D cameras. Their limited field-of-view (FOV) and, subsequently, blind

Object Detection in Omnidirectional Images

2

spots do not allow all view directions, including all-around from the ground, mid-level above

ground to sky, to be efficiently monitored.

Therefore, omnidirectional vision is increasingly a requirement on computer vision tasks: to

identify people, vehicles, animal, etc., at the ground-level; monitor buildings, balconies, or

windows at the mid-level; detect sky-level objects such as unmanned aerial vehicles (UAVs),

which consists of autonomously or remote-controlled vehicles to fly over pre-defined areas.

In addition to the above-mentioned requirement has been flooding into people daily life,

according to [5], the 360º camera market for media and entertainment is estimated to reach

USD (United States Dollar) 1,569.2 million by 2023 from USD 473.6 million by 2018, at a

compound annual growth rate of 27.1% between 2018 and 2023.

Given the above-mentioned facts, to overcome such requirements, an efficient

omnidirectional image-based objection detection algorithm is increasingly becoming

mandatory. Nevertheless, with 360º images, new challenges have been created: huge

resolution to keep high fidelity along 360 x 180º range; very high frame-rate to avoid motion

sickness of viewers; distortions produced by the most common sphere-to-plane projections

(equirectangular, cubemap projection, truncated square pyramid, and craster parabolic

projection) [6].

1.2. Contributions

Computer vision approaches have been heavily studied in the last few years and, nowadays,

several frameworks are capable of providing reasonable performance in many image and

video processing tasks. However, currently available frameworks were usually designed to

use 2D images as input, while specific solutions for omnidirectional data are still open for

further improvement and performance optimization.

Experimental studies on detecting object regions in omnidirectional images, representing the

spherical domain as planar images through the well-known Equirectangular projection

(ERP), denoted that the error depends on the object spherical location in the image.

Therefore, this dissertation aims to emphasize the main differences between omnidirectional

and 2D image-based object detection algorithms’ performance and propose a new

framework to obtain uniform error rate across the whole spherical image regions.

Object Detection in Omnidirectional Images

3

The main contributions of this work include:

• State-of-the-art computer vision approaches for object detection on omnidirectional

images.

• Omnidirectional and 2D image-based object detection algorithms’ comparative

analysis.

• Improved omnidirectional image-based object detection framework proposal.

• Evaluation of the proposed framework.

Moreover, a paper entitled “Object Detection in Equirectangular Images” was published at

the 26th Portuguese Conference on Pattern Recognition (RECPAD) which aims to promote

the collaboration between the Portuguese scientific community in the fields of Pattern

Recognition, Image Analysis, and Processing, Soft Computing.

1.3. Outline of the document

The remainder of this document is structured as follows:

After this introductory chapter, Chapter 2 includes the background on omnidirectional

vision. Within the scope of that chapter, omnidirectional image and 360º video technology

is presented along with the description of the most common approaches for project spherical

images onto 2D planes. Omnidirectional and 2D image datasets for object detection are

detailed at the end of the chapter.

Then, Chapter 3 presents an overview of object detection tasks with intelligent approaches

of Machine Learning (ML), namely Deep Learning (DL), which is introduced followed by

a detailed explanation of the improvements and differences that DL approaches have brought

when compared to the previous methods. Afterward, object detection algorithms are

presented to allow to grasp the main challenges of applying such algorithms on

omnidirectional images.

In Chapter 4, the research problem in addition to the methodology guidelines is presented to

understand the motivation behind the need of detecting object regions in omnidirectional

images. Then, the proposed procedure to develop an efficient framework is defined.

Moreover, a comparative performance evaluation of 2D image-based object detection

algorithms on 2D and omnidirectional image datasets is carried out.

Object Detection in Omnidirectional Images

4

Then, after presenting the experimental analysis, Chapter 5 focuses on providing a

framework for enhancing object detection in omnidirectional images. This chapter starts by

demonstrating a domain-specific approach for improving object detection results above-

achieved. Then, a new framework that allows optimizing such results is proposed.

Furthermore, to provide the reader with the information needed concerning the framework

deployment, some considerations on the DL algorithm decision-making process are

presented.

Finally, in Chapter 6, the work developed in this dissertation is summarized and the future

work is presented.

Object Detection in Omnidirectional Images

5

 Background on Omnidirectional Vision

In this chapter, general aspects of image capture are, firstly, introduced. Then, 360º image

and video technology, as well as the most common approaches of mapping spherical points

to 2D planes, are detailed to provide the reader with the main challenges that this technology

brings. Succeeding the above-mentioned section, 2D image datasets for object detection and

the process to produce an omnidirectional image dataset are described.

2.1. Introduction

During the nineteenth century, through a lightproof box with a pinhole on one side and a

translucent screen on the other, named camera obscura (Figure 1), the first photographic

image was taken. Later, with improvements in the above-mentioned process, the word

“photography” was introduced to name the method of recording images by the action of light

on sensitive material [7].

Figure 1 - Camera Obscura [8]

At that time, the image capture process used to take a long time to be completed, given that

the acquisition of each image required a long light exposure time. However, the creation of

a short focal lens enabled that time to be significantly reduced. Meanwhile, the process kept

being improved until 1981, when the world’s first digital electronic camera was presented,

already similar to nowadays’ cameras. Since then, this technology has been evolving with

several improvements in image quality.

Despite substantial advances since the camera obscura conception, today’s traditional

cameras rely on the same principles to produce an image: when light rays pass through the

Object Detection in Omnidirectional Images

6

center of the lens or effective pinhole they are projected onto a sensor array to provide a

linear perspective image [9].

After a couple of years from the capture process invention, capturing all view directions in

a single image faster became one of the research goals. Therefore, the next section aims to

explore the technology behind cameras with omnidirectional view capabilities.

2.2. 360º Image and Video Technology

Camera manufacturers introduced omnidirectional cameras in 1958. Those cameras -

depicted in Figure 2 -, commonly referred to as 360º or panoramic cameras, can capture the

full 360º surroundings in a single picture of a video clip [10], putting in a single image left,

right, and sky-level content. Moreover, depending on the display type, such technology may

provide an immersive visual experience.

Despite its beginning as a non-consensual technology, 360º cameras have recently increased

in popularity given that such cameras have become more affordable and easier to use at the

consumer level. The 360º camera global market for media and entertainment is estimated to

reach USD 1,569.2 million by 2023 from USD 473.6 million by 2018, at a compound annual

growth rate of 27.1% between 2018 and 2023 [5].

Figure 2 - 360 º Camera (Insta360 Pro 2) [11]

In contrast to 2D images, 360º images are typically captured through a set of multiple

cameras or a camera that contains multiple lenses. Then, a software-based post-processing,

namely panorama stitching, which consists of merging multiple images with overlapping

regions, is required to provide a spherical image. This is demonstrated in Figure 3.

Object Detection in Omnidirectional Images

7

Figure 3 - Panorama stitching example [12]

Generally, the resulting image, referred to as omnidirectional or 360º image, provides an

immersive experience by covering the whole 360 x 180 º sphere, different from conventional

images that only cover a limited plane. Therefore, any viewing angle at a given point can be

recreated which leads to great opportunities to improve the visual experience and expand the

functionalities of currently available applications.

The well-known Virtual Reality (VR) and Augmented Reality (AR) are among the most

common applications of omnidirectional vision that attempts to simulate real-life

experiences by merging different types of visual content. Thereby, its users, usually through

headsets (Figure 4), can turn their heads in any direction and see programmed content, just

like a human does in the real-world [13].

Figure 4 - Virtual Reality Headsets [13]

The growing development of 360º technology allows AR/VR to be optimized in the same

way considering that AR/VR consists of 360º videos rendered via head-mounted displays,

as the VR headsets. The ability to get immersive experiences through VR headsets has been

Object Detection in Omnidirectional Images

8

introduced as a mainstream technology since the boom of smartphones with high-density

displays and 3D graphics capabilities which were a key-step on major advances.

Although this technology is still too expensive, multiple areas of people’s daily tasks such

as education where students’ knowledge is acquired through virtual experiences, can have a

huge positive impact. For instance, ClassVR, a product from Avantis Systems company,

provides educational resources through a student-friendly interface by using a standalone

VR headset, since 2017 [14].

Despite the opportunities and experiences provided by 360º technology, new challenges have

also been raised. Given that omnidirectional images present a high level of detail - image

resolution - and 360º videos require a high frequency of images to appear on display – frame-

rate - to cover the whole sphere with high fidelity and avoid motion sickness, storage, and

transmission issues are introduced because of the inherent very high file size. Then, to solve

such issues, data can be transformed by mapping a sphere onto a plane, on a process called

sphere-to-plane projection.

2.3. Sphere-to-Plane Projections

For many years, mathematicians and physicists needed to represent spheres on the plane. It

started when mathematical principles were applied to get a globe’s representation which

gave rise to hundreds of map projections proposals. Figure 5 presents an example of globe

representation on the plane. Despite the distortion caused by all sphere-to-plane projections,

projection of an image onto a plane is required, particularly, when we are attempting to store,

process, or transmit them.

Object Detection in Omnidirectional Images

9

Figure 5 - Globe Representation on Plane example [15]

Then, in this section, the most common sphere-to-plane approaches are described to allow

the reader to understand how omnidirectional image points are mapped to a 2D plane in

computer graphics. The following projections are included: Equirectangular Projection

(ERP); Cubemap Projection (CMP); Segmented Sphere Projection (SPP) and Craster

Parabolic Projection (CPP).

2.3.1. Equirectangular Projection

Equirectangular projection, the most popular way to store and transmit 360º content, defines

each sphere point by a horizontal angle 𝜃 𝜖 [−𝜋, 𝜋[and vertical angle 𝜃 𝜖 [−𝜋/2, 𝜋/2[, as

detailed in Figure 6. Then, given a sphere ∑, an equirectangular image 𝑃 is obtained as

follows:

𝑃(𝑖, 𝑗) = ∑ (𝜃𝑖, 𝜙𝑗)

with ∀𝑖, 𝜃𝑖 − 𝜃𝑖+1 = 𝛿𝜃 and ∀𝑗 , 𝜙𝑗 − 𝜙𝑗+1 = 𝛿𝜙 [16]

Object Detection in Omnidirectional Images

10

Figure 6 - Equirectangular Representation [16]

Despite this approach has become the standard sphere-to-plane projection, severe visual

distortions can be caused by non-uniform sampling distance, i.e., the non-constant distance

between two points. The mid-region (blue region in Figure 6) is defined with much fewer

pixels than poles (red region in Figure 6), i.e., the pixel density is quite different leading to

geometric distortions.

2.3.2. Cubemap Projection

Different from the ERP approach, Cubemap representation consists of decomposing the

sphere into independent subregions. Generally speaking, the center of the cube is used to

perform a perspective projection of the sphere on each face of the cube (Figure 7) [16].

Although this solution provides less radial distortion than ERP, it creates frontiers in the

image which may lead to object split sometimes. Consequently, the same object may appear

in more than one face of the cube at the same time.

Figure 7 - Cubemap Representation [16]

2.3.3. Segmented Sphere Projection

Another method of mapping an omnidirectional image onto a 2D plane, namely Segmented

Sphere Projection, aims at providing 3 different segments of the sphere: the north pole, the

Object Detection in Omnidirectional Images

11

equator, and the south pole. While north and south poles are mapped into 2 circles, the

equatorial segment into 4 squares, as detailed in Figure 8.

Figure 8 - Segmented Sphere Projection [17]

Notice that regions labeled as “0” and “1” are north and south poles, respectively. On the

other hand, regions from “2” to “5” in Figure 8 belong to the equatorial segment, where the

same projection as ERP is applied. Furthermore, to map a point (𝑚, 𝑛) on the face to a point

(𝜙, 𝜃) on the sphere, a different mathematical equation is used, depending on the face [17].

2.3.4. Craster Parabolic Projection

Craster Parabolic Projection (CPP) implements an algorithm that, given a sphere with radius

𝑅 = 1 and a spherical point (𝜃, 𝜙) that needs to be mapped to a 2D point (𝑚, 𝑛), the

following equation is applied [17]:

𝑚 = 𝑅𝜃 ⌊(2 cos
2𝜙

3
) − 1⌋

𝑛 = 𝜋𝑅 sin
𝜙

3

Similar to other projections, CPP also produces distortion after being applied, more

precisely, near outer meridians at high latitudes, where the distortion is severe, as depicted

in Figure 9.

Object Detection in Omnidirectional Images

12

Figure 9 - Craster Parabolic Projection Example [6]

2.4. Image Datasets for Object Detection

The appearance of digital cameras and the advancement of technology along with the

development of communication infrastructures have made photography fairly easy for any

user. Nowadays, almost every single person at any time and anywhere can take a picture

with suitable digital equipment, such as a smartphone. Therefore, large digital data volumes

have become available from heterogeneous sources in a fast way and, according to

International Data Corporation (IDC) report, the volume of data will reach 90 Zettabytes1 in

2025 [18].

The resulting data started to be structured to meet requirements across a wide range of

applications. One of those applications, deeper analyzed in Chapter 3, involves developing

Computer Vision (CV) techniques to locate and identify objects in images. Such technology

usually requires a large amount of image data, referred to as image datasets, to achieve

efficient results [19]. However, the higher availability of 2D image-based capture devices

when compared to devices with omnidirectional capabilities tends to make open-source

omnidirectional image datasets more difficult to find out. Therefore, this section aims to

provide the reader with an overview of the 2D and omnidirectional image datasets used

within the scope of this dissertation, focusing on their main characteristics.

In recent years, to improve and study CV algorithms, the list of available 2D image datasets

has largely increased. This list includes datasets like PASCAL Visual Object Classes (VOC)

[20], ImageNet [21], Common Objects in Context (COCO) [22], Modified National Institute

of Standards and Technology (MNIST) [23] and, Cityscapes [24] datasets. Although the

1 1 Zettabyte = 1 000 000 000 000 Gigabytes

Object Detection in Omnidirectional Images

13

wide diversity of available datasets, we just focus on those that were used in our experiments:

ImageNet, Microsoft COCO, and Cityscapes datasets.

