735 research outputs found

    3GPP Long Term Evolution: Architecture, Protocols and Interfaces

    Get PDF
    The evolution of wireless networks is a continuous phenomenon. Some key trends in this changing process include: reduced latency, increased performance with substantial reduction in costs, and seamless mobility. Long Term Evolution (LTE) is based on an evolved architecture that makes it a candidate of choice for next generation wireless mobile networks. This paper provides an overview of both the core and access networks of LTE. Functional details of the associated protocols and interfaces are also presented

    Design and prototype of a train-to-wayside communication architecture

    Get PDF
    Telecommunication has become very important in modern society and seems to be almost omnipresent, making daily life easier, more pleasant and connecting people everywhere. It does not only connect people, but also machines, enhancing the efficiency of automated tasks and monitoring automated processes. In this context the IBBT (Interdisciplinary Institute for BroadBand Technology) project TRACK (TRain Applications over an advanced Communication networK), sets the definition and prototyping of an end-to-end train-to-wayside communication architecture as one of the main research goals. The architecture provides networking capabilities for train monitoring, personnel applications and passenger Internet services. In the context of the project a prototype framework was developed to give a complete functioning demonstrator. Every aspect: tunneling and mobility, performance enhancements, and priority and quality of service were taken into consideration. In contrast to other research in this area, which has given mostly high-level overviews, TRACK resulted in a detailed architecture with all different elements present

    Evolving military broadband wireless communication systems: WiMAX, LTE and WLAN

    Get PDF
    © 2016 IEEE. This version of the paper has been accepted for publication. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final published paper is available online at: https://doi.org/10.1109/ICMCIS.2016.7496570.[Abstract]: Emerging technologies for mobile broadband wireless are being considered as a Commercial Off-The-Shelf solution to cover the operational requirements of the future warfare. The capabilities of these technologies are being enhanced to meet the growing market demands on performance. In this context, several standards such as WiMAX, LTE or WLAN are introducing themselves as strong candidates to fulfill these requirements. This paper presents an innovative scenario-based approach to develop a Military Broadband Wireless Communication System (MBWCS). Its main objective is to analyze how similar a military MBWCS can be to the identified civil standards, taking operational and high level technical requirements into account. This specification will be used for analyzing the applicability and the modifications of each of the standards layers individually. Proving the feasibility and aptitude of each standard provides strong foundations to address a MBWCS in the most efficient way.This work has been funded by MINECO of Spain under grant TEC2013-47141-C4-1-R and Indra Sistemas S.A. The authors acknowledge to Colin Brown, Mehmet Hayri K üçüktabak and Matthias Tschauner their collaboration in the NATO IST-ET-068

    A novel network architecture for train-to-wayside communication with quality of service over heterogeneous wireless networks

    Get PDF
    In the railway industry, there are nowadays different actors who would like to send or receive data from the wayside to an onboard device or vice versa. These actors are e.g., the Train Operation Company, the Train Constructing Company, a Content Provider, etc. This requires a communication module on each train and at the wayside. These modules interact with each other over heterogeneous wireless links. This system is referred to as the Train-to-Wayside Communication System (TWCS). While there are already a lot of deployments using a TWCS, the implementation of quality of service, performance enhancing proxies (PEP) and the network mobility functions have not yet been fully integrated in TWCS systems. Therefore, we propose a novel and modular IPv6-enabled TWCS architecture in this article. It jointly tackles these functions and considers their mutual dependencies and relationships. DiffServ is used to differentiate between service classes and priorities. Virtual local area networks are used to differentiate between different service level agreements. In the PEP, we propose to use a distributed TCP accelerator to optimize bandwidth usage. Concerning network mobility, we propose to use the SCTP protocol (with Dynamic Address Reconfiguration and PR-SCTP extensions) to create a tunnel per wireless link, in order to support the reliable transmission of data between the accelerators. We have analyzed different design choices, pinpointed the main implementation challenges and identified candidate solutions for the different modules in the TWCS system. As such, we present an elaborated framework that can be used for prototyping a fully featured TWCS

