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Abstract

In the context of heterogeneous wireless networks, or 4G networks, a number of problems are
yet to be solved. One of these problems is the lack of Layer 2 QoS provisioning in heterogeneous
networks, mainly due to the non-uniform nature of the QoS models and service interfaces among
different wireless technologies. In addition, 4G access networks may include Access Points with
no dedicated channel to control their QoS capabilities. An even more demanding scenario involves
concatenated Access Points and the need to control and coordinate the QoS provisioning among
them. Other problems in need to be addressed include coordination of L3 QoS with L2 QoS and
mobility, and L2 multicast with QoS.

In order to help solving these problems, we propose a QoS Abstraction Layer, which is located
between layers 2 (link) and 3 (network), in the control plane; it hides from the upper layers the
QoS reservation details of the technologies in use, as well as the layer 2 network topology. An
abstract QoS service interface is provided to L3 QoS management modules, supporting primitives
to reserve or modify L2 QoS resources, represented as abstract QoS parameters. An associated
signalling protocol makes the QoS requests be communicated to the relevant QoSAL-enabled L2
nodes; discovery of the correct path to the mobile node in an L2 access network, and translation
of abstract QoS parameters into technology-specific QoS parameters are also properties of the
QoSAL.

The service interface also features primitives to query available resources in Access Points, as
well as notifications when the free resources drop below a certain threshold, which can be used
to trigger network initiated handover for purposes of load balancing. Moreover, asynchronous
notifications of degradation in existing QoS reservations are also defined, allowing applications
to adapt to changing link conditions, among other cross-layer optimisations. Also featured are
primitives designed for integration with L3 mobility, and multicast QoS. Finally, the architecture
follows a modular design, with technology-dependent aspects separated into their own “driver”
modules, allowing simpler development of QoS support for new technologies, without changing
any other part of the access network infrastructure.

As proof of concept, a prototype implementation of the QoS Abstraction Layer was developed
and tested. The results obtained show that the prototype is correctly implementing the QoS and
mobility integration primitives, as well as automatic path discovery to the mobile node.

The resulting work represents a contribution to QoS in packet switched wireless networks, as
it is specifically designed to bridge the gap between L3 QoS and L2 QoS. The definition of the
abstract QoS interface is by itself an important achievement; also relevant is the way in which
the signalling protocol solves the problems associated with the forwarding algorithm of IEEE
802.1D learning bridges.
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Resumo

No contexto das redes sem fios heterogéneas, ou redes 4G, encontra-se ainda por resolver um
conjunto de problemas. Um destes problemas é a ausência de mecanismos uniformes reservas e
pedidos de Qualidade de Serviço (QoS) de ńıvel 2 (L2) em redes heterogéneas; os mecanismos
existentes são variados e dependem fortemente das tecnologias rádio em uso. Para além disso,
as redes de acesso 4G podem incluir Pontos de Acesso sem canais dedicados ao controlo dos
mecanismos de QoS. Um cenário de comunicação mais exigente pode ainda incluir Pontos de
Acesso concatenados que devem ser controlados e coordenados relativamente à QoS. Outros
problemas a resolver incluem a coordenação de QoS de ńıvel 3 com QoS de ńıvel 2 e mobilidade,
e o multicast ńıvel 2 com QoS.

Para ajudar a resolver estes problemas, propomos o componente QoS Abstraction Layer
(QoSAL), que se encontra entre os ńıveis 2 (ligação) e 3 (rede), no plano de controlo; esta
abstracção esconde das camadas superiores os pormenores de reserva de QoS das tecnologias
rádio, assim como a topologia da rede de ńıvel 2. É oferecida aos módulos de suporte de QoS de
ńıvel 3 uma interface serviço de QoS abstracta, com primitivas para reservar ou modificar recursos
de QoS de ńıvel 2, que são representados como parâmetros de QoS abstractos. Um protocolo
de sinalização associado permite comunicar os pedidos de QoS aos nós de ńıvel 2 relevantes que
suportam QoSAL; a descoberta do caminho correcto até ao terminal numa rede de acesso ńıvel 2
e a tradução entre parâmetros de QoS abstractos e parâmetros de QoS dependentes da tecnologia
são outras das caracteŕısticas do QoSAL.

A interface de serviço fornece ainda primitivas para se obter informação sobre os recursos
livres em Pontos de Acesso, e primitivas de notificação de diminuição de recursos, que podem ser
usadas para despoletar o handover iniciado pela rede para efeitos de balanceamento de carga.
Para além disso, são ainda definidas notificações asśıncronas de degradação de QoS das reservas
existentes, permitindo que as aplicações se adaptem às flutuações da qualidade da ligação, e que
sejam optimizados mecanismos inter-camada. Estão ainda dispońıveis primitivas para integrar
a QoS com a mobilidade ńıvel 3 e QoS multicast . O QoSAL tem uma arquitectura modular,
com os aspectos dependentes de tecnologia localizados em módulos bem identificados, permitindo
assim a integração fácil de novas tecnologias.

Para demonstrar o conceito foi desenvolvido e testado um protótipo do QoSAL. Os resultados
mostram que o protótipo implementa correctamente as primitivas de QoS e de integração com
mobilidade, para além da descoberta automática do caminho para os terminais.

Os resultados deste trabalho representam uma contribuição para a QoS em redes sem fios
com comutação de pacotes, pois permitem a integração simples da QoS de ńıvel 3 com a QoS
de ńıvel 2, em redes heterogéneas. A definição da interface abstracta de QoS é, por si só, um
resultado importante; relevante é também a forma como o protocolo de sinalização resolve os
problemas associados ao algoritmo de encaminhamento das learning bridges IEEE 802.1D.
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Chapter 1

Introduction

In the brief history of wireless telecommunications, there has been an ever repeating
pattern as telecommunications systems are upgraded from one generation to the next.
What we see in each upgrade is that the new technology brings great improvements:
greater transmission speeds, more quality, less power consumption, and more services.
Analysing in detail, it can equally be observed that each technology upgrade brings
improvements essentially at the physical layer, while the rest of the architecture is more
or less reinvented. As a result of this, upgrading from one physical layer to another is
usually a difficult and costly process:

1. Most of the infrastructure of operators needs to replaced;

2. Users need to replace their cellphones;

3. Operator or third-party services, currently much tied to the access technology,
need also to be adapted or replaced.

The so called “Fourth Generation Wireless Network” (4GW) is currently being re-
searched, and it is expected to replace the current telecommunications systems: 2G
(GSM), 2.5G (GPRS), and 3G (UMTS). 4GW will incorporate two disparate communi-
cations paradigms — circuit-switched and packet-switched networks — to create a new
communications infrastructure sharing properties of both systems, and at the same time
adding a few unique properties of its own. These 4GW networks are an attempt to
solve the problem previously mentioned by employing a technology-independent layer
to insulate most of the operator equipments and services from the lower layers. This
technology-independent layer is, in some approaches, the Internet Protocol version 6
(IPv6) [DH98, Sta96, LLM+98]. Some characteristics of 4GW networks are the follow-
ing:

1. Terminals will be offered a set of services, such as voice and video calls, streaming,
and web browsing, which may run on top of IPv6;

1



2 CHAPTER 1. INTRODUCTION

2. The particular wireless technology used at any moment will be abstracted. Mobile
terminals will be allowed to use multiple wireless technologies to access the same
network;

3. Terminals may have multiple wireless cards, and are allowed to perform a “vertical
handover”. For example, a user that is entering an 802.11 hotspot may switch
from the more expensive UMTS access to 802.11, without losing connectivity;

4. Quality of Service (QoS) will be built into the architecture from the ground up, so
that the quality that people are used to from circuit-switched calls is preserved in
packet-switched networks.

These goals will take wireless communications to a new level of functionality, with
advantages for both users and operators. Users are offered flexibility to choose the most
convenient access technology available at any time and place (Always Best Connected);
operators see the technology-specific part of the network decoupled from the rest of the
network, and may offer the same services over a wider range of access methods, with
little duplication of network components.

1.1 Reference Scenario

The base scenario addressed in this thesis pushes the boundaries of wireless communi-
cations somewhat further. This scenario consists of a mobile node (MN) that uses an
Access Router (AR) to obtain connectivity to an operator’s network. However, the AR
does not offer directly wireless connectivity to the MN. Instead, it is connected (via Eth-
ernet, for example) to one or more Access Points, which ultimately provide connectivity
to the MN. This example is made even more complex, but still realistic since we may
have concatenated wireless links as shown in Fig. 1.1. IEEE 802.16 (point-to-multipoint
broadband wireless access) link (Base Station + Subscriber Station), followed by two
APs in parallel, one 802.11 (Wireless LAN) and one 802.15.1 (Bluetooth). The goal
is to support a generic L2 network composed of an arbitrary number of equipments
interconnected to form a tree rooted at the AR.

Most packet-switched networks offer, by default, only a “best effort” service. This
means that there are no guarantees regarding packet delivery, jitter, or delay. Most ap-
plications are able to easily adapt to such a network environment, but a few applications,
named real-time applications, cannot cope with this lack of guarantees. Usually, support
for a certain level of packet transmission guarantees is an add-on service provided by the
network, and it is called Quality of Service (QoS). Unlike in the Internet, in 4G networks
the real time applications will play an important role, thus QoS will certainly become
a fundamental requirement in such networks. In order to provide end-to-end QoS to
applications, it is first necessary to provide QoS in the wireless part of the network,
which is also the most significant bottleneck in end-to-end QoS.

Unlike in fixed/wired networks, which are mainly composed of dedicated point-to-
point links interconnecting routers, in wireless networks layer 3 QoS is not in itself
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Figure 1.1: Example of multi-hop wireless scenario
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sufficient to ensure an acceptable overall level of QoS. Some of the major differences
between wired and wireless networks include the much larger transmission delay and bit
error rate in wireless networks in comparison to wired ones. Moreover, bandwidth in
wireless networks is relatively low and fluctuates very rapidly. Wired networks usually
solve the QoS problem by over-provisioning, but wireless networks have much less capac-
ity to begin with, so effort must be made to use efficiently the little bandwidth that is
available. In current wireless networks, access to the medium is naturally shared and dis-
tributed. To avoid the penalty, in terms of delay and bandwidth, of frame transmission
collisions, centralised coordination protocols are sometimes built on top of the shared
(at physical level) medium. Delays are still higher than in wired links, but the MAC
protocol can be—and often is—tweaked to give different priorities to different terminals
or even individual flows. This is what is usually called layer 2 QoS. While L2 QoS may
not have significant impact on wired networks1, in wireless networks it can be used to
significantly improve the overall QoS level. Therefore, 4G networks will require not only
L3 QoS but also L2 QoS.

Most wireless technologies in 4G networks already have built-in QoS support at
the MAC layer. The difficult part will be to properly configure and adapt L2 QoS
parameters for the end-to-end (L3) QoS requirements, for each flow. This is usually
termed L3/L2 QoS mapping. QoS mapping would normally be a relatively simple task,
but in heterogeneous wireless networks it becomes more complicated since we need to
support at the same time multiple L2 technologies, each with a different QoS model and
configuration interface. Add to that the uncertainty of the L3 QoS architecture that will
be adopted, be it RSVP (with mobility-enhanced variants) NSIS, DiffServ, QoS Brokers,
QoS-enabled SIP proxies, some of which may even coexist in the same system, and we
come to the conclusion that QoS mapping is indeed a complex task in heterogeneous
networks.

In theory, given M distinct L3 QoS models and N L2 QoS interfaces, we should need
M × N different mappings if following the most direct one-to-one mapping approach
(Fig. 1.2(a)). A different alternative is to define an abstraction (or convergence) layer,
and perform the mapping in two steps: (1) mapping from L3 QoS to the abstraction
layer; (2) mapping from the abstraction layer into L2 QoS. In this case (Fig. 1.2(b)) we
would need M + N different mappings. Solving the equation

M + N < M ×N

to find out when abstraction layer is simpler to implement than direct mapping, yields

M × (N − 1)
N

> 1

Let us suppose we have two L3 QoS models to consider: DiffServ and IntServ. Replacing
M = 2 we obtain

N > 2
1Moreover, in wired point-to-point links it has absolutely no impact
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(a) Direct mapping (b) Mapping through an abstraction
layer

Figure 1.2: Analysis of the complexity of L3/L2 QoS mapping

Considering a 4G scenario, this will likely be true; for instance, UMTS, 802.11 and
802.16.

Even if the above was not true, defining an abstraction layer is important for ad-
ditional reasons, such as: (1) to discover common ground of all L2 QoS interfaces; (2)
to define—and at the same time limit and simplify—the functionality L3 QoS modules
will need from L2; 3) to allow future L2 technologies to be cleanly included into the
architecture without significantly affecting L3 modules.

For these reasons, a component called “QoS Abstraction Layer” (QoSAL) has been
developed and is described in this thesis; it is a generic protocol for QoS reservation
in L2 wireless networks that hides from the hosts and access routers the topology and
heterogeneity of the underlying L2 network.

1.2 Objectives

The objectives defined for this work are the following:

• Specify a service interface (primitives and parameters) for the QoS abstraction
layer which considers:

– The QoS interfaces of the most important L2 wireless technologies likely to
be used in 4G networks;

– The requirements of the L3 QoS architectures expected to be used in 4G
networks;

• Define a protocol for reserving QoS across an L2 network that is composed of
several L2 elements between a single pair of L3 nodes, and which requires that
QoS is reserved separately in each segment connecting them;
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• Create a working prototype as proof-of-concept, and use it to perform tests.

1.3 Original Contributions

The following contributions have been produced during the course of this work:

1. A model for L2 QoS reservations, including primitives and abstract QoS parame-
ters, which can be easily mapped into the most common wireless networks in use,
such as UMTS, 802.11, Bluetooth, and 802.16. This QoS model is simple and
allows mapping into future L2 technologies to be easily implemented.

2. An associated signalling protocol which allows the L2 QoS reservations to be con-
veyed into remote access points, and which transparently supports concatenated
IEEE 802 networks (eg. 802.16 followed by 802.11) robust and efficiently.

1.4 Result

The work performed around this thesis has led to the development of a prototype. This
prototype implements the abstract L2 QoS interface, and, among other capabilities, is
able to communicate with the layers above it in order to negotiate QoS reservations,
among other capabilities. In addition, the prototype implements the QoSAL signalling
protocol to allow extending abstract QoS reservations to remotely located Access Points.

1.5 Organisation of the Thesis

The remainder of this thesis is organised as follows. Chapter 2 provides some background
on the most important concepts and technologies behind QoS in packet-switched net-
works. Chapter 3 explains the QoS architecture of the IST DAIDALOS project, which
is important to understand the context of this work. Then, Chapter 4 describes the QoS
Abstraction Layer, including architecture, interfaces, and protocol. This description is
complemented in Chapter 5 by a description of the prototype implementation and re-
spective tests, used to validate the concept. Finally, Chapter 6 concludes with some final
remarks about the results and possible directions for future work.



Chapter 2

QoS in Packet-switched Networks

2.1 Introduction

Packet-switched networks are usually based on a “best-effort” service model. This service
model consists on the ability of transmitting information in the form of packets, but
with an implicit assumption that there are no absolute guarantees on how much time
transmission will take, or even whether it will succeed. In addition, the order of packets is
not guaranteed to be preserved from sender to receiver. To work around these problems,
some upper layer protocols, such as TCP, implement their own packet retransmission
and reordering schemes, thus offering a reliable service on top of a unreliable one.

One of the things that TCP cannot assure, however, is limited and low delay. More-
over, real-time applications, such as voice and video conferencing, often use RTP instead
of TCP, since TCP favours reliability in detriment of delay; it sometimes retransmits
packets that are lost even though the retransmitted packet would arrive too late at the
receiver to make any difference. RTP has much less overhead than TCP, but in case of
real-time applications they both fail to provide an adequate service on top of a best-effort
network.

In packet switched networks there exist some architectures that are able to provide
some limited guarantees to selected packet flows. This is normally called Quality of
Service (QoS). The current chapter will present an overview of the most significant QoS
architectures that have been developed, focusing on Layer 3 QoS (Sec. 2.4) systems, then
Layer 2 technologies providing QoS (Sec. 2.5), and finally some of the most relevant
QoS systems currently under research (Sec. 2.7). But first, Sec. 2.2 contains a quick
introduction to multicast, and Sec. 2.3 introduces some general QoS concepts that are
important to understand the remaining sections.

2.2 Multicast

A recurring problem in packet switched networks happens when a sender host needs to
send the same information to multiple receivers. The straightforward solution consists
in sending the same packet multiple times with different destination addresses, once for

7
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each receiver. It is easy to see that, in most cases, the route from a sender to multiple
receivers has many common links. In such links, basically the same information is being
transmitted a certain number of times, with only the destination address changing. This
is not scalable to a large number of receivers, and it wastes a lot of bandwidth. A different
approach that could be taken would consist on transmitting a single copy of each packet,
but with a broadcast address. This avoids the duplication of packets; on the other hand,
the information is replicated everywhere, even to parts of the network that do not have
any receivers. This approach is impractical in the Internet in general, although it is
more feasible in a small local area network.

A common solution for this problem is to use multicast. Multicast is a service offered
by some packet-switched networks that consists in allowing a sender application to send
packets to multiple receivers in a scalable and efficient way. From the point of view of
the sender, a list of receivers is represented simply as a multicast address, sometimes also
called multicast group. The multicast address is used as destination address for packets
that are to be delivered to a list of receivers. It is then the job of the network to deliver
a packet to all nodes interested in receiving it. Usually, the intermediate nodes find out
about interested receivers for any give multicast group from the receivers themselves,
through appropriate multicast and group management protocols.

Multicast exists both at layer 3 and layer 2. For instance, in IPv6 there exists a
block of addresses [HD03] allocated for multicast, and the Multicast Listener Discov-
ery [VCL04] protocol is used by routers and receiver nodes to build a “multicast tree”
representation, so that routers are able to forward multicast packets only to the neigh-
bouring nodes that are interested in receiving them. At layer 2, there is also multicast.
In IEEE 802 networks, a block of MAC addresses (starting with 33:33:...) is allocated
for multicast. IPv6 multicast addresses are easily mapped [Cra98] into IEEE 802 MAC
multicast addresses. The IEEE 802.1D [Tel98] GARP Multicast Registration Protocol
(GMRP) can be used to manage multicast trees in IEEE 802.1D bridges, i.e. switches
or access points. Even UMTS has now support for multicast, as shown in Sec. 2.5.2.

2.3 QoS Concepts

2.3.1 Shaping, and Policing

In most QoS architectures, two of the most common operations to be performed on
packet flows are 1) shaping and 2) policing.

Shaping can be defined as an operation performed on an arrival flow in order to
transform it into a departing flow with the same packets but changing the shape of the
departure curve relatively to the arrival one. The objective is to obtain departure curve
that follows certain predefined parameters. Usually, shaping a flow is used to smooth
the flow by eliminating or limiting bursts in some way. A token bucket algorithm, as
described in Sec. 2.3.2 is often used to accomplish this. The main benefits of shaping
flows are to generally decrease jitter in networks and allow networking equipments to
have smaller buffers.
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Figure 2.1: The token bucket algorithm

Policing is very much like shaping, except that the arriving flow is merely param-
eterised, and packets that exceed parameter limits, called non-conforming packets, are
simply dropped or moved to a best effort queue. This operation is used when there is
some agreement, in terms of flow parameter limits, between one entity that generates
a flow and another entity that processes it, and the second entity has to prevent the
sender from violating that agreement.

2.3.2 The Token Bucket Algorithm

An important concept in QoS is that of the token bucket filter. This algorithm, which is
based on the earlier leaky bucket design [PG93], can be represented as the block diagram
in Fig. 2.1. Conceptually, it consists of two “buckets” that receive “tokens” arriving at
predetermined rates. Let the rate at which tokens arrive in the first and second buckets
be denoted r and p respectively. Now consider that the buckets have a limited depth and
cannot hold more than b and M tokens, respectively. Now, as packets enter the system,
their size is measured in terms of tokens. For each packet that arrives, if the number of
tokens in each bucket is greater or equal than the size of the packet, then packet goes
directly to the output of the system and at the same time consumes a number of tokens
from each bucket equal to its size. However, if this condition is not met then the packet
is either placed in the input queue, waiting for enough tokens to arrive at the buckets
or, if there is no input queue, is simply dropped. The four token bucket parameters,
r, b, p, M , as well as an additional parameter m that sometimes is also used, have the
following meaning:

r is the mean data rate, in token/s (one token is usually one byte or one bit). It represents
the maximum allowed sustained rate that the token bucket allows;

b is called maximum burst size, and is used to limit the size/length of bursts that may
leave the token bucket;

p is the peak data rate, which is the maximum rate of any bursts that may leave the
token bucket;

M is the maximum packet size; since the second bucket cannot hold more than M
tokens, we are effectively limiting the size of packets that may leave the system to
M tokens;
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Figure 2.2: Arrival and departure curves of an input flow with an arrival rate much
higher than the token bucket r parameter

m is the minimum policed unit parameter, which sometimes is also present, and it means
that the token bucket algorithm must consider packets smaller than m tokens as
being of size m.