2.4.1. ImageNet

ImageNet [21] is an ongoing effort to provide researchers open access to an image database

that is organized according to the WordNet nouns hierarchy. WordNet [25] is a large lexical

database of English that labels the semantic relationships among words. As a result, the

nouns hierarchy consists of a collection of nodes (entities), starting at a root node.

Furthermore, this lexical database distinguishes between types (common nouns) and

instances (specific persons, countries, or geographic entities) where instances are always

terminal nodes in their hierarchies [26]. For example, Lionel Richie is an instance of a singer

while an armchair is a type of chair.

ImageNet includes 1000 nodes (object labels) with an average of over five hundred images

per node to fill the need for structured data from the researches [21]. In Figure 10, ImageNet

examples are depicted, representing the cycling noun hierarchy. The cycling node belongs

to the sports and athletics root node which has three leaves (terminal) nodes: bicycling, dune

cycling, and motorcycling. Besides, information about the number of pictures in this node

and its distribution is also provided. In this particular case, 1.364 pictures are available, most

of them labeled as motorcycling or bicycling.

Figure 10 - ImageNet database examples [21]

This database offers a huge number of images in an attempt to reach a great diversity, given

that objects may have different appearances, positions, viewpoints, poses, and backgrounds.

Furthermore, to correctly label each image, when a dataset is created, it needs to be reviewed

by humans. In the ImageNet case, a voting system was introduced to link an image with an

object label and then, an image was considered positive only if it got a convincing majority

Object Detection in Omnidirectional Images

14

of votes [27]. In addition to associate object labels to images, the exact location of objects is

also stored in bounding box format - coordinates of the rectangular border that fully encloses

an object.

Generally, it has been a useful resource to help the community in the research field of CV to

overcome the lack of 2D labeled image data that those algorithms usually use as input in

object detection tasks.

2.4.2. COCO

Microsoft Common Objects in Context (COCO) [22] is another large-scale dataset that

contains 330.000 images, of which 220.000 are labeled. In opposition to ImageNet, COCO

only provides 80 object categories. However, it has more instances per category. This dataset

was also labeled with object categories (person, chair, car…) and also “stuff” categories

(sky, street, grass…) given that those categories could provide relevant contextual

information.

Likewise, in the ImageNet database, the COCO dataset also stores objects’ location in an

image, however, the COCO dataset goes deeper: it associates each pixel of an image to a

category. Figure 11 depicts some examples of images from the COCO dataset to demonstrate

how can each pixel be labeled with one category.

Figure 11 - COCO dataset examples [22]

As hinted by the name, its images are taken from everyday scenes thus attaching “context”

to the objects captured in the scenes. Then, objects are not isolated in the image which allows

CV algorithms fed by the COCO dataset to take advantage of the given data to be more

accurate.

Object Detection in Omnidirectional Images

15

2.4.3. Cityscapes

Additionally, the investigation process behind this dissertation led us to study open-source

available labeled datasets related to the urban environment. Despite the wide range of

available datasets that the resulting research provided, the Cityscapes dataset [24], due to its

huge diversity and application scenarios seemed to be a wise choice. The selected dataset

was a researchers’ effort for semantic urban scene understanding tasks by proposing a dataset

that exceeds previous attempts in terms of size, annotation richness, and scene variability

and complexity.

This dataset provides 25.000 annotated images captured among 50 cities for several months

to get different weather conditions. Moreover, image frames included in the dataset were

manually selected to guarantee a large number of dynamic objects with a high diversity of

layouts and backgrounds. Dataset examples as well as their corresponding semantic

annotations are depicted in Figure 12.

Figure 12 - Cityscapes dataset examples [24]

The above-mentioned dataset includes 30 classes (including road, person, car, sky, traffic

sign, etc.) clustered into 8 groups (flat, human, vehicle, construction, object, nature, sky, and

void). However, given the high dataset diversity that was not necessary for our research, a

subset of the Cityscapes dataset was proposed, only involving images that include objects

belonging to the person, car, truck, bus, and motorcycle labels.

Object Detection in Omnidirectional Images

16

Consequently, the resulting subset provided 3451 images, containing 31822 car, 21413

person, 888 motorcycle, 582 truck, and 483 bus instances, producing a label distribution as

demonstrated in Figure 13.

Figure 13 - Cityscapes Subset Label Distribution

In opposition to the original dataset, in this subset, a bounding box conversion process was

required to keep the same format as the previous datasets. This conversion process was

implemented, simultaneously, with the label filtering process, by selecting not only the

minimum x and y values but also polygon maximum x and y values of each object location

to produce, respectively, bounding box top left and bottom right coordinates.

Despite the acquisition of the above-mentioned 2D image datasets, the lack of open-source

labeled omnidirectional image datasets was still not solved after the investigation process.

That fact led us to create an omnidirectional dataset by ourselves, accepting all the work

behind the procedure: video and image capturing and labeling process.

2.4.4. Omnidirectional Image Dataset

To gather content for acquiring the proposed omnidirectional image-based dataset, different

approaches to collect videos through an Ultra High-Definition (UHD) 360º video camera

was carried out. The 360º video camera was used to capture an urban environment to include

different visual objects of all possible regions of spherical images in the dataset. For that

purpose, the camera was, firstly, placed on a highly congested traffic location to produce

58%

39%

1% 1% 1%

Cityscapes Subset Label Distribution

Car Person Motorcycle Truck Bus

Object Detection in Omnidirectional Images

17

video recordings where people and vehicles were visible. Then, to enrich the dataset with

high diversity viewpoints, object poses, and weather conditions, the same camera was

mounted on the roof of a car, and videos were recorded while the car was moving. Finally,

to fill the lack of aerial objects, an unmanned aerial vehicle was controlled over pre-defined

regions, simulating aerial intrusion in a private property, while the 360º camera was

recording, playing the role of an omnidirectional surveillance camera.

Succeeding the initial capturing process, to make the image dataset diversified, video frames

had to be extracted from the resulting video content. At this stage, it was important to keep

in mind that not all video frames were required to be grabbed given that differences between

consecutive frames could not be relevant to achieve the desired diversity. Furthermore, the

very-high-resolution videos that 360º cameras, usually, provide, needed to be taken into

consideration.

Due to its ability to transform and filter multimedia content and its high-portability which

allows running across Linux, Mac OS X, and Microsoft Windows2, the FFmpeg [28]

framework was used to overtake both concerns. On the first hand, the acquired UHD 360º

videos were resized to a Full HD resolution (1980x1080 pixels). Later, one video frame was

grabbed per second (which means a frame-rate of 1 FPS3) and the resulting image was

projected onto a 2D plane with the ERP approach. Figure 14 depicts an image produced by

the described process.

Figure 14 - Example of a 360º video frame projected onto a 2D plane with ERP approach.

2 Operating Systems
3 Frame per second

Object Detection in Omnidirectional Images

18

After finishing processing the whole acquired video content, the image dataset had to be

labeled. This process, as above-referred, consists of identifying objects in an image and save

their location as well as their corresponding label class, in a human-readable format. To

reduce the manual effort this task requires, LabelImg [29], an annotation tool, was used to

facilitate the labeling process, providing a graphical image tool to create and save bounding

boxes for each image.

Generally, this tool allows the selection of a working directory that contains the image

dataset that needs to be labeled, as demonstrated in Figure 15. Then, a rectangle box could

be drawn for each identified object, associating an object label class to each one and saving

the final output in the most suitable format.

Figure 15 - LabelImg Dashboard

Object labels could be stored in PascalVOC or YOLO format. On the first hand, PascalVOC

stores the annotation in Extensible Markup Language (XML) format and it includes

information about the data source, image size, and location of the identified object as well

as its classification. The object location was defined as a bounding box that includes four

fundamental values: xmin, ymin, xmax, ymax. In opposition, in the YOLO format, each file

line corresponds to each object instance. Each object is defined with 5 values: index of label

class, x, y, width, and height, where the last four values consist of float values relative to the

image width and height, and x and y values represent the center of the rectangle box.

Moreover, the YOLO format does not store absolute values, using the relative format of each

one. Both formats are depicted in Figure 16.

Object Detection in Omnidirectional Images

19

Figure 16 - Image labels file example. The left side demonstrated the PascalVOC format, while the right side

shows the YOLO format.

At the end of the acquisition and labeling stages, the omnidirectional image dataset followed

a label distribution as presented in Figure 17, containing a total of 779 images distributed by

six object label classes: car, truck, bus, motorcycle, person, and unmanned aerial vehicle

where the prevailing class is the car.

Figure 17 - Resulting omnidirectional image dataset object classes distribution

The resulting dataset allows the initial lack of omnidirectional image dataset to be overtaken

and it was an effort to help the CV community to further investigate object detection

techniques on this image type.

32%

6%

16%

3%

30%

13%

Omndirectional Image Dataset Label Distribution

car truck bus motorcycle person uav

Object Detection in Omnidirectional Images

20

2.5. Final Remarks

Since the first camera invention, image acquisition technology has been completely

transformed, however, the principles to produce an image are still the same. Although in the

digital era, the vast majority of people have access to digital equipment, such as smartphones,

allowing images to be captured from diverse perspectives, omnidirectional view capabilities

are increasingly a requirement in the most demanding applications to overcome the blind

spots that 2D image-based capture devices usually have.

In a virtual-reality perspective, the possibility of moving around at a concert or festival to

find the position that users prefer comes up with a set of 360º cameras that were strategically

positioned. Moreover, immersive adventures at stadiums for experiencing an event as if a

user is there, are also potential applications where this technology plays a crucial role [30].

Additionally, in a non-entertainment perspective, professional 360º camera rigs allow video

surveillance to be more efficient. However, given that CV approaches to automatically detect

objects on such surveillance systems are usually fed by 2D images, omnidirectional image-

based systems require further investigation. Such technology usually involves a large

amount of data to make the system more efficient. For that reason, initial research on both

2D and omnidirectional image datasets was carried out.

Consequently, this chapter presented an overview of three of the most common 2D image

dataset, namely ImageNet, Microsoft COCO, and Cityscapes. With regards to

omnidirectional content, the lack of open-source labeled data made an omnidirectional

image dataset to be proposed. The acquisition process required video content to be captured

across diverse conditions and the resulting image data to be labeled.

As a result of the initial research has been completed, the next chapter aims to give the reader

the knowledge needed about object detection approaches to understanding not only the

research problem behind this dissertation but also the experiments carried out.

Object Detection in Omnidirectional Images

21

 Object Detection with Deep Learning

The goal of this chapter is to present an overview of object detection approaches with Deep

Learning (DL), a field that has attracted much research attention in the last years. The chapter

starts with an introduction to DL, followed by an explanation of the DL concept along with

a description of popular DL frameworks used by the community. Object detection with DL

applied to 2D images is, then, introduced to describe the state-of-the-art methods for

detecting objects in omnidirectional images. Finally, the evaluation metrics to measure and

compare object detection models’ performance used in this dissertation are defined and

explained.

3.1. Before Deep Learning

Nowadays, a relevant application of CV deals with functions for recognizing and identifying

specific objects in images, such as a person or a road, attempting to replicate the human

being able to identify objects through vision, memory, and knowledge [31]. This technology

aims to produce meaningful information from an image and it usually includes methods for

acquiring, processing, and understanding images to achieve its goal [32].

There are many CV applications such as object detection and identification, video tracking,

object pose estimation, motion estimation, and image restoration [32]. This thesis focuses

on object detection algorithms through ML approaches, which have been receiving a lot of

attention in recent years, not only in academia but also in industry.

Machine Learning is a subfield of Artificial Intelligence (AI) that uses computational

algorithms to turn data into usable models [33] and the associated methods are, generally,

classified as supervised or unsupervised. Supervised learning methods aim at developing

predictive models from a labeled dataset to make predictions in an unlabelled set of samples.

Each sample in the learning dataset has an associated label, which consists of the desired

forecast for that sample. For example, a label representing the character “4” can be associated

with the sample in Figure 18.

Object Detection in Omnidirectional Images

22

Figure 18 - Example of a sample and corresponding label

In opposition, unsupervised approaches try to identify patterns without access to the labeled

dataset. Generally, such methods aim at grouping learning data with inherent similarities and

classifying each group with its corresponding label [34].

To perform object detection tasks, traditional algorithms of ML were, firstly, developed.

Identifying an object in a given image requires each object region to be located along with

those identified regions to be classified. To achieve these goals, traditional methods are

usually subdivided into three sub-steps: informative region selection, feature extraction, and

classification [3]. The informative region selection stage consists of scanning the whole

image with a multi-scale sliding window because objects differ in position, aspect ratio, or

size. Usually, this task is computationally expensive due to the large number of windows

needed to cover all possibilities.

Succeeding the informative region selection, the second sub-step produces a semantic and

robust image representation, such as Histograms of Oriented Gradient (HOG) and Haar-like,

through feature extraction algorithms. Finally, to associate a category to an object and

improve the representations for visual recognition, in the classification stage, Support Vector

Machine, AdaBoost, and Artificial Neural Networks are often chosen as classifiers.

3.1.1. Histograms of Oriented Gradient and Haar-like

Paul Viola and Michael Jones proposed a feature-based image representation that operates

much faster than a pixel-based representation. The well-known Haar algorithm is commonly

used to identify objects in images, however, it has been demonstrated to be very useful on

face detection tasks.

The implemented system uses three types of features: two-rectangle feature, which value is

the difference between the sum of the pixels within two rectangular regions; three-rectangle

feature that computes the sum within two outside rectangles subtracted from the sum in a

center rectangle; four-rectangle feature, representing the difference between diagonal pairs

of rectangles [35]. Figure 19 depicts an example of features extracted from a person's face.