    Quality of Service (QoS) in 4G wireless networks

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Quality of Service (QoS) of 4th Generation Broadband Wireless Access (BWA) networks is directly affected by two factors: congestion in the network caused by changes in population density and application demand distribution; and varied attributes of network traffic such as minimum rate and delay requirements. The current 4G BWA specifications define QoS parameters for each type of traffic, but do not provide QoS mechanisms including Radio Admission Control (RAC), scheduler and congestion prevention mechanism to ensure the QoS to existing and new connections within the network. Significant amount of research is dedicated to provide QoS and control congestion using RAC and scheduler. Current QoS mechanisms are inadequate to deal with network congestions and provide fairness among the traffic flows. In this thesis, we have proposed a QoS framework and control algorithms for 4G BWA networks, Mobile WiMAX and Long Term Evolution (LTE). The framework includes a new load control mechanism, the Fair Intelligent Congestion Control (4G-FICC) and an intelligent admission control, the Fair Intelligent Admission Control (4G-FIAC), based on the QoS architecture of 4G BWA networks. 4G-FICC avoids and controls congestion at the base station of WiMAX and LTE networks, respectively. It avoids congestion through traffic balancing, while handles congestion when unavoidable, allocates resources fairly and minimizes resource underutilization. It estimates fair share of bandwidth for each type of service based on its current resource utilization, QoS constraints and load at the network. It ensures that the traffic is scheduled in a way that fairness is guaranteed among the traffic flows, without violating the QoS requirements of connections. We have identified critical parameters of 4G-FICC and discuss the impact of various settings of these parameters on the network performance. Detailed and comprehensive simulations are performed in ns-2 and OPNET. The results show that 4G-FICC is always active in the network, whether the network is overloaded or underutilized. It performs extremely well in allocating resources fairly among different type of services, yet preserving their QoS requirements in terms of throughput, delay and jitter. Furthermore, 4G-FICC is simple to implement, robust and relatively insensitive to parameter settings. To ensure end-to-end delay and QoS, we propose a predictive RAC, the Fair Intelligent Admission Control for 4G networks (4G-FIAC). It admits or rejects an incoming connection based on the resource availability and the current load in the network. The key idea is to utilise feedback from the load control module to determine load in the network. The proposed RAC is based on the bandwidth borrowing and degradation of over provisioned connections in order to minimise blocking probability and maximise resource utilisation in the network. Therefore, 4G-FIAC along with 4G-FICC avoids congestion in the network to guarantee QoS to end-users. Detailed and comprehensive simulations are performed in ns-2 and OPNET to show the efficiency of the proposed RAC scheme. Extensive simulations demonstrate that 4G-FIAC outperforms existing schemes in terms of blocking probability of different service classes and fair resource allocation. In this thesis, we have performed a comprehensive study of parameters that affect both the capacity and coverage of 4G networks. It serves as a basis for designing effective QoS schemes for dynamic and mixed distribution of services. With thorough investigation of the impact of QoS schemes on the capacity and dimensioning of 4G networks, we have presented a general and efficient approach for the network operators to determine the extent to which current network configurations can effectively manage the dynamic variations in the access and core side of the network. Different scenarios are presented in the thesis to evaluate the effects of QoS schemes on the capacity of the network. The results are valuable in assisting the network operators to determine the optimum point for re-dimensioning the network to minimise cost and ensure the QoS of connections in terms of throughput and delay. The research results are not limited to 4G networks in particular, but can be applied to other next generation wireless technologies, to ensure QoS to users in the covered area

    QoS Abstraction Layer in 4G Access Networks

    Get PDF
    Tese de Mestrado. Redes e Serviços de Comunicação. Faculdade de Engenharia. Universidade do Porto. 200
    corecore