121 research outputs found

    Subspace Structure Regularized Nonnegative Matrix Factorization for Hyperspectral Unmixing

    Get PDF
    Hyperspectral unmixing is a crucial task for hyperspectral images (HSI) processing, which estimates the proportions of constituent materials of a mixed pixel. Usually, the mixed pixels can be approximated using a linear mixing model. Since each material only occurs in a few pixels in real HSI, sparse nonnegative matrix factorization (NMF) and its extensions are widely used as solutions. Some recent works assume that materials are distributed in certain structures, which can be added as constraints to sparse NMF model. However, they only consider the spatial distribution within a local neighborhood and define the distribution structure manually, while ignoring the real distribution of materials that is diverse in different images. In this paper, we propose a new unmixing method that learns a subspace structure from the original image and incorporate it into the sparse NMF framework to promote unmixing performance. Based on the self-representation property of data points lying in the same subspace, the learned subspace structure can indicate the global similar graph of pixels that represents the real distribution of materials. Then the similar graph is used as a robust global spatial prior which is expected to be maintained in the decomposed abundance matrix. The experiments conducted on both simulated and real-world HSI datasets demonstrate the superior performance of our proposed method

    HALS-based NMF with Flexible Constraints for Hyperspectral Unmixing

    Get PDF
    International audienceIn this article, the hyperspectral unmixing problem is solved with the nonnegative matrix factorization (NMF) algorithm. The regularized criterion is minimized with a hierarchical alternating least squares (HALS) scheme. Under the HALS framework, four constraints are introduced to improve the unmixing accuracy, including the sum-to-unity constraint, the constraints for minimum spectral dispersion and maximum spatial dispersion, and the minimum volume constraint. The derived algorithm is called F-NMF, for NMF with flexible constraints. We experimentally compare F-NMF with different constraints and combined ones. We test the sensitivity and robustness of F-NMF to many parameters such as the purity level of endmembers, the number of endmembers and pixels, the SNR, the sparsity level of abundances, and the overestimation of endmembers. The proposed algorithm improves the results estimated by vertex component analysis. A comparative analysis on real data is included. The unmixing results given by a geometrical method, the simplex identification via split augmented Lagrangian and the F-NMF algorithms with combined constraints are compared, which shows the relative stability of F-NMF

    Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing

    Full text link
    Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these hyperspectral (HS) products mainly by means of seasoned experts. However, with the ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges on reducing the burden of manual labor and improving efficiency. For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications. However, their ability in handling complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher dimensional HS signals. Compared to the convex models, non-convex modeling, which is capable of characterizing more complex real scenes and providing the model interpretability technically and theoretically, has been proven to be a feasible solution to reduce the gap between challenging HS vision tasks and currently advanced intelligent data processing models

    Hyperspectral Unmixing Based on Dual-Depth Sparse Probabilistic Latent Semantic Analysis

    Get PDF
    This paper presents a novel approach for spectral unmixing of remotely sensed hyperspectral data. It exploits probabilistic latent topics in order to take advantage of the semantics pervading the latent topic space when identifying spectral signatures and estimating fractional abundances from hyperspectral images. Despite the contrasted potential of topic models to uncover image semantics, they have been merely used in hyperspectral unmixing as a straightforward data decomposition process. This limits their actual capabilities to provide semantic representations of the spectral data. The proposed model, called dual-depth sparse probabilistic latent semantic analysis (DEpLSA), makes use of two different levels of topics to exploit the semantic patterns extracted from the initial spectral space in order to relieve the ill-posed nature of the unmixing problem. In other words, DEpLSA defines a first level of deep topics to capture the semantic representations of the spectra, and a second level of restricted topics to estimate endmembers and abundances over this semantic space. An experimental comparison in conducted using the two standard topic models and the seven state-of-the-art unmixing methods available in the literature. Our experiments, conducted using four different hyperspectral images, reveal that the proposed approach is able to provide competitive advantages over available unmixing approaches

    Nonlinear Spectral Unmixing using Semi-Supervised Standard Fuzzy Clustering

    Get PDF
    Coarse resolution captured in remote sensing causes the combination of different materials in one pixel, called the mixed pixel. Spectral unmixing estimates the combination of endmembers in mixed pixels and their corresponding abundance maps in the Hyper/Multi spectral image. In this paper, a nonlinear spectral unmixing based on semi-supervised fuzzy clustering is proposed. First, pure pixels (endmembers) using Vertex Component Analysis (VCA) are extracted and those pixels are the labelled pixels where the membership value of each is 1 for the corresponding endmember and 0 for the others. Second, the semi-supervised fuzzy clustering is applied to find the membership matrix defining the fraction of the endmember in each mixed pixel and hence extract the abundance maps. The experiments were conducted on both synthetic data such as the Legendre data and real data such as Jasper Ridge data. The non-linearity of the Legendre data was performed by the Fan model on different signal-tonoise ratio values. The results of the new unmixing model show its significant performance when compared with four state-of the art unmixing algorithm
    • …
    corecore