To summarise all this, we can say that a token bucket can be used to limit the rate of
traffic. In steady-state, it imposes a certain limit r on the output rate of packets, but is
flexible to allow occasional bursts, but limited both in maximum rate (p) and maximum
duration (b), while at the same time imposing a hard limit on packet sizes (M). As
an example, consider the arrival and departure curves (accumulated byte counts) in
Fig. 2.2 of a token bucket subjected to an arriving flow with much higher rate than
the mean data rate that was configured. It contains arrival/departure curves, which are
representations of the number of bytes received or transmitted over time. In this kind
of plot, the inclination of a segment gives an indication of traffic rate: more inclination
means higher packet rate. We can also observe the delay observed by packets in the
system by projecting an imaginary horizontal line over the arrival and departure curves,
and comparing the time values of the two intersections. In this case we can see that,
while initially the token bucket limits the incoming flow to a rate p, when the first bucket
has excess tokens, at some point in time the tokens in the first bucket (limited by b) are
exhausted, and from there on the outgoing packet flow rate is limited to r.

The token bucket algorithm is very useful for QoS in many contexts. Not only does
it allow to perform both shaping and policing by controlling the existence of the input
buffer (without buffer it does policing, with it does shaping) but, most importantly, it is
used to describe the shape of traffic that is to be expected—or is acceptable—to many
different systems, including IntServ, UMTS, and DiffServ.

2.4 Layer 3 QoS

The provision of QoS can occur at either Layer 3 (IP) or Layer 2 (link technology). In
case of L3 QoS, two main concerns have to be addressed:

1. How to coordinate the actions of all L3 nodes (routers) between the sender and
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receiver hosts in order to meet the end-to-end QoS requirements. Usually some
kind of signalling has to take place for this to happen;

2. Each individual host in the path must employ some kind of mechanism to ensure
that, for each flow with QoS reservation (either explicit or implicit), the QoS
parameters are obeyed. In a pure L3 QoS system, the link technology (L2) has
a single Service Access Point (SAP) for packet transmission, thus all packets are
given the same treatment. Therefore, L3 QoS usually has a single queue leading
up to the network interface, containing packets from all different flows, which are
then reordered so that QoS for all flows is met. For instance, packets from real-
time flows will likely jump ahead of packets from best-effort applications in the
transmission queue.

Three of the most important L3 QoS systems to date—IntServ, DiffServ, and MPLS,
are briefly summarised in the following sections.

2.4.1 IntServ

The Integrated Services framework, along with the associated RSVP protocol, is exten-
sively defined by IETF in RFCs 2205–2216. It describes a QoS architecture wherein
both sender and receiver applications communicate to the network elements their QoS
requirements for each distinct packet flow. The network elements in turn try to en-
sure the requested QoS is observed throughout the network during the duration of the
reservation. The IntServ framework contemplates multiple service levels, but only two
standard services types have been defined:

Controlled Load Defined in [Wro97], this is the worst service that is available to
IntServ applications. When reserving a Controlled Load (CL) QoS service, ap-
plications indicate to the network elements an approximate “envelope” for the
traffic that is going to be generated. This envelope is described in terms of TBF
parameters. The service that is then received by applications closely resembles
the best-effort service in a lightly loaded network. This means that most packets
will get through with moderately low delay, but there are no strict guarantees.
The CL service is implemented by network elements by a simple admission con-
trol scheme, i.e. no scheduling is performed on packets. This is actually both the
greatest weakness and greatest feature of this service; it does not provide a lot of
guarantees, but what it provides is good enough for most applications and, most
importantly, is relatively simple to implement;

Guaranteed The Guaranteed[SPG97] service allows applications to request to the net-
work that an upper bound be placed on the total queueing delay along the end-to-
end path for any particular flow. The sender application first informs the network
elements of the characteristics (once more, as token bucket parameters) of the flow
that is to be transported; then, the receiver requests that a certain bandwidth R
be reserved for this flow, as well as guaranteeing that the buffers in routers are
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correctly dimensioned to ensure that there will be no packet losses due to queueing
overflow. It is possible to compute an upper bound for the end-to-end delay given
the token parameters that describe the flow and the reserved bandwidth R. The
parameter R must be always greater or equal than the mean data rate of the flow r,
otherwise the delay will have no guaranteed bound, and some packets will be lost.
If the receiver is flexible to accept a little additional delay, it can include a non-zero
slack term S to improve the probability that the reservation will be accepted. If,
on the other hand, the delay bound computed for R = r is not satisfactory, it is
possible to request a higher R value, this way obtaining a small reduction in the
end-to-end delay bound.

The recommended protocol for IntServ applications to communicate with network
elements is the Resource ReSerVation Protocol, RSVP[BZB+97]. RSVP signalling can
be briefly summarised this way:

1. The sender application starts by sending a PATH message to the receiver. This
message contains information that describes the shape of the flow that is to be
transmitted in terms of Token Bucket Flow (TBF) parameters;

2. When the receiver application sees this message, it sends a RESV message back
to the sender, this way informing all the routers in the path towards the sender of
the QoS it wishes to receive;

3. If the receiver requested confirmation in the RESV message, a ResvConf is sent
back from sender to receiver to confirm that the reservation succeeded;

In RSVP, there is a lot of flexibility in the way that packets can be identified as
belonging to the same reservation. The packets are always filtered on the destination
values DestinationAddress, ProtocolID, and DestinationPort, where DestinationAddress
can be either an IPv4 or IPv6 address, including multicast addresses. On the part of
the sender, several options are available. On one hand, there can be either wildcard or
explicit sender selection. A wildcard selection means to match packets from any sender
as belonging to the same reservation, while an explicit selection requires that a list of
sender address/port pairs be stated in the reservation. On the other hand, a reservation
can request resources that are to be shared for packets from all senders, or it can request
individual reservations for each sender. The most common filter used is called Fixed
Filter, which selects a single sender.

This whole complexity regarding sender selection is partly related to the multicast-
centric IntServ/RSVP designed. In fact, the good multicast support is still regarded in
these days as one of the best features in IntServ/RSVP. Unfortunately, it also has a few
design problems of its own, such as:

Mobility Although RSVP foresees the need to perform what is called “local repair” in
response to routing table changes, the update of the reservations takes a certain
time in the order of a few seconds. This time scale is inadequate for preserving
QoS during handoff. There are many other problems with Mobile IP and RSVP,
as described in [LC03].
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Link layer indications RSVP is not prepared to receive indications from layer 2 re-
garding changes in available bandwidth, among other things. The effect of this
design flaw is only now being felt, given the recent the proliferation of wireless
networking; when RSVP was initially designed wireless networking was little more
than a concept, thus RSVP was never designed for wireless links that have to
change available bandwidth very fast as terminals move away or towards access
points, for instance;

Scalability RSVP is not scalable; given that it is soft-state (thus requires periodic re-
fresh) and it requires per-flow signalling, as we move more towards high-performance
core networks it becomes clear that the routers that often have to process millions
of packets cannot afford to waste time processing RSVP signalling messages and
implement packet classification and scheduling for all RSVP flows. Of course this
is only really a problem in core networks; it is perfectly feasible to have RSVP-
aware routers only in the access part of the network, and map RSVP flows into
another QoS system such as MPLS or DiffServ at the core network boundaries.

2.4.2 DiffServ

The Differentiated Services (DiffServ) framework, as defined in [BBC+98], was created
within IETF partly to solve the scalability problems of RSVP/IntServ, and actually takes
the opposite approach by considering that QoS is to be provided only to aggregate flows.
Contrary to the RSVP/IntServ approach of performing QoS reservations per flow and on
demand, the DiffServ framework is based on a contract between a network operator and
a client, prior to any flows being created. The DiffServ part of such contract is called
Service Level Specification (SLS), which includes a set of parameters that describe the
service level that the network operator pledges to enforce. Also part of the SLS is a Traffic
Conditioning Specification (TCS), containing parameters that describe how packets are
to be classified and shaped/policed before entering the DiffServ domain.

When entering a DiffServ domain, packets are classified and aggregated as specified
by the SLS, then (re-)marked with a Diffserv Codepoint (DSCP) value that uniquely
identifies to which aggregate flow each packet belongs. The advantages of this procedure
are evident:

• There exists a limited and always low number of different DSCPs; consequently,
DiffServ-enabled routers can easily implement the necessary queues and scheduling;

• No signalling is necessary inside the DiffServ domain; the QoS parameters to apply
for each DSCP are statically pre-configured.

For these reasons, DiffServ is much more easily deployed as a service to be offered
by network providers. On the other hand, the level of guarantees that can be provided
by a DiffServ network is not always satisfactory. Since DiffServ QoS is applied only to
aggregated flows, it is possible for individual microflows to be temporarily degraded, in
spite of the aggregated flow as a whole being treated fairly. Also, DiffServ contracts
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are rather static and cannot be easily dynamically updated as the need arises for the
user to launch more QoS-demanding application sessions; although, to be fair, in the
core network all users’ flows are aggregated and, statistically, the QoS requirements for
each DSCP change very slowly. For these reasons, DiffServ can be a good solution for
core networks, which have huge amounts of bandwidth available anyway, but on access
networks per flow signalling protocols like RSVP or NSIS[HKL04] are often preferable.
It is also possible to merge the two approaches, for example by using end-to-end RSVP
in the access networks and a DiffServ core network [BFY+00].

2.4.3 MPLS

The Multiprotocol Label Switching Architecture [RVC01], is based on the core concept
that great performance gains can be achieved if, when switching a large number of
similar packets (eg. DiffServ aggregate flows), a path is first established and recorded
across a network, and then all subsequent packets just follow the recorded path. In
MPLS terminology, the set of packets that follow the same path is called Forwarding
Equivalence Class (FEC), and the path itself named Label Switched Path (LSP). The
name for the LSPs comes from the fact that, once a path has been established, packets
entering an MPLS domain are classified into FECs and then they are assigned a label
based on the corresponding FEC. Inside the MPLS domain, packets are transmitted
with a small MPLS header, named shim header, that contains the assigned label and
little more information. The MPLS labels always have local meaning for each node/port
pair, thus packets’ labels have to be swapped as they travel through the nodes of an
LSP. The label switching algorithm can be summarised like this:

1. A packet arrives on an input port;

2. if packet contains an MPLS shim header then:

(a) Look at the (labelinput, portinput) pair, use a lookup table to map into a FEC;

(b) Use another table lookup to determine the (labeloutput, portoutput) pair from
the FEC;

(c) Swap labelinput for labeloutput in the packet shim header;

(d) Queue de packet for transmission in portoutput.

3. else:

(a) Use traditional IP-based routing.

Considering that the MPLS label is just a simple 20-bit integer value, it’s easy to
see that label switching is more efficient than L3 switching. But more importantly,
MPLS allows traffic engineering to be deployed on high performance core networks
with little or no performance penalty. This is due to the fact that complex matching
rules for determining the FEC for packets may be placed on lightly loaded edge routers
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(the so called Label Edge Routers), while at the MPLS core the paths are already es-
tablished and switching is based on MPLS labels as usual, meaning that the cost of
switching best-effort and traffic engineered packets/flows is practically the same. This
is an extremely important property for implementing QoS in high speed core networks,
considering that one of the greatest hurdles for deploying QoS in these conditions is
that introducing packet classification into high performance core routers significantly
degrades their performance. With MPLS, both IP forwarding and QoS classification
processes are simplified, at least in the user plane,

The MPLS core specification does not specify how LSPs are to be created. That is
intentional, and is to allow multiple LSP signalling protocols to be developed indepen-
dently. Examples of such protocols are the Label Distribution Protocol [ADF+01], and
RSVP-TE [ABG+01].

2.5 Layer 2 QoS

The main difference between L2 and L3 QoS techniques is that L2 QoS takes advantage
of the characteristics of each L2 technology, such as MAC protocol, in order to provide
at least some limited QoS guarantees to some datagrams in detriment of others with no
such requirements.

A quick overview of some L2 technologies that provide some form of QoS is presented
below. This list is by no means complete, however.

2.5.1 IEEE 802.1D

Although lacking any significant deployment in current networking equipment, the IEEE
standard 802.1D [Tel98] defines a user priority value1 that may optionally be associated
with individual frames. The user priority value for each frame may be obtained by a
number of different ways: (1) based on the port a frame arrives on, which is administra-
tively configured, (2) from an optional 802.1Q header, (3) from the basic frame header,
if the technology supports it2. Table 2.1 lists the user priority values that have been
defined for use in IEEE 802 networks. In IEEE 802 equipments that support it, there
is on each output port a separate queue for each possible user priority value. Frames
arriving at the equipment are forwarded to the corresponding queue in the correct out-
put port. The scheduling between queues is a simple priority system, where queues with
higher priority3 always take precedence over queues with lower priority. Naturally, this
may lead to starvation problems if, for instance, a station starts flooding the network
with “Voice” and “Video” packets at a very high rate, thus completely preventing any
Best Effort traffic to be transferred. That is at least the basic algorithm specified in

1This was previously specified in a different standard document, 802.1p, and was later merged into
802.1D

2For instance, 802.3 and 802.11 do not support it, while 802.5 (Token Ring) does indeed have this
field in the basic frame header.

3But note that user priority 1 (Background) actually has less priority than 0 (Best Effort)
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the standard, which however leaves the possibility open for administratively selecting
different scheduling algorithms that the equipment may support.

Table 2.1: List of IEEE 802.1D user priority values

user priority Acronym Traffic type
1 BK Background
2 – Spare
0 (Default) BE Best Effort
3 EE Excellent Effort
4 CL Controlled Load
5 VI “Video,” < 100 ms latency and jitter
6 VO “Voice,” < 10 ms latency and jitter
7 NC Network Control

2.5.2 UMTS

The Universal Mobile Terrestrial Service (UMTS) is an evolution of GSM and GPRS
systems that offers mobile connectivity with available bandwidth an order of magnitude
higher than the previous (2G and 2.5G) systems that it replaces. In Fig. 2.3, TE and MT
are two subsystems of the same Mobile Node. The Radio Access Network (RAN) sub-
system includes Node-Bs (“base stations”) and Radio Network Controllers (RNCs). The
Core Network Edge Node is actually the Serving GPRS Support Node (SGSN), which
handles mobility management, authentication, and authorisation. The CN Gateway,
called Gateway GPRS Support Node (GGSN), is a router that provides interconnection
between the UMTS packet switched domain and external IPv4/6 networks, while at the
same time supporting charging functions for all connections. The GGSN is actually the
first real IP router from the point of view of the mobile terminals; all other equipments
before only provide L2 bridging capabilities.

The UMTS architecture provides QoS functions at essentially two layers: 1. at the
UMTS Bearer Service, and 2. at the Radio Access Bearer Service.

At UMTS Bearer Service layer, the QoS interfaces exposed consist of the ability
of creating L2 tunnels between the mobile terminal and the GGSN. These tunnels,
called PDP Contexts, are identified by unique numbers called Network Service Access
Point Identifiers (NSAPIs), and can have a number of QoS attributes attached to them,
which are summarised in Table 2.4. As show in Table 2.2, at the terminal side this
layer provides primitives for creating, modifying and releasing primary, secondary and
MBMS (Multimedia Broadcast/Multicast Service) PDP Contexts. The main difference
between primary and secondary PDP Contexts is that there can be only one primary
PDP Context for each IP address assigned to the terminal, while multiple secondary
PDP contexts can coexist, often with different QoS, attached to the same primary PDP
Context, thus sharing the same IP address. Usually a terminal has a single primary PDP
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Figure 2.3: UMTS Rel-6 architecture (source: 3GPP 23107-630 specification document)

Context, thus a single IP address, for signalling IP traffic, and multiple secondary PDP
Contexts, each with different QoS settings, for transporting application flows. Also
MBMS [3GP05, Iva05] sessions are supported using this PDP Context concept. At
the network side, this UMTS Bearer Service also provides some primitives (Table 2.3),
although only limited functionality is available from this side. In fact, the GGSN is not
allowed to activate PDP Contexts with QoS, and anything the GGSN may request, such
as PDP Context activation, modification, and deactivation, has to be authorised by the
terminal. This is a deliberate design decision that takes into account the fact that the
terminal is the one that is paying for the services, thus should be in full control of the
resources that it is paying for.

At the Radio Access Bearer layer, on the other hand, the primitives are more network
oriented. As we can see in Table 2.5, it is the network that has to take initiative of
establishing new RABs, in contrast with the Bearer Service layer, where PDP Contexts
are always created by the terminal. It should be noted, however, that since PDP Contexts
are mapped into RABs, the terminal is still in control of the radio resources, albeit
indirectly through SGSN authorisation.

2.5.3 Bluetooth

The Bluetooth [MW05] wireless technology was first defined by a consortium of several
equipment manufacturers led by Ericsson called the Bluetooth SIG, and later adopted as
standard (802.15.1) by IEEE. The main focus of this technology is to allow small and
cheap devices to become wireless interconnected. This is a deliberate design decision with
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Table 2.2: List of UMTS Rel-6 SMGREG (terminal side) primitives

Primitive Parameters Purpose
SMREG-PDP-ACTIVATE-REQ PDP address, QoS, NSAPI,

APN, Protocol configuration op-
tions

Requests activation of a (pri-
mary) PDP Context

SMREG-PDP-ACTIVATE-CNF PDP address, QoS, NSAPI, Pro-
tocol configuration options

Confirmation from network that
the request PDP activation suc-
ceeded

SMREG-PDP-ACTIVATE-REJ Cause, NSAPI, Protocol configu-
ration options

Rejection of (primary) PDP
Context activation

SMREG-PDP-ACTIVATE-IND PDP address, APN, protocol
configuration options

Request from network suggest-
ing activation of a primary PDP
Context

SMREG-PDP-ACTIVATE-REJ-RSP Cause, PDP address, APN,
protocol configuration options,
MBMS protocol configuration
options

The network request PDP Con-
text activation failed

SMREG-PDP-DEACTIVATE-REQ NSAPI(s) tear down indicator,
cause, protocol configuration op-
tions, MBMS protocol configura-
tion options

Request deactivation of a PDP
Context

SMREG-PDP-DEACTIVATE-CNF NSAPI(s), protocol configura-
tion options, MBMS protocol
configuration options

Confirmation from network that
the request PDP deactivation is
complete

SMREG-PDP-DEACTIVATE-IND NSAPI(s) (s), tear down indica-
tor, cause, protocol configuration
options, MBMS protocol config-
uration options

A PDP was deactivated from the
network side

SMREG-PDP-MODIFY-IND QoS, NSAPI, protocol configura-
tion options

Network is requesting modifica-
tion (eg. QoS parameters) of a
PDP context

SMREG-PDP-MODIFY-REQ QoS, NSAPI, TFT, protocol con-
figuration options

Request modification (eg. QoS
parameters) of a PDP Context

SMREG-PDP-MODIFY-CNF QoS, NSAPI, protocol configura-
tion options

A PDP modification was success-
fully concluded

SMREG-PDP-MODIFY-REJ Cause, NSAPI, protocol configu-
ration options

A PDP modification was rejected

SMREG-PDP-ACTIVATE-SEC-REQ QoS, NSAPI, TFT, Primary
NSAPI, protocol configuration
options

Request activation of a “sec-
ondary” PDP Context

SMREG-PDP-ACTIVATE-SEC-CNF QoS, NSAPI, protocol configura-
tion options

Activation of a secondary PDP
context has been concluded suc-
cessfully

SMREG-PDP-ACTIVATE-SEC-REJ Cause, NSAPI, protocol configu-
ration options

Activation of a secondary PDP
context was rejected

SMREG-MBMS-ACTIVATE-REQ Multicast address, supported
MBMS bearer capabilities,
NSAPI, APN, MBMS protocol
configuration options

Request activation of a MBMS
PDP Context

SMREG-MBMS-ACTIVATE-CNF Multicast address, NSAPI,
MBMS protocol configuration
options

A MBMS PDP Context activa-
tion has been completed success-
fully

SMREG-MBMS-ACTIVATE-REJ Cause, NSAPI, MBMS protocol
configuration options

A MBMS PDP Context activa-
tion has been rejected

SMREG-MBMS-ACTIVATE-IND Multicast address, APN, MBMS
protocol configuration options

Network is requesting activation
of an MBMS PDP Context
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Table 2.3: List of UMTS Rel-6 SMGREG (network side) primitives

Primitive Parameters Purpose
SMREG-PDP-ACTIVATE-REQ PDP address, APN, protocol

configuration options
The nework initiates a PDP
context activation; the termi-
nal receives a SMREG-PDP-
ACTIVATE-IND and is ex-
pected to proceed with a nor-
mal activation

SMREG-PDP-ACTIVATE-REJ Cause, PDP address, APN, pro-
tocol configuration options

The network initiated PDP
context activation failed

SMREG-PDP-DEACTIVATE-REQ NSAPI(s), teardown indicator,
cause, protocol configuration op-
tions, MBMS protocol configura-
tion options

The network request the ter-
minal to deactivate a PDP
context

SMREG-PDP-DEACTIVATE-CNF NSAPI(s), protocol configura-
tion options, MBMS protocol
configuration options

A network initiated PDP con-
text deactivation has suc-
ceeded

SMREG-PDP-MODIFY-REQ QoS, NSAPI, protocol configura-
tion options

The network requests modifi-
cation of an existing PDP con-
text

SMREG PDP-MODIFY-CNF NSAPI, protocol configuration
options

A network initiated PDP con-
text modification was con-
cluded

SMREG PDP-MODIFY-REJ NSAPI, protocol configuration
options

A network initiated PDP con-
text modification was rejected

SMREG-MBMS-ACTIVATE-REQ Multicast address, APN, MBMS
protocol configuration options

The network requests activa-
tion of an MBMS PDP con-
text

SMREG-MBMS-ACTIVATE-REJ Cause, multicast address, APN,
MBMS protocol configuration
options

A network initiated MBMS
PDP context activation has
failed
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Table 2.4: List of UMTS Rel-6 PDP Context QoS Attributes

Attribute Value(s) Description
Traffic class Conversational,

Streaming, In-
teractive, or
Background

An indication of the type of traffic that the PDP Con-
text is expected to carry; the main differences between
these classes is in terms of delay requirements

Maximum
bitrate

(kbps) Maximum bitrate that is allowed for burst traffic; this
is analogous to the p parameter in the token bucket
algorithm in Sec. 2.3.2

Guaranteed
bitrate

(kbps) Sustained bitrate that the network will allow; this is
analogous to the r parameter in the token bucket al-
gorithm in Sec. 2.3.2 and with a b parameter equal to
the Maximum SDU size PDP QoS attribute

Delivery or-
der

(y/n) Whether in-sequence SDU delivery is required or not

Maximum
SDU size

(octets) Maximum datagram size that can be transported (=
MTU)

SDU for-
mat infor-
mation

(bits) List of possible SDU sizes; this information can be
provided to the network in order allow some optimi-
sations

SDU error
ratio

(float) Maximum tolerable fraction of lost SDUs that the ap-
plication can tolerate

Residual bit
error ratio

(float) Maximum tolerable fraction of erroneous bits per
SDUs that the application can tolerate

Delivery of
erroneous
SDUs

(y/n/-) Whether to deliver SDUs that contain erroneous bits;
some applications, such as video-telephony, are able to
tolerate packets containing a few erroneous bits; the
alternative of discarding entire packets with only a few
erroneous bits is, in this case, much more detrimental
to the overall quality

Transfer de-
lay

(ms) Maximum tolerable delay

Traffic han-
dling prior-
ity

(integer) As an alternatively to specifying the bitrate attributes
above, applications can just request traffic relative pri-
orities

Allocation
/ Retention
Priority

(integer) When the access network becomes too loaded, it may
be required to stop accepting some new PDP Contexts
or to even discard existing ones; this value controls the
relative priority of allocation and retention for PDP
Contexts when this happens

Source
statistics
descriptor

(’speech’ / ’un-
known’)

Since speech has predictable traffic patterns, by indi-
cating to the network that a PDP Context will be used
for voice streams the network is able to better calcu-
late the statistical multiplex gain, thus use resources
more efficiently

Signalling
Indication

(Yes/No) Indicates if the SDUs to be transported are of sig-
nalling nature. This attribute is defined only for the
Interactive traffic class.
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Table 2.5: Overview of UMTS Rel-6 Radio Access Bearer (network side, SGSN-to-RNC)
primitives

Primitive Parameters Purpose
RAB ASSIGNMENT REQUEST RAB ID, RAB parameters (eg.