Object Detection in Omnidirectional Images

23

Figure 19 - Haar algorithm. Features that allow defining a face. [35]

Through a different approach, Histograms of Oriented Gradients (HOG) is also a feature-

based image representation. It is calculated by computing vertical and horizontal gradients

and then, gradient magnitude and angle to find the structure of the object. This feature

representation outperforms human detection tasks [36], as illustrated in Figure 20.

Figure 20 - HOG detectors cue mainly on silhouette contours [36]. Human body feature representation is depicted.

3.1.2. Artificial Neural Networks

Artificial Neural Networks (ANNs) are inspired by human brain-behavior to gain abilities

to solve problems. Like the human brain, ANNs are composed of a large set of weighted

connections of units (neurons) where each one is responsible for performing a specific task

[37]. Figure 21 depicts an example of an ANN architecture.

Object Detection in Omnidirectional Images

24

Figure 21 - ANN architecture example [38]. Three neuron layers are depicted: input layer; hidden layer; output

layer. Input layer neurons (i1; i2) are weighted connected to hidden layer neurons (h1; h2) which are weighted

connected to output layer neurons (o1; o2). At the bottom, two bias neurons are illustrated.

Each artificial neuron has one or more indispensable activation functions in the intermediary

layers. Generally, an activation function calculates a weighted sum from the input layers,

and it adds a bias. Depending on the function used, the result value can be different, however,

it is usually mapped between 0 to 1 or -1 to 1.

The structure of ANN depends on its type. Nevertheless, we focus on a multilayer

feedforward network, which consists of three types of layers: input, output, and hidden. The

input layer receives the input in the form of a multidimensional vector and transfers it to the

hidden layers. Then, each hidden layer will make decisions and weigh up the level of impact

that a hypothetical change has on the final output based on the previous layer. In the end,

after data had been processed, output layers receive the final output [38].

In object detection problems, training multilayer feedforward networks with a

backpropagation algorithm is a common approach. The backpropagation algorithm,

illustrated in Figure 22, aims at optimizing the weights so that the neural network can

correctly associate inputs to outputs. This process consists of two stages: the forward pass

and the backward pass. The forward pass keeps the values of the weights unchanged and

output layers values are computed from the input data. On the other hand, in the backward

pass, the computed error is propagated back to the previous layers. Both stages together

make one iteration.

Object Detection in Omnidirectional Images

25

Figure 22 - Backpropagation algorithm example

Therefore, in the backpropagation process, an error is computed with the backpropagated

data by each artificial neural network neuron and weights values are, then, updated. The

process is repeated until reaching the input layer.

Even though ANN can be trained through supervised or unsupervised learning approaches,

this research work focuses on the supervised method. This approach requires an output

vector to be known for each of the input vectors. Then, to compute the error value, the

difference between ANN output and known output is calculated. Therefore, the learning

algorithm on this method is responsible for learning a mapping function that allows us to

receive an input and provide the correct output.

Object detection algorithms that this dissertation implements are different from the above-

mentioned ANN by their depth, as their name implies: DL networks. In Section 3.2, a better

understanding of the DL concept is provided.

3.1.3. Support Vector Machines and AdaBoost

Support Vector Machines (SVMs), introduced by Vapnik [39], are supervised Machine

Learning algorithms very often used in classification problems. Generally, SVM aim at

finding an optimal hyperplane to separate a dataset into two classes in an n-dimensional

space, as presented in Figure 23. Mathematically, the problem can be described as follows.

Given a set of training data (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) where 𝑥𝑖 belongs to 𝑅𝑑, a d-

dimensional space, and the data is labeled according to an unknown probability distribution

Object Detection in Omnidirectional Images

26

𝑃(𝑥, 𝑦) and a loss function V(𝑦, 𝑓(𝑥, 𝑦)) is defined to measure the error, when, for a given

𝑥, 𝑓(𝑥) is calculated instead of the actual value 𝑦 [40].

Figure 23 - Support Vector Machine [41]. An Optimal Hyperplane Separation (OHS) with a higher possible

margin between both classes is proposed.

This algorithm has provided new solutions to important real-world problems and specific

application scenarios. For instance, in 1999, it was proposed to apply a set of SVM classifiers

to medical Tuberculosis from photomicrographs of Sputum smears, the first time it was used

in medical problems, which has allowed medical experts to be supported on their very

important decisions [42].

On the other hand, another approach for solving a classification problem was proposed,

namely, Adaptive Boosting (AdaBoost) which allows the creation of a strong and robust

classifier from a set of weak classifiers through an iterative learning algorithm [43], as

denoted in Figure 24.

Figure 24 - Adaboost Algorithm [44]

Object Detection in Omnidirectional Images

27

In Adaboost’s process, the weight of a sample misclassified by the previous decision tree is

boosted so that the previously misclassified sample is correctly classified by the subsequent

tree. As long as more weak classifiers are added in series to the model, classification

accuracy increases [44].

3.2. Deep Learning

Deep Learning is part of a wide range of ML methods, which aims at replicating the human

of learning from multiple levels of information using layer-based approaches. Before the DL

emergence, feature engineering was required to extract descriptive information from images

through CV techniques, as demonstrated in Figure 25. Moreover, it was necessary to select

which information was relevant to train ML algorithms.

Figure 25 - Traditional Computer Vision (a) vs Deep Learning (b) [45]

In opposition to traditional techniques, DL methods, based on ANNs, have introduced the

end-to-end learning concept. Essentially, the learning algorithm architecture allows

automating the hand-crafted feature extraction and selection. Consequently, a unified

learning framework is provided instead of a multiple-step approach.

Deep Learning approaches have become more popular due to major advances in network

structures and training approaches. In 1997, in [23], the authors proposed to replace the hand-

crafted feature extraction step by operating directly on pixel images. This approach applied

to a character recognition research problem proves that was possible to develop accurate

machine learning algorithms without a manual extraction and selection and it brings huge

research efforts on this topic.

Object Detection in Omnidirectional Images

28

Over the last decades, different Deep Neural Networks types have been developed:

Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM), Auto Encoders

(AE), etc. However, we focus on Convolutional Neural Networks (CNNs). Convolutional

Neural Network is a multiple layer architecture inspired by the natural visual perception

mechanism of living creatures that usually consists of a set of three types of layers:

convolutional, pooling, and fully connected layer [46]. Different from the other neural

networks, neurons in CNN are arranged in width, height, and depth dimensions, as depicted

in Figure 26.

Figure 26 - Typical CNN architecture in aircraft structural health monitoring [46].

Convolutional layers, as the name implies, are a crucial part of CNN operation mode. Their

main goal is extracting features from the given input through multiple convolutional kernels

that learn feature representations. The convolutional kernel or filter consists of an array of

numbers that represent a certain pattern in its area. This filter slides around the input image,

multiplying, and adding the values in the filter with the image pixels. This sliding process is

also known as the convolving process and it starts at the top left corner. The final feature

map results from applying an activation function on the convolved results. The most used

activation functions are sigmoid, ReLu, and tanh. Therefore, the above-depicted figure

demonstrates a set of convolutional layers with ReLu activation function.

The above-mentioned process is demonstrated in Figure 27, where a 2D pixelated image is

received as input and the convolutional process is applied, with a kernel size of 5x5 to

produce a feature map.

Object Detection in Omnidirectional Images

29

Figure 27 - 5x5 convolution to produce a feature map [47]

A convolutional layer is usually followed by a pooling layer which aims at reducing the

number of elements of feature maps computed from the previous layer. As well as

convolutional layers, such layers also require a kernel size to be defined. Max or mean

pooling are some examples of commonly used filters. In Figure 28, a max-pooling with a

2x2 kernel size is demonstrated, where the maximum number in every subregion where the

filter convolves is chosen.

Figure 28 - Example of Maxpool with a 2x2 kernel size [47]

Finally, fully connected layers produce an n-dimensional vector output from a given input,

where N represents the number of possible classes. For example, if we were developing a

CNN for recognizing Latin alphabet characters, the N value would be 26 (Latin alphabet

length). This layer usually uses an output function to normalize the output vector of CNN.

In the architecture represented in Figure 26, the softmax output function is used.

To train a DL model, a labeled dataset is required. Both ImageNet and MS COCO datasets

are commonly used for training models, given that they offer a huge amount of image labeled

data. When a model has never been trained before, a random initialization of weights is

performed, which is often known as a train from scratch.

Object Detection in Omnidirectional Images

30

Given that training a model from scratch is computationally expensive, the transfer learning

approach is mostly used. This process consists of taking a pre-trained model on a large

dataset and fine-tuning the model with our dataset. The main idea is taking advantage of the

feature extracting ability of the pre-trained model and replacing the classifier. Considering

the Latin alphabet example, rather than training the whole network, we can use a pre-trained

model on ImageNet (which has 1000 classes) and train it on an alphabet character images

dataset (with only 26 classes).

Object detection models based on CNN architecture enable CV engineers to achieve better

accuracy in complex tasks when comparing to traditional approaches. By eliminating the

manual feature extracting step, the less expert analysis given that it is not necessary to choose

which features are important in each image. Additionally, the emergence of DL approaches

was also promoted by the DL frameworks.

3.2.1. Deep Learning Frameworks

Due to the growth of the DL community, a lot of open-source frameworks have been

introduced to facilitate the execution of the most common DL algorithms. Each one aims at

trying to optimize ML algorithms' performance through different implementations. This

section focuses thereby on benchmarking the most popular DL frameworks by identifying

the main advantages and disadvantages of each one and explaining their implementation.

Recent advances in hardware technology have enabled research across different

implementations to explore deep learning algorithms' performance over different hardware

environments. Despite the Central Processing Unit (CPU) is the mainstream technology, the

Graphics Processing Unit (GPU) outperforms on neural network training given that their

internal cache, high-speed bandwidth, and quick parallel performances. Furthermore, like

GPU, both Field Programmable Gate Array (FPGA) and Application Specific Integrated

Circuit (ASIC) devices can accelerate model training due to their parallel computing

capacity [48].

Depending on the goal and domain of the task, each hardware device can take advantage.

On the first hand, ASIC has an optimized architecture to achieve low-energy consumption,

low latency, computing performance, and scalability. On the other hand, FPGA takes

advantage given its chip price. Finally, GPU is also able to achieve energy efficiency and

outperforms on compatibility, upgradability, and ubiquitous computing.

Object Detection in Omnidirectional Images

31

Mainstream DL frameworks have different compliant hardware platforms and base

implementations. Thus, their main characteristics and differences are below-described to

understand each implementation [49].

Different DL frameworks have, obviously, different compliant hardware platforms and base

implementation. To better understanding the main ideas behind each framework, five

toolkits are bellow described. Generally, we include the most popular frameworks amongst

the researchers, according to [50]: TensorFlow, Microsoft Cognitive Toolkit, PyTorch,

Caffe, and Keras.

• TensorFlow [51], developed by Google Brain, provides a flexible architecture

through a single data flow graph that expresses all numerical computations, including

mathematical and communicational operations. Furthermore, it supports distributed

training given that computation can be deployed to one or more CPUs or GPUs on

different hardware.

Although is written in Python programming language, math operations are written as

high-performance C++ binaries. Python is easy to learn and works with and it

provides high-level programming abstractions, which justifies TensorFlow

implementation.

• Microsoft Cognitive Toolkit (CNTK) [52] is an open-source toolkit, which aims at

providing tools for training and testing neural networks through multiple GPUs. Due

to its effective way to manage memory resources, this framework is computationally

very efficient.

Microsoft-CNTK was one of the first DL frameworks to support an open-source

model representation for framework interoperability and shared optimization, known

as Open Neural Network Exchange (ONNX).

• PyTorch [53] is a Python-based ML framework based on a prior framework know

as Torch [54]. In opposition to frameworks like TensorFlow, which requires a

computational graph to be designed before running the model, in PyTorch, the graph

can be dynamic.

Object Detection in Omnidirectional Images

32

This ML framework provides users with CPU and GPU neural network training

options. Moreover, it offers great flexibility and speed due to its optimal

implementation.

• Caffe [55] provides researchers and engineers with a DL framework to train and

deploy DL algorithms which have been maintained and developed by the Berkeley

Vision and Learning Center (BVLC) and its GitHub4 community.

Its main advantages include its modularity and speed given that the Caffe framework

it allows to be extended to new data formats and network layers. However, it is not

efficient in a wide range of domains. The main application area is computer vision

or image classification problems.

• Keras [56] is an open-source DL library, written in python that works on top of other

DL frameworks such as TensorFlow or Microsoft-CNTK. Generally, it facilitates the

process of prototyping neural networks and it supports a wide range of network

layers.

Keras Application Programming Interface (API) development reduces cognitive load

given that it is user-friendly and easy to extend. Moreover, new modules are simple

to add.

3.3. Object Detection

In recent years, precisely determining the location of objects contained in each image by

outputting the bounding box around the object has been attracting much attention. This task,

referred to as object detection, provides a lot of opportunities in real-world scenarios.

However, it also faces hard challenges such as partial occlusion; different illumination

conditions, poses, and scale [57]. This subsection aims at clarifying DL-based object

detection approaches to understand how this task is performed.

Deep Learning algorithms for object detection can be mainly subdivided into two types of

approaches. In the first type, the algorithm has two-steps, including a regional proposal

4 Distributed version control and source code management tool

Object Detection in Omnidirectional Images

33

generation and a classification stage. On the other hand, the second approach consists of just

one step. The first pipeline, as shown in Figure 29, consists of three modules. From the input

image, around 2000 regions are extracted and then proposed, producing a set of candidate

regions. The second module takes as input each region and computes features through a

CNN that is later associated with a class on the third module where a set of SVMs are

available [58].

Figure 29 - Regional proposal framework pipeline [58]

This architecture was the basis for Regions with CNN features (R-CNN), in 2014, which

brought accurate results when compared to the previous methods. Later, this algorithm was

subsequently upgraded with the introduction of SPP-net that becomes more efficient on

object detection tasks due to its improvements in locating objects with different scales.

