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Abstract: 

Coarse resolution captured in remote 

sensing causes the combination of 

different materials in one pixel, called the 

mixed pixel. Spectral unmixing estimates 

the combination of endmembers in mixed 

pixels and their corresponding abundance 

maps in the Hyper/Multi spectral image. In 

this paper, a nonlinear spectral unmixing 

based on semi-supervised fuzzy 

clusteringis proposed. First, pure pixels 

(endmembers) using Vertex Component 

Analysis (VCA) are extracted and those 

pixels are the labelled pixels where the 

membership value of each is 1 for the 

corresponding endmember and 0 for the 

others. Second, the semi-supervised fuzzy 

clustering is appliedto find the 

membership matrix defining the fraction of 

the endmember in each mixed pixel and 

hence extract the abundance maps. The 

experiments were conducted on both 

synthetic data such as the Legendre data 

and real data such as Jasper Ridge data. 

The non-linearity of the Legendre data was 

performed by the Fan model on different 

signal-to-noise ratio values. The results of 

the new unmixing model show its 

significant performance when compared 

with four state-of the art unmixing 

algorithms. 

Keywords: Nonlinear Unmixing, Fuzzy 

Clustering, Abundance Maps 

1. Introduction 

The reflectance of a pixel in remote 

sensing images is a combination of the 

pure spectral signatures of materials 

which exist in the captured area. 

Spectral unmixing (SU) is the 

extraction of the pure element spectral 

signatures and their proportions for 

each pixel. The simplest form of 

mixing models is the linear mixing 

model (LMM) which combines the 

observed reflectance vectors into a 

convex hull of the pure spectral 

signatures, named endmembers. The 

LMM is effective in scenes where the 

materials cover a large area according 

to the pixel size [1]. However, 

nonlinear interactions between 

materials happen in many scenes 

where there is complex radiation 

occurring by different endmembers [2]. 

In those situations, nonlinear mixing 

models should be considered [1], [3]. 

 

Different clustering methods [4-7] 

have been used in nonlinear spectral 

unmixing, among which fuzzy based 

techniques are widely used. In hard 

clustering (i.e. k-means) the 

membership of a single pixel is 

corresponding to only one cluster 

while fuzzy based techniques give the 

chance to be corresponding to multiple 

clusters based on the partial 

membership for a single pixel [8-11].  

 

In the conventional fuzzy c-means [4, 

12], the spectral unmixing of the 

hyperspectral pixels performed better if 

the degree of uncertainty of the 

neighboring region is small and the 
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image is free of noise. For this reason, 

various versions of fuzzy based 

clustering techniques have been 

developed to add the spatial 

information to overcome the effect of 

noise [10, 13-15]. The spatial 

information was incorporated in the 

FCM (FCM-S) [8] to tackle the 

problem of the spatial non-

homogeneity and allow the pixel to get 

affected by its neighbours, but the 

effect of noise cannot be recovered 

totally. To handle this issue, a fuzzy 

local information c-means (FLICM), 

was proposed by Krinidis and Chatzis 

[10] and the objective function of the 

conventional FCM has also been 

improved by introducing a clustering 

entropy to the objective function as 

well [16].  

 

All the above versions of Fuzzy c-

means methods are unsupervised 

clustering methods and have been 

widely used in spectral unmixing [17-

21]. However, the pure pixels can be 

identified easily and accurately using 

one of the endmember extraction 

algorithms such as pixel purity index 

(PPI) [22], vertex component analysis 

(VCA) [23], etc… and pure pixels 

have definitely membership 1 for the 

corresponding endmember and 

memberships 0 for the remaining 

endmembers. Based on the priori 

knowledge of pure pixels’ 

memberships, a new nonlinear spectral 

unmixing has been developed in this 

paper using a semi supervised version 

of the fuzzy c-means [24] to get a 

strong initialization of the clusters in 

order to discard the pixel noise and 

increase the accuracy of the unmixing 

model. 