QoS), User Plane Information,
Transport Layer Information,
etc.

Used to establish, modify, or
release one or several RABs

RAB ASSIGNMENT RESPONSE List of RABs successfully estab-
lished or modified

Result of RAB ASSIGN-
MENT REQUEST

RAB RELEASE REQUEST RAB IDs, Cause Sent by the RNC to request
the release of a RAB

direct impact on the characteristics of the wireless technology. In fact, due to the desire
to make Bluetooth devices cheap and consuming little power, the available bandwidth
and range are rather limited when compared to other wireless technologies, such as
IEEE 802.11. Current Bluetooth (v1.2) devices support ranges from 10 to 100 meters
and power consumption from 1 to 100 mW, while offering bandwidths of no more than
723.1 kbit/s, which is adequately matched to the use cases Bluetooth was designed for.

At the radio level, Bluetooth devices communicate in time slots (each of 625 µs),
some assigned for downlink others for uplink transmission (Time Division Multiplexing)
and Frequency Hopping (FH) (the carrier frequency changes in each time slot). Up
to 8 Bluetooth devices may directly communicate, by forming a piconet. In a piconet,
one device is elected to assume the role of master, while the remaining devices become
slaves. The master controls essentially two aspects of the communication: (1) its address
determines the FH sequence in its piconet; (2) slaves are only allowed to send packets
following a reception of a packet from the master addressed to them (a polling scheme).
Packets in Bluetooth can occupy 1, 3, or 5 time slots, so that the master always transmits
in even time slots and slaves can only transmit starting on odd time slots.

Above the physical layer, Bluetooth defines logical channels. On one hand, there
are channels for raw audio communication, focused for mobile wireless handset appli-
cations, for example. These are called Synchronous Connection-Oriented (SCO), since
they provided a dedicated circuit-like channel with fixed bitrate. For digital data commu-
nications, Bluetooth also provides Asynchronous Connection-oriented Logical channels,
ACL. ACL channels have a simple ARQ (stop-and-wait) system to provide the addi-
tional reliability that data communications require. There are 6 packet types that can
be used in ACL channels: DM1, DM3, DM5, DH1, DH3, and DH5. The DM packets are
designated medium data rate packets, since they employ a 2/3 FEC scheme to improve
robustness against transmission errors. The DH variants have no FEC at all, only CRC,
therefore can provide higher transmissions rates, although with more error probability.
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The number 1–5 denotes the number of time slots occupied by packets.
The packet type with largest maximum payload available in Bluetooth is DH5, which

can carry up to 339 bytes, while DM5 can only carry 224 bytes. Moreover, the reliability
provided by the simple error detection and retransmission in ACL is not sufficient for
for many data communication applications. Bluetooth defines another type of chan-
nels, called L2CAP (Logical Link Control and Adaptation Protocol), that are built on
top of ACL channels and provide segmentation and reassembly functionality, which al-
lows MTUs of up to 65535 bytes, as well as improved error detection. Most Bluetooth
applications are built on top of L2CAP rather than the more basic ACL channels.

In order to support IP communications in Bluetooth, the Bluetooth Network Encap-
sulation Protocol (BNEP) has been defined by the Bluetooth SIG. BNEP provides an
IEEE 802.3 adaptation layer, which allows regular IEEE 802.3 frames to be transmitted
between two devices through L2CAP channels. Since most of the information of an 802.3
frame is redundant (eg. the two Bluetooth devices already know their own addresses,
so including MAC addresses in the transmitted data is needless waste of bandwidth),
the BNEP layer removes the 802.3 header and inserts its own (smaller) header, before
transmitting all in the payload of an L2CAP frame. The receiver device does the reverse
operation, thus reconstructs the 802.3 frame header and only then lets the upper layers
process it. This way, network protocols such as IP (v4/v6) can work transparently on
top of Bluetooth as if it were a regular 802.3 link.

Like everything else in Bluetooth, QoS is supported in a simple fashion. In Bluetooth,
like in all polling based systems, the master holds the key to QoS. By controlling when
each slave is allowed to transmit, the master has the power to give more or less priority
for each slave. At the ACL layer, Bluetooth slave devices may request a specific QoS level
using the LMP quality of service req primitive, containing a polling interval parameter.
The polling interval is defined as the maximum number of slots a slave has to wait
between two consecutive polls. This parameter controls, at the same time, both the
maximum access latency and maximum bandwidth available to a slave. At the L2CAP
layer, a richer set of QoS attributes is supported:

Service Type Two service types are defined: Best Effort and Guaranteed. Best Effort
is the default, and when selected all other QoS parameters are ignored;

Token Rate Analogous to the r parameter in Sec. 2.3.2; average rate at which appli-
cation transmits data, in octets per second;

Token Bucket Size Analogous to the b parameter in Sec. 2.3.2; used to limit the length
and duration of bursts;

Peak Bandwidth Analogous to the p parameter in Sec. 2.3.2; used to limit the rate of
bursts;

Access Latency This value represents the maximum delay that may occur between
the time an L2CAP packet is queued and the time the packet actually starts being
transmitted;
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Delay Variation This is a merely informational value that represents the maximum
delay variation, or jitter, in packet transmissions.

The L2CAP QoS parameters are mapped into the single polling interval parameter at
the lower layers. Nonetheless, having an accurate flow description allows the Baseband
resource manager (Bluetooth module in charge of scheduling) to make a more efficient
use of available resources.

2.6 The QoS Solution in ARROWS

In the IST ARROWS project [RDCR02], the main objective was to study Radio Resource
Management (RRM) algorithms for UMTS networks. However, since QoS is ultimately
an end-to-end issue, a global QoS framework was devised and deployed. In ARROWS,
the choice was made to adopt the RSVP/IntServ framework for several reasons:

1. The QoS resources in UMTS are scarce, thus expensive, so a per-flow QoS solution
was thought to be more adequate than something like DiffServ, for example, which
deals with aggregate flows and has no explicit, “on demand” reservation;

2. As already stated in Sec. 2.4, it is still possible to combine IntServ at the access
part of the network with DiffServ at the core, so the scalability concerns of RSVP
don’t apply;

3. Since UMTS already provides transparent mobility support at Layer 2, the RSVP
problems with Mobile IP also are of no concern in this context.

Still, that left some other problems still to solve regarding IntServ/RSVP UMTS
integration, namely:

1. How to map RSVP/IntServ QoS parameters into UMTS Bearer Service QoS at-
tributes;

2. How to map IntServ flows into UMTS PDP contexts;

3. How to handle L2 indications from the network, SMREG-PDP-MODIFY-IND,
stating that the QoS previously requested may no longer be available;

4. How to automatically bootstrap the mobile terminal connection (the primary PDP
Context) when new IP data arrives for it;

5. RSVP flows are simplex (unidirectional), and RSVP always makes L2 reservations
from the sending side, which can be either the GGSN or the terminal. In contrast,
UMTS Bearer Service only allows activation of PDP contexts with QoS from the
terminal side. How to deal with this asymmetry;

6. How to map IntServ parameters to the Traffic Class UMTS parameter. The IntServ
Guaranteed service, which is the closest to the UMTS QoS model, only has quanti-
tative QoS parameters, but nothing that can easily map into one of the four UMTS
traffic classes.
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Figure 2.4: ARROWS end-to-end QoS architecture

The ARROWS end-to-end QoS architecture in Fig. 2.3 tries to address these issues.
In this framework, applications on the terminal connect to a QoS Manager module their
QoS requirements, instead of directly reserving resources using the RSVP daemon. The
QoS Manager then creates a PDP context and makes an RSVP Guaranteed reservation.
An application type is among the parameters that the application sends to the QoS
Manager, allowing a direct mapping into the UMTS Traffic Class QoS attribute. Other
attributes, such as average bitrate and delay, have a more simple mapping. For example,
the RSVP reserved bitrate R is simply mapped into an equal value for the Guaranteed
bitrate UMTS QoS attribute.

The RSVP protocol was extended to include an additional NSAPI object in PATH
messages, as well as in the QoS Manager ↔ RSVP interface. The RSVP daemon then
uses the NSAPI to configure (modified) TBF shaping queues to mark packets’ TOS field
with this value. Packet marking is done only in the terminal, for uplink flows, and in
the GGSN for downlink flows, since it is only required to identify, within the UMTS
network, which PDP context each IP packet belongs to.

When the terminal is not communicating, the primary PDP context is shut down in
order to save resources. When in this state, if a packet arrives at the GGSN destined
to the terminal, the GGSN module IP Bearer Service Manager temporarily holds the
packet, sends an SMREG-PDP-ACTIVATE-REQ primitive to the UMTS lower layers,
waits for a primary PDP Context to be activated, and then allows the packet to proceed.
On the terminal side, the QoS Manager receives an SMREG-PDP-ACTIVATE-IND, and
immediately begins activation of a primary PDP context.

Finally, the QoS Manager also assumes responsibility for handling UMTS QoS degra-
dation notifications. In UMTS, when a QoS degradation occurs, an SMREG-PDP-
MODIFY-IND primitive is received, containing the new QoS level that can be provided.
In ARROWS, the QoS Manager receives this primitive, and informs the respective ap-
plication about the QoS degradation, which then decides the most appropriate action to
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take. As proof of concept, in ARROWS a streaming application was modified to handle
these QoS degradation events. When QoS degradation occurs, and if the application
accepts, the QoS manager automatically changes the RSVP end-to-end reservation to
reflect the new local QoS limitations.

2.7 On going research

In this section, some of the more relevant technologies currently being researched are
briefly presented.

2.7.1 Subnet Bandwidth Manager

When trying to deploy RSVP/IntServ into IEEE 802 based local area networks (LANs),
an unexpected problem became evident: how to perform admission control? Unlike
in core network routers, which usually have dedicated point-to-point links, in IEEE
802.3 the physical medium is shared between multiple workstations, and access to the
medium is uncontrolled, which means no one single entity in the network keeps track of
all the capacity/usage information for a LAN segment. The Subnet Bandwidth Man-
ager [YHB+00, KJS] protocol addresses this problem by allowing a single entity in a
LAN segment to be in charge of managing the available resources. Such an entity, called
Designated Subnet Bandwidth Manager (DSBM) can be either administratively assigned
or appointed through a distributed election algorithm. The DSBM is then used by all
RSVP-enabled hosts for admission control.

Useful as SBM may be, it is not without its faults, namely:

• SBM only performs admission control, not scheduling;

• It is too much tied to the RSVP protocol, and not directly reusable outside the
IntServ/RSVP framework

• SBM uses IP packets for signalling, which also makes it not reusable independently
of the IP protocol;

2.7.2 IEEE 802.21

The IEEE 802.21 Working Group is currently working on handover and interoperability
between heterogeneous networks. The latest draft at the time of this writing (July 2005)
describes IEEE 802.21 as defining a protocol/layer called Media Independent Handover
Function (MIHF). This is an abstraction layer that provides services to upper layers
with a uniform interface regardless of any particular layer 2 technologies. Despite being
defined by IEEE, the intent of this upcoming standard is to support both IEEE and
non-IEEE technologies, such as 3GPP (UMTS). The MIH Function service consists of
the following sub-services:
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Media Independent Event Service This consists on an abstract interface for receiv-
ing layer 2 events, such as Link Up, Link Down, or Link Going Down, which can
then be used by the upper layers to trigger a handover.

Media Independent Command Service This service includes a set o primitives that
allow the upper layers to control the link layer in order to support the actual
execution of handovers. Examples of commands include MIH Handover Prepare,
MIH Handover Commit, and MIH Configure.

Media Independent Information Service This provides a generic framework for
querying the network for useful information. Three basic groups of information
are defined:

General Network Information Provides information about the network itself,
such as a list of Points of Attachment (eg. APs), with respective geographical
information, network ID, operator, etc.

Link Layer Information Includes information elements regarding the link layer,
such as QoS, channel, frequency, security, etc.

Higher Layer Information This is some sort of Service Discovery framework
built into MIH, allowing several network services, such as VoIP, email, VPN,
to be registered and announced in this way.

One important aspect to be noted is that MIH does not really support QoS in the
traditional sense of the term. While it is possible to obtain “QoS” information from APs,
it consists only on signal strength information, not available bandwidth. Moreover, MIH
does not include any primitives for reserving QoS resources.

2.7.3 IEEE 802.11e

In traditional IEEE 802.11 [CWKS97] (Wireless LAN), there are mainly two types of
MAC protocols available: Distributed Coordination Function (DCF) and Point Coordi-
nation Function (PCF). With DCF, access to the medium uses a CSMA/CA scheme,
as in 802.3 networks, which means that stations that want to transmit have to listen
and wait until the medium becomes free, at which point they start transmitting (af-
ter a small random delay). If during transmission a collision is detected, it is aborted
and retried at a later time, until it succeeds. Clearly the type of service provided by
this MAC is always best effort, and there are bound to happen a lot of collisions, with
consequent performance degradation. The Point Coordination Function (PCF) is an
alternative MAC protocol for 802.11 that is available only in infrastructure mode. With
this MAC protocol, there is a time frame that is delimited by the beacons regularly sent
by the AP. This time frame is divided in two periods: Contention Free Period (CFP) and
Contention Period. While in the CP access to the medium is distributed, like in DCF,
in the CFP the AP periodically polls each station, giving it an opportunity to transmit.
Stations are not allowed to transmit inside the CFP unless being polled. Through this
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polling scheme, QoS support is possible, but unfortunately there is only limited QoS in
the PCF MAC protocol, and PCF is not widely deployed in commercial equipments.

The new IEEE 802.11e draft aims to provide QoS extensions [GZ03] for 802.11 net-
works. Like 802.11, two MAC protocols are defined: Enhanced Distributed Coordination
Function (EDCF) and Hybrid Coordination Function (HCF).

EDCF is a distributed MAC similar to DCF. The main difference is that EDCF
allows assigning different priorities to stations by manipulation of the values of the
Contention Window. The Contention Window is the amount of time a station must
wait before being allowed to transmit after the medium becoming idle. By assigning a
lower contention window value to some stations an not the other, these stations gain a
competitive advantage when accessing the medium and have to wait less time, in average,
to transmit their frames.

The EDCF offers only relative guarantees. The HCF, on the other hand, uses a
polling scheme like PCF, but with a much richer QoS control model. For one thing, each
station regularly sends to the AP feedback regarding the size of its own transmission
queue, thus the AP may use this information to adjust the priorities when polling each
station. In addition, multiple Traffic Classes are defined, and stations are allowed to
transmit multiple frames in one burst.

2.7.4 GMPLS

Although MPLS is an architecture that fits well into packet-switched network equip-
ments, there is a whole class of equipments that only deals with bit streams and doesn’t
even see packet boundaries. Thus, they are unable to even look at an MPLS shim header,
much less swap MPLS labels. Still, these equipments could also benefit from the manage-
ment flexibility offered by the MPLS architecture. Generalised MPLS [ASMA04, NR05]
is an extension to MPLS that allows just that. Although an equipment may be unable
to inspect a traditional MPLS label, GMPLS extends the definition of label by including
some types of context information that are implicit in a bitstream, such as time slot
number (in time division multiplex systems), or wavelength (optical switching fabrics).
Even in packet switching equipments GMPLS may be interesting if the link layer already
provides multiple virtual-circuits (eg. ATM, Bluetooth), since it eliminates the need for
a redundant shim header.

2.7.5 Generic Link Layer

The Generic Link Layer [BBB+05, GSL+05] (GLL) is an L2 abstraction layer that is
being developed in the context of the WWI Ambient Networks project. It presents
some similarities to the work described here; in particular, some vague ideas about L2
QoS configuration through a generic interface are mentioned. However, the approach
followed is rather different. Whereas the QoSAL tries to be as little intrusive as possible
by not even introducing any additional header into the data plane, GLL essentially re-
implements many of the L2 features, such as ARQ, flow control, and SAR (Segmentation
And Reassembly).
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2.7.6 ULLA

The Unified Link Layer API (ULLA) [FGI+05] features an abstract API for configuring
radio link parameters and receiving generic handover triggers. It is similar to 802.21 in
purpose, but is more limited in the sense that it is a host local interface; no protocol is
defined for delivering commands or events across L2 network segments. Like 802.21, it
does not cover L2 QoS.

2.8 Conclusions

In this chapter some of the most relevant QoS architectures and technologies were pre-
sented.

Regarding L3 QoS architectures, it was shown that the IntServ/RSVP QoS model,
while providing solid end-to-end QoS guarantees, is not scalable in core networks and
does not handle mobility well. DiffServ represents an alternative approach to QoS that
does not suffer from the scalability problems of RSVP. However, it relies heavily on over-
provisioning and provides only relative guarantees, thus is not very effective in wireless
access networks. It was shown that recent L2 technologies, such as UMTS, Bluetooth,
and IEEE 802.11e, are increasingly incorporating QoS support.

The IST ARROWS research project successfully demonstrated how to bind a L3 QoS
architecture to a QoS-capable L2 technology, but is L3-specific (IntServ/RSVP) and L2-
specific (UMTS). MPLS is an interesting architecture that sits between layers 2 and 3
and allows one to establish “virtual circuits”, thus making traffic engineering actually
realizable in core networks. It also supports QoS, but only in the sense of finding a path
that satisfies QoS constraints, not making QoS reservations across a path.



Chapter 3

The QoS Solution in DAIDALOS

3.1 Introduction

The IST research project DAIDALOS (Designing Advanced network Interfaces for the
Delivery and Administration of Location independent, Optimised personal Services) [Dai]
provides the motivation and context for the work described in this thesis. The main fo-
cus of DAIDALOS is to develop an architecture for fourth generation wireless networks
that meets the following goals:

• Should support multiple wireless technologies, such as WLAN/802.11, WMAN/802.16,
TD-CDMA, and Bluetooth, instead of designing an architecture ultimately tied to
a single technology;

• Users should be shielded from having to manage all the complexity that the het-
erogeneity of access technologies implies;

• There should be support for third-party services, which communicate with an
operator’s network infrastructure with a well defined and open interface;

• At the same time, users should not have to manage the complexity of having
services from outside an operator. Using external services should “just work”,
with no manual configuration required;

• Quality of Service should be supported in the operator’s base architecture, the
service provider, and end-to-end in an integrated fashion, while at the same time
transparently to the user;

• Handover between (1) different access technologies, and (2) different domains/op-
erators, must be supported, while preserving QoS as much as possible.

The DAIDALOS project generally follows certain technical design choices that favour
reusing and improving existing technologies rather than starting design from scratch, as
well giving preference to general solutions, rather than technology specific ones. There-
fore, IPv6 is chosen as technology abstraction data plane layer. For mobility support,
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Figure 3.1: Daidalos network architecture (source: DAIDALOS Deliverable D321)

Mobile IPv6 with Fast Handover [KDEM04] is used. Moreover, whenever possible IETF
protocols, such as SIP and COPS, are reused.

The remainder of this chapter briefly describes the overall DAIDALOS architecture,
with special emphasis on the QoS aspects.