Despite the implemented changes in the initial architecture, new solutions were continuously

developed until reach most recent solutions: Region-based Fully Convolutional Network (R-

FCN), Feature Pyramid Network (FPN), and Mask R-CNN [3].

Therefore, R-FCN, by adding a new network layer, has improved its inference time due to

the generation of scores for each proposal region. On the other hand, FPN architecture has

been widely used to achieve better results on scale invariance scenarios in object detection

systems. Finally, Mask R-CNN provides a two-step architecture to detect all objects in an

image and perform an instance segmentation.

In contrast to this approach, the second object detection pipeline, based on global

regression/classification, does not split the process into two stages, allowing the direct

extraction of bounding boxes with associated classes from input images and, consequently,

reduce time expenses. Mainstream object detection frameworks based on this pipeline

include You Only Look Once (YOLO) and Single Shot Detection (SSD).

In the YOLO framework pipeline, illustrated in Figure 30, the process starts by dividing the

input image into a grid of S x S dimension. Then, the grid cell that contains the center of an

Object Detection in Omnidirectional Images

34

object takes the responsibility of detecting it. Moreover, each grid cell produces bounding

boxes and confidence scores or, in other words, how confident that the model is that the box

contains an object. Besides, at the same time, a class probability map is computed where

each grid cell predicts the class associated with an object [59].

Figure 30 - YOLO framework pipeline [59]

Considering, now, the YOLO model architecture, its first version has 24 convolutional layers

for feature extraction, followed by 2 fully connected layers for computing predictions,

however, the last improved version of YOLO, YOLOv3, consists of 53 convolution layers.

This structure provides great results on image processing in real-time scenarios: 45 Frames

Per Second (FPS) with 320x320x3 input size YOLOv3 version and 220 FPS with a

simplified version.

On the other hand, the SSD framework is also based on a feed-forward convolution network

that aims to detect objects in images, producing bounding boxes and confidence scores, as

the YOLO framework does. Despite their common goal, the SSD framework pipeline

consists of receiving an input image with ground truth boxes which are computed by a set

of convolutional layers, where the above-mentioned feature extraction process is performed.

After this step is completed, the feature map obtained is computed and bounding boxes of

different sizes and aspect ratios are returned. Finally, confidence scores (“conf” in the

Figure) are calculated for each bounding box (“loc” in the Figure), as depicted in Figure 31

[60].

Object Detection in Omnidirectional Images

35

Figure 31 - SSD framework pipeline [60]

Different from YOLO, the SSD model architecture consists of a truncated base network

followed by a set of convolutional layers whose size is decreased progressively, providing

predictions at multiple scales. Then, feature maps computed are going through a 3x3

convolution to produce bounding boxes.

As a result of the diversity of DL model architectures, different open-source frameworks

have been developed to achieve good performance on object detection. However, the fact

that such frameworks are usually fed by 2D images, led recent research works to evaluate

object algorithms on omnidirectional images.

3.3.1. Object Detection in Omnidirectional Images

Object detection in 2D images with DL approaches was a great achievement that technology

advances have promoted to solve prior challenges. However, due to the emergence of 360º

technology, new challenges have been created. The first challenge results from the need of

projecting a 360º image onto a 2D plane which can be achieved through different methods,

as mentioned in Chapter 2.

Given its simple approach to convert a spherical plane into a cartesian grid, the ERP has

been established as the mainstream sphere-to-plane conversion method for project 360º

content. Therefore, this dissertation relies on the ERP approach rather than on the cubemap,

SPP, or CPP projections. Consequently, this section provides an overview of state-of-art

algorithms and frameworks for detecting objects in ERP images.

Unfortunately, ERP applied to images captured from 360º capture devices create severe

distortion that is mostly visible in objects near the poles [61]. In Figure 32, an ERP image

example is depicted, followed by the poles region identification, in Figure 33. The visible

Object Detection in Omnidirectional Images

36

distortion can hamper the use of 2D image-based object detection models in omnidirectional

images.

Figure 32 - Equirectangular image example

Figure 33 - Poles Regions Identification. The top and bottom red overlay regions represent the north and south

pole, respectively.

In addition to the visual changes that ERP produces, another issue has been identified by

state-of-the-art researches. The difficulty to overtake the lack of omnidirectional open-

source labeled image datasets, as already denoted in our initial research experiments, makes

an accurate omnidirectional image-based object detection algorithm a hard goal to achieve.

These problems led the DL community to propose different approaches to keep a good object

detection performance even facing ERP image challenges. “Object Detection in

Equirectangular Panoramas” [61] and “Pano-RSOD Dataset” [62] were two of the first

research works that have been pursued focusing on this field.

The first work [61] proposes a multi-projection variant of the YOLO detector that tries to

solve identified problems through multiple stereographic sub-projections. In their

experiments, a data set extracted from 22 4k-resolution videos with 6431 objects was

Object Detection in Omnidirectional Images

37

considered. The solution, as presented in Figure 34, consists of three stages: stereographic

projection, detection, and bounding box post-processing.

Figure 34 - First Research Process Pipeline [61]

First, to cover the whole image two projections with a horizontal and vertical span of 180

degrees are required. Nonetheless, in this implementation, object distortion is still large, and,

for that reason, four sub-projections with an overlap of 90 degrees were defined for

processing. After the stereo projection stage, each sub-projection is processed by the YOLO

detector, producing a set of detections with bounding boxes, confidences, and class names

associated. Finally, bounding boxes returned by the last step are re-aligned and results are

presented.

The second work [62] starts by creating a non-open-source dataset of 9402 images with 2048

x 1024 pixels extracted from the streetscape of downtown Zhongshan City, Guangdong

Province, China, and each image has 9 objects on average [63]. Then, through LabelImg

open-source tool [29], all the images have been labeled and reviewed and, finally, the dataset

consisted of 4 categories with a total of 87542 bounding boxes.

The authors evaluated different object detection algorithms based on both one-stage and two-

stage frameworks. Generally, YOLOv3 outperforms the other methods. In terms of speed, it

performs better, reaching 13 milliseconds of processing time per detection. Furthermore,

considering the accuracy metric, it achieved top performance, 1% above than the second-

best method, Faster R-CNN. The accuracy of car and person classes also obtained higher

values when using the YOLOv3 algorithm, however, for sign and line categories, the highest

values were reached with Faster R-CNN.

Among the presented research works, the need for evaluating and comparing algorithms’

performance was pointed out. In the same way, this dissertation requires an overview of the

performance metrics used to provide the researchers with useful information at the decision-

Object Detection in Omnidirectional Images

38

making stage. Therefore, the next section aims to present a detailed explanation of such

performance metrics’ computation.

3.3.2. Performance Metrics

Given the need for comparing object detection algorithms’ performance, a set of common

evaluation metrics have been introduced. Therefore, the evaluation performance metrics

section provides a useful explanation of mean average precision (mAP), intersection over

union (IoU), and floating operation per second (FLOPs). These metrics along with a deep

analysis of provided results, are fundamental to choose the solution that betters fits the target

goal.

First, one of the most common metrics used to analyze the accuracy of predictions produced

by trained deep neural networks is the IoU. Generally, it computes the similarity between

the bounding box predicted by the model and the ground truth bounding box (desired model

output). This performance metric, as depicted in Figure 35, is calculated by dividing the

overlapping area and the area of union.

Figure 35 - Intersection over union calculation

Taking into consideration a real example where the target is detecting traffic signs, the

trained model has predicted the red bounding box demonstrated in Figure 36, while the

desired output was the green bounding box. By applying the above-mentioned formula, the

IoU is computed to evaluate the model’s performance. Its values are within the range

between 0 and 1 (or 0 and 100 if we are looking at percentage values) and the more accurate

prediction, the higher is IoU value.

Object Detection in Omnidirectional Images

39

Figure 36 - Real example of Intersection Over Union [64]

In addition to IoU, mean average precision (mAP) has been a typical performance metric to

evaluate the results produced by DL models. Before explaining the mAP, recall, and

precision metrics and, subsequently, their inherent error types used should be clarified.

Firstly, when we are facing a binary classification problem, there are four possible prediction

outcomes: true positive (TP), false positive (FP), false negative (FN), and true negative (TN).

Assuming that our trained model identifies the presence of a person in an image. Then, we

have a positive class, person, and a negative class, no person. Therefore, a true positive

occurs when the model correctly predicts the positive class. In the same way, a true negative

is an outcome where the model correctly predicts the negative class. On the other hand, false-

positive is the given classification when the model incorrectly predicts a positive class, while

false negative is the outcome when the negative class is incorrectly predicted. Table 1

summarizes these concepts applied to the given scenario.

Object Detection in Omnidirectional Images

40

Table 1 - Confusion Matrix. Actual class column labels correspond to the reality labels while predicted class

columns correspond to the predicted labels.

From these values, it is important to analyze not only the proportion of correct positive

predictions (precision) but also the proportion of actual positives that were correctly

identified (recall). The above-mentioned metrics, namely, precision and recall are computed

as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

After understanding the above concepts, the standard performance measure for object

detection, mAP, can be introduced. Although a consensual definition of the way it should be

computed is not established yet among researchers, this dissertation follows the most

common definition: the average of areas under the recall-precision curve (Average Precision

- AP) for all the classes. In Figure 37, a precision-recall curve example is depicted.

Figure 37 - Precision-Recall Curve example

Object Detection in Omnidirectional Images

41

As above-demonstrated, average precision (AP), which corresponds to just one label class,

can be computed by finding the area below the precision-recall curve (orange line in Figure

37). Finally, to compute the desired mAP, the average AP for all classes must be calculated.

These metrics are usually associated with IoU. The IoU metric defines the minimum

threshold to consider a correct prediction. For instance, “AP@0.5” means that the values of

AP were measured considering that correct predictions have, at least, 0.5 of IoU.

Lastly, to evaluate models’ performance, the floating-point operations per second (FLOPs)

metric was also taken into consideration in this research. According to International Business

Machines Corporation (IBM) [65], FLOPs value is a critical measure of computing power

and speed. Consequently, hardware resources needed to perform predictions are usually

estimated by analyzing this useful measure.

3.4. Final Remarks

With the rapid development of technology, different approaches and tools have been recently

introduced. Computer Vision approaches have been explored to provide algorithms that

allow us to identify patterns through image feature extraction, creating new application

scenarios, such as object detection.

Object detection has been performed through traditional and DL approaches: traditional

methods are subdivided into informative region selection, feature extraction, and

classification steps, otherwise DL methods do not need a manual feature extracting process

from raw input data. Due to this great advantage, DL has been mostly explored over

traditional methods and, consequently, new DL methods have been introduced.

Object detection with DL techniques that are based on 2D images has shown a reasonable

performance. However, over the last few years, due to the 360º cameras market growth and

the new requirements that the technology brings, an efficient object detection method is

required. Current research works on this field identified the lack of omnidirectional image

datasets and the distortion that ERP produces as the main challenges that current algorithms

could face.

For that purpose, we aim to evaluate the performance of 2D image-based algorithms on the

omnidirectional image dataset acquired in the next chapter. Before that section, the research

problem along with the methodology is described in detail.

Object Detection in Omnidirectional Images

42

Object Detection in Omnidirectional Images

43

 Research Problem, Methodology, and

Comparative Evaluation

Chapter 4 focuses on providing a clear description of the proposed research problem and

research methodology. Firstly, an introduction to the problem is carried out to give the reader

the knowledge needed for understanding its motivation. Succeeding that section, the research

problem is presented, followed by an explicit methodology definition, including well-

defined steps.

Finally, a comparative evaluation of 2D image-based object detection algorithms on 2D and

omnidirectional image datasets used as the baseline for our research is detailed. Then, the

training process with the inherent steps, as well as the analysis of results is presented.

4.1. Research Problem

Omnidirectional vision on object detection frameworks to capture the full field of view

(FOV) of 360º is increasingly becoming a requirement on the most demanding systems.

Technology advances in many areas made 2D cameras not enough to ensure the efficiency

of a surveillance system. Their limited FOV and, subsequent blind spots, have to be covered

to allow simultaneous surveillance in all view directions, including all-around from the

ground, mid-level above ground to sky.

Therefore, 2D video cameras no longer comply with the concept of an environment where

everything should be possible to be observed, scrutinized, and identified (obviously subject

to the legal conditions in force). For instance, the limited FOV and relatively low resolutions

of most current systems, are constraining factors for such types of requirements, which may

not allow achieving the target performance levels specified for systems with intelligent

functionalities.

Different view directions mean, obviously, different challenges. At the ground level, threats

such as people, vehicles, animals, or door fronts require special attention. On the other hand,

surveillance at the mid-level above ground allows buildings, windows, or balconies to be

efficiently monitored. Finally, at the sky-level, it comes one of the most recent threats of

privacy invasion, for instance: unmanned aerial vehicles (UAVs), depicted in Figure 38.

These vehicles, which can be autonomously or remote-controlled, can fly over a target area

which may lead to invasion of private properties, for example [66].

Object Detection in Omnidirectional Images

44

Figure 38 - Privacy invasion cartoon [67]. UAVs can only be detected and identified using omnidirectional vision

on the ground because they can appear from any direction.

Although different view directions can be cover by multiple 2D capture devices, in the long

term, investing in an omnidirectional camera is usually a better solution to reduce hardware

costs. Additionally, processing images from different sources requires object detection

frameworks to be rearranged to aggregate the results from the execution of object detection

tasks in each image.

Given the fact that most object detection systems do not use omnidirectional, such format

on its own poses implicit challenges to current DL algorithms. The main concerns are

caused, not only by the huge resolution of each image but also by the inherent geometric

distortions that may occur as a result of the planar projection used in their representation.

Therefore, this work is a contribution to the DL community by exploring the well-known

object detection algorithms applied to omnidirectional images. Then, the next section aims

to describe the research methodology that was followed within the scope of this dissertation.

4.2. Research Methodology

The initial investigation on 2D image datasets and the development of an omnidirectional

dataset, stated in Section 2.4, allowed us to define the research methodology carried out in

this dissertation, following the workflow demonstrated in Figure 39.