 

2. Methodology 

2.1 Background 

The main aim in this work is how 

to construct the classification of n 

numbers of data: 

𝑋 = {𝑥𝑘|𝑥𝑘 = (𝑥𝑘1, … , 𝑥𝑘𝑝)𝑇 ∈

𝑅𝑝, 𝑘 = 1, … , 𝑛}(1) 

Into c numbers of clusters which 

are represented as cluster centers: 

𝑉 = {𝑣𝑖|𝑣𝑖 = (𝑣𝑖1, … , 𝑣𝑖𝑝)𝑇 ∈

𝑅𝑝, 𝑖 = 1, … , 𝑐}(2) 

The Euclidean norm is computed 

on the space 𝑅𝑝 by: 

‖𝑥𝑘 − 𝑣𝑖‖ = √∑ (𝑥𝑘𝑗 − 𝑣𝑖𝑗)2𝑝
𝑗=1  

(3) 

Now, the membership grade that 

𝑥𝑘 belongs to a cluster 𝑖 is 𝑢𝑘𝑖 ∈

[0,1] and the goal of the 

classification is to get the matrix 𝑈 

for all data and all clusters 

where∑ 𝑢𝑘𝑖 = 1𝑐
𝑖=1  . Consequently, 

the supervised degree of 

membership that 𝑥𝑘 belongs to a 

cluster 𝑖 is 𝑢̅𝑘𝑖 ∈ [0,1] which is 

given initially for certain 𝑥𝑘 and 

cluster 𝑖 and in case it is not given, 

its value is 0. Hence, the equation 

∑ 𝑢̅𝑘𝑖 ≤ 1𝑐
𝑖=1  represents the 

conditions in 𝑈̅ 

The optimal solution 𝑣𝑖is given by 

 

𝑣𝑖 =
∑ |𝑢𝑘𝑖−𝑢𝑘𝑖|𝑚𝑥𝑘𝑛

𝑘=1

∑ |𝑢𝑘𝑖−𝑢𝑘𝑖|𝑚𝑛
𝑘=1

 (4) 

Where 
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𝑢𝑘𝑖 = 𝑢̅𝑘𝑖 + (1 −

∑ 𝑢̅𝑘𝑗
𝑐
𝑗=1 )

(
1

𝑑𝑘𝑖
)

1
𝑚−1

∑ (
1

𝑑𝑘𝑗
)

1
𝑚−1

𝑐
𝑗=1

 (5) 

Such that: 

𝑑𝑘𝑖 = ‖𝑥𝑘 − 𝑣𝑖‖2 (6) 

 

To be noted that 

1 − ∑ 𝑢̅𝑘𝑗
𝑐
𝑗=1 ≥ 0  (7) 

And  

𝑢𝑘𝑖 =

{
𝑢̅𝑘𝑖 + 1 − ∑ 𝑢̅𝑘𝑖        (𝑖 = arg 𝑚𝑖𝑛𝑙 𝑑𝑘𝑙)𝑐

𝑖=1

𝑢̅𝑘𝑖                                 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)
  

(8) 

 

In [24], Yasunori  et al. constructed 

an algorithm of semisupervised 

standard fuzzy c-means clustering 

(SSFCM) by  introducing 

supervised membership grade 

𝑢̅𝑘𝑖into standard fuzzy cmeans 

clustering.  

 

Algorithm 1 (SSFCM): 

Step 1 Give supervised 

membership grades 𝑈̅and set the 

initial values of V. 

Step 2Calculate U on fixing V by 

(5) (m >1) or (8) (m = 1). 

Step 3Calculate V on fixing U by 

(4). 

Step 4If the stop criterion satisfies, 

the algorithm is finished. 

Otherwise, go back to Step 2. 

 

2.2 Proposed Method 

 

From section 2.1, in order to 

develop an unmixing algorithm 

based on SSFCM, the supervised 

membership grades 𝑈̅and set the 

initial values of V must be 

computed first. The endmember 

extraction algorithm VCA is 

applied to get k pixels that were 

chosen to be the  purest where k is 

the suggested number of 

endmember and the estimated 

mixing matrix A.  

From the pure pixels’ indices, 𝑈̅ is 

calculated by setting 1 in the matrix 

cell where the row represents the 

pixel number and the column 

represents the endmember fraction 

in the pixel. All 𝑈̅ is zero elements 

except for these k cells turned to 1. 

Also, V can be assigned to be equal 

the estimated mixing matrix A. 

Now, the main aim of the new 

unmixing algorithm is to find U 

that minimizes the clustering error 

and from this final matrix 𝑈, the 

abundance matrices of 

endmembers can be extracted 

easily as the values in Urepresent 

the degree of membership (fraction 

or abundance) of each material 

(endmember)in a given pixel 

 

Algorithm 2 (SSSFC): 

 

Step 1 Apply VCA for k 

endmembers  

Step 2 Get supervised membership 

grades 𝑈̅and set the initial values of 

V. 