3.2 Architecture

Fig. 3.1 shows an overview of a typical DAIDALOS network, while Fig. 3.2 shows the
most relevant modules in this context. Access Points are not represented in Fig. 3.1
for simplification; they are located between terminals and ARs, and are used to pro-
vide wireless connection to terminals and connect them to the ARs. The coexistence
of several administrative domains is contemplated in the architecture. Typically, an
administrative domain is controlled by a single network operator, although conceptu-
ally a single operator could control several administrative domains. Each administrative
domain is divided into one core subdomain and several access subdomains. The core
subdomain interconnects all the access subdomains, through Subdomain Edge Routers,
and interfaces with external administrative domains, through Edge Routers.

3.3 Service and Network Management Architecture

The Service and Network Management subsystem corresponds to the DAIDALOS Work
Package 3. As the name suggests, the focus of this WP is to develop a flexible architecture
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(a) Access QoS Broker

(b) Mobile Terminal (c) Access Point (d) Access Router

Figure 3.2: Detail on the most relevant modules in the Daidalos architecture

that provides the necessary infrastructure for deployment of a varied array of services
that represent added value to the end user. At the same time, a robust management
architecture is developed, allowing network managers to evaluate the adequateness of
the network performance for the services that are being supported at any given time, as
well providing the ability to take corrective measures on the same network in case the
performance goals are not met at some point in time.

This section will briefly describe the most important components in this architecture
in Sections 3.3.1– 3.3.6, as well as shed some light on the QoS reservations strategies
that are supported by this platform in Section 3.3.7.

3.3.1 QoS Brokers

The end-to-end QoS model followed in DAIDALOS is based on the concept of QoS
Brokers. In this architecture, each QoS Broker (AQoSB and CQoSB in Fig. 3.1) is re-
sponsible for managing the resources for one subdomain. Thus, each access subdomain
is managed by a different QoS Broker, as well as the core subdomain. In order to re-
serve end-to-end resources, first a QoS reservation request is sent to the Access QoS
Broker (see Sec. 3.3.7). It checks that there are enough resources and the access sub-
domain, by contacting the Access Router’s QoS Manager, then propagating the request
up through a chain of QoS Brokers that may include the Core QoS Broker, and other
QoS Brokers in a different domain, depending on the path for the reservation. The
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QoS Brokers communicate using a protocol based on the Common Open Policy Service
(COPS) protocol [DBC+00].

The QoS Brokers manage resources using the Policy Based Network Management
(PBNM) concept. To this end, they receive policies from the Policy Based Network
Management System (PBNMS) and cache them in a local policy repository. In addition
to receiving policies from the PBNMS, the QoS Brokers also generate alarms back to
the PBNMS to report anomalous situation that may occur, such as prolonged lack of
resources, or failures.

The Access QoS Brokers have additional responsibilities. Besides managing QoS
resources, they also receive a subset of the users’ profiles from the A4C module (not
represented in in Fig. 3.1), and it is their responsibility to verify users authorisation
for each resource being requested. Moreover, resource checking and authorisation is
performed by the Access QoS Broker when users’ terminals handover between different
Access Routers.

3.3.2 Core Router

The core routers in DAIDALOS contain a DiffServ QoS engine, with a COPS based
interface to the QoS Broker. The QoS Manager is a module in the core router archi-
tecture that is responsible for managing the DiffServ resources and interfacing with the
QoS Broker. Thus, the QoS Broker delegates the lower-level QoS resource management
tasks to the QoS Manager located in each core router. There is also an interface to
the Network Monitoring System that is used by the QoS Manager to send queue load
information to the Network Monitoring Entity (NME).

3.3.3 Policy Based Network Management System

The Policy Based Network Management System (PBNMS) entity is divided into a Net-
work Server that interacts with the Network Elements, and a Human Server that inter-
acts with the Human Operator. The Network Server holds the central policy repository,
which is distributed to the Network Elements (eg. QoS Broker) on startup, and receives
alarms from them. The Human Server is an http server providing a user interface to a
human operator.

3.3.4 Network Monitoring Entity

The Network Monitoring Entities (NMEs) are spread across the network a strategic
locations, and employ both passive and active network monitoring strategies to gather
network statistics useful for network management. In active monitoring strategies, test
packets or flows are introduced into the network, and measurements are taken upon
them to evaluate how are they are affected when travelling across the network. The
best example of active monitoring technique is the plain old ping utility, which can let
us determine packet losses, delays, and number of hops, to reach any destination. As a
side effect, active monitoring introduces additional load into the network, therefore the
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test flows must be small, which unfortunately means that they no longer may be able
to simulate with precision the conditions of the real network traffic. Passive monitoring,
on the other hand, does not introduce test flows, but merely measures the real traffic, as
it travels across a network. Passive monitoring is ideal to monitor services’ compliance
with previously established Service Level Agreements (SLAs), for instance.

The NMEs communicate with a Central Monitoring System (not represented in in
Fig. 3.1) using a XML-RPC interface for configuration, and a Netflow or IPFIX interface
for data reporting.

3.3.5 Access Router

The Access Router in DAIDALOS contains an Advanced Router Mechanism (ARM)
entity, which includes a QoS Manager.

The QoS Manager is responsible for some QoS-related tasks, including:

Policing/shaping and scheduling Application flows are shaped/policed and sched-
uled according to the policy controlled by the QoS Broker, so as to implement a
DiffServ functionality;

DSCP remarking Also in accordance with policy indicated by the QoS Broker, DSCP
remarking may have to be done in order to implement a complete DiffServ func-
tionality;

QoS context transfer The QoS Manager maintains a state of allocated QoS resources
on a per-user basis, and automatically initiates a context transfer of this state when
a handover to a new access router takes place;

Load monitoring The QoS Manager constantly monitors the state of the shaping
queues, and sends this information to the NME, which then forwards it to the
Central Monitoring System (CMS);

Reserve L2 QoS resources Finally, and most importantly in the context of this the-
sis, the QoS Manager interfaces with the QoS Abstraction Layer in order to reserve
L2 QoS resources in the wireless interfaces1.

In addition to the functionality provided by the QoS Manager, ARM also supports
QoS Tran-signalling, multicast, and advanced signal processing (eg. sniffing SIP sig-
nalling packets to extract QoS parameters).

3.3.6 QoS Client

Although the DAIDALOS network architecture can cope (with a somewhat limited ser-
vice level) with legacy terminals, which do not support any DAIDALOS-specific QoS
protocols, there is a DAIDALOS QoS Client module that may run on terminals to pro-
vide an enhanced service relative to what can be provided from the network-side alone.
Some of the responsibilities assigned to the QoS Client include:

1Or wired interfaces connected to the wireless APs
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Control QoS Signalling The QoS Client can act on behalf of the application to con-
trol signalling of particular flows. Both in-band signalling (DSCP marking) and
out-of-band (eg. end-to-end RSVP or COPS message to the QoS Broker) are sup-
ported by the QoS Client;

Signalling for Legacy Applications The QoS Client contains a list of well known
applications/ports, along with recommended QoS settings, and is able to automat-
ically reserve QoS resources when these legacy applications start sending traffic;

Packet Marking There are two separate reasons to perform packet marking:

1. DSCP marking may be required for the in-band QoS signalling mentioned
above;

2. As part of the L2 QoS reservation “contract”, the QoS Abstraction Layer
expects that packets that are to be tunnelled through any particular QoSAL
connection be marked with the respective connection identifier in the IPv6
Flow Label field. While the QoS Manager takes care of setting up packet
marking for downlink flows, in case of uplink flows it has to be the QoS
Client to do this task.

React to QoS Level Changes The QoS Client can react to QoS degradation notifica-
tions (eg. from the QoSAL) and send events to the Multimedia Service Provisioning
User Agent (MMSP-UA), which may, for example, start a transcoding process in
order to match the application QoS requirements to the new level that can be
provided by the network.

3.3.7 QoS Reservation Strategies

A DAIDALOS access network is sufficiently flexible to support multiple QoS reservation
strategies:

Terminal issues QoS requests In this reservation strategy (Fig. 3.3(a)), it is the ter-
minal that first takes initiative of contacting the QoS Broker via the ARM, asking
it to reserve resources for a flow. After A4C verification of the request, the QoS
Broker pushes the request up the chain of QoS Brokers and orders the AR to make
a reservation for the AN;

Service proxy issues QoS requests In this scenario (Fig. 3.3(b)), the application
contacts a service proxy, and exchanges signalling which may or not include QoS
parameters. The service proxy then issues a QoS request to the QoS Broker. After
A4C verification of the request, the QoS Broker pushes the request up to the core
QoS Broker and orders the AR to make a reservation for the AN;

Terminal issues QoS requests through ARM In this scenario (Fig. 3.3(c)), the
application performs normal signalling, without caring about DAIDALOS QoS
interfaces. However, the AR intercepts the application signalling and extracts
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(a) Terminal issues QoS requests

(b) Service proxy issues QoS requests

(c) Terminal issues QoS requests through ARM

(d) Application server issues QoS requests

Figure 3.3: DAIDALOS QoS reservation strategies



36 CHAPTER 3. THE QOS SOLUTION IN DAIDALOS

the QoS and flow descriptor, thus is able to request reservation of QoS resources
through the QoS Broker, as in the other scenarios. In alternative to intercepting
application signalling, the AR can also look at the DSCP of incoming packets,
previously marked at the terminal, to discover the QoS settings for each flow;

Application server issues QoS request In this instance (Fig. 3.3(d)), the user ter-
minal sends a normal request to the application server as usual, and it is the latter
that then requests QoS resources back to the access network.

Which reservation strategy is the best is, probably, a question with no direct answer.
While Terminal issues QoS requests is certainly the most flexible approach to QoS
reservation, since it does not require any single entity to be aware of every application the
user may want to use in his terminal, it requires a “DAIDALOS aware” terminal which,
although desirable, is not possible in all cases. The Service proxy issues QoS requests
strategy, on the other hand, does not require the terminal to use any DAIDALOS specific
QoS interfaces but, on the other hand, only works for applications using the correct
multimedia proxy. There is no such problem with the Terminal issues QoS requests
through ARM strategy, but unfortunately it will only work for a handful of applications
that the network is programmed to handle, as well as subjecting the AR to the intensive
task of monitoring the contents of signalling packets. The Application server issues QoS
request strategy simplifies charging when the application server belongs to a different
administrative domain, since the server buys the QoS resources to the access network,
and then the user is charged a single time for application service + network QoS.

3.4 Network Integration Architecture

The Network Integration Architecture subsystem corresponds to the DAIDALOS Work
Package 2. It addresses the infrastructure problems related to the lower layers of the
access part of the network, such as mobility support, Layer 2 QoS, broadcast, security,
and ad-hoc networking. Besides the WP2 QoS architecture, which is already described
in full detail in Chapter 4, in this section only the mobility subsystem will be presented.

3.4.1 Mobile IPv6 Soft-handover

Mobile IPv6 [JPA04] with Fast Handover [KDEM04] extensions, used in DAIDALOS,
already represent a great improvement in handover speed relative to traditional MIPv6.
Still, there is a short period of time during handover when the terminal is physically (L2)
connected to the new AP but is not yet registered with the AR. During this period of
time, packets are still being sent through the old AP, thus lost by the terminal. Although
it is a short period of time, it can have a noticeable impact on the QoS if for example
the user is having an audio conversation.

To work around this limitation, the concept of soft-handover is borrowed from UMTS,
allowing the network to send flows through both old and new ARs, thus guaranteeing
that the terminal will receive at least one copy of each packet regardless of the AR it is
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registered with. This technique works best for L2 technologies that are able to stay con-
nected to more than one AP/AR at the same time, although it still produces noticeable
improvements otherwise. It also works well for terminals with multiple interfaces, even
of different technologies.

A key element in the realization of this concept is the Duplication & Merging Agent
(D&M), which runs in a router that sits “upstream” to all the ARs that cooperate in
soft-handover. During handover, it automatically intercepts all packets destined to the
terminal, tags them with a unique sequence number, and then sends one copy tunnelled
through both old and new AR. A similar agent also runs in the terminal; it takes care of
dis-encapsulating packets from the tunnel and remove any duplicates found, as identified
by the sequence numbers. For uplink flows, the reverse operation happens, i.e. the D&M
agent in the terminal duplicates and tunnels packets through old and new ARs, and the
agent in the core network router eliminates duplicates.

3.4.2 Interface Abstraction Layer

The Interface Abstraction Layer (not to be confused with the QoS Abstraction Layer) is
a library/toolkit that resides on the mobile node and provides the ability to enumerate
network interfaces and obtain several properties from these interfaces to help with mo-
bility issues; at the same time it maintains an abstract API, i.e. technology independent.
The following functionality is made available by the IAL:

• Detection, enumeration, and identification of network interfaces, including tech-
nology/product information;

• Provision of triggers when an interface changes status (eg. if an interface disappears
as the corresponding PCMCIA card is removed);

• Reporting of information available on interfaces, such as available channels, nor-
malised signal strength/quality values;

• Channel selection on interfaces;

• Ability to query or modify both generic and device-specific options.

3.4.3 Intelligent Interface Selection

4G networks will offer unprecedented flexibility in terms of technology support. That
also means increased complexity for the end users, which is precisely one of the problems
DAIDALOS tries to address.

In order to relieve the user from manually having to select, in real time, between
different APs, different technologies, or even different domains, an Intelligent Interface
Selection (IIS) module has been designed. It is located at the terminal, and automat-
ically switches between different interfaces, APs, or ARs, on behalf of the user. The
selection criteria is based on user preferences which can include, for example, relative
importance of QoS over cost, relative preference of network providers, or even enabling
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the use of multiple interfaces simultaneously for different applications/services. The user
preferences may be stored on the Home Agent or on the terminal itself. The interface
selection algorithm receives as input parameters such as a list of available APs and ARs,
as well as respective characterisation information (eg. available bandwidth, type of tech-
nology, network provider, etc.) obtained through the Candidate Access Router Discovery
(CARD) protocol.

3.4.4 Performance Manager

In DAIDALOS, two different handover styles are supported. On one hand, there is
Mobile Initiated Handover, in which the mobile terminal takes initiative to execute a
handover to a new, better AP/AR, normally triggered by IAL, and a new target is
AP/AR selected by IIS. On the other hand, a Network Initiated Handover strategy is
also supported, where the terminal receives indications from the networking, suggesting
that it performs a handover to a different AP or AR, so as to attain a better load balance
among an operator’s set of APs and ARs. The key to network initiated handover is the
Performance Manager (PM) module; the PM functionality is distributed among several
different entities deployed in different nodes:

Terminal Tracking Module It is located in the AP; it performs passive scanning
of terminals, and sends measurement information from the point of view of the
network side back to the AR, along with information regarding neighbouring APs;

Performance Attendant This module is located in the AR, and it contains the fol-
lowing submodules:

Aggregation Module This is the module that is responsible for receiving the
information sent by the Terminal Tracking Module from the APs. In fact, it
collects information from several APs and sends it to the PM module in the
QoS Broker;

Policy Based Decision Enforcement This module receives the output of the
PM algorithms from the QoS Broker, then runs any handover decisions through
a local policy database. If the policies allow it, then a signal is sent to the
handover module to begin a network initiated handover;

Performance Manager The actual PM algorithm is included as a QoS Broker mod-
ule. It receives input from the various Performance Agents in all ARs and makes
handover decisions when appropriate in order to balance the load of terminals
among the set of available APs and ARs.

3.4.5 Mobile Terminal Controller

The Mobile Terminal Controller (MTC) module provides central coordination functions
among a set different modules in the terminal, including IIS, IAL, and QoS Client. Some
of the information that the MTC is able to manage includes:
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• The MT’s current status, such as interface currently in use, L2 address of the AP it
is connected to, IP address of the AR, and list of services running on the terminal
with corresponding QoS levels, and current Care of Address (CoA);

• Characteristics of next handover target, including target interface, L2 address of
target AP, IP address of target AR, and new/next CoA;

• A list of APs detected by the terminal, together with their L2 addresses, corre-
sponding local interface, technology type, and signal quality;

• A list of handover candidate ARs, along with corresponding IP addresses, APs
connected to them and their available bandwidth;

During handover, the MTC is responsible for deselecting the old interface and se-
lecting a new one. It also triggers IIS operation when detecting (via IAL indication)
deteriorating signal strength. Finally, it interacts with QoS Client and security mod-
ules.

3.5 Conclusions

The DAIDALOS architecture is complex and thorough. Nearly all network aspects of a
4G network are covered by this architecture, from the high-level policy-based network
management system, to network monitoring, service provisioning, a flexible QoS system,
and advanced mobility support. This still leaves out subsystems not covered here, such
as ad-hoc networking, security, pervasive systems, and broadcast.

Within the QoS part of the overall architecture, the QoS Abstraction Layer plays a
central role. Every service in DAIDALOS requires one form or another of QoS. Moreover,
all user flows invariably involve the access network. Usually, there are plenty of resources
available in the wired part of the network, so the QoS bottleneck is in the wireless part.
Since the QoSAL controls the admission control in the wireless part, it plays an important
role in end-to-end admission control. Moreover, wireless part of the network is the one
that experiences the most delay. Therefore, QoS support in the wireless part, as realized
by the QoSAL, is the most important in all the end-to-end path.
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Chapter 4

The QoS Abstraction Layer

In this chapter, a detailed specification of the module called QoS Abstraction Layer will
be presented. First, Sect. 4.1 enumerates the functional requirements that have been
considered in the design. These requirements in a way are aligned with the objectives and
contributions described in in Sec. 1.2 and 1.3. Then, in Sec. 4.2 a detailed description of
the solution will be presented, including architecture, modules, interfaces, and protocol.
Finally, some conclusions are included in Sec. 4.3.

4.1 QoSAL Requirements

The functional requirements, as presented in this section, are divided in several groups.
Sec. 4.1.1 lists the QoS requirements. These are the main requirements that motivated
this work in the first place. Sec. 4.1.2 lists the requirements related to mobility support.
Additionally, Sec. 4.1.3 lists “autoconfiguration” requirements. Finally, some other re-
quirements are listed in Sec. 4.1.4.

4.1.1 QoS Requirements

The QoS requirements pertain to the set of characteristics that the QoS reservation
model must observe.

Reservations The main goal is to allow reservation of QoS resources across an arbitrary
wireless network. The motivation for this goal is clear and already explained in
this document;

Abstraction The QoS parameters should be simple and generic, and each AP must
perform the necessary mapping to its own technology. The reason for this is
that the QoSAL should not favour any one specific technology, therefore its QoS
parameters must be generic. At the same time, there is no point in trying to
require too detailed QoS parameters, since a great loss of QoS resolution is to be
expected in any case due to the highly heterogeneous environment the QoSAL is
expected to run on.

41
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Flexibility The offered QoS model must be flexible, so that in can be reused in multiple
end-to-end QoS architectures. In particular, some effort must be made to make it
easily deployed to support the most common QoS models currently in the Internet,
such as IntServ [BCS94] and DiffServ [CDWW98], as well as any new one likely to
be deployed, such as NSIS [HKL04];

4.1.2 Mobility Requirements

The fact that the QoSAL runs in environments where mobility is a core concern means
that it must actively support mobility.

Smooth handover There should be support for smooth handover of terminals between
APs or ARs. This means that the QoS for flows with QoSAL reservation for any
given terminal should not be significantly degraded as the terminal moves from
one AP/AR to a new one.

Triggers It should provide network load and QoS degradation indications to trig-
ger handovers. Contrary to many handover trigger implementations, the signal
strength alone is not a good indication to trigger handover. What really matters
for a terminal is not the signal strength but what level of QoS can be obtained with
this signal. Of course, the two are highly correlated, which helps explain why in
many instances signal strength is used as a substitute for QoS, but in truth it is the
latter that really counts. As an example, consider an IEEE 802.11 terminal whose
signal strength at some point decreases to 25%. Whether it should handover or not
does not depend on the signal strength alone. If the AP is lightly loaded, then the
terminal can switch to a different transmission mode; a slower one, but with more
energy per bit, to compensate for the decreased signal power. Sure, that terminal
is occupying the wireless medium for much longer, thus wasting more resources,
but since the AP was not very loaded in the first place then it does not have much
impact. If, on the other hand, the AP was already moderately or highly loaded
then the extra time spent by the terminal in the slower transmission mode is prej-
udicial to the overall resource efficiency of the AP, or perhaps not even possible
due to the high load.

4.1.3 Autoconfiguration Requirements

The QoSAL protocol should be able to transparently adapt to complex IEEE 802 style
networks. In particular, the following aspects should be considered:

Auto-routing No a priori knowledge of the L2 network topology should be required by
either AR or MN. In an IEEE 802 network, it is possible to interconnect equipments
(eg. switches) in any way we like without worrying about which ports in which
switches a frame needs to go through to reach its destination; we just fill in the
destination MAC address and send it, and we know the frame will somehow find
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its way to the destination host. The QoSAL should somehow capture this “auto-
routing” concept from IEEE 802 networks, since it brings great improvements in
network setup time.

Concatenated networks Multiple concatenated wireless links should be transparently
supported, and QoS reserved in all of them. As already explained, and depicted
in Fig. 1.1, one of the likely scenarios in 4G networks is the concatenation of
multiple wireless hops, such as a long ranged but fixed IEEE 802.16 link followed
by shorter-ranged but mobile IEEE 802.11 or 802.15.1. From the point of view
of the IP layer, all these concatenated wireless links are treated just as a simple
L2 network segment, without knowing or caring whether the L2 segment is split
into multiple segments of heterogeneous wireless technologies. What is true for
datagram sending ought to be true also for QoS reservations, otherwise we defeat
the builtin autoconfiguration mechanisms in IEEE 802 equipments.