Object Detection in Omnidirectional Images

45

Figure 39 - Research Methodology Stages

As depicted in the above Figure, this research consisted of three fundamental stages

comprised of multiple sub-steps. On the first hand, a comparative performance evaluation of

object detection algorithms trained in 2D image datasets on 2D and omnidirectional datasets

had to be performed to allow identifying the main drawbacks and differences between the

execution of object detection tasks on both image types. For that purpose, the

omnidirectional image dataset and the Cityscapes subset were defined as the source data to

develop the comparative performance evaluation on recognizing “urban objects” in

omnidirectional images.

Then, after proceeding to the analysis of results achieved in the previous stage, a set of

diversified object detection algorithms were trained in the acquired omnidirectional image

dataset. This stage allowed us to carry out a domain-specific approach to improve object

detection accuracy when compared to 2D image-based methods. The resulting DL

algorithms were benchmarked to provide the DL community with the information needed to

understand each algorithm’s behavior.

Moving on to the final stage, the development of a framework for enhancing object detection

accuracy on omnidirectional was carried out. This stage involved identifying and denoting

the main failure points of trained algorithms and investigating an optimized approach to

overcome such problems. Finally, the proposed framework was evaluated and compared to

the previous methods.

4.3. Comparative Performance Evaluation

This section aims to establish the comparative performance evaluation of currently available

networks trained on conventional resolutions and FOV when compared to an

omnidirectional image dataset. Firstly, not only the definition of DL algorithms to be used

but also a short justification for each choice is provided. At this stage, the main differences

between networks are demonstrated.

Object Detection in Omnidirectional Images

46

The evaluation environment was still the same on both datasets and the goal was measuring

two Key Performance Indicators (KPIs): mAP and IoU. Moreover, all network configuration

parameters used are described to repeat this experiment several times, but not consecutively

(e.g. one month later). Finally, performance results and specific aspects analysis, as well as

similarities and differences between evaluation experiments, were registered.

4.3.1. Training Process

To perform the training process for the comparative evaluation, Single Shot MultiBox

Detector (SSD) in addition to You Only Look Once (YOLO) version 3 (v3) were selected.

On the first hand, the SSD [60] approach, due to its unified framework, training and inference

speed, and accuracy performance demonstrated on COCO and PascalVOC datasets were

used during this experiment. Our implementation of the SSD algorithm follows an open-

source Keras-based implementation [68] and it consists of retraining the model on the

Cityscapes subset. Therefore, by getting model weights from the ImageNet dataset training

process and using the parameters described in Table 2, the training process was carried out.

Property Description Value

Network Parameters

img_height Network input height 512

img_width Network input width 512

img_channels Network input channels 3

swap_channels
The color channel order

(BGR, RGB,…)
[2, 1, 0]

scales
List of anchor boxes

scaling factors

0.07

0.15

0.3

0.45

Object Detection in Omnidirectional Images

47

0.6

0.75

0.9

1.05

aspect_ratios
List of aspect ratios for the

anchor boxes

[1.0, 2.0, 0.5],

[1.0, 2.0, 0.5, 3.0,

0.33333333],

[1.0, 2.0, 0.5, 3.0,

0.33333333],

[1.0, 2.0, 0.5, 3.0,

0.33333333]

[1.0, 2.0, 0.5, 3.0,

0.33333333],

[1.0, 2.0, 0.5],

[1.0, 2.0, 0.5]

normalize_coords
Use relative instead of

absolute coordinates
True

batch_size
Number of images

processed in one batch
8

final_epochs Max. number of epochs 100

n_classes
Number of output label

classes
5

Optimizer Parameters

optimizer --- Adam

Object Detection in Omnidirectional Images

48

learning rate
The initial learning rate for

training
0.001

beta_1

The exponential decay rate

for the first moment

estimates

0.9

beta_2

The exponential decay rate

for the second-moment

estimates

0.999

epsilon
Constant for numerical

stability
1−8

decay

How the learning rate of

the optimizer changes over

time

0.0

Loss Function Parameters

Loss Function --- SSD_Loss

neg_pos_ratio

The maximum ratio of

negative to positive ground

truth boxes to include in

the loss computation

3

n_neg_min

The minimum number of

negative ground truth

boxes to enter the loss

computation, per batch

0

alpha

A factor to weight the

localization loss in the

computation of the total

loss

1

Model Checkpoint Callback Parameters

save_best_only
Save all models or only the

best
True

Object Detection in Omnidirectional Images

49

save_only_weights
Save the whole model or

only weights
False

monitor Metric to be monitored val_loss

Table 2 - SSD Model Training Parameters

Initial experiments on the SSD training process demonstrated that using our local hardware

resources was not a feasible option to proceed with the process, as a consequence of

exhaustive hardware resource consumption. Then, a cloud-based solution was implemented,

allowing to manipulate on-demand computing-accelerated instances, according to the

approach’s needs.

One of the most-known cloud-based solution provider, Amazon Web Services (AWS) [69],

offers computing instances to enable individuals or organizations to train machine learning

models through their Sagemaker service [70]. After performing a cost-benefit analysis,

ml.p2.xlarge instance seemed to be the most appealing instance to be selected. This instance

provides 4 virtual CPU (vCPU), 1 K80 GPU, 61 Gibibytes (GiB) memory, and high network

performance.

Following a recommended implementation, Sagemaker service was used along with Simple

Cloud Storage Service (S3), also provided by AWS. Both services combined allowed model

training progress to be more dynamic given that, best models were, successively, uploaded

to the storage service at the time they are available.

Although Sagemaker service offers pre-built object detection frameworks that provide high-

level abstraction during the training stage, a Sagemaker algorithm was implemented for

controlling more efficiently the whole process. Therefore, the implementation involved

developing a lightweight, standalone, executable package of software (known as docker

container) that contains everything needed to run an application, including code, system

libraries, settings, etc. [71]. This approach is very helpful when we are attempting to isolate

the application from its running environment.

The above-mentioned Keras-based source code implementation of SSD was modified to

produce a docker container, a process known as dockerizing an application. Finally, after its

rearrangement, the resulting Docker container was published to another AWS service,

Object Detection in Omnidirectional Images

50

Elastic Container Registry (ECR) [72], which allows SSD model training in Sagemaker

service.

In addition to SSD DL model training implementation, the YOLOv3 [73] training framework

was also used to enhance the diversity of the proposed reference performance. Our YOLOv3

implementation follows an open-source repository implementation which also provides a

step-guide to train this neural network on a custom dataset through transfer-learning

techniques. Given the above-mentioned implementation requires a specific framework to be

executed, Darknet [74] was locally compiled and, subsequently, installed. This open-source

neural network framework, written in C and CUDA supports both CPU and GPU

computation.

During the initial stage of pipeline implementation, Cityscapes subset annotations, stored in

PascalVOC format for the first training process, were converted to YOLO format and then,

validated to ensure conversion process efficiency. Afterward, neural network parameters

were adjusted to our dataset. These parameters are identified in Table 3.

Property Description Value

Network Parameters

img_height Network input height 512

img_width Network input width 512

img_channels Network input channels 3

momentum
How much history affects the

further change of weights
0.9

batch
Number of images processed

in one batch
64

subdivisions
Number of mini-batches to be

processed by the GPU at once
32

decay

Weaker updating of weights

for eliminating disbalance in

the dataset

0.0005

angle
Random changes on images

rotation on training
0

saturation
Random changes on images

saturation on training
1.5

exposure
Random changes on images

brightness on training
1.5

Object Detection in Omnidirectional Images

51

hue
Random changes on images

color on training
0.1

learning rate
The initial learning rate for

training
0.001

burn_in

For the first X batches,

slowly increase the learning

rate until its initial value

defined above.

1000

max_batches Max. number of iterations 10000

policy
Policy for changing the

learning rate
steps

steps

At these number of iterations,

the learning rate is multiplied

by the scales factor

8000, 9000

scales --- 0.1, 0.1

classes
Number of output label

classes
5

anchors

Object bounding box ratios.

Each pair of values is,

respectively, height and

width.

7, 18, 18, 26, 10, 48, 32,

47, 19, 93, 56, 80, 38,186,

96,136, 133,279

Table 3 - YOLOv3 Model Training Parameters

YOLOv3 training process was computationally hard to accomplish through available

hardware resources, identically to the SSD training process. However, at this time, AWS

Sagemaker service, due to its associated costs, was replaced by Google Colaboratory (or

Colab) [75]. Colab is an open-source framework that allows notebooks to be executed on

Google’s could servers, providing hardware accelerators, including Tensor Processing Unit

(TPU) and GPU options.

The final training pipeline consisted of, firstly, downloading the Darknet framework from

its repository to Google Drive, which was the storage service used to replace the AWS S3

service. Then, after preparing the labeled dataset and changing the YOLOv3 network

configuration parameters file to include the above-described parameters, a Python 3

notebook was created in Google Colab along with the GPU hardware accelerator option

enabled. Later, our Google Drive was mounted in Colab’s notebook to share resources

between both services. Finally, by providing a neural network with pre-trained weights for

Object Detection in Omnidirectional Images

52

the convolutional layers, the DL model was trained with, successive weights uploads to the

drive.

4.3.2. Analysis of Results

The comparative performance results analysis section aims to present the main drawbacks

identified as well as the defined metrics results to show the behavior of trained models

resulting from the training process above-demonstrated.

Firstly, the resulting model provided by the SSD training was evaluated on the Cityscapes

subset. This experiment did not require a cloud-based approach given that the inference

process needs less sophisticated hardware requirements than DL training. Therefore, the

resulting performance for SSD implementation was achieved through a local approach with

a Personal Computer (PC) with the following hardware specifications: Intel Core i7-8750h

CPU @ 2.20GHz-2.21 GHz; 16GB RAM; GeForce GTX 1050. On the other hand, YOLOv3

inference analysis was still executed on Google Colab by using the last trained weights and

DL neural network configurations of the training process.

Performance results of DL models on defined Cityscapes subset are demonstrated in Table

4. Values for both AP and mAP values were computed with a minimum intersection over

union (IoU) threshold of 0.5, represented in table column headers as AP@0.5 and mAP@0.5,

respectively.

 AP@0.5 (%) mAP@0.5

(%) car truck bus motorcycle person

SSD 73.2 64.2 65.8 50.1 74.3 65.5

YOLOv3 76.3 63.8 67.1 51.9 75.3 66.9

Table 4 - Performance results on Cityscapes subset with DL models trained on 2D image-based dataset.

The results table shows that in terms of IoU and mAP metrics, the YOLOv3 DL model

outperforms the SSD model. While the first-mentioned model achieved a mAP@0.5 of

66.9%, the other only achieved 65.5%. One of the pieces of evidence that led us to find a

good reason for this outperforming scenario is the neural network input size that was defined

for each one. The most accurate model, YOLOv3, has an input size bigger (608x608) than

SSD (512x512), which could be a fundamental aspect to achieve the final results.

Object Detection in Omnidirectional Images

53

Going deeper into the analysis, car and person labels are the most accurate labels on both

models due to their higher number of samples on the training dataset. In opposition, given

the lack of motorcycle samples, it was the most inaccurate label. In Figure 40, some

examples of detections are depicted. On the left side, two people who were walking around

were successfully detected although their proximity. On the other hand, the right side shows

efficient car detection, even in difficult conditions such as small objects located at the mid-

level.

Figure 40 - Cityscapes subset detection examples with DL models trained on 2D images

After analyzing trained model results on the Cityscapes subset, the same models were, then,

evaluated on the omnidirectional presented dataset. Given that the acquired dataset does not

contain all object classes covered by DL models, evaluation results only contain the

performance for car, bus, and person labels. Table 5, which provides performance results on

the 360º dataset, follows the same data pattern that was used on the previous evaluation

results table.

 AP@0.5 (%) mAP@0.5

(%) car bus person

SSD 47.1 28.3 41.5 39.0

YOLOv3 49.6 30.1 44.7 47.7

Table 5 - Performance results on omnidirectional image dataset with DL models trained on 2D image-based

dataset.

Comparing with the evaluation performed on the Cityscapes dataset, the current performance

on the omnidirectional dataset has dramatically decreased. Deep learning models have

shown clear difficulties to detect an object in this type of image. Car and person labels, the

Object Detection in Omnidirectional Images

54

most accurate classes in the previous experiment, have changed from 76.3 and 75.3 to 49.6

and 44.7 AP@0.5 values in the YOLOv3 case-study, respectively. In the SSD model, the

performance impact was very similar, given that AP@0.5 values have decreased from 73.2

and 44.3 to 47.1 and 41.5. An image example of an evaluation performance experiment is

depicted in Figure 41, which contains a well-detected car, driving in a roundabout.

Figure 41 - Omnidirectional image detection example with a DL model trained on a 2D image dataset (1)

Although the Cityscapes subset includes cars, buses, and people in different poses,

viewpoints, and climate conditions, omnidirectional images have particular aspects that can

lead DL models not to detect objects with high accuracy. Firstly, ERP makes images to

contain objects in an unusual view pose which made the detection procedure, an unstable

process. On the other hand, the object size at the images’ mid-region is usually lower.

By splitting the image into three regions (left, center and right), we noted that 63% of non-

detected objects are at the center, while just 37% of the remaining failures are distributed by

the other regions. These results are demonstrated in Table 6 and led us to conclude that the

most problematic objects are located at the center of the image.

Left Center Right

16% 63% 21%

Table 6 - Non-detected objects by image region with a DL model trained on a 2D image dataset

Figure 42 and Figure 43 depict the above-mentioned identified problem. Even though the

left and right image region objects were well identified, cars located at the mid-level were

not. As demonstrated, at the mid-level of images, objects are usually smaller and trained-

models’ inaccuracy was even more clear.

Object Detection in Omnidirectional Images

55

Figure 42 - Omnidirectional image detection example with a DL model trained on a 2D image dataset (2)

Figure 43 - Omnidirectional image detection example with a DL model trained on a 2D image dataset (3)

As long as object detection algorithms based on 2D images did not meet the accuracy

requirements needed in the most demanding contexts, new approaches to optimize the

acquired results were investigated.