Step 3 Calculate U on fixing V by 

(5) (m >1) or (8) (m = 1). 

Step 4 Calculate V on fixing U by 

(4). 
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Step 5 If the stop criterion satisfies, 

the algorithm is finished. 

Otherwise, go back to Step 2. 

Step 6 Abundance Maps = final U 

 

The new unmixing model gives the 

abundance maps in a direct way 

from the membership grades 

without additional coefficients and 

parameters. It is not unsupervised 

(blind) model but it makes use 

from the priori knowledge one can 

get from the endmember extraction 

algorithms such as VCA, N-Finder, 

etc… The non-blindness of the 

model, given by a strong 

initialization, certainly improves 

the accuracy of the results. 

 

3. Experimental Results 

3.1 Data Used 

For experiments and evaluation of 

our new unmixing algorithm, two 

benchmark data are used. The first 

is the real data of Jasper Ridge [25] 

and the second is the synthetic data 

“Legendre”[26]. Jasper Ridge is a 

real popular hyperspectral data 

composed of 512 x 614 pixels. 

Each pixel is acquired at 224 

channels starting from 380 nm to 

2500 nm. The spectral resolution is 

up to 9.46 nm. A subimage of 

100 x 100 pixels are considered 

and only 198 channels remained 

after removal due to dense water 

vapor and atmospheric effects. 

There are four endmembers latent 

in this data: road, soil, water and 

tree. 

The Legendre synthetic images 

[26] have been generated using five 

selected endmembers from the 

USGS spectral library. Each 

image's spatial dimensions are of 

128x128 pixels and they have 431 

spectral bands. One of these images 

files corresponds to the free of 

noise hyperspectral synthetic 

image, and in the other four 

additive noise has been added to 

the synthetic image given a Signal 

to Noise Ratio (SNR) of 20, 40, 60 

and 80db. The non linearity of this 

synthetic dataset was performed by 

the Fan unmixing model [27] 

 

3.2  Quality Metrics 

For a single estimated endmember, the 

spectral angle mapper (SAM) measures 

the similarity between the true 

endmember 𝑚 and the estimated 

endmember 𝑚̃ as follows 

𝑆𝐴𝑀 = 𝑎𝑟𝑐𝑐𝑜𝑠 〈
𝑚𝑇𝑚̃

‖𝑚𝑇‖ ‖𝑚̃‖
〉                                         

(9) 

And the mean spectral angle mapper 

over all P endmembers is as follows 

𝑚𝑆𝐴𝑀 =
1

𝑃
∑ 𝑆𝐴𝑀𝑃

𝑝=1                                        

(10) 

For a single estimated abundance 

matrix, the root mean square error 

(RMSE) evaluates the error between 

the true abundance matrix 𝑎 and the 

estimated abundance matrix 𝑎̃ and it is 

calculated as follows 

𝑅𝑀𝑆𝐸 =

 √
1

𝑁𝑃
∑ ∑ (𝑎𝑛𝑝 − 𝑎̃𝑛𝑝)2𝑃

𝑝=1
𝑁
𝑛=1                          

(11) 

where𝑁 is the total number of pixels 

and the mean RMSE over all 

abundance matrices is computed as 

𝑚𝑅𝑀𝑆𝐸 =
1

𝑃
∑ 𝑅𝑀𝑆𝐸𝑃

𝑝=1 (12) 
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Generally, small values of SAM and 

RMSE indicate a good accuracy 

 

 

3.3 Results and Discussion 

In this section, the results of applying 

the new algorithm (SSSFC) on two 

images are presented. The first image 

is the real data of Jasper Ridge and 

the second is the synthetic data of 

Legendre for different signal to noise 

(SNR) values such as SNR = 0, 20, 

40, 60, and 80. We compare our 

results with those of four algorithms 

well known in the state-of-the art. 

Those algorithms used for 

comparison are the non-negative 

matrix factorization (NMF) [28], the 

sparsity-regularized NMF 

(SNMF)[29], the Simplex Projection 

Unmixing (SPU) [30], Different 

Metrics unmixing chain (DMaxD) 

[31].  