Dynamic adaptation Dynamic changes in the L2 topology shall be supported. Some-
times the topology of a complex L2 network has to change. First of all, there is
the problem of terminal mobility. Even terminals are part of the L2 network, and
as they move from one AP to another they are implicitly changing the topology.
Other topology changes that can happen are related to network management is-
sues, such as taking out an AP that has stopped working, or adding new APs to
increase an AR’s coverage or bandwidth capacity. These topology changes are only
natural, and should continue not to require manual reconfiguration.

Legacy equipments The QoSAL protocol should work transparently in the presence
of L2 equipments that are unaware of the QoSAL protocol. For instance, in a
concatenated scenario, if one of the APs doesn’t support QoSAL, the reservations
still should proceed to the next segments, and QoS would still work in these other
segments in the path.

4.1.4 Other Requirements

Some additional requirements, which do not fit in any of the above categories, are pre-
sented here:

Events Similar in spirit to the triggers requirement described in Sec. 4.1.2, the QoSAL
should provide events, or indications, although with different goal, which is to
allow cross-layer optimisations. As explained in [CRR04], the upper layers, such
as TCP, RTP, and above, can draw great benefits from having more detailed and
real-time information of events that take place at the link layer. Adjusting the
TCP congestion window to the wireless link conditions as they change over time,
and changing the encoding parameters of a streaming session to adjust to the ever
changing channel state are two of the most compelling examples of the kind of
improvements that can be achieved with a proper events interface in place at the
link layer;
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Robustness In a wireless environment, it is often impossible to guarantee accurate
transmission at certain points in time, which means there’s a significant probability
a transmitted frame will be received with errors. Sometimes, an effect called fading
occurs, meaning that for a period of time the signal strength decreases to almost
nothing1, which means sometimes a frame cannot be transmitted, even with ARQ.
This is a harsh environment, but the QoSAL must cope with it;

Multicast A multicast QoS abstraction should be supported. In 4G networks, as oper-
ators strive to offer video streaming of real-time events, such as football matches,
it will not be scalable, or cost effective, to use the traditional unicast traffic model,
due to the prohibitely high bandwidth load that would be produced on the access
network. Thus, multicast support will play an important role in 4G networks, as it
allows the “send once, charge many times” philosophy. In fact, multicast is already
being introduced into UMTS networks [Iva05]. Thus, the QoSAL should contain
primitives to reserve QoS for multicast sessions as well;

Modularity The architecture should be highly modular, allowing support for new tech-
nologies to be easily “plugged into” the architecture. The motivation for this
requirement is simple to understand. As new modulation and transmission tech-
niques are developed, new wireless technologies are going to be developed, possibly
including changing service interfaces, which means that adaptation modules for the
QoSAL interface has to be created, allowing the new technologies to be seamlessly
integrated in the overall architecture. However, many of the QoSAL requirements
are common to all technologies, and their solutions essentially technology indepen-
dent. Therefore, if the QoSAL had to be fully implemented for each technology,
there would be a lot of duplicated work. To avoid this duplication, the QoSAL
architecture should clearly isolate the technology independent functionalities, and
allow technology dependent modules to “plug in” support for each supported L2
technology.

4.2 QoSAL Specification

In this section, the QoS Abstraction Layer specification is presented. Starting with
Sec. 4.2.1, where the overall architecture is described, then moving on to Sec. 4.2.2,
which specifies in detail the service interface, followed by a specification of the QoSAL
protocol in Sec. 4.2.3, and finally the driver interface is presented in Sec. 4.2.4.

4.2.1 Architecture

Modules

The architecture that has been designed is summarised in Fig. 4.1. It represents a typical
access network, with an AR, an AP, and a MN. The QoS Abstraction Layer (QoSAL)

1For example due to specific phase alignments between multiple reflections, which change as a terminal
moves
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Figure 4.1: QoS Abstraction Layer architecture

runs on all these network elements. Note, however, that the architecture is not limited
to a single AP; multiple APs can stand between a MN and an AR. At the AR, the
QoSAL accepts service requests (Sec. 4.2.2) from the QoS Manager ; it is responsible
for end-to-end QoS management, but only deals with IP subnetworks. For instance, it
is unaware of the APs in Fig. 1.1. The reservation of resources in the L2 network is
delegated to the QoSAL.

Control Plane L3-L2 QoS Mapping

The QoSAL instances located in different L2 nodes communicate using a custom proto-
col that is transported directly over L2 bearers (see Sec. 4.2.3). In response to abstract
QoS requests from the QoS Manager, the QoSAL modules running on AP and MN ask
the technology-specific QoSAL Driver modules, using the driver interface described in
Sec. 4.2.4, to implement the request at L2, which usually means to configure data-plane
modules (e.g. shaping and scheduling), and prepare them for the new flow. Alterna-
tively, the QoSAL driver could simply translate the abstract request into an L2 primi-
tive. For instance, in an UMTS or GPRS network interface, at MN side, the primitive
SMREG-PDP-ACTIVATE-REQ can be used to reserve L2 QoS resources.

Conceptually, the QoSAL reservations are like “virtual channels” across a whole L2
network, whose boundaries are determined by a pair of L3 nodes, with an attached QoS
service level. These virtual channels are denominated “QoS connections”. As a set of
packets enter these connections, as explained in Sec. 4.2.1, they are transported to the
other end of the tunnel with the QoS guarantees that have been negotiated by the QoS
reservation. For each QoSAL connection there exists an integer number that uniquely
identifies it within a Link Access Network (LAN). A LAN is composed by the set of L2
nodes, including APs and MNs, reachable by a single network interface of an AR.
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Table 4.1: The DAIDALOS QoS classes and their associated parameters

Parameters Class 0
Conversational

Class 1
Transactional

Class 2
Streaming

Class 3
Best Effort

Delay — upper
bound on mean
delay (end-to-
end)

150 ms 400 ms 1 s unspecified

Delay — upper
bound on mean
delay (LAN)

40 ms 100 ms 250 ms unspecified

Packet loss — up-
per bound on the
packet loss proba-
bility

1× 10−3 1× 10−3 1× 10−3 unspecified

Designed for: Interactive voice
and video (e.g.
audio and video
conferencing)

Transaction
data, interac-
tive (e.g. Web
browsing, telnet,
e-commerce)

short transac-
tions, bulk data,
video streaming
(e.g. video on
demand, ftp)

Legacy ap-
plications
/ low cost
services

The QoS parameters used in QoSAL are basically the same as the ones used in
end-to-end QoS reservations, namely Class Identifier, Reserved Bitrate, and TSpec. The
Class Identifier is used to indicate to the QoSAL what type of traffic will be transported
over the connection. Table 4.1 lists the available class identifiers in Daidalos. Each class
identifier implicitly defines some QoS parameters, such as packet loss probability and
delay. Only the LAN-part of the delay applies for the QoSAL connections, and it is about
one quarter of the maximum allowed end-to-end delay. The Reserved Bitrate is the most
important parameter in the QoS reservation, as it indicates the amount of bandwidth
that is to be reserved in the wireless network. Finally, the TSpec parameter has the same
meaning as in RSVP/IntServ, and is used as indication to the L2 QoS elements regarding
the properties of the flow that is to be transported over the QoSAL connection. The L2
QoS equipments may use this information to scale buffers, for example, or, by the same
token, reject reservations that would require buffers too large for them to handle.

Data Plane L3-L2 QoS Mapping

The QoSAL, as protocol, only exists in the control plane of the communications stack.
But, in the data plane, there has to be an interface for L3 to indicate to the L2 QoS
modules what kind of QoS treatment to apply to each packet. While at the IP layer
individual flows may have separate queues where packets are shaped, they are eventually
multiplexed into a single queue for transmission by the network card. This is how IP,
and in particular the Linux network stack, normally works, since it was not designed
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with L2 QoS in mind. Before queueing packets for transmission by L2, however, the
L3 modules mark the IPv6 Flow Label field of all packets with a Connection Identifier,
which is a number used by the QoSAL-aware network interfaces to uniquely identify a
reservation/flow (or “connection”, using the service interface terminology). The same
Flow Label is used throughout the whole L2 network, including AR, AP(s), and MN, to
map packets into flows.

Currently, only the IPv6 Flow Label is used to associate packets with QoS connec-
tions, although a mapping based on L2 or even new L2.5 headers is under consideration
(see Sec. 6.3). Using Flow Label for QoS mapping is a double edged sword. On one
hand, it doesn’t require any new headers, thus L2 frames can pass through L2 equip-
ments that are not QoSAL-aware, albeit only with best-effort service. Moreover, the
Flow Label is a simple 20-bit integer field, making it a relatively simple operation to
map packets to flows using this field2. On the other hand, this solution does limit the
QoSAL to IPv6, which is both conceptually wrong and in practice may constitute a
problem, since L2 equipments do not normally have an IP stack, or if they do it is used
only for management; in data plane, APs only look at IEEE 802 headers.

So far it has only been explained how packets with a valid, non-zero Flow Label are
treated. What about best effort? Well, in fact, in DAIDALOS even the best effort flows
need QoS resources reserved. Either applications are DAIDALOS-aware and make the
QoS reservation explicitly at the terminal, or they are legacy applications, in which case
they just start transmitting right away. However, as soon as these packets reach the
AR, they are intercepted by the ARM, and a suitable best effort reservation is triggered.
For this to work, however, it is necessary that L2 QoS equipments reserve just a bit of
residual bandwidth for unmarked packets, so that they can at least reach the AR and
trigger a proper reservation. Moreover, some bandwidth must also be pre-allocated for
for signalling. Signalling packets, in Daidalos, are identified by a set of values marked
into DSCP field of packets. Table 4.2 summarises the rules for classifying packets in
the data plane, and how to treat packets of each type. The mapping rules may appear
too complicated, considering the need to inspect both Flow Label and DSCP fields,
which might degrade performance. But one has to consider the fact that the majority
of packets have a valid QoSAL reservation, and for these packets looking at the Flow
Label is enough to determine how to treat them. Only the remaining packets need more
careful inspection, but they are so few that this doesn’t have any significant impact on
the overall performance.

4.2.2 Service Interface

The services offered by the QoS Abstraction Layer to layer 3, i.e. to the QoS Manager
in Fig. 4.1, can be classified into five groups: 1) QoS reservation; 2) resource querying;
3) QoS degradation notification; 4) mobility; 5) multicast.

2Especially when compared to the alternative of matching by the tuple (source-ipv6, destination-
ipv6, protocol, source-port, destination-port), totalling 38 bytes, 4 of which (the ports) are not directly
accessible using a constant offset.
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Table 4.2: Data plane QoS mapping rules

Flow Label DSCP Packet Type / Treatment
6= 0 Don’t care Application flow with reservation — apply QoS of connec-

tion identified by CnxID = FlowLabel
= 0 6= signalling Application flow temporarily without reservation — some

residual bandwidth reserved for this.
= 0 = signalling Signalling packet — some residual bandwidth reserved for

this.

Data Types

The description of the parameter types involved follows:

Addr: Can be either an L3Addr or an L2Addr;

L3Addr: An IPv6 address. In fact, this type is just an alias for struct sockaddr in6
in the interface implementation;

L2Addr: An IEEE 802 MAC address, in case of a remote AP scenario, or a generic
link-layer address (e.g. UMTS IMEI), in case of a single (non-concatenated) lo-
cally attached wireless interface. In fact, this type is just an alias for struct
sockaddr ll in the interface implementation;

Result: Enumeration value indicating the status of completion of an operation. Can be
either ACCEPT or REJECT, and indicates whether the Abstraction Layer accepts
or not what is proposed in the primitive;

CnxID This is an unsigned 20-bit integer number that identifies a given abstraction
layer connection. It is unique only within a given Link Access Network;

TSpec: This parameter includes a set of attributes that characterise the application
flow that is to be transported in the QoSAL connection. Parameters include:

• Peak Bitrate (p)

• Average Bitrate (r)

• Maximum Burst Size (b)

• Maximum Transmission Unit (M)

• Minimum Policed Unit (m)

They have the same meaning as described in [SW97];
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RSpec: This parameter includes a set of attributes that define the service that Layer 2
promises to deliver, as long as application traffic does not violate the Tspec. These
attributes include Class Identifier and Reserved Bitrate, as described in Sec. 4.2.1.
Other parameters, such as BER and delay, are determined implicitly based on the
Class Identifier;

Bitrate: Transmitted information per time unit, in bits per second;

ContextInfo: A block of binary data that contains some information not used by the
AL but associated with the connection. It is transmitted (piggy-backed in QoSAL
Protocol Data Units (PDUs)) from AR to MN, and from there passed to the upper
layers;

BER: Bit Error Ratio, defined as the ratio between erroneous bits and total number of
bits in a frame/packet; it is represented as a single precision floating-point number.
A negative value means that BER information is not available;

Priority: An integer number that represents a priority, from −128 (lowest) to +127
(highest);

Boolean: A boolean value, either True or False.

QoS Reservation

The main service offered by the QoS Abstraction Layer consists in the creation of QoS
connections between the AR and a MN. These QoS connections can be described as
virtual channels between the two elements, which offer certain QoS guarantees, such as
bitrate and delay. There are primitives to create, modify, and release QoS connections.

Connection activation The primitives AL-CNX-ACTIVATE-REQ and AL-CNX-ACTIVATE-RESP

can be used to negotiate the establishment, or activation, of a new QoS connection.
The AL-CNX-ACTIVATE-REQ primitive triggers the signalling described in Sec. 4.2.3, and

returns a connection identifier in an AL-CNX-ACTIVATE-RESP primitive if the reservation
succeeds. The entity that requested QoS reservation is then responsible to setup the flow
marking module that will mark the Flow Label of the packets belonging to a reservation
with the associated connection identifier. Moreover, the connection identifier is used for
modification and deactivation of QoS connections, and it is included in QoS degradation
notifications.

When a connection is activated, the destination end point is notified of this using
the primitive AL-CNX-INDICATION. The main purpose of this primitive is to notify QoS
degradation, and is described in detail further below, but is also reused for notification
of connection activation, as exemplified in Fig. 4.2. The ctx info parameter of this
primitive plays an important role here. The same ContextInfo parameter that is supplied
by the QoS Manager at the AR is passed into the QoS Client as an AL-CNX-INDICATION

parameter at the MN. Although an opaque binary data block from the point of view of
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Table 4.3: Specification of the AL-CNX-ACTIVATE-REQ service interface primitive
Primitive name: AL-CNX-ACTIVATE-REQ

Description: Requests activation of a new QoS connection.
Direction: Downcall
Type Name Description
Addr dest addr Destination address of the MN for which we wish

to make a reservation. Note: generally, dest addr
should be of type L3Addr (sockaddr_in6); how-
ever, multicast reservations should be indicated with
a dest addr of type L2Addr, which is actually a
struct sockaddr_ll with the member sll_pkttype
set to the value PACKET MULTICAST. More infor-
mation about multicast in Sec. 4.2.2.

Tspec tx tspec Traffic Specification for the transmitted flow

Rspec tx rspec Reservation Specification for the transmitted flow

Tspec rx tspec Traffic Specification for the received flow

Rspec rx rspec Reservation Specification for the received flow

Priority retention prio Retention priority; the lower the priority, the more
likely it will be for this connection to be selected for
QoS degradation when resources become scarce

Boolean handoff Can be True to support mobility scenarios, as ex-
plained in Sec. 4.2.2, otherwise it should be set to
False.

ContextInfo ctx info Context information to attach to the connection

Table 4.4: Specification of the AL-CNX-ACTIVATE-RESP service interface primitive
Primitive name: AL-CNX-ACTIVATE-RESP

Description: Result of a QoS connection activation request.
Direction: Upcall
Type Name Description
CnxID cnx id Identifier for newly created connection, in case of suc-

cessful activation
Result result Indicates if reservation was successful or not
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Figure 4.2: Service interface message exchanges during a successful connection activa-
tion.

the QoSAL, this data block actually is used to send L3 QoS information, such as DSCP,
and source/destination addresses and ports, from the AR to the MN. This information
is used in the MN, for example to setup flow label and DSCP flow marking in the uplink
direction.

Two more aspects are worth mentioning. The first one is regarding the retention prio
parameter. The existence of this parameter is justified by the frequently changing con-
ditions in wireless networks as terminals move towards or away from the APs. When
the QoSAL detects that QoS resources available at some point become insufficient to
keep the QoS level promised on the QoSAL connections, it is forced to degrade or tear
down some of connections in order to free up resources for the remaining ones. Although
the QoS Broker knows best the relative priorities of all connections in accordance with
the users’ profiles, the variations often happen very fast and local decisions are taken
by the QoSAL drivers in each AP, in order to react in time as anomalies are detected.
To this end, the retention prio parameter is used by the QoS Manager when activating
a connection to indicate which should be the relative priority of such connection for
purposes of QoS degradation. QoSAL connections with lower priorities are more likely
to be selected for degradation.

Also in need of some clarification are the QoS parameters tx tspec, tx rspec, rx tspec,
and rx rspec. The meaning of the tx and rx prefixes are as follows. The tx parameters
refer to the QoS that is to be reserved for transmitted flows, while the rx parameters refer
to the QoS that is to be reserved for received flows. In this context, transmitted/received
is always from the point of view of the entity requesting the connection activation. From
the point of view of the QoS Manager, transmitted means downlink, while received means
uplink.

Connection modification The primitives AL-CNX-MODIFY-REQ and AL-CNX-MODIFY-RESP

can be used to modify the QoS parameters for an already established QoS connection.
The usage of these primitives is similar to the connection activation scenario, i.e. first
the caller sends a AL-CNX-MODIFY-REQ, containing the CnxID of the connection that is
to be modified, and the new QoS parameters, and the QoSAL calls back later after
the modification is complete, sending an AL-CNX-MODIFY-RESP containing the CnxID and
the result of the modification. It worth noting, however, that if a modification fails it
only means that the connection reverts to the same QoS settings before the modification



52 CHAPTER 4. THE QOS ABSTRACTION LAYER

Table 4.5: Specification of the AL-CNX-MODIFY-REQ service interface primitive
Primitive name: AL-CNX-MODIFY-REQ

Description: Requests modification of the QoS parameters of an existing connection
Direction: Downcall
Type Name Description
CnxID cnxid The connection identifier for the connection

Tspec tx tspec New Traffic Specification for the transmitted flow

Rspec tx rspec New Reservation Specification for the transmitted flow

Tspec rx tspec New Traffic Specification for the received flow

Rspec rx rspec New Reservation Specification for the received flow

Table 4.6: Specification of the AL-CNX-MODIFY-RESP service interface primitive
Primitive name: AL-CNX-MODIFY-RESP

Description: Result of a QoS connection modification request
Direction: Upcall
Type Name Description
CnxID cnxid The connection identifier for the connection for which

a modification has been requested

Result result Indicates if modification was successful or not

being attempted. A modification to decrease the QoS levels always succeeds3.

Connection deactivation The primitive AL-CNX-DEACTIVATE can be used to deacti-
vate an already established QoS connection, freeing its QoS resources along with it.
There is no response primitive, since it always succeeds. When a connection is deacti-
vated, the destination endpoint (i.e. the MN) is notified with an identical AL-CNX-DEACTIVATE
primitive, as show in Fig. 4.3.

Resource Querying

There is a primitive to request a report of the available (free) resources in the access
network, AL-RESOURCE-QUERY. Its only parameter, DestAddr, identifies the “path” for
which resources are to be queried. DestAddr can be an L2 address of a MN, or an AP,
with the following meaning:

3Unless, of course, there’s a race condition when a modification is requested and at the same time
the wireless conditions change in a way to make both the previous and new QoS levels impossible to
maintain.
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Figure 4.3: Service interface message exchanges during a connection deactivation.

Table 4.7: Specification of the AL-CNX-DEACTIVATE service interface primitive
Primitive name: AL-CNX-DEACTIVATE

Description: Requests deactivation of an existing connection.
Direction: Downcall/Upcall
Type Name Description
CnxID cnxid The connection identifier for the connection

MN Request a single report for all APs in the path towards the given MN;

AP Request a single report for all APs in the path towards the given AP, including the
destination AP itself;

The resources are reported via the upcall primitive AL-RESOURCE-INDICATION after
some delay. Currently, the only reported parameter is:

Bandwidth An estimation of free bandwidth in the AP. If the path includes multiple
APs, the returned bandwidth is the minimum of all bandwidths of individual APs;

AL-RESOURCE-INDICATION can also be sent spontaneously by the QoSAL, either periodi-
cally or whenever significant changes in the available resources are detected.

The AL-RESOURCE-QUERY primitive is used by the QoS Manager to check L2 admission
control before proceeding with end-to-end QoS reservations. Moreover, it is used to
provide QoS information to the Performance Manager, thus allowing a more efficient
load balancing of mobile terminals among different APs/ARs.

Table 4.8: Specification of the AL-RESOURCE-QUERY service interface primitive
Primitive name: AL-RESOURCE-QUERY

Description:
Request information about overall resources available in a
given L2 network path.

Direction: Downcall
Type Name Description
Addr Target Address of the target that defines a path. Target can

be a MN, an AP, or a broadcast address.



54 CHAPTER 4. THE QOS ABSTRACTION LAYER

Table 4.9: Specification of the AL-RESOURCE-INDICATION service interface primitive
Primitive name: AL-RESOURCE-INDICATION

Description:
Report information about overall resources available in a
given L2 network path.

Direction: Upcall
Type Name Description
L2Addr Target Target that identifies the path that this report refers

to.
Bitrate Bandwidth Estimation of available bandwidth

Table 4.10: Specification of the AL-RESOURCE-DEGRADATION service interface primitive
Primitive name: AL-RESOURCE-DEGRADATION

Description: Notification of degradation of overall resources.
Direction: Upcall
Type Name Description
list<(L2Addr,
Bitrate)>

resources List of AP address/bandwidth pairs.