4.4. Final Remarks

In most recent years, the object detection field has been perhaps one of the most researched

topics. People's daily routine has been impacted by such technology however, new

Object Detection in Omnidirectional Images

56

challenges have been raised. Due to 2D camera limitations, UHD 360º cameras have been

proposed to perform computer vision tasks to overcome those challenges.

This chapter presented and described the research problem to provide the DL community

with a useful research study about object detection and recognition in omnidirectional

images. Therefore, three fundamental stages were defined: comparative performance

evaluation, domain-specific DL algorithms’ training and, proposal of a framework for

improving results of object detection accuracy in this image type.

The comparative performance carried out in this chapter denoted that the accuracy

significantly decreases from 2D to omnidirectional image dataset, as expected. Moreover,

both 2D image-based algorithms demonstrated more difficulty to detect objects near the

image center than elsewhere. Given the lack of stability, the next chapter presents

mechanisms for improving the achieved results, starting with a domain-specific training

approach.

Object Detection in Omnidirectional Images

57

 Framework for Enhancing Object Detection in

Omnidirectional images

In this chapter, a framework for improving object detection algorithms in omnidirectional

images is proposed. Firstly, domain-specific DL training experiments to overcome the

problematic situations identified in the comparative performance evaluation is carried out.

Then, the resulting omnidirectional image-based algorithms are benchmarked to understand

the main differences between such models.

Following that section and taking as input the analysis of results from the above-mentioned

experiments, an improved framework architecture is presented and evaluated. Finally,

aspects concerning the deployment of the proposed framework are considered to provide the

reader with the fundamental considerations of the DL algorithms in the decision-making

stage.

5.1. Omnidirectional Image Dataset Training

This section details the training experiments specifically applied to the omnidirectional

image dataset which was used as input. The same above-used network architectures were

selected: SSD and YOLO. However, at this time, we evaluated different versions of each

one along with a new architecture: Mask R-CNN.

Different network input sizes were verified, attempting to establish a relationship between

performance metrics and network input size and complexity. In terms of performance

metrics used, mAP, model complexity, and FLOPs were taken into consideration. Moreover,

as in the previous experiments, due to the lack of hardware resources to perform required

experiments, AWS and GoogleColab cloud-computing providers were used to accelerate the

training process.

5.1.1. Training Process

Firstly, different variations of YOLO were trained on the omnidirectional image dataset.

Trained models include the standard version of YOLOv4 and YOLOv3 with an input size of

608x608x3, a faster and less complex version of YOLO, called Tiny-YOLO, in both third

and fourth versions with an input size of 416x416x3 and, finally, standard YOLOv4 with an

Object Detection in Omnidirectional Images

58

input size of 800x448x3. Neural networks’ parameters that were used during YOLO models’

training are depicted in Table 7 and Table 8.

Property YOLOv3 YOLOv4
YOLOv4

(800x448)

Network Parameters

img_height 608 608 800

img_width 608 608 448

img_channels 3 3 3

momentum 0.9 0.9 0.9

batch 64 64 64

subdivisions 16 16 16

decay 0.0005 0.0005 0.0005

angle 0 0 0

saturation 1.5 1.5 1.5

exposure 1.5 1.5 1.5

hue 0.1 0.1 0.1

learning rate 0.001 0.0013 0.0013

burn_in 1000 1000 1000

max_batches 12000 12000 12000

policy steps steps steps

steps 9600, 10800 9600, 10800 9600, 10800

scales 0.1, 0.1 0.1, 0.1 0.1, 0.1

mosaic ----- 5 1 1

classes 6 6 6

anchors

12, 16, 19, 36, 40,

28, 36, 75, 76, 55,

72, 146, 142, 110,

192, 243, 459, 401

12, 16, 19, 36, 40,

28, 36, 75, 76, 55,

72, 146, 142, 110,

192, 243, 459, 401

12, 16, 19, 36, 40,

28, 36, 75, 76, 55,

72, 146, 142, 110,

192, 243, 459, 401

Table 7 - Standard YOLOv3 and YOLOv4 and YOLOv4 (800x448) network parameters

5 YOLOv3 model does not support ‘mosaic’ parameter

Object Detection in Omnidirectional Images

59

 Property Tiny-YOLOv3 Tiny-YOLOv4

Network Parameters

img_height 416 416

img_width 416 416

img_channels 3 3

momentum 0.9 0.9

batch 64 64

subdivisions 16 16

decay 0.0005 0.0005

angle 0 0

saturation 1.5 1.5

exposure 1.5 1.5

hue 0.1 0.1

learning rate 0.001 0.00261

burn_in 1000 1000

max_batches 12000 12000

policy steps steps

steps 9600, 10800 9600, 10800

scales 0.1, 0.1 0.1, 0.1

classes 6 6

anchors
10,14, 23,27, 37,58, 81,82,

135,169, 344,319

10,14, 23,27, 37,58,

81,82, 135,169, 344,319

Table 8 - Tiny YOLOv3 and YOLOv4 network parameters

In addition to YOLO model experiments, SSD architecture was also evaluated. Experiments

included two variations of this architecture, modifying not only the network input size but

also loss function attributes. As well as demonstrated for YOLO models, Table 9 presents

SSD with 300x300x3 of input size and SSD with 512x512x3 of input size network

parameters.

Object Detection in Omnidirectional Images

60

Property SSD 300x300 SSD 512x512

Network Parameters

img_height 300 512

img_width 300 512

img_channels 3 3

swap_channels [2, 1, 0] [2, 1, 0]

scales

0.07,

0.15,

0.3,

0.45,

0.6,

0.75,

0.9,

1.05

0.07,

0.15,

0.3,

0.45,

0.6,

0.75,

0.9,

1.05

aspect_ratios

[1.0, 2.0, 0.5],

[1.0, 2.0, 0.5, 3.0,

0.33333333],

[1.0, 2.0, 0.5, 3.0,

0.33333333],

[1.0, 2.0, 0.5, 3.0,

0.33333333],

[1.0, 2.0, 0.5],

[1.0, 2.0, 0.5]

[1.0, 2.0, 0.5],

[1.0, 2.0, 0.5, 3.0,

0.33333333],

[1.0, 2.0, 0.5, 3.0,

0.33333333],

[1.0, 2.0, 0.5, 3.0,

0.33333333]

[1.0, 2.0, 0.5, 3.0,

0.33333333],

[1.0, 2.0, 0.5],

[1.0, 2.0, 0.5]

normalize_coords True True

batch_size 8 8

final_epochs 100 100

n_classes 6 6

Optimizer Parameters

optimizer SGD Adam

learning rate 0.001 0.001

momentum 0.9 ----

Object Detection in Omnidirectional Images

61

beta_1 ---- 0.9

beta_2 ---- 0.999

epsilon ---- 1−8

nesterov false ----

decay 0.0 0.0

Loss Function Parameters

Loss Function SSD_Loss SSD_Loss

neg_pos_ratio 3 3

n_neg_min 0 0

alpha 1 1

Model Checkpoint Callback Parameters

save_best_only True True

save_only_weights False False

monitor val_loss val_loss

Table 9 - SSD 300x300 and SSD 512x512 network parameters

Finally, an instance segmentation DL network, namely Mask R-CNN, was prepared to

provide the models’ benchmarking analysis with diversified network structures. For that

purpose, an open-source online available implementation [77] to adjust the provided solution

to our context and dataset was extended. The model’s parameters used in the training stage

are described in Table 10. The process was dramatically accelerated by using transfer-

learning techniques by taking pre-trained weights as a starting point for our train. In this

specific case, we took advantage of weights provided by a Mask R-CNN train on the MS

COCO dataset.

 Mask R-CNN

Property Value

num_classes 6

gpu_count 1

images_per_gpu 2

backbone resnet101

compute_backbone_shape None

backbone_strides [4, 8, 16, 32, 64]

Object Detection in Omnidirectional Images

62

fpn_classif_fc_layers_size 1024

top_down_pyramid_size 256

rpn_anchor_scales (32, 64, 128, 256, 512)

rpn_anchor_ratios [0.5, 1, 2]

rpn_anchor_stride 1

rpn_nms_threshold 0.7

rpn_train_anchors_per_image 256

pre_nms_limit 6000

post_nms_rois_training 2000

post_nms_rois_inference 1000

use_mini_mask True

mini_mask_shape (56, 56)

image_resize_mode square

image_min_dim 800

image_max_dim 1024

image_min_scale 0

image_channel_count 3

mean_pixel np.array([123.7, 116.9, 103.9])

train_rois_per_image 200

roi_positive_ratio 0.33

pool_size 7

mask_pool_size 14

mask_shape [28, 28]

max_gt_instances 100

rpn_bbox_std_dev np.array([0.1, 0.1, 0.2, 0.2])

bbox_std_dev np.array([0.1, 0.1, 0.2, 0.2])

detection_max_instances 100

detection_nms_threshold 0.3

learning_rate 0.001

learning_momentum 0.9

weight_decay 0.0001

Object Detection in Omnidirectional Images

63

loss_weights

{“rpn_class_loss”: 1.,

“rpn_bbox_loss”: 1.,

“mrcnn_class_loss”: 1.,

“mrcnn_bbox_loss”: 1.,

“mrcnn_mask_loss”: 1.}

use_rpn_rois True

train_bn False

Table 10 - Mask R-CNN network parameters

5.1.2. Analysis of Results

The analysis of results section focuses on providing a detailed evaluation of the trained

models' report. As previously referred, three fundamental performance metrics were

measured: mAP, to evaluate models’ accuracy, FLOPs, for taking into consideration the

computation cost of each deep neural network, and, finally, the model complexity, given by

the number of learning parameters. Furthermore, each model inference speed was computed

by measuring the elapsed time between the exact moment when the algorithm receives an

image and the moment when its predictions are available.

To be possible getting a nonsubjective analysis, the evaluation environment was still the

some for measuring all the performance metrics: a Windows 10 machine with Intel® Core™

i7-8750H CPU @2.20GHz 2.21 GHz; 16,0 GB RAM; NVIDIA GeForce GTX 1050.

Results were later aggregated so that it is easier to compare each one accordingly to different

criteria. Figure 44 and Figure 45 present the final report of the deep neural networks

evaluation process. The first figure relates the models’ mAP@0.5 (y-axis) with their

computational cost (x-axis), as well as their complexity (circle diameter). On the other hand,

the second figure depicts not only the relationship between the models’ mAP and computed

inference time but also their complexity.

Object Detection in Omnidirectional Images

64

Figure 44 - Ball chart reporting models' mean average precision (mAP) vs computational complexity

In regard to mAP, the Mask R-CNN DL algorithm provided the highest score (89%),

whereas Tiny YOLOv3 seemed to have more difficulties in detecting objects, given that it

only achieved 59% of mAP. In the same way as the less accurate model, SSD 300x300 and

Tiny YOLOv4 did not efficiently detect objects with high accuracy. Afterward, standard

YOLOv3 and YOLOv4 800x448 reached a similar result: 80% and 82%, respectively. In

opposition, standard YOLOv4 models outperformed the aforementioned methods by

providing 86% of mAP. Finally, the remaining model, SSD 512x512, demonstrated some

problems in getting a high-level accuracy rate, by achieving a 73% mAP.

In terms of complexity, three groups of similar models were identified. Firstly, Tiny

YOLOv4, followed by the Tiny YOLOv3 DL algorithm belongs to the less complex group,

having a measured complexity of around 25 megabytes (MB). Different from the first group,

the medium-complexity group just includes the SSD 300x300 model with about 100 MB.

Lastly, the group where the vast majority of models fit aggregates models that have a

measured complexity close to 250 MB. That group contains the standard YOLOv3 and

YOLOv4, YOLOv4 800x448, SSD 512x512, and Mask R-CNN.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 100 200 300 400 500 600 700

m
A

P
 [

%
]

Operations [G-FLOPS]

Standard YOLOv4 Standard YOLOv3 Tiny-YOLOv4 Tiny-YOLOv3
YOLOv4 - 800x448 SSD 512x512 SSD 300x300 Mask R-CNN

250 MB 50 MB 25 MB 100 MB

Object Detection in Omnidirectional Images

65

Unfortunately, no satisfactory correlation between the number of parameters of models and

mAP was found. However, models with fewer parameters tend to be ineffective at detecting

objects. Concerning the relation between mAP and computational complexity, we noticed

that the model which requires more complex hardware resources is also the most accurate.

The same pattern was not followed by the remaining models given that, in some cases, less

complex models outperformed more complex models. For instance, Tiny YOLOv4 was

more accurate than SSD 300x300, although its minimal cost in terms of hardware resources.

Figure 45 - Ball chart reporting models' mean average precision (mAP) vs inference time

In opposition to the previous figure, Figure 45 shows the relation between the mAP and the

time each model needs to detect objects in a single image, referred to as inference time. As

above-described, the evaluation conditions of all models were the same to ensure the

validation of analysis and comparison of results. To clarify such results, Table 11 presents

each trained DL model associated with the measured inference time as well as its standard

deviation.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

m
A

P
 [

%
]

Inference Time (ms)

Standard YOLOv4 Standard YOLOv3 Tiny-YOLOv4 Tiny-YOLOv3

YOLOv4 - 800x448 SSD 512x512 SSD 300x300 Mask R-CNN

25 MB 50 MB 100 MB 250 MB

Object Detection in Omnidirectional Images

66

DL Model Inference Time (ms)

Tiny-YOLOv4 171 ± 3.21

Tiny-YOLOv3 193 ± 2.98

SSD 300x300 220 ± 5.46

Standard YOLOv4 349 ± 5.83

Standard YOLOv3 398 ± 6.41

YOLOv4 - 800x448 403 ± 5.95

SSD 512x512 451 ± 8.23

Mask R-CNN 2011 ± 4.23

Table 11 - Inference Time Results. DL model name presented in the first column, associated with the measured

inference time, in the second column.

