1,734 research outputs found

    Experimental study of contact transition control incorporating joint acceleration feedback

    Get PDF
    Joint acceleration and velocity feedbacks are incorporated into a classical internal force control of a robot in contact with the environment. This is intended to achieve a robust contact transition and force tracking performance for varying unknown environments, without any need of adjusting the controller parameters, A unified control structure is proposed for free motion, contact transition, and constrained motion in view of the consumption of the initial kinetic energy generated by a nonzero impact velocity. The influence of the velocity and acceleration feedbacks, which are introduced especially for suppressing the transition oscillation, on the postcontact tracking performance is discussed. Extensive experiments are conducted on the third joint of a three-link direct-drive robot to verify the proposed scheme for environments of various stiffnesses, including elastic (sponge), less elastic (cardboard), and hard (steel plate) surfaces. Results are compared with those obtained by the transition control scheme without the acceleration feedback. The ability of the proposed control scheme in resisting the force disturbance during the postcontact period is also experimentally investigated

    Practice of law in the provisioning of accessibility facilities for person with disabilities in Malaysia

    Get PDF
    Malaysia’s significant changes can be seen clearly through the improvement of social welfare of the disabled and people with disabilities. Although the governments has carried out various policies and provide facilities as well as provision for the disabled but there are still many obstacles encountered by people with disabilities, especially the legal and the accessibility of facilities and services. Therefore, this paper attempts to discuss the practice of law relating of legal procedure particularly for disabled users which affects the movement of these people from one destination to another. This paper discusses the practice of law adopted in the preparation of facilities for disabled people to help them make movement independently. The study was conducted by secondary data to the Malaysia legal and policies for disabled person by comparing with United Kingdom (UK). Malaysia has come out with a strong legal framework for disabled person through People with Disabilities Act 2008 (Act 685). There are several areas in the act that still can be improved to support disabled person

    Control Of Rigid Robots With Large Uncertainties Using The Function Approximation Technique

    Get PDF
    This dissertation focuses on the control of rigid robots that cannot easily be modeled due to complexity and large uncertainties. The function approximation technique (FAT), which represents uncertainties as finite linear combinations of orthonormal basis functions, provides an alternate form of robot control - in situations where the dynamic equation cannot easily be modeled - with no dependency on the use of model information or training data. This dissertation has four aims - using the FAT - to improve controller efficiency and robustness in scenarios where reliable mathematical models cannot easily be derived or are otherwise unavailable. The first aim is to analyze the uncertain combination of a test robot and prosthesis in a scenario where the test robot and prosthesis are adequately controlled by different controllers - this is tied to efficiency. We develop a hybrid FAT controller, theoretically prove stability, and verify its performance using computer simulations. We show that systematically combining controllers can improve controller analysis and yield desired performance. In the second aim addressed in this dissertation, we investigate the simplification of the adaptive FAT controller complexity for ease of implementation - this is tied to efficiency. We achieve this by applying the passivity property and prove controller stability. We conduct computer simulations on a rigid robot under good and poor initial conditions to demonstrate the effectiveness of the controller. For an n degrees of freedom (DOFs) robot, we see a reduction of controller tuning parameters by 2n. The third aim addressed in this dissertation is the extension of the adaptive FAT controller to the robust control framework - this is tied to robustness. We invent a novel robust controller based on the FAT that uses continuous switching laws and eliminates the dependency on update laws. The controller, when compared against three state-of-the-art controllers via computer simulations and experimental tests on a rigid robot, shows good performance and robustness to fast time-varying uncertainties and random parameter perturbations. This introduces the first purely robust FAT-based controller. The fourth and final aim addressed in this dissertation is the development of a more compact form of the robust FAT controller developed in aim~3 - this is tied to efficiency and robustness. We investigate the simplification of the control structure and its applicability to a broader class of systems that can be modeled via the state-space approach. Computer simulations and experimental tests on a rigid robot demonstrate good controller performance and robustness to fast time-varying uncertainties and random parameter perturbations when compared to the robust FAT controller developed in aim 3. For an n-DOF robot, we see a reduction in the number of switching laws from 3 to 1

    Biomimetic Manipulator Control Design for Bimanual Tasks in the Natural Environment

    Get PDF
    As robots become more prolific in the human environment, it is important that safe operational procedures are introduced at the same time; typical robot control methods are often very stiff to maintain good positional tracking, but this makes contact (purposeful or accidental) with the robot dangerous. In addition, if robots are to work cooperatively with humans, natural interaction between agents will make tasks easier to perform with less effort and learning time. Stability of the robot is particularly important in this situation, especially as outside forces are likely to affect the manipulator when in a close working environment; for example, a user leaning on the arm, or task-related disturbance at the end-effector. Recent research has discovered the mechanisms of how humans adapt the applied force and impedance during tasks. Studies have been performed to apply this adaptation to robots, with promising results showing an improvement in tracking and effort reduction over other adaptive methods. The basic algorithm is straightforward to implement, and allows the robot to be compliant most of the time and only stiff when required by the task. This allows the robot to work in an environment close to humans, but also suggests that it could create a natural work interaction with a human. In addition, no force sensor is needed, which means the algorithm can be implemented on almost any robot. This work develops a stable control method for bimanual robot tasks, which could also be applied to robot-human interactive tasks. A dynamic model of the Baxter robot is created and verified, which is then used for controller simulations. The biomimetic control algorithm forms the basis of the controller, which is developed into a hybrid control system to improve both task-space and joint-space control when the manipulator is disturbed in the natural environment. Fuzzy systems are implemented to remove the need for repetitive and time consuming parameter tuning, and also allows the controller to actively improve performance during the task. Experimental simulations are performed, and demonstrate how the hybrid task/joint-space controller performs better than either of the component parts under the same conditions. The fuzzy tuning method is then applied to the hybrid controller, which is shown to slightly improve performance as well as automating the gain tuning process. In summary, a novel biomimetic hybrid controller is presented, with a fuzzy mechanism to avoid the gain tuning process, finalised with a demonstration of task-suitability in a bimanual-type situation.EPSR

    Impedance Control of Flexible Robot Manipulators

    Get PDF

    Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining

    Get PDF
    This study evaluates the machining performance of newly developed modified jatropha oils (MJO1, MJO3 and MJO5), both with and without hexagonal boron nitride (hBN) particles (ranging between 0.05 and 0.5 wt%) during turning of AISI 1045 using minimum quantity lubrication (MQL). The experimental results indicated that, viscosity improved with the increase in MJOs molar ratio and hBN concentration. Excellent tribological behaviours is found to correlated with a better machining performance were achieved by MJO5a with 0.05 wt%. The MJO5a sample showed the lowest values of cutting force, cutting temperature and surface roughness, with a prolonged tool life and less tool wear, qualifying itself to be a potential alternative to the synthetic ester, with regard to the environmental concern

    Teleoperated and cooperative robotics : a performance oriented control design

    Get PDF

    Hybrid motion/force control:a review

    Get PDF
    corecore