The primitive AL-RESOURCE-DEGRADATION is automatically sent to the Per-
formance Attendant module (a client that connects to a special local socket) whenever
the available bandwidth in any one of the APs visible by the AR drops below 25% of
the respective technology theoretical maximum. When this primitive is received by the
PA, the Performance Manager is notified, and a Network Initiated Handover procedure
may be triggered this way.

QoS Degradation Notifications

The primitive AL-CNX-INDICATION is issued from the AL at both AR and MN to indicate
that the AL was forced to modify the QoS for a specific connection due to changing
conditions in the wireless medium. The primitive includes the connection identifier
and Rspec as parameters. This primitive is important, for it allows link adaptation by
applications, and may serve as trigger for higher-level handover decisions.

During the lifetime of a connection, the QoSAL is allowed to spontaneously modify
the reserved bitrate within the bounds of the initial reservation, as shown in Fig. 4.4.
In this example, the QoSAL senses a degradation in the signal strength, and tem-
porarily switches the transmission mode to one with lower bitrate but lower error
probability. Since the actual bitrate obtainable by the connection has decreased, an
AL-CNX-INDICATION primitive is issued at MN an AR side to notify the QoS Manager
and/or applications of this. When the effect that caused the degradation ceases, the link
is again gradually switched to higher bitrate modes, and new QoS levels become possible
in the connections; in this case AL-CNX-INDICATION primitives are sent again, until the
initial QoS level is attained.
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Figure 4.4: Example of QoS degradation notifications

Table 4.11: Specification of the AL-CNX-INDICATION service interface primitive
Primitive name: AL-CNX-INDICATION

Description: Notification of new connection activated or QoS changing
on a connection.

Direction: Upcall
Type Name Description
CnxID cnx id Identifier for connection that has changed
Tspec tx tspec New Traffic Specification for the transmitted flow
Rspec tx rspec New Reservation Specification for the transmitted flow
Tspec rx tspec New Traffic Specification for the received flow
RSpec rx rspec New Reservation Specification for the received flow
BER ber Optional BER information
ContextInfo ctxt info Context information attached to the connection

As explained, AL-CNX-INDICATION is also reused as a means to notify the QoS Client
of new connections, hence the presence of the ContextInfo parameter in this primitive.
However, the ContextInfo is always empty except during the activation notification.

Mobility

The service interface of the QoSAL has explicit support for mobility scenarios through
the handoff parameter of AL-CNX-ACTIVATE-REQ and the MN-side primitive AL-HANDOVER-EXECUTE.

At the beginning of an impending handover, the QoS Manager in the new AR cannot
do a regular connection activation. That is because the MN is not yet connected to the
new AR/AP, therefore a message cannot be sent to it, and the QoS Manager does not
even have knowledge of which will be the AP the MN will connect through. Thus, as
shown in Fig. 4.5, the QoS Manager sends an AL-CNX-ACTIVATE-REQ with the handoff
parameter set to True. This parameter value has the effect of postponing the QoSAL
connection activation until the instant MN connects to the new AR/AP. This instant is
signalled by the primitive AL-HANDOVER-EXECUTE at the MN, which triggers an equivalent
PDU that is sent to the AR, causing the QoSAL to proceed with a regular activation.
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Figure 4.5: Example of a handover using QoSAL interfaces

Table 4.12: Specification of the AL-HO-EXECUTE service interface primitive
Primitive name: AL-HO-EXECUTE

Description:
Handover just occurred; proceed with any pending connec-
tion activation(s).

Direction: Downcall (MN side only)
Type Name Description
Addr dst Address of the new AR the MN has just connected to

Multicast

The support of multicast QoS will be important in future networks, as multimedia
streaming services are likely to gain prominence. Therefore, multicast support had also
to be designed into the QoSAL.

There are two stages required to obtain multicast QoS. First, a QoS reservation is
performed, using the already described AL-CNX-ACTIVATE-REQ primitive, but specifying an
L2 multicast address instead of a MN unicast address. As usual, a connection identifier
is returned, which identifies the multicast session. After a multicast session is created,
membership management takes place. The primitive AL-MULTICAST-JOIN takes a connec-
tion identifier and an L2 address as parameters, and it is used to notify the QoSAL that
a new MN is joining the indicated multicast session. Conversely AL-MULTICAST-LEAVE is
used to indicate that a MN is leaving a multicast session. Both primitives are part of
the service provided by the QoSAL to the QoS Manager at AR.

4.2.3 Protocol

After having seen a description of the service offered by the QoSAL to upper layers, it
is time to learn how QoSAL protocol conveys the requests from the service interface to
remotely located APs, and brings back resource information and QoS degradation noti-
fications from the same remote APs, while at the same time satisfying the requirements
listed in Sec. 4.1.
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Table 4.13: Specification of the AL-MULTICAST-JOIN service interface primitive
Primitive name: AL-MULTICAST-JOIN

Description: Indicate that a terminal is joining a multicast session
Direction: Downcall
Type Name Description
Addr mn addr Address of the MN that is joining the multicast session
CnxID session Connection identifier of the multicast session

Table 4.14: Specification of the AL-MULTICAST-LEAVE service interface primitive
Primitive name: AL-MULTICAST-LEAVE

Description: Indicate that a terminal is leaving a multicast session
Direction: Downcall
Type Name Description
Addr mn addr Address of the MN that is leaving the multicast session
CnxID session Connection identifier of the multicast session

The QoSAL PDUs are transmitted as IEEE 802 frames4 with a dedicated protocol
type. The decision not to use the IP protocol to transport PDUs is motivated by several
factors, such as:

1. The QoSAL is meant to be a Layer 2.5 protocol;

2. A decision of using the IP layer would bring up a difficult decision of which IP
version to use, 4 or 6;

3. The IP layer represents an extra overhead in terms of PDU size that simply is
not compensated by any significant feature added by it and that is needed by the
QoSAL;

4. The QoSAL protocol has to be implemented in all QoS-capable L2 nodes, such as
APs, and L2 nodes, by definition, do not necessarily have a third layer.

The primitives of the service interface are closely related to the PDUs. In fact, for
most of these primitives, such as AL-CNX-ACTIVATE-REQ and AL-CNX-ACTIVATE-RESP, there
is a PDU corresponding to each primitive. The protocol borrows some ideas from the
RSVP protocol [BZB+97], namely in-band signalling and soft-state. In-band signalling
means that the PDUs use the same channels and paths as regular application packets.
In other words, there is no “management network” overlaid to the access network to
control the APs. It is also soft-state because QoS reservations have to be periodically
refreshed, else they expire.
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Figure 4.6: QoS connection activation example

Connection Activation, Modification, and Deactivation

Fig. 4.6 illustrates how the AL-CNX-ACTIVATE-REQ primitive is realized by the protocol.
First, a unique identifier for the QoS connection, CnxID, is derived. Then, an Eth-
ernet frame is sent, with MN1 as destination MAC address. The frame contains an
AL-CNX-ACTIVATE-REQ PDU, with CnxID and QoS as parameters. It is important to em-
phasise that by putting the MN address as destination address of the signalling frames,
the design goals in Sec. 4.1.3 are met. This comes “for free” with IEEE 802.1D Learning
Bridges [Tel98], implemented by Switches and wireless APs. Thus, the request PDU
follows the path towards the MN, traversing a series of APs. However, QoSAL-enabled
APs automatically recognise the AL PDU by its Ethernet protocol number, and pass it
to the QoSAL code for special processing, before allowing it to be forwarded.

No reservation is performed at this point, though. The AP has to wait for an
AL-CNX-ACTIVATE-RESP primitive, at which point the reservation is committed, in case
of a successful response from downstream. The reason why the confirmation is required
before committing the reservation has to do with the Learning Bridge. A Learning
Bridge is not programmed with any routes; it learns the routes from the traffic it re-
ceives, and maintains a cached table of MAC address / output port. This property is
both a strength, since it allows it to work with no previous configuration of routes, and a
weakness, because it is not guaranteed to always know the route for a particular destina-
tion. When a Learning Bridge does not know the route for a particular MAC address, it
simply forwards the frame through all output ports, as exemplified in Fig. 4.6. Thus, it
is possible that a given QoSAL instance may receive a PDU “by accident”, and forcing it
to wait for a response from the MN before acting on the request prevents this problem.

4Although other L2 networks can be supported with little additional effort
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These “mistakes” happen relatively infrequently, but we need to cope with them in the
rare cases when they happen.

There is an analogy between AL-CNX-ACTIVATE-REQ and RSVP’s Path messages, and
between AL-CNX-ACTIVATE-RESP and RSVP’s Resv. Like RSVP, the AL protocol is soft-
state, which means that AL QoS connections must be periodically refreshed, or else they
expire. When a QoSAL connection needs to be refreshed, a new AL-CNX-ACTIVATE-REQ

PDU is sent from the AR, with the same parameters as in the initial activation. This
time, however, the QoSAL instances located in intermediate APs receive the PDU but
recognise the CnxID as belonging to an already known connection, and they “refresh”
the connection state by restarting an internal timeout that would cause that connection
to expire after some time.

At the same time, the QoSAL compares the QoS parameters in the AL-CNX-ACTIVATE-REQ
PDU with the parameters in the local connection state. If the parameters are differ-
ent, a QoS modification primitive is sent to the driver(s) as soon as a corresponding
AL-CNX-ACTIVATE-RESP arrives. In this way, there is no need to have AL-CNX-MODIFY-REQ

and AL-CNX-MODIFY-RESP PDUs, therefore significantly simplifying the protocol.
Figure 4.7 might help understand better how the QoS protocol works with respect

to QoSAL connections. Each connection is represented by an object modelled by a state
machine represented in this diagram. It follows UML 2.0 [PP05] Protocol State Machine
notation, which is very similar to SDL. The “connection” object is initially created
when a AL-CNX-ACTIVATE-REQ PDU is received containing an unknown CnxID. This is
represented by the transition from the filled circle near the bottom-right corner of the
diagram. When the object is created it registers itself in a global CnxID→Connection
table, so that any future “connection bound” messages (AL-CNX-Something) are directed
to this object. Upon initialisation, a timer is created, and when it expires the connection
object is destroyed. However, each time a AL-CNX-ACTIVATE-RESP is received the timer
is restarted. Thus, as long as AL-CNX-ACTIVATE-RESP PDUs are received regularly, the
connection stays alive. A special object (not represented in the diagram) called “connec-
tion initiator” is present in the QoSAL in the AR, which assumes the responsibility of
sending AL-CNX-ACTIVATE-REQ PDUs at regular intervals, which are forwarded down the
L2 tree, causing AL-CNX-ACTIVATE-RESP’s to be transmitted following the reverse path,
and refresh the connection states in each L2 node. This is how the “soft-state” property
of the protocol is realized. Also represented in the state machine is the way that chang-
ing QoS parameters in a AL-CNX-ACTIVATE-REQ trigger a modification of the local QoS
resources. Finally, a AL-CNX-DEACTIVATE primitive unconditionally causes the connection
object be destroyed.

Resource Query

Regarding the resource query primitive described in Sec. 4.2.2, the two reservation styles
are simply mapped into MN, or AP addresses. Whatever the addressing scheme used, a
AL-RESOURCE-QUERY PDU is sent from the AR towards the requested destination. When
this PDU reaches either the destination or an edge AP, the forwarding of this mes-
sage stops, and a response is sent back to original requester. The response consists
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Figure 4.7: Protocol state machine of a QoSAL connection object (UML 2.0 notation)
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Figure 4.8: Example of a resource query with an AP as target.

of a AL-RESOURCE-INDICATION PDU containing the minimum bandwidth available. The
minimum bandwidth is initialised to a special infinite value, and as the message passes
through the APs, each AP combines its own available bandwidth with the value found
in the message. The overall available bandwidth reported to the AR is, therefore, equal
to the minimum of all the bandwidths in each AP. For example, in Fig. 4.8 the IEEE
802.16 Base Station (BS) has 7 Mbit/s of available bandwidth, but only 800 kbit/s are
free in AP2b, and that is the minimum value that is reported to the AR.

Announcement/Discovery

One of the requirements, in particular from the Performance Agent module, is the ability
of an AR to automatically discover APs reachable from any of the interfaces. This is so
that the AR can query each AP that is discovered, to receive bandwidth reports. Also
because the PA doesn’t know which APs are available.

There is a PDU called AL-ANNOUNCE that is used by QoSAL instances running in
APs to announce their presence. These messages are periodically broadcast by APs
and received by ARs. This PDU contains as parameter a list of intermediate nodes,
in addition to the usual source and destination addresses. The intermediate nodes list
contains the L2 addresses of all QoSAL nodes besides the one that created the message,
and it is used to discover the full L2 topology in the case of concatenated APs. This way,
the AR, who receives these announcements, discovers not only the existence of APs, but
also a list of intermediate APs in the path to each edge AP, and through which local
interface it is reachable.

The announcement messages are periodically broadcast by APs, and a L2 topology
database is kept at ARs. The information for each AP is soft-state, and expires some
time after announcements ceasing to be received. This way, the AR also finds out when
an AP is disconnected.
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Table 4.15: List of PDUs used in the QoSAL protocol

PDU Values
AL-CNX-ACTIVATE-REQ dst, src, cnxid, tx tspec, tx rspec, rx tspec, rx rspec, reten-

tion prio, ctx info
AL-CNX-ACTIVATE-RESP dst, src, cnx id, result
AL-CNX-DEACTIVATE dst, src, cnx id
AL-CNX-INDICATION dst, src, cnxid, tx tspec, tx rspec, rx tspec, rx rspec, ber,

ctx info
AL-RESOURCE-QUERY dst, src
AL-RESOURCE-INDICATION dst, src, bandwidth
AL-ANNOUNCE dst, src, aplist

Summary

Table 4.15 summarises the PDUs that are used in the QoSAL protocol. The parameters
dst and src are always present, since they are the destination and source (MAC) addresses
of the message. At this point, there are no PDU equivalents for AL-MULTICAST-JOIN and
AL-MULTICAST-LEAVE, meaning that multicast group membership is not (yet) implemented
for concatenated networks.

4.2.4 Driver Interface

Registration

The interface between Abstraction Layer and driver is generic and independent of loca-
tion, be it MN, AP, or AR. The Abstraction Layer is a process that runs in each node.
A QoSAL driver is another process that may run in any node, and register interest in
implementing QoS for a given network interface.

The primitive AL-DRIVER-REGISTER must be issued by the driver immediately after
connecting to the QoSAL. It declares intention of the driver to handle QoS for a specific
network interface. A driver may wish to handle several network interfaces. To do so, it
must create several connections (sockets) to the QoSAL, one for each network device.
Each connection represents one driver instance from the point of view of the QoSAL,
even though they may all come from the same process. Each driver instance handles
exactly one network interface.

QoS Reservation

Connection activation The primitives AL-CNX-ACTIVATE-REQ and AL-CNX-ACTIVATE-RESP

are the driver equivalents to the corresponding service interface primitives, which can
be used to negotiate the establishment, or activation, of a new QoS connection.
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Table 4.16: Specification of the AL-DRIVER-REGISTER driver interface primitive
Primitive name: AL-DRIVER-REGISTER

Description: Register driver with the main QoSAL process.
Direction: Upcall
Type Name Description
String netdevice Network device identifier that the driver wishes to

handle
Bitrate bwmax Maximum theoretical bandwidth supported by the

technology

Figure 4.9: Example of how tx/rx QoS parameters can change in the driver interface.

These primitives are similar to the service interface primitives, except for a few minor
differences. For instance, only L2 addresses are supported here, not L3 ones. Moreover,
there are two kinds of connection identifiers at stake here. There is a global identifier,
which is the one used in the service interface and marked into packets’ Flow Label. Then
there is a local identifier, which is returned by the driver and used to uniquely identify a
QoSAL connection in the QoSAL–Driver interface, but has no global meaning. Also the
ContextInfo parameter is not present in the driver interface, since it is not needed by
the driver. Finally, it should be noted that the tx/rx parameters retain their meaning
from the service interface, although depending on which side of a wireless link a driver is
registered to handle tx may be considered uplink or downlink. For example, in Fig. 4.9
Driver1 receives the tx/rx parameters swapped relative to the parameters requested in
the service interface at the AR; from the point of view of the AR transmission means
downlink and reception means uplink, while from the point of view of Driver1 downlink
traffic is received by the network interface it registers to handle, while uplink traffic is
transmitted through this same interface, hence the need to swap the values.

Connection modification The primitives AL-CNX-MODIFY-REQ and AL-CNX-MODIFY-RESP

can be used to modify the QoS parameters for an already establishment QoS connection,
just like in the service interface.

Connection deactivation The primitive AL-CNX-DEACTIVATE can be used to deacti-
vate an already established QoS connection, freeing its QoS resources along with it.
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Table 4.17: Specification of the AL-CNX-ACTIVATE-REQ driver interface primitive
Primitive name: AL-CNX-ACTIVATE-REQ

Description: Requests activation of a new QoS connection
Direction: Downcall
Type Name Description
L2Addr dest addr Destination address of the destination MN for the

reservation. This parameter may be safely ig-
nored if the driver doesn’t require it. Multicast
reservations are indicated with a dest addr of type
L2Addr, which is actually a struct sockaddr_ll
with the member sll_pkttype set to the value
PACKET MULTICAST.

CnxID cnxid Global connection identifier. The driver must config-
ure L2 to map packets into the connection being ac-
tivated by comparing the Flow Label IPv6 header to
the global connection identifier.

Tspec tx tspec Traffic Specification for the transmitted flow

Tspec tx tspec Traffic Specification for the transmitted flow

Rspec tx rspec Reservation Specification for the transmitted flow

Tspec rx tspec Traffic Specification for the received flow

Rspec rx rspec Reservation Specification for the received flow

Priority retention prio Retention priority; the lower the priority, the more
likely it will be for this connection to be selected for
QoS degradation when resources become scarce
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Table 4.18: Specification of the AL-CNX-ACTIVATE-RESP driver interface primitive
Primitive name: AL-CNX-ACTIVATE-RESP

Description: Result of a QoS connection activation request.
Direction: Upcall
Type Name Description
Result result Indicates if reservation was successful or not
CnxID cnx id Identifier for newly created connection. This identifier

is generally different from the global connection identi-
fier. It only has to uniquely identify a QoS connection
for in the specific AL-Driver interface.

Table 4.19: Specification of the AL-CNX-MODIFY-REQ driver interface primitive
Primitive name: AL-CNX-MODIFY-REQ

Description: Requests modification of the QoS parameters of an existing connection.
Direction: Downcall
Type Name Description
CnxID cnxid The (local) connection identifier for the connection

Tspec tx tspec New Traffic Specification for the transmitted flow

Rspec tx rspec New Reservation Specification for the transmitted flow

Tspec rx tspec New Traffic Specification for the received flow

Rspec rx rspec New Reservation Specification for the received flow

Table 4.20: Specification of the AL-CNX-MODIFY-RESP driver interface primitive
Primitive name: AL-CNX-MODIFY-RESP

Description: Result of a QoS connection modification request.
Direction: Upcall
Type Name Description
CnxID cnxid The (local) connection identifier for the connection for

which a modification has been requested

Result result Indicates if modification was successful or not
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Table 4.21: Specification of the AL-CNX-DEACTIVATE driver interface primitive
Primitive name: AL-CNX-DEACTIVATE

Description: Requests deactivation of an existing connection.
Direction: Downcall/Upcall
Type Name Description
CnxID cnxid The (local) connection identifier for the connection

Table 4.22: Specification of the AL-RESOURCE-QUERY driver interface primitive
Primitive name: AL-RESOURCE-QUERY

Description: Request information about overall resources available in the
network interface.

Direction: Downcall
Type Name Description
— — —

There is no response primitive, since it always succeeds.

Resource Querying

The primitive AL-RESOURCE-QUERY is used to request a report of the available (free) re-
sources in the link attached to the network interface handled by the driver. It takes no
parameters, but has the following side-effects:

1. Causes the driver to send back an AL-RESOURCE-INDICATION as soon as possible;

2. The driver assumes responsibility of, from there on, spontaneously sending AL-RESOURCE-INDICATION’s
when changes in the available resources take place.

It should be noted that a driver only has to report local resources in the L2 seg-
ment directly controlled by it. It is the QoSAL that computes the overall resources by
combining the reports from individual drivers.

QoS Degradation Notifications

The driver primitive AL-CNX-INDICATION is directly responsible for the primitive with the
same name in the service interface. It is spontaneously sent by the driver when changes

Table 4.23: Specification of the AL-RESOURCE-INDICATION driver interface primitive
Primitive name: AL-RESOURCE-INDICATION

Description: Report information about overall resources available in the
network interface.

Direction: Upcall
Type Name Description
Bitrate Bandwidth Estimation of available bandwidth
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Figure 4.10: Example of an AL-CNX-INDICATION primitive being emitted by the
driver.

Table 4.24: Specification of the AL-CNX-INDICATION driver interface primitive
Primitive name: AL-CNX-INDICATION

Description: Notification of changing QoS on a connection.
Direction: Upcall
Type Name Description
CnxID cnx id Identifier (local) for the connection that has changed
Tspec tx tspec New Traffic Specification for the transmitted flow
Rspec tx rspec New Reservation Specification for the transmitted flow
Tspec rx tspec New Traffic Specification for the received flow
RSpec rx rspec New Reservation Specification for the received flow
BER ber Optional BER information

in the wireless medium force the QoS contract to be modified. The new QoS values
possible to attain are therefore advertised using this primitive. These advertisements
are propagated in both directions from the driver: uplink towards the AR/QoS Manager,
and downlink towards the MN/QoS Client, as shown in Fig. 4.10.