By comparing each model individually, Mask R-CNN was undoubtedly the model that

requires more time to return its detection results (2011 ms). Despite the long processing time,

these results were more accurate in comparison to the remaining models. On the other hand,

for the models with the lowest inference time, the values are usually the least accurate, which

tends to be a pattern on the results obtained in this study. Tiny-YOLOv4, Tiny-YOLOv3

and, SSD 300x300 belong to the fastest models’ group, however that group is characterized

by its lack of accuracy.

Moving on to the mid-level algorithms, their measured inference time was very similar,

ranging between 349 and 451 ms. In this final group, standard YOLOv4 reached better

inference time and accuracy values, while SSD 512x512 did not ensure high-accuracy values

and it required more time to process an image. Finally, standard YOLOv3 and YOLOv4 -

800x448 achieved 398 and 403 ms, respectively.

Although omnidirectional image-based DL algorithms demonstrated to be more accurate

than 2D image-based models, the middle region of images is still the most problematic. As

seen in Table 12, objects located at the center tend to be more difficult to detect, while left

and right-positioned objects are easier detected.

Left Center Right

25% 42% 33%

Table 12 - Non-detected object by region in omnidirectional images

Object Detection in Omnidirectional Images

67

When compared to Table 6, where the same metric for 2D image-based algorithm was

depicted, results followed a more uniform distribution given that the mid-region error rate

decreased from 63% to 42%. With regards to the remaining regions, the left and right

regions’ error rate increased from 16% to 25% and 21% to 33%, respectively.

However, current values for the above-presented performance measure did not allow an

omnidirectional image-based object detection framework to fulfill current requirements on

most common applications. Then, a framework for making the non-detected objects’ rate

more uniform is proposed in the next section.

5.2. Improved Framework

The improved framework proposed in this section is explained utilizing specific mechanisms

to uniformize the error rate across the whole spherical image regions. The initial architecture

is, firstly, presented, followed by the second version of the framework, which was devised

to overcome the initial drawbacks.

In opposition to left and right regions, objects located at the center have a propensity to be

smaller, which could be a crucial fact to justify the results of the previous experiments. For

that reason, the proposed framework involves applying two parallel pipelines: the first one

focusing on the whole image, and the second just concentrating on the middle region.

The first pipeline follows the same pattern as traditional object detection frameworks, where

the whole image is processed by a given DL algorithm and the inherent predictions are

returned. On the other hand, only the image mid-region is processed in the second stage,

however, instead of processing that region once, the proposed framework requires the mid-

region to be separated into two blocks, as depicted in Figure 46.

Object Detection in Omnidirectional Images

68

Figure 46 - Omnidirectional mid-region image first division

As long as two image blocks are provided by the second pipeline, multiple inference

processes are also required. Given that multiple object detection processes produce multiple

results, the final prediction output requires such results to be rearranged in a post-processing

stage. The proposed framework architecture, presented in Figure 47, shows both parallel

pipelines with a pre-processing step in the bottom pipeline which crops image mid-region

into sub-images. All images are processed by the DL algorithms and all results are later

aggregated in the framework’s last stage.

Figure 47 - Proposed framework initial architecture

Although the initial expectations on the framework results, such experiments demonstrated

that an eventual issue concerning objects located at the second pipeline sub-division blocks

could invalidate its success. The identified issue occurs when an object instance overlaps

both sub-regions at the same time, eventually producing multiple object counts to the final

Object Detection in Omnidirectional Images

69

results. Consequently, a new framework version was proposed, following a workflow as

depicted in Figure 48.

Figure 48 - Proposed framework final architecture

The new version introduces a third subdivision which covers the initial regions intersection

limit to prevent errors associated with objects at such limit. Therefore, objects detected from

the DL algorithms in both top and bottom sub-regions that are almost touching the block’s

bottom and top, are discarded. On the other hand, mid-region predictions remain to be later

aggregated in the post-processing stage.

To evaluate the proposed framework efficiency, we focused not only on comparing its

inference time but also on non-detected objects' error rate by image region, the same metrics

presented in the previous experiments.

5.2.1. Analysis of Results

This section aims to demonstrate evaluation results through the above-presented object

detection framework architecture. To ensure testing veracity, the evaluation environment

was still the same.

In terms of inference time, given the higher complexity when compared to the conventional

object detection frameworks, we expected the inference time performance to decrease which

was verified, as depicted in Table 13. Object detection in omnidirectional images increased

from 349 ms to 1152 ms through the proposed framework.

Object Detection in Omnidirectional Images

70

Traditional Framework Proposed Framework

Inference Time (ms)

349 ± 5.83 1152 ± 8.45

Table 13 - Inference time results through the traditional and proposed object detection framework.

Considering the non-detected objects’ rate by image region, the proposed framework

improved that evaluation metric value from 42% to 39%, providing a more uniform error

distribution. Left and right regions achieved 27% and 34%, respectively, as depicted in

Table 14.

 Left Center Right

Traditional

Framework

25% 42% 33%

Proposed

Framework

27% 39% 34%

Table 14 - Non-detected objects by image region through the traditional and proposed object detection

framework.

Although the object detection framework’s inference time increased when compared to the

traditional framework, some mid-region located object instances which were not previously

detected were detected through this new approach. Figure 49 supports this sentence by

depicting an example where the traditional framework did not identify mid-region located

cars, probably, because of their small size, are now successfully detected through the

proposed framework.

Object Detection in Omnidirectional Images

71

Figure 49 - Proposed framework predictions example (1)

After presenting the results concerning DL models trained on ERP images through both

traditional models and the proposed framework previously presented, the next section

describes the framework deployment and DL algorithms that better fit a given scenario.

5.3. Framework Deployment

Nowadays, not only in object detection domain problems but also in most cases involving

technology, scalability is a mandatory requirement. The ability to ensure the availability of

service is maintained according to the number of users, available hardware resources, or

even, from a business-level perspective, the financial plan offered for the project are

important aspects, upon which the final decision relies.

Consequently, to develop a technological product, some imposed constraints drastically

change how the project proceeds. In terms of hardware resources, three main approaches are

usually available depending on financial and connectivity constraints. In a non-existent or

weak internet connection scenario, or when the latency is critical to ensure the operation's

success, physical (non-cloud-based) hardware resources are a wise option. Moreover, prices

are usually lower than cloud-based solutions, although their inherent maintenance costs.

Automatically associating object detection tasks with high-computational resources tends to

overestimate the required hardware to perform such tasks. However, tiny, low cost and

credit-card-sized devices, such as Raspberry Pi 4 Model B (Figure 50) [78], are ready to run

less complex DL algorithms. In opposition, given the limited resources available on these

Object Detection in Omnidirectional Images

72

devices, deploying algorithms that execute a large number of operations and require a

considerable time to provide detected objects is not a feasible task.

Figure 50 - Raspberry Pi 4 Model B [78]

Different from those simple devices, more powerful computers that let object detection tasks

to be performed through multiple neural network parallel execution [79] are also a good

physical framework option. This device group of devices includes Jetson Nano (Figure 51),

developed by NVIDIA, which allows more complex DL models, to be run through GPU

acceleration at an accessible cost. It is also important to note that both Raspberry Pi and

Jetson Nano support camera modules to facilitate image capture which is a fundamental

stage on object detection tasks.

Figure 51 - Jetson Nano Developer Kit [79]

Still regarding local devices, however, in a higher budget level, local servers are also a

suitable option for DL algorithms deployment scenarios that require high-computational

hardware resources. A local server provides different computational capabilities, depending

on its specifications and pricing. Figure 52 depicts an example of a local server, namely,

PowerEdge R240 Dell Server.

Object Detection in Omnidirectional Images

73

Figure 52 - PowerEdge R240 Dell Server [80]

In situations that do not require low-latency values and internet connection is not a typical

issue, cloud-based frameworks make scalability, management, and simple deployment easier

to achieve. Given their organized infrastructures, they allow to dynamically change the

machine which hosts the framework without any concerns about its maintenance.

Furthermore, cloud-based frameworks are new deployment compliant in terms of logistics

which facilitates new product releases.

Despite cloud-based frameworks' advantages, their cost is not always affordable to

companies’ budgets, and, depending on requirements, they could not be the most suitable

solution.

5.3.1. Real-world scenarios

Considering that is not possible to select a single model for meeting all established

requirements, this section presents a list of scenarios with real-world application to

understand the situation where each DL algorithm presented in this dissertation outperforms

the others.

The first scenario is described as a non-critical situation whose main goal consists of

automatically recognizing and locating cars, motorcycles, trucks, and buses for later extract

some kind of statistical metrics to identify rush hours. On that premise, a medium-value of

accuracy is enough to mitigate the initial problem due to the error-margin allowed. In

addition to the above-mentioned fact, there are no strict time limits for performing object

recognition tasks. For that last reason, DL models’ selection range is very wide however, to

minimize framework costs, algorithms that require less computational hardware resources,

such as Tiny-YOLOv4, Tiny-YOLOv3, or SSD 300x300 seem to be an optimal choice.

Taking into consideration the deployment environment, any constraint that forces a cloud or

non-cloud/local deployment was defined, so it depends on the system architecture as well as

the financial plan associated with the project.

Object Detection in Omnidirectional Images

74

Secondly, the next scenario requires an automatic framework for detecting UAVs, people,

and vehicles to avoid the invasion of privacy issues which means that real-time alerting is a

mandatory requirement. In opposition to the first example, a non-detected object is a critical

point of failure on the system and puts the whole system efficiently at risk.

In this specific example, high object detection accuracy rather than minimizing solution’

cost defines the framework architecture. Moreover, finding a sweet spot between

processing/inference time and accuracy is the first goal given that one of the pre-defined

constraints includes real-time monitoring. Subsequently, an alarm should be triggered as

soon as possible to minimize the reaction time.

From the previously demonstrated experiments, the high-mAP model group is comprised of

Mask R-CNN, standard YOLOv3 and YOLOv4, and YOLOv4 800x448. Although in terms

of this performance metric, Mask R-CNN outperforms the remaining algorithms, Table 11

shows that it is also the model that requires more time for processing a single image.

Therefore, the framework development should start with standard YOLOv4 by itself

evaluation, followed by an analysis of standard YOLOv4 through this dissertation proposed

framework. Depending on accuracy results, a choice should be taken, considering that the

system efficiency must not be negotiated. Generally, critical scenarios require a higher

hardware resources investment so that results are available near real-time with the minimum

error associated, which tends to make non-cloud deployment a not suitable option.

Finally, the last presented scenario involves developing an Application Programming

Interface (API) for locating vehicle license plates. As a consequence of requiring an online

availability, a cloud-based deployment through any cloud solution existing in the market has

to be considered. Besides, accurate and fast results should be provided to guarantee the

financial return.

Given the above-mentioned constraints, standard YOLOv4 with a cloud-based deployment

seems to fulfill specified requirements. It provides satisfactory accuracy results with

reasonable inference time measured and it does not require high-computational resources

which allows saving cloud resources costs.

Summing up, considering that a DL model is better in general terms is not fair. All presented

models have their applications where their main advantages could be emphasized to achieve

project requirements.

Object Detection in Omnidirectional Images

75

5.4. Final Remarks

In this chapter, for improving object detection algorithms on detecting objects in

omnidirectional images, a domain-specific training stage was carried out. That stage

involved training multiple DL algorithms fed by omnidirectional images.

Although the resulting models’ accuracy performance increased when compared to the

previous experiments, we noted that the error rate by image region is still not uniform across

the whole spherical image regions. For that reason, a framework for improving results and

reducing the error rate was proposed. In opposition to traditional frameworks, two parallel

stages are performed: the whole image processing and middle image sub-regions predictions

processing. Additionally, the framework introduces a post-processing stage for results

aggregation.

Performance results concerning the above-mentioned framework were analyzed, by

measuring not only the error rate associated with both traditional and proposed approaches

but also the average inference time measured for image processing. As long as the

framework requires more processing time, inference time increased. However, in terms of

error rate by image region, we were able to improve the previous experiments’ results.

Finally, to provide the reader with more information on the DL model decision-making, a

set of real-world scenarios were presented. Then, each algorithm was associated with the

presented scenarios to explain that is not fair to considerer a model better than the other,

everything depends on the scenario.

Object Detection in Omnidirectional Images

76

 Conclusion and Future Work

In this dissertation, a new method for improving object detection in omnidirectional images

was proposed. Such research study required an omnidirectional image dataset acquisition

stage which involved 360º video capture and image labeling given that open-source labeled

omnidirectional image datasets on the urban environment were not easily available.

Initial experiments on comparing 2D image-based DL algorithms' accuracy on 2D planar

and omnidirectional images provided interesting results. That comparative performance

allowed us to note not only an accuracy performance decrease from 2D to omnidirectional

image dataset but also a non-uniform error rate across the whole spherical image regions.

Such fact led our research to focus on a domain-specific DL model training process.

Then, a benchmarking report of DL algorithms trained with the omnidirectional acquired

image dataset was presented and analyzed. The results achieved supported our initial

thoughts of providing more accurate results through a domain-specific approach when

compared to a generic algorithm. Moreover, a comparison between a set of DL algorithms

in terms of accuracy, complexity, and inference time was demonstrated to understand the

main differences between DL models.

Although the resulting DL algorithms from the above-mentioned training provided more

accurate results, the error rate was still not uniform across the whole image regions. Objects

located at both left and right image regions tended to be easier to identify than mid-region

objects which led us to propose a new approach to overcome the identified issue.

The proposed approach consists of adding pre and post-processing stages to the traditional

object detection framework across two parallel pipelines. The first pipeline focuses on the

whole image and follows the same pattern as traditional object detection frameworks, where

the whole image is processed by a given DL algorithm and the inherent predictions are

returned. On the other hand, only the image mid-region is processed in the second stage.

However, instead of processing that region once, the proposed framework requires that

region to be divided into three blocks which are individually processed to return predictions.