Tables1 and 2 show the results in 

terms of Msam and Mrmse for the new 

algorithm and the four state-of-the art 

algorithms used in this paper. 

 

In case of Jasper Ridge image, the 

SSSFC outperforms the others when 

considering the mean values over the 

four abundance maps. However, the 

SPU performs better than the SSSFC 

in case of the Legendre image with 

different SNRs. The SSSFC appears 

just after the SPU with slight 

differences in case of the Legendre 

image. Also, according to Figure 14, 

the SSSFC succeeded in getting three 

abundance maps (1, 4 and 5) 

accurately comparing with the ground 

truth images while the two others (2, 

 

 

Table 1. The Values of MSAM and MRMSE for Jasper 

Ridge  

 

 Jasper Ridge 

 Msam Mrmse 

SSSFC 0.3526 0.5794 

NMF 0.4961 0.8330 

SNMF 0.3862 0.7529 

SPU 0.5343 0.8616 

DMaxD 0.4081 0.8254 

 
Legendre 

 
SNR = 0 SNR = 20 SNR = 40 SNR = 60 SNR = 80 

 
Msam Mrmse Msam Mrmse Msam Mrmse Msam Mrmse Msam Mrmse 

SSSFC 
0.1952 2.1959 0.0759 1.9376 0.1950 2.1726 0.1996 2.1914 0.1952 2.196 

NMF 
0.3203 2.6598 0.2804 3.6616 0.3356 1.9587 0.2786 4.1376 0.1946 2.3158 

SNMF 
0.2976 2.9597 0.298 2.9256 0.2977 2.9609 0.2977 2.9597 0.2976 2.9597 

SPU 
0.0379 0.1765 0.1612 0.4462 0.1577 0.4205 0.1596 0.4199 0.1596 0.4177 

DMaxD 
0.2871 1.3879 0.3545 1.4203 0.2023 1.4251 0.3332 1.6082 0.2991 1.9974 
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3) have very few different details. 

Figures from 1to 12 show the different 

SAM and RMSE for each of the 

images and for in drawing the 

abundance maps compared by the 

other algorithms in most cases. each of 

the end members. It is clearly seen that 

the new algorithm had decreased the 

error  

 

Table 2. The Values of MSAM and MRMSE for Legendre of different SNR values 

 

 

Figure 1. The SAM results of the four abundance maps of Jasper Ridge image 

 

Figure 2. The RMSE results of the four abundance maps of Jasper Ridge image 
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Figure 3. The SAM results of the five abundance maps of Legendre image SNR=0 

 

 

Figure 4. The RMSE results of the five abundance maps of Legendre image SNR=0 

 

Figure 5. The SAM results of the five abundance maps of Legendre image SNR=20 

 

 

Figure 6. The RMSE results of the five abundance maps of Legendre image SNR=20 
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Figure 7. The SAM results of the five abundance maps of Legendre image SNR=40 

 

Figure 8. The RMSE results of the five abundance maps of Legendre image SNR=40 

 

 

Figure 9. The SAM results of the five abundance maps of Legendre image SNR=60 
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Figure 10. The RMSE results of the five abundance maps of Legendre image SNR=60 

 

Figure 11. The SAM results of the five abundance maps of Legendre image SNR=80 

 

Figure 12. The RMSE results of the five abundance maps of Legendre image SNR=80 
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Figure 13. The abundance maps of Jasper Ridge image 
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Figure 14. The abundance maps of the Legendre image at SNR=0 

 

4 Conclusions and Future Work 

A new nonlinear spectral unmixing 

algorithm was presented in this 

paper. The new algorithm is based 

on the Fuzzy Semi Supervised 

Standard Clustering to conduct the 

abundance maps. Some pixels are 

labelled as pure initially using the 

Vertex Component Analysis 

algorithm and the rest of pixels are 

not labelled. Hence, the 

membership of the semi supervised 

fuzzy clustering can be initialized 

by those known pure pixels which 
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can get 1 for their corresponding 

endmember and 0 for the other 

endmembers. The new algorithm 

can easily conduct the new 

membership matrix after a number 

of iterations. This matrix equals the 

matrix of abundance maps. The 

new algorithm showsgood 

accuracy and efficiency when 

compared to four of the well-

known state-of-the art algorithms. 

As future work, it is suggested to 

extend the use of fuzzy logic in this 

area. New unmixing algorithms can 

be based on different types of fuzzy 

clustering. 
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