Multicast

The primitives AL-MULTICAST-JOIN and AL-MULTICAST-LEAVE match the similarly named
service interface primitives, allowing the QoSAL to inform the driver about multicast
membership events.

4.2.5 Some notes on event compression

The Abstraction Layer defines two upcall primitives to deliver resource notifications:

1. AL-CNX-INDICATION indicates when the resources allocated to a QoS connection can
no longer be provided; It contains, among other data, the new bandwidth available
to the connection;
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Table 4.25: Specification of the AL-MULTICAST-JOIN driver interface primitive
Primitive name: AL-MULTICAST-JOIN

Description: Indicate that a terminal is joining a multicast session
Direction: Downcall
Type Name Description
L2Addr mn addr Address of the MN that is joining the multicast session
CnxID session Connection identifier of the multicast session

Table 4.26: Specification of the AL-MULTICAST-LEAVE driver interface primitive
Primitive name: AL-MULTICAST-LEAVE

Description: Indicate that a terminal is leaving a multicast session
Direction: Downcall
Type Name Description
L2Addr mn addr Address of the MN that is leaving the multicast session
CnxID session Connection identifier of the multicast session

2. AL-RESOURCE-INDICATION provides an indication of the available resources in the
LAN.

These notifications have to be transmitted from APs to AR. For performance reasons,
it is important to avoid sending too many notifications with minor updates which the
AR does not care about. This section describes some procedures proposed for a QoSAL
implementation5 to “compress” (suppress would be a more accurate term) notifications
before sending them. As a result, fewer notifications will actually be transmitted by the
Abstraction Layer than the ones reported by the Drivers.

General Considerations

It should be noted that compression of notifications only applies to unsolicited notifica-
tions, sent asynchronously from the APs. The message AL-RESOURCE-INDICATION should
always be replied to, although compression could take place at the AR to avoid sending
this message without need.

An object class is defined inside the QoSAL, called EventCompressor. Any notifica-
tions from the driver have to be authorised by the event compressor, who will decide if
the notification is to be suppressed, or allowed to be transmitted. The event compressor
will make this decision based on: 1) the specific values in the notification; 2) the values
of the last notification of the same kind; 3) timing considerations. Basically, the QoSAL
is allowed to send notifications when both of the following conditions are met:

1. The hysteresis check on the values of the new indication passes (see below for more
details);

5Note that this was actually implemented for the QoSAL prototype described in Chapter 5.
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2. Sufficient time has passed since the last notification.

The above rules apply to both AL-CNX-INDICATION and AL-RESOURCE-INDICATION.

The Hysteresis Check

The hysteresis check is a stateful operation that allows us to determine if the variation
in a value is sufficiently significant, thus ignoring variations small enough that can be
neglected for higher-level purposes. At the same time, it is a very simple algorithm,
which has low computing overhead. First, a list of thresholds is defined. The state of
the hysteresis check is composed of the two closest of these thresholds to the current
value, one above and another below. Whenever a new value is reported, one of three
things can happen:

1. The value crosses the upper threshold: in this case, the change is considered sig-
nificant, thus reported; also, the two thresholds are updated;

2. The value crosses the lower threshold: in this case, the change is considered sig-
nificant, thus reported; also, the two thresholds are updated;

3. The value stays within the two thresholds: in this case, the change is ignored.

4.3 Conclusions

The QoS Abstraction Layer described here satisfies the requirements listed in the begin-
ning of this chapter.

Regarding the QoS requirements, it does indeed allow QoS reservations, using ab-
stract QoS parameters. It is adaptable to multiple L3 QoS models. For example, it is
both possible to map individual RSVP/IntServ flows into separate QoSAL connections,
or just as easily create a single QoSAL connection for a whole DSCP aggregate and mark
all packets with the same DSCP with a single connection identifier.

On the mobility requirements, the QoSAL provides two types of triggers. One
is AL-RESOURCE-INDICATION and AL-RESOURCE-DEGRADATION, which report changes in the
overall free bandwidth, allowing mobility protocols to adjust accordingly. The other
is AL-CNX-INDICATION, which provides notifications when individual connections are de-
graded. Finally, in order to prepare for an impending terminal handover, the primi-
tive AL-CNX-ACTIVATE-REQ has an additional parameter which can be used to accept the
QoS parameters but delay activation until the terminal signals its own arrival via the
AL-HO-EXECUTE primitive.

The auto-configuration requirements are realized by a combination of several factors.
On one hand, a protocol was developed to communicate the service primitives across a
network to remote L2 equipments. On the other hand, the protocol was designed in a
way that it always uses the terminal MAC address as destination, forcing the QoSAL
instances running in intermediate L2 nodes to intercept these messages, even though the
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destination MAC address is different from these intermediate L2 nodes. This has the
effect of forcing the messages to discover the correct path to the terminal, taking profit
of the automatic routing provided by “learning bridges”. Also, because learning bridges
occasionally send copies of received messages through the wrong path the protocol has
to ensure that no action is ever taken without waiting for a corresponding confirmation
message from the terminal. Finally, there is an AL-ANNOUNCE primitive that is used to
enable APs to make themselves known to their corresponding AR.

The other requirements are also fulfilled. For example the already mentioned primi-
tive AL-CNX-INDICATION realizes the “events” interface to help in cross-layer issues. More-
over, the QoSAL protocol’s soft-state nature ensures that it can recover from consecutive
transmission errors. The introduction of the AL-MULTICAST-JOIN and AL-MULTICAST-LEAVE

primitives, along with multicast address support in AL-CNX-ACTIVATE-REQ, ensures that
multicast is supported by the QoSAL. Unfortunately, multicast support in the proto-
col could not be implemented in time. Finally, a good degree of modularity has been
achieved by splitting the QoSAL functionality in two parts: the QoSAL per se and the
QoSAL drivers, which significantly simplifies driver development by freeing it from im-
plementing technology-independent functionality. Examples of QoSAL drivers for some
wireless technologies can be found in [CGN+05].



Chapter 5

Proof-of-Concept

5.1 Introduction

In the interest of confirming the validity of the proposed architecture, a prototype im-
plementation of the QoSAL has been developed, and some testing was done on this
implementation. The tests presented in this chapter aim at validating the basic func-
tionality of the prototype.

The remaining of this chapter starts in Sec. 5.2 by describing the development envi-
ronment, followed by an overview of the architecture of the implementation and testbed
in Sec. 5.3. Then, the functional tests are detailed in Sec. 5.4, including their results.
Finally, some conclusions are drawn in Sec. 5.5 regarding the whole validation experience.

5.2 Development Environment

The main development environment for the prototype implementation was GNU/Linux.
It runs on kernel version 2.6.12, or ≥ 2.6.8.1 with a patch to add kernel support for
the --ulog option of ebtables. The officially supported distribution is Mandrake 10.0,
but other distributions were also heavily tested, such as Slackware 8.1 (with a custom
kernel) and Ubuntu 5.04.

The QoSAL code has been written in the Python programming language.1, with
just a small amount of C code. Although Python is an interpreted language, which has
some impact on performance, the choice is justified by 1) speed of development, 2) code
quality (number of bugs, stability), 3) readability, and 4) maintainability of the code. Of
course, in a fully deployed product C would be a better choice, due to memory and pro-
cessing power constraints of APs. But, this being a prototype, the advantages of Python
outlined above clearly outweigh any other concern. The other key software components
that QoSAL uses are Linux’s ethernet bridging2 and ethernet bridging tables3, whose
purpose is described in Sec. 5.3. Finally, other software components that were used in

1http://www.python.org/
2http://bridge.sourceforge.net/
3http://ebtables.sourceforge.net/
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MobileNode1 : QoSALNode

AccessPoint : QoSALNode

Access Router : QoSALNode

wlan0 : NetworkInterface

qosal1 : QoSAL

QoSClient : QoSALClient

wlan1 : NetworkInterface

wlanDriver : QoSALDriver

qosal2 : QoSAL

ebtables : EBTables eth0 : NetworkInterface eth1 : NetworkInterface

qosal3 : QoSAL

QoSManager : QoSALClient

Figure 5.1: Sample QoSAL deployment diagram

development include: (1) GNU Automake, Autoconf, Libtool, for the build system, (2)
GCC 3.3, and (3) GNU Emacs editor.

5.3 Architecture

The typical deployment scenario of the QoSAL, MN–AP–AR, and its related compo-
nents, is depicted in Fig. 5.1. Similarities to the scenario shown in Fig. 4.1 are evident.
In the AR, the QoS Manager is represented as a component, which runs in its own pro-
cess and communicates to the QoSAL component, another process, via a local socket,
used to send and receive back primitives. The QoSAL uses the local network interface
eth1, represented as another component (but one that lives in kernelspace) to send and
receive PDUs, by means of a Linux packet socket. Quoting from the packet(7) manual
page:

Packet sockets are used to receive or send raw packets at the device driver
(OSI Layer 2) level. They allow the user to implement protocol modules in
user space on top of the physical layer.

In the MN there is a similar layout of components, with another instance of the
QoSAL, the QoS Client fulfilling the role of a QoSAL client, albeit a mostly passive one,
and a wireless network interface wlan0.

The AccessPoint node is a bit more interesting. It is a simple PC with two network
interfaces, one wireless (wlan1) and one 802.3 (eth0), with ethernet bridging taking
place between them. To activate ethernet bridging between the two interfaces, a special
br0 bridge interface is created, and then the two physical interfaces are attached to it,
like this:

brctl addbr br0
brctl addif br0 eth1
brctl addif br0 eth2
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ifconfig br0 up

It is also possible to activate the Spanning Tree Protocol on this “software bridge”.
Under controlled environments, we are certain not to produce cycles, so it is usually not
necessary.

Unfortunately, the Linux packet sockets cannot be used to capture packets that
are only being “bridged” in this way. If there is an 802.3 frame sent by the AR with
destination address of the MN, the packet socket in the AP will not see it. To work
around the problem, the ebtables --ulog option has been used like this:

ebtables -A FORWARD -p 0x1234 --ulog-nlgroup 1 -j DROP

The above rule instructs ebtables to queue to userspace any frames with ethertype (L2
protocol) 0x1234, which is the number used by the QoSAL prototype, instead of letting
them be forwarded. The complete frames are sent to userspace through a multicast
netlink socket, along with the following information:

version Version of ebt_ulog implementation/protocol used.

indev Name of the network interface from which the frame arrived;

outdev Name of the network interface through which the frame would be transmitted
if not intercepted;

physindev Like indev, except that the physical interface is used instead of bridge virtual
interface;

physoutdev Like outdev, except that the physical interface is used instead of bridge
virtual interface;

stamp Time stamp of the time when the packet was queued into userspace;

mark The ebtables and iptables can contain a mark target, which assigns a specified
value to a special field in the sk_buf structure that encapsulates all packets in
kernelspace. This mark value is sent to userpace by ebt_ulog as the mark field;

hook Number that identifies the ebtables hook (equivalent to chain in iptables) that in-
tercepted the packet. Possible values include NF_BR_PRE_ROUTING, NF_BR_LOCAL_IN,
NF_BR_FORWARD, NF_BR_LOCAL_OUT, NF_BR_POST_ROUTING, and NF_BR_BROUTING;

data len, data The complete packet, including Ethernet header and perhaps the VLAN
header appended.

Of these fields, only physindev, physoutdev, and frame data are actually used by the
QoSAL. Finally, the AccessPoint also has a QoSAL Driver, which handles QoS on the
wireless interface wlan1.

The QoSAL component that is instantiated in all the nodes could be modelled by
the class diagram in Fig. 5.2, with some simplifications. The design focuses on modular
and clean design, splitting the work among a handful of interconnected objects. Here’s
a brief summary of the responsibilities attached to each class:
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CnxInitiator

NetCnxInitiator

LocalCnxInitiator

CnxResponder

NetCnxResponder

LocalCnxResponder

Connection

cnxid : int

Client

NetDevice

Driver

L2Conn

local_cnxid : int

<<Singleton>>

AbstractionLayer

ResourceQuery

LocalResourceQuery

NetResourceQuery

<<Singleton>>

EBTablesSocket

0..*

0..*

0..1 0..*

0..*

0..*

1..2

ConnectionMap

cnxid : int0..*

0..*

0..*

0..*

Figure 5.2: Simplified QoSAL class diagram

AbstractionLayer This singleton [GHJV95] class is the central coordinator for the
whole system, interconnecting several other objects. For instance, it acts as main
message dispatcher, when messages are received from network interfaces or ebta-
bles. It checks whether a message is associated with an existing connection, in
which case the message is dispatched to the connection object (through the ini-
ator object, as explained below) for further processing. If, on the other hand,
the message is connection bound but there is no connection object matching the
CnxID, a new connection object is created. Finally, resource query messages are
handled similarly. For each unique entity that has sent a resource query, an object
is created to handle them, as explained below;

NetDevice This class represents a UNIX network interface, including all its relevant
attributes such as name (eg. eth0), interface index, or L2 address. It also contains
a PF_PACKET socket bound to the interface and the QoSAL ethertype. When data
arrives in this socket, the QoSAL protocol message is decoded and the resulting
message object sent to the AbstractionLayer singleton for further processing. In
addition, the class contains a method which receives a message object, encodes it
to the QoSAL binary protocol, and sends it through the packet socket;

Driver When a QoSAL Driver component registers itself with the QoSAL, it does so
by connecting to a local socket to which the QoSAL is listening, then sending an
AL-DRIVER-REGISTER message, thus indicating which network interface it wants to
handle. At this point, the QoSAL creates a new Driver instance, which contains the
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socket connected to the driver and is responsible for handling all communications
with the driver, including message serialisation. Moreover, the Driver instance
registers itself with the corresponding NetDevice instance, which means that a
link to the Driver is attached in the NetDevice, allowing the QoSAL to contact
the QoSAL driver attached to any given network interface;

Connection This class represents a QoSAL connection. Besides implementing the
state machine of Fig. 4.7, it manages the QoS resources on a per-interface/driver
basis, which are represented as L2Connection objects. Between zero and two
L2Connection objects can be managed by a Connection instance, depending on
the specific configuration. For instance, on the example configuration in Fig. 5.1,
Connection objects in the AP would have only one L2Connection per Connec-
tion, but if there was a QoSAL Driver also handling the eth0 interface then each
Connection would contain two L2Connections.

L2Connection As mentioned above, an L2Connection represents a single QoS reserva-
tion, like a Connection, but on a per-interface level.

CnxInitiator Each Connection instance contains a reference to a connection initiator
object, which presents an abstract interface between the Connection and an entity
that requests, or owns, a Connection. A connection initiator sends messages to
a Connection object, and can receive back messages to send to the requesting
entity. Two subclasses LocalCnxInitiator and NetCnxInitiator implementing this
interface:

LocalCnxInitiator puts a Client object in charge of a locally created Connection,
and assumes responsibility of periodically refreshing the connection until the
client releases it or disconnects from the QoSAL. Messages from the client are
forwarded to the connection, while messages sent back from the connection
are sent to the correct client;

NetCnxInitiator works on behalf of a remote client, sending connection PDUs
to a Connection as they arrive from a network interface. It can also send back
response messages through the same network interface.

CnxResponder Similarly to CnxInitiator, CnxResponder represents an abstract fron-
tier between a connection and an entity that receives, or accepts, a connection.
The two subclasses that implement this abstract interface are:

LocalCnxResponder This object “reflects” AL-CNX-ACTIVATE-REQ PDUs back to
the initiator as a AL-CNX-ACTIVATE-RESP, thereby terminating the connection
and accepting activation requests. At the same time, any local clients con-
nected to the QoSAL are notified of new connections being activated, with a
AL-CNX-INDICATION upcall primitive, as explained in Chapter 4.

NetCnxResponder This object is used in the responder role when a connection
activation is received containing a destination address that does not match
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any local interface. It merely retransmits the received messages through the
outgoing interface.

Client Represents a client connection to the QoSAL. A Client instance “owns” a Lo-
calCnxInitiator object per connection. The Client class decodes messages from
clients and forwards equivalent messages to the local initiator, and conversely re-
ceives messages from the initiator and encodes them to send to the clients through
a socket.

ResourceQuery This class abstractly represents an entity that has requested a resource
query. The two subclasses implement this interface are:

LocalResourceQuery Presents a local client as a resource query entity, meaning
that the corresponding AL-RESOURCE-INDICATION PDU will be converted to a
client interface primitive and sent to all the clients that requested it.

NetResourceQuery Works on behalf of a remote client, meaning that AL-RESOURCE-INDICATION
PDUs are forwarded through a network interface.

Perhaps an example can illustrate better how the different objects interact. The
object diagram in Fig. 5.3 shows the sequence of messages exchanged the system rep-
resented by Fig. 5.1 when a connection is being “refreshed”. The sequence starts by a
LocalCnxInitiator at the AR sending an AL-CNX-ACTIVATE-REQ message to the Connection
object, triggered by a timer. The Connection, in turn, updates its state machine using
this message, then forwards it to the responder, which then sends it to the associated
NetDevice, where it is serialized and transmitted through eth1 as an 802.3 frame. This
same frame arrives at the AccessPoint through the network interface eth0. However, as
already explained, the packet socket listening on eth0 is unable to receive frames whose
destination MAC addresses do not match the address of eth0. However, ebtables is able
to intercept it, and send it to userspace, to be received by the ebtables object. The
message is decoded and, like all arbitrary messages arriving from the network, is routed
through the AbstractionLayer singleton, which is able to determine from the message
type and CnxID which Connection object it belongs to. The message is then sent to the
Connection as if arriving from its “initiator”. As in the AR, the Connection updates
the state machine and forwards the message to the responder, which in turn encodes it
and sends through the socket attached to the wlan1 network interface. At the MN, the
message arrives at the packet socket listening to wlan0, since the destination MAC of
the message matches this interface. As before, the AbstractionLayer singleton is used to
find the corresponding Connection, which receives the AL-CNX-ACTIVATE-REQ, updates the
state machine, then forwards it to the responder. This time, however, the CnxRespon-
der is actually a LocalCnxResponder. It receives the AL-CNX-ACTIVATE-REQ and replies
with a AL-CNX-ACTIVATE-RESP back to the address that was the source address of the
AL-CNX-ACTIVATE-REQ. The return path of AL-CNX-ACTIVATE-RESP is more or less the re-
verse of the path taken by AL-CNX-ACTIVATE-REQ, but this time the message travels from
responder→Connection→initiator, with the Connection state machine being updated in
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Figure 5.3: Sample QoSAL object diagram showing a connection being refreshed
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Figure 5.4: Test scenario

each node, and finally arriving back to where it all started, in the LocalCnxInitiator at
the AR.

It should be more clear by now why this CnxResponder ⇔ Connection ⇔ CnxIni-
tiator architectural split was devised. The reader should notice that the bulk of the
connection state machine is factored out into the Connection class, making it indepen-
dent of location, type of entity that created the connection (local or remote), and type
of entity that accepted the connection (local or remote). The initiator and responder
objects, on the other hand, have very little functionality, merely providing some “glue”
between a Connection and the rest of the system.

5.4 Tests

The purpose of these tests is to evaluate the correctness of the generic part of QoS
Abstraction Layer, without considering technology-specific modules. Thus, a testbed
was assembled, composed of a Mobile Node, an Access Point, and an Access Router, as
depicted in Fig. 5.4. On each of the nodes in this figure, a QoSAL instance was running,
along with a “dummy” QoS driver for each interface: one dummy driver in the AR, two
in the AP, and another in the MN. Each dummy driver is statically configured with a
bandwidth of 1 Mbit/s, but that value can be changed in runtime by human intervention
for testing purposes. During each test, packets were captured in the ’eth1’ interface of
the AR. The names m6, m5, and m2 denote the host names of each machine and are not
relevant for the tests. In the AP, the two interfaces eth0 and eth1 are grouped together
to form an ethernet bridge, br0.

Essentially three groups of tests were performed. In Sec. 5.4.1, the aspects related
with QoS reservations were tested, including connection activation, modification, and
deactivation, as well as resource query and indication. In Sec. 5.4.2, we test the ability of
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the QoSAL at AR to receive messages from the QoSAL at AP announcing its presence,
and asynchronous QoS degradation notifications. Finally, Sec. 5.4.3 includes a test
involving an hypothetical mobility scenario, with handover preparation and execution.

5.4.1 QoS resource query, connection activation, modification, and de-
activation

The primitives AL-RESOURCE-QUERY/INDICATION, AL-CNX-ACTIVATE-REQ/RESP, AL-CNX-MODIFY-REQ/RESP,
and AL-CNX-DEACTIVATE have been tested together, in a single test run, the reason being
that these primitives are interdependent. It is not possible to modify or deactivate a
connection without first activating it. Also, as connections are being activated, modified,
and deactivate the available QoS resources in each driver keep changing, thus generate
resource indications.

In the following test, there is one “dummy client” that connects to the QoSAL in the
MN, pretending to be the QoS Client. Another dummy client, connecting to QoSAL in
the AR, plays the role of QoS Manager, and performs the following series of operations
(Fig. 5.5):

1. Sends a AL-RESOURCE-QUERY, with the AP as destination MAC address;

2. Waits for a AL-RESOURCE-INDICATION;

3. Sends, three times, AL-CNX-ACTIVATE-REQ, with the MN IPv6 address. The
objective of this test is to evaluate how the QoSAL can cope with parallel requests;

4. Waits for three AL-CNX-ACTIVATE-RESP, then takes note of the returned Cnx-
IDs;

5. After waiting for a keypress, the test program proceeds to modify the QoS for all
connections, by decreasing their tx rspec.R and rx rspec.R values by 25 %, then
sending out all AL-CNX-MODIFY-REQs in parallel;

6. The program then waits for the three expected AL-CNX-MODIFY-RESPs;

7. After waiting for a key press, the connections are then released by sending three
AL-CNX-DEACTIVATEs in parallel;

8. Finally, the test program keeps listening for messages for some more time, in order
to receive any final resource indications.