All predictions are aggregated in the post-processing stage.

Object Detection in Omnidirectional Images

77

This framework allowed the error rate to be more uniform across the whole image regions

however, given that more processing is involved in the framework, the inference time

increased, as demonstrated in the results section.

Regarding future work, implementing this solution in a real-world scenario and evaluate its

accuracy would be the first step to take, since the actual procedure was only evaluated in a

controlled environment. Further evaluation could create opportunities for identifying issues

on the current framework and, consequently, add more robustness to the implemented

approach.

Then, taking as input the evaluation results and after implementing the inherent

improvements, an automatic video surveillance system with capabilities of detecting objects

in all view directions would be developed. That system could completely transform current

video surveillance systems and solve security and privacy issues imposed by the recent

technological advances.

Object Detection in Omnidirectional Images

78

Bibliography

[1] B. J. Baars and N. M. Gage, “Vision,” in Cognition, Brain, and Consciousness,

Academic Press, 2010, pp. 156-193.

[2] Q. Wu, Y. Liu, Q. Li, S. Jin and F. Li, “The application of deep learning in computer

vision,” Chinese Automation Congress (CAC), no. 17469740, pp. 6522-6527, 2017.

[3] Z.-Q. Zhao, P. Zheng, S.-t. Xu and X. Wu, “Object Detection with Deep Learning: A

Review,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no.

11, pp. 3212-3232, 2019.

[4] K. Balaji and K. Lavanya, “Medical Image Analysis With Deep Neural Networks,”

in Deep Learning and Parallel Computing Environment for Bioengineering Systems,

2019, pp. 75-97.

[5] “360-degree camera, Press Releases,” 31 12 2019. [Online]. Available:

https://www.marketsandmarkets.com/PressReleases/360-degree-camera.asp.

[6] M. Xu, C. Li, S. Zhang and P. Le Callet, “State-of-the-Art in 360° Video/Image

Processing: Perception, Assessment and Compression,” IEEE Journal of Selected

Topics in Signal Processing, vol. 14, no. 1, pp. 5-26, 2020.

[7] H. E. R. Gernsheim, A. Grundberg, B. Newhall and N. Rosenblum, “History of

photography,” Encyclopædia Britannica, inc., [Online]. Available:

https://www.britannica.com/technology/photography. [Accessed 10 10 2020].

[8] “Encyclopædia Britannica,” [Online]. Available:

https://www.britannica.com/technology/camera-obscura-

photography#/media/1/90865/118840. [Accessed 10 10 2020].

[9] D. Kocak and B. Ouyang, “Underwater imaging: photographic, digital and video

techniques,” in Subsea Optics and Imaging, Woodhead, 2013, pp. 275-293.

[10] T. Jokela, J. Ojala and K. Väänänen, “How people use 360-degree cameras,”

Proceedings of the 18th International Conference on Mobile and Ubiquitous

Multimedia, no. 18, pp. 1-10, 10 2019.

[11] “Insta 360,” [Online]. Available: https://www.insta360.com/product/insta360-pro2.

[Accessed 25 03 2020].

Object Detection in Omnidirectional Images

79

[12] W. Zhang, X. Peng, J. S. Shi and Z. Guo, “Computing Foundations for

Computational Science Final Project,” Harvard University, 2018. [Online].

Available: https://cs205-stitching.github.io/. [Accessed 5 9 2020].

[13] A. Mehrfard, J. Fotouhi, G. Taylor, T. Forster, N. Navab and B. Fuerst, A

Comparative Analysis of Virtual Reality Head-Mounted Display Systems, 5 12 2019.

[14] “Class VR,” Avantis Systems Ltd, [Online]. Available:

https://www.classvr.com/school-virtual-reality/. [Accessed 25 04 2020].

[15] E. Ghaderpour, “Map Projection,” York University Department of Earth and Space

Science and Engineering, Toronto, Canada, 16 12 2014.

[16] Maugey¸Thomas, O. L. Meur and L. Zhi, “Saliency-based navigation in

omnidirectional image,” 2017 IEEE 19th International Workshop on Multimedia

Signal Processing (MMSP), Luton, pp. 1-6, 2017.

[17] Y. Ye, E. Alshina and J. Boyce, JVET-H1004: Algorithm descriptions of projection

format conversion and video quality metrics in 360Lib, 7 2018.

[18] “Seagate,” [Online]. Available: https://www.seagate.com/pt/pt/our-story/data-age-

2025/. [Accessed 05 09 2020].

[19] A. Mikołajczyk and G. Michał, “Data augmentation for improving deep learning in

image classification problem,” 2018 International Interdisciplinary PhD Workshop

(IIPhDW), Swinoujście, pp. 117-122, 2018.

[20] M. V. G. L. W. C. K. I. W. J. a. Z. A. Everingham, “The PASCAL Visual Object

Classes (VOC) Challenge,” International Journal of Computer Vision, vol. 88, pp.

303-338, 2010.

[21] “Image Net,” [Online]. Available: http://image-net.org/. [Accessed 28 03 2020].

[22] “COCO Dataset,” [Online]. Available: http://cocodataset.org/. [Accessed 28 03

2020].

[23] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-Based Learning Applied

to Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324,

1998.

[24] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,

S. Roth and B. Schiele, “The Cityscapes Dataset for Semantic Urban Scene

Understanding,” Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

Object Detection in Omnidirectional Images

80

[25] G. A. Mille, “WordNet: A Lexical Database for English,” Communications of the

ACM, vol. 38, no. 11, pp. 39-41, 1995.

[26] P. University, “WordNet,” Princeton University, 2010. [Online]. Available:

https://wordnet.princeton.edu/. [Accessed 10 10 2020].

[27] “Image Net,” [Online]. Available: http://www.image-

net.org/papers/imagenet_cvpr09.pdf. [Accessed 28 03 2020].

[28] “FFmpeg,” [Online]. Available: https://www.ffmpeg.org/. [Accessed 21 05 2020].

[29] Tzutalin, “LabelImg,” GitHub, no. https://github.com/tzutalin/labelImg, 2015.

[30] “360designs,” [Online]. Available: http://360designs.io/eye/applications/. [Accessed

5 9 2020].

[31] N. Terashima, Intelligent Communication Systems, 2002.

[32] Y. Tan, GPU-based Parallel Implementation of Swarm Intelligence Algorithms,

2016.

[33] T. W. Edgar and D. O. Manz, Research Methods for Cyber Security, 2017.

[34] G. Shobha and S. Rangaswamy, Handbook of Statistics, 2018.

[35] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple

features,” Proceedings of the 2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, pp. I-I, 2001.

[36] N. Dala and B. Triggs, Histograms of Oriented Gradients for Human Detection, p. 8.

[37] L. Vanneschi and M. Castelli, “Multilayer Perceptrons,” in Encyclopedia of

Bioinformatics and Computational Biology, 2019, pp. 612-620.

[38] K. O' Shea and N. Ryan, “An Introduction to Convolutional Neural Network,” ArXiv:

Neural and Evolutionary Computing, 2015.

[39] V. N. Vapnik, “An Overview of Statistical Learning Theory,” IEEE Transactions on

Neural Networks, vol. 10, no. 5, pp. 988-999, 1999.

[40] T. Evgeniou and M. Pontil, “Support Vector Machines: Theory and Applications,”

Lecture Notes in Computer Science, vol. 2049, pp. 249-257, 1 2001.

[41] N. Surantha, S. M. Isa, T. Fennia Lesmana and A. Setiawan, “Sleep Stage

Classification using the Combination of SVM and PSO,” 1st International

Conference on Informatics and Computational Sciences (ICICoS), 2017.

Object Detection in Omnidirectional Images

81

[42] K. Veropoulos, G. Learmonth, C. Campbell, B. Knight and J. Simpson, “Automated

identification of tubercle bacilli in sputum. A preliminary investigation,” Anal Quant

Cytol Histol., pp. 277-82, 1999.

[43] L. H. Thai, T. S. Hai and N. T. Thuy, “Image Classification using Support Vector

Machine and Artificial Neural Network,” International Journal of Information

Technology and Computer Science, p. 4, 5 2012.

[44] S. Misra and H. Li, “Noninvasive fracture characterization based on the classification

of sonic wave travel times,” in Machine Learning for Subsurface Characterization,

2020, pp. 243-287.

[45] J. Walsh, N. O'Mahony, S. Campbell and A. Carvalho, “Deep Learning vs.

Traditional Computer Vision,” Proceedings of the computer vision conference (CVC

2019), p. 128–144, 25-26 4 2019.

[46] I. Tabian, H. Fu and Z. Sharif Khodaei, “A Convolutional Neural Network for

Impact Detection and Characterization of Complex Composite Structures,” Sensors,

vol. 19, no. 4933, 2019.

[47] M. A. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

[48] W. Dai and D. Berleant, “Benchmarking Contemporary Deep Learning Hardware

and Frameworks:A Survey of Qualitative Metrics,” 2019 IEEE First International

Conference on Cognitive Machine Intelligence (CogMI), Los Angeles, CA, USA, pp.

148-155, 23 11 2019.

[49] A. Shatnawi, G. Al-Bdour, R. Al-Qurran and M. Al-Ayyoub, “A comparative study

of open source deep learning frameworks,” 2018 9th International Conference on

Information and Communication Systems (ICICS), Irbid, pp. 72-77, 4 2018.

[50] “365datascience,” [Online]. Available: https://365datascience.com/deep-learning-

frameworks-2019/. [Accessed 16 05 2020].

[51] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B.

Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu and X. Zheng,

“Tensorflow: a system for large-scale machine learning,” OSDI, vol. 16, pp. 265-283,

2016.

[52] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning toolkit,”

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, vol. ACM, p. 2135, 2016.

Object Detection in Omnidirectional Images

82

[53] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, Kopf, reas, E. Yang, Z. DeVito, M. Raison

and Tejani, “PyTorch: An Imperative Style, High-Performance Deep Learning

Library,” in Advances in Neural Information Processing Systems 32, Curran

Associates, Inc., 2019, pp. 8024--8035.

[54] R. C. a. S. B. a. J. Mariéthoz, “Torch: a modular machine learning software library,”

IDIAP, 2002.

[55] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama

and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,”

Proceedings of the 22nd ACM international conference on Multimedia, p. 675–678,

2014.

[56] “Keras,” [Online]. Available: https://keras.io/. [Accessed 15 05 2020].

[57] A. R. Pathak, M. Pandey and S. Rautaray, “Application of Deep Learning for Object

Detection,” in Procedia Computer Science, 2018, pp. 1706-1717.

[58] R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” pp. 1-3, 22 10 2014.

[59] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look Once: Unified,

Real-Time Object Detection,” IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 779-788, 2016.

[60] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg,

“SSD: Single Shot MultiBox Detector,” Lecture Notes in Computer Science, pp. 21-

37, 29 12 2016.

[61] W. Yang, Y. Qian, F. Cricri, L. Fan and J.-K. Kamarainen, Object Detection in

Equirectangular Panorama, pp. 1-6, 21 5 2018.

[62] Y. Li, G. Tong, H. Gao, Y. Wang, L. Zhang and H. Chen, “Pano-RSOD: A Dataset

and Benchmark for Panoramic Road Scene Object Detection,” Electronics, vol. 329,

no. 3, p. 8, 11 3 2019.

[63] “Pano-RSOD Dataset,” [Online]. Available:

https://pan.baidu.com/share/init?surl=H9RsXfXCCfBgpF2bY2LGeA. [Accessed 9 5

2020].

[64] A. Rosebrock, “PyImageSearch,” 7 11 2016. [Online]. Available:

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-

detection/. [Accessed 1 1 2020].

Object Detection in Omnidirectional Images

83

[65] “IBM,” [Online]. Available:

ibm.com/ibm/history/ibm100/us/en/icons/petaflopbarrier/. [Accessed 20 06 2020].

[66] A. Jaimes, S. Kota and J. Gomez, “An approach to surveillance an area using swarm

of fixed wing and quad-rotor unmanned aerial vehicles UAV(s),” IEEE International

Conference on System of Systems Engineering, pp. 1-6, 2008.

[67] “Goglady,” [Online]. Available: https://gogladly.com/. [Accessed 07 11 2020].

[68] P. Ferrari, “SSD: Single-Shot MultiBox Detector implementation in Keras,” Github

repository, no. https://github.com/pierluigiferrari/ssd_keras, 2018.

[69] “Amazon Web Services,” [Online]. Available: https://aws.amazon.com/. [Accessed 6

5 2020].

[70] “Sagemaker - Amazon Web Services,” [Online]. Available:

https://aws.amazon.com/sagemaker/. [Accessed 6 5 2020].

[71] “Docker,” [Online]. Available: https://www.docker.com/resources/what-container.

[Accessed 30 5 2020].

[72] “Amazon Elastic Container Registry,” [Online]. Available:

https://aws.amazon.com/pt/ecr/. [Accessed 30 05 2020].

[73] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv, 2018.

[74] J. Redmon, “Darknet: Open Source Neural Networks in C,” 2016. [Online].

Available: http://pjreddie.com/darknet/. [Accessed 2 6 2020].

[75] “Google Colab,” [Online]. Available: https://colab.research.google.com/. [Accessed

6 5 2020].

[76] F. Giacosa, “Decay Law and Time Dilatation,” Acta Physica Polonica B, vol. 47, no.

9, p. 2135, 2016.

[77] W. Abdulla, “Mask R-CNN for object detection and instance segmentation on Keras

and TensorFlow,” Github repository, 2017.

[78] “Raspberry Pi,” [Online]. Available: https://www.raspberrypi.org/. [Accessed 27 08

2020].

[79] “Jetson Nano Developer Kit,” [Online]. Available:

https://developer.nvidia.com/embedded/jetson-nano-developer-kit. [Accessed 27 08

2020].

Object Detection in Omnidirectional Images

84

[80] “Dell,” [Online]. Available: https://www.dell.com/pt/empresas/p/poweredge-r240/pd.

[Accessed 29 08 2020].