The resulting log files can be found in Sec. A.1. The logs show the connections being
successfully activated, as well as subsequent modification and deactivation. The results
are, thus, correct. The following additional observations can be drawn from these logs:

• Between the client sending a RESOURCE-QUERY and a the arrival of a RESOURCE-
INDICATION reply, approximately 18 ms elapsed;
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Figure 5.5: The test “QoS resource query, connection activation, modification, and
deactivation”
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• Activating a single connection took 64 ms. For the three connections together,
it took 99 ms, meaning an average of 33 ms per connection. Obviously, the first
connection took longer than the following ones, which is a matter that deserves
further investigation. Perhaps it is due to an additional delay in the first connection
to perform the L3/L2 address mapping (neighbour discovery);

• Modifying the three connections took 75 ms, or 15 ms per connection;

• The logs show that all the relevant dummy drivers are being consulted for resource
queries and QoS reservations;

• The QoSAL nodes exchange AL-CNX-ACTIVATE-REQ/RESP PDUs to implement con-
nection modification. This is not an error; it is how the protocol works. By
detecting a AL-CNX-ACTIVATE-REQ for a connection that already exists but with dif-
ferent QoS values, the respective connection is automatically modified, by sending
AL-CNX-MODIFY-REQ to the respective drivers;

• Regarding resource queries, we observed several interesting results, namely:

– The first resource indication correctly reports the 1 Mbit/s bandwidth that
is statically configured in the dummy drivers;

– As connections are being activated, modified, and deactivated, successive re-
source indications arrive, reflecting the amount of available bandwidth at each
instant, as consequence of the status of QoS reservations;

– The resource indications from the AP are being received in duplicated. This
is due to both dummy drivers in the AP independently sending resource
indications to the QoSAL, and it not being smart enough to merge the two
indications into a single message to send to the AR. Future work will try to
solve this issue.

• We can also observe, in the MN, the dummy client pretending to be the QoS Client
receiving notifications for connections as they are activated or destroyed:

– When a new connection is activated, it receives a AL-CNX-INDICATION
primitive;

– When a connection is deactivated, a CNX-ACTIVATE-RESP is received, with
the corresponding CnxID, and a “result” REJECT.

Regarding the packet capture in the AR interface, the screenshot in Fig. 5.6 shows
the open source network analyser Ethereal, extended with a packet dissector plugin for
the QoSAL protocol. We can see from the screenshot that it takes about 42 ms between
the first AL-CNX-ACTIVATE-REQ being sent and the first AL-CNX-ACTIVATE-RESP received.
For the three connections, the total time is 66 ms, or 22 ms per connection.

Following up on a suspicion (actually also some profiling) that all the detailed logging
functions in the QoSAL are slowing it down considerably, another run was made with
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Figure 5.6: Packet capture for the “QoS resource query, connection activation, modifi-
cation, and deactivation” test.
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Figure 5.7: Packet capture for the “QoS resource query, connection activation, modifi-
cation, and deactivation” test with logging disabled.

all logging disabled, eliminating around 90 % of the overhead associated with logging,
and only the tcpdump process capturing packets to a file for subsequent analysis. The
Ethereal screenshot in Fig. 5.7 reflects this second test condition. The results this time
show 13 ms for the first connection, and 23 ms for the three connections, or 7.7 ms per
connection. That is, with logging active the connections activation time increased 66/23
= 2.87 times. Therefore, an overhead of almost 3 times should be considering when
viewing the results of these tests.

5.4.2 Resource degradation and autodiscovery of APs

The objective of this test is to check that the functionality needed by the Performance
Agent, a key component to implement Network Initiated Handover, is implemented
correctly. The test consists on the following steps (Fig. 5.8:

1. A fake PA module connects to the QoSAL;

2. Meanwhile, the QoSAL@AP broadcasts an announcement (ANNOUNCE) mes-
sage, which is received by the QoSAL@AR;
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Figure 5.8: The test “Resource degradation and autodiscovery of APs”

3. The human operator manually changes the available bandwidth to 0.5 Mb/s, caus-
ing:

(a) A resource indication sent to the QoSAL@AR;

(b) No QoS degradation being sent to the PA, since it is above the QoS degrada-
tion threshold (= 25 % of theoretical maximum bandwidth of the technology);

4. The human operator manually changes the available bandwidth to 0.1 Mbit/s,
causing:

(a) A resource indication sent to the QoSAL@AR;

(b) A QoS degradation being being sent to the PA, since it is below the QoS
degradation threshold (0.25 Mbit/s);

The log files in Sec. A.2 indicate that a RESOURCE-DEGRADATION primitive is
sent to the PA only when the free bandwidth changes to 10%, but not when it reaches
50%, which means it is working correctly. The screenshot in Fig. 5.9 shows what happens
from the protocol point of view.

5.4.3 Handover preparation and execution

The objective of this test is to check the working conditions of the primitives and pa-
rameters used to support mobility scenarios.

One of the problems of handover is that the QoSAL in the new AR may receive
connection activation requests before the mobile terminal physically connecting to it.
Under normal conditions, the QoSAL would immediately try to activate a connection,
which would fail. Therefore, the parameter “handoff” in the AL-CNX-ACTIVATE-REQ prim-
itive must be set to true when making a reservation, instructing the QoSAL to delay the
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Figure 5.9: Packet capture for the “resource degradation and autodiscovery” test.

connection activation until a AL-HO-EXECUTE message is sent by the terminal to advertise
its arrival to the new AR. In the MN, the AL-HO-EXECUTE is sent by the QoSAL when it
receives an equally named trigger from the QoS Client, which in turn is triggered by a
message sent to it by the MTC.

This test comprised the following steps (Fig. 5.10):

1. A dummy client (QoS Manager) at the AR connects to QoSAL, and requests
activation of a connection with the parameter handoff=True;

2. A dummy client (QoS Client) at the MN sends to the QoSAL a HO-EXECUTE
message, containing the new AR IPv6 address as parameter;

3. The QoSAL@MN sends a AL-HO-EXECUTE to the QoSAL@AR;

4. The connection is activated;

5. An activation response is finally sent to the client that requested activation at the
AR.

The log files of this test can be found in Sec. A.3, and the corresponding Ethereal
capture is in Fig. 5.11. We could observe from the logs that the connection activation is
delayed until the HO-EXECUTE primitive arrives from the MN, and thus conclude that the
test passed successfully.
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Figure 5.10: The test “Handover preparation and execution”

Figure 5.11: Packet capture for the “handover preparation and execution” test.
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5.5 Conclusion

A prototype for the QoSAL design and protocol was described in this chapter. The focus
of this prototype has been on developing a clean, object-oriented, readable, and modular
implementation architecture. We believe this goal was successfully achieved, allowing
the prototype to be easily and quickly extended to test new ideas. This software module
is also being used in the IST DAIDALOS [Dai] research project, giving it opportunity
to be tested with realistic usage patterns.

A few tests that exercised the majority of the functionality offered by the QoSAL,
including connection activation, modification, deactivation, resource query/indication,
and handover were conducted, with satisfactory results. The QoSAL behaved correctly
and as expected4.

These tests also point the way for future improvements. For instance, in the first test
three connections are always managed in parallel: activated, modified, deactivated. This
is not an uncommon scenario in real world usage pattern5. An interesting optimisation
would consist in having the QoS send all related requests in a single PDU, instead of
the three separate PDUs that are used now.

4Of course, the implementation had already been subjected to an extensive period of debugging,
hence the correctness of the results.

5Consider, for example, an audio-video telephony or streaming application; normally the audio and
video flows are reserved at the same time.
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Chapter 6

Conclusions

In this thesis a detailed description of the QoS Abstraction Layer was presented. It
is both a Layer 2.5 signalling protocol for reserving QoS resources across a wireless
access network, and an abstract interface for such reservations independently of the L2
technologies involved. It leverages the Learning Bridge property of IEEE 802 wireless
APs to provide automatic discovery of the path for the reservations towards a given
terminal, and works with no prior knowledge of the topology of the access network,
which may even include multiple concatenated APs. Also provided is the ability to
query available resources in the network, receive QoS degradation notifications, and
make multicast reservations, as well as active support for integration with IP mobility.

In the course of the research for this solution, several L2 technologies were considered,
such as IEEE 802.1D, Bluetooth, and UMTS, all of which, with special emphasis on the
latter, helped shape the QoSAL model. Likewise, L3 QoS models like IntServ/RSVP,
DiffServ, and MPLS were factored into the design process, yielding an abstract QoS
model that is reasonably flexible to be used in conjunction with most L3 QoS models.
Moreover, requirements particularly relevant to 4G networks, such mobility and robust-
ness against transmission errors, were also considered in the design. In order to solve
scenarios involving multiple concatenated heterogeneous L2 technologies, a reservation
protocol was developed in complement of the abstract interface. Finally, a prototype
implementation was developed, as proof-of-concept, and tested, providing valuable feed-
back on the overall architecture.

6.1 Original Contributions

The original contributions of the work associated with this thesis are:

1. An abstract QoS service interface that includes the common aspects of the QoS
interfaces of the most important L2 wireless technologies, as well as 4G network
requirements. It contains primitives to reserve QoS resources, query the available
resources in an access network, and receive notifications of QoS degradation. It
works with abstract QoS parameters, which are translated into technology specific

89



90 CHAPTER 6. CONCLUSIONS

parameters by dedicated modules. In addition, special primitives and parameters
provide mobility integration support, and multicast QoS.

2. An associated signalling protocol for reserving QoS in remote APs. It is able to
work across a multi-hop L2 network, and automatically discovers the path to a ter-
minal in an access network of multiple APs interconnected in a tree-like topology.
It reserves QoS in the correct set of APs, while avoiding the problems associated
with the forwarding algorigthm of IEEE 802.1D bridges, and wireless links errors.

6.2 Results

A protype has been developed which implements an abstract interface and delegates the
technology-dependent QoS realization task to QoSAL drivers, through the driver inter-
face. This prototype provided valuable feedback into the design. Most of this feedback
has been transparently taken into account and already used to improve the QoSAL spec-
ification/design. For example, during the initial design phase, there was a possibilty of
a client sending multiple concurrent AL-CNX-ACTIVATE-REQ messages without waiting for
the corresponding AL-CNX-ACTIVATE-RESPs. Since the activation request has no CnxID
(because it is the QoSAL that allocates CnxIDs), there is no way to associate subse-
quent responses to their respective requests. Imposing the serialization of connection
activations limits seriously the system performance when there is a batch of connec-
tion activations to be performed at the same time. The solution adopted consists in
reordering AL-CNX-ACTIVATE-RESPs so that they can match the order of the correspond-
ing AL-CNX-ACTIVATE-REQs. In this way, the client is able to perform multiple parallel
requests, because it knows that responses will arrive in the same order.

The QoSAL prototype also implementats the QoSAL protocol, which enables the
corresponding state machine to be immediately tested and evaluated. Moreover, this
allowed us to test more complex scenarios, such as QoS reservations in remote APs. It
has been possible to observe some robustness properties confered by the soft-state nature
of the protocol.

6.3 Future Work

Future work to be performed based on in this QoS Abstraction Layer includes:

More thorough validation (1) Stress-testing, or formal protocol validation, to dis-
cover problems in the protocol, such as bad states and race conditions; (2) Test
the effect of transmission errors on the robustness and performance of the proto-
col; (3) Performance tests, to measure the scalability and network load overhead
caused by the protocol;

Coalescing PDUs The design and implementation of an optimization consisting on
coalescing multiple similar requests in a single message or frame would provide
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benefits, in terms of time and overhead bandwidth, particularly in handover sce-
narios.

Security and compression Integration of security and header compression features
into the base QoSAL architecture would be worthy additions.

Better handover integration The process of reserving QoS resources in L2 may in-
volve some calculations that take time, to more or less degree depending on the
technology. This preparation time is particularly pernicious during handover, for
during that time the flows will not enjoy any QoS guarantees, being relegated
to mere best effort treatment. A possible solution to this problem would require
the mobility subsystem to notify the QoSAL, in advance, which is the target AR
and AP to which a terminal will handover, so that QoS resources can start being
prepared with time.

MPLS The current QoSAL architecture depends on packets having the Flow Label field
marked in order to identify the QoS reservation each belongs to. This creates an
unfortunate dependency on IPv6 and breaks layering rules by making a 2.5 layer
(QoSAL) depend on L3. A possible solution for this dependency problem would
be for the QoSAL to insert its own user plane header containing the connection
identifier for each packet. The information that would be required in this header
would be similar to the information contained in MPLS. So, instead of inventing yet
another header, we would simply insert an MPLS header, with Label = CnxID.

Cross-layer An architecture like the QoSAL is adequate for the role of “link context”
identified in [CRR04], making cross-layer optimizations, such as intelligent power
control based on delay requirements, become a possibility.
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Appendix A

Log Files

A.1 QoS resource query, connection activation, modifica-
tion, and deactivation

A.1.1 Access Router

1130258140.909747 client INFO From client 10: RESOURCE -QUERY(
target=<client.L2Addr 00:C0:DF:25:ED:18>)

1130258140.912198 proto INFO Sending through eth1: RESOURCE -
QUERY(dst=<L2Addr/Ethernet 00:C0:DF:25:ED:18>, src=<L2Addr/
Ethernet 00:50: BA:C7:F6:A8 >)

1130258140.923231 proto INFO Recv from eth1: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=1e+06, MAX=1e+06)

1130258140.924967 driver INFO To driver eth1: RESOURCE -QUERY()
1130258140.927100 driver INFO From driver eth1: RESOURCE -

INDICATION(BW=1e+06)
1130258140.928078 client INFO To client 10: RESOURCE -INDICATION

(target=<client.L2Addr (interface 0)/00:C0:DF:25:ED:18>, BW=1e
+06)

1130258145.026157 proto INFO Recv from eth1: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130258145.835185 client INFO From client 10: CNX -ACTIVATE -REQ(
dst=<L3Addr fec0:1::2>, tx=(TSpec (100000 , 12000, 100000 , 12000,
512), RSpec(0, 100000)), rx=( TSpec(0, 12000, 0, 12000, 512),

RSpec(0, 0)), prio=0, handoff=0, data_len =0)
1130258145.855346 proto INFO Sending through eth1: CNX -

ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<
L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, CnxID=1, tx=(TSpec (100000 ,
12000, 100000 , 12000, 512), RSpec(0, 100000)), rx=( TSpec(0,
12000, 0, 12000, 512), RSpec(0, 0)), prio=0, data_len =0)

1130258145.858218 client INFO From client 10: CNX -ACTIVATE -REQ(
dst=<L3Addr fec0:1::2>, tx=(TSpec(0, 12000 , 0, 12000, 512),
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RSpec(0, 0)), rx=( TSpec (200000 , 12000 , 200000 , 12000 , 512),
RSpec(0, 200000)), prio=0, handoff=0, data_len =0)

1130258145.860835 proto INFO Sending through eth1: CNX -
ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<
L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, CnxID=2, tx=(TSpec(0,
12000, 0, 12000, 512), RSpec(0, 0)), rx=( TSpec (200000 , 12000,
200000 , 12000, 512), RSpec(0, 200000)), prio=0, data_len =0)

1130258145.863402 client INFO From client 10: CNX -ACTIVATE -REQ(
dst=<L3Addr fec0:1::2>, tx=(TSpec (100000 , 12000, 100000 , 12000,
512), RSpec(0, 100000)), rx=( TSpec (200000 , 12000, 200000 ,

12000, 512), RSpec(0, 200000)), prio=0, handoff=0, data_len =0)
1130258145.865955 proto INFO Sending through eth1: CNX -

ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<
L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, CnxID=3, tx=(TSpec (100000 ,
12000, 100000 , 12000, 512), RSpec(0, 100000)), rx=( TSpec
(200000 , 12000 , 200000 , 12000 , 512), RSpec(0, 200000)), prio=0,
data_len =0)

1130258145.886512 proto INFO Recv from eth1: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=900000 , MAX=1e+06)

1130258145.888405 driver INFO To driver eth1: RESOURCE -QUERY()
1130258145.890845 proto INFO Recv from eth1: RESOURCE -

INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=900000 , MAX=1e+06)

1130258145.892778 driver INFO From driver eth1: RESOURCE -
INDICATION(BW=1e+06)

1130258145.894166 client INFO To client 10: RESOURCE -INDICATION
(target=<client.L2Addr (interface 0)/00:C0:DF:25:ED:18>, BW
=900000)

1130258145.899585 proto INFO Recv from eth1: CNX -ACTIVATE -RESP
(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/Ethernet
00:C0:DF:E6:EC:45>, CnxID=1, result=ACCEPT)

1130258145.901657 driver INFO To driver eth1: CNX -ACTIVATE -REQ(
global_cnxid =1, tx=(TSpec (100000 , 12000, 100000 , 12000, 512),
RSpec(0, 100000)), rx=(TSpec(0, 12000 , 0, 12000 , 512), RSpec(0,
0)), prio =0)

1130258145.905342 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =900000)

1130258145.906775 client INFO To client 10: RESOURCE -INDICATION
(target=<client.L2Addr (interface 0)/00:C0:DF:25:ED:18>, BW
=900000)

1130258145.910843 driver INFO From driver eth1: CNX -ACTIVATE -
RESP(1, ACCEPT)

1130258145.912281 client INFO To client 10: CNX -ACTIVATE -RESP
(1, ACCEPT)

1130258145.915065 proto INFO Recv from eth1: CNX -ACTIVATE -RESP
(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/Ethernet
00:C0:DF:E6:EC:45>, CnxID=2, result=ACCEPT)
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1130258145.917108 driver INFO To driver eth1: CNX -ACTIVATE -REQ(
global_cnxid =2, tx=(TSpec(0, 12000 , 0, 12000, 512), RSpec(0, 0)
), rx=( TSpec (200000 , 12000, 200000 , 12000 , 512), RSpec(0,
200000)), prio =0)

1130258145.920588 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =700000)

1130258145.922101 driver INFO From driver eth1: CNX -ACTIVATE -
RESP(2, ACCEPT)

1130258145.923480 client INFO To client 10: CNX -ACTIVATE -RESP
(2, ACCEPT)

1130258145.926111 proto INFO Recv from eth1: CNX -ACTIVATE -RESP
(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/Ethernet
00:C0:DF:E6:EC:45>, CnxID=3, result=ACCEPT)

1130258145.928088 driver INFO To driver eth1: CNX -ACTIVATE -REQ(
global_cnxid =3, tx=(TSpec (100000 , 12000, 100000 , 12000, 512),
RSpec(0, 100000)), rx=(TSpec (200000 , 12000 , 200000 , 12000, 512)
, RSpec(0, 200000)), prio =0)

1130258145.931685 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =400000)

1130258145.933198 driver INFO From driver eth1: CNX -ACTIVATE -
RESP(3, ACCEPT)

1130258145.934603 client INFO To client 10: CNX -ACTIVATE -RESP
(3, ACCEPT)

1130258146.088611 proto INFO Recv from eth1: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=400000 , MAX=1e+06)

1130258146.090357 driver INFO To driver eth1: RESOURCE -QUERY()
1130258146.091501 proto INFO Recv from eth1: RESOURCE -

INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=400000 , MAX=1e+06)

1130258146.094384 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =400000)

1130258146.095752 client INFO To client 10: RESOURCE -INDICATION
(target=<client.L2Addr (interface 0)/00:C0:DF:25:ED:18>, BW
=400000)

1130258148.755270 client INFO From client 10: CNX -MODIFY -REQ(
CnxID=1, tx=( TSpec (75000 , 12000, 75000 , 12000 , 512), RSpec(0,
75000)), rx=(TSpec(0, 12000 , 0, 12000, 512), RSpec(0, 0)))

1130258148.757090 proto INFO Sending through eth1: CNX -
ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<
L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, CnxID=1, tx=(TSpec (75000 ,
12000, 75000, 12000, 512), RSpec(0, 75000)), rx=( TSpec(0,
12000, 0, 12000, 512), RSpec(0, 0)), prio=0, data_len =0)

1130258148.761324 client INFO From client 10: CNX -MODIFY -REQ(
CnxID=2, tx=( TSpec(0, 12000, 0, 12000 , 512), RSpec(0, 0)), rx=(
TSpec (150000 , 12000, 150000 , 12000 , 512), RSpec(0, 150000)))

1130258148.763124 proto INFO Sending through eth1: CNX -
ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<
L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, CnxID=2, tx=(TSpec(0,
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12000, 0, 12000, 512), RSpec(0, 0)), rx=( TSpec (150000 , 12000,
150000 , 12000, 512), RSpec(0, 150000)), prio=0, data_len =0)

1130258148.765159 client INFO From client 10: CNX -MODIFY -REQ(
CnxID=3, tx=( TSpec (75000 , 12000, 75000 , 12000 , 512), RSpec(0,
75000)), rx=(TSpec (150000 , 12000, 150000 , 12000, 512), RSpec(0,
150000)))

1130258148.767066 proto INFO Sending through eth1: CNX -
ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<
L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, CnxID=3, tx=(TSpec (75000 ,
12000, 75000, 12000, 512), RSpec(0, 75000)), rx=( TSpec (150000 ,
12000, 150000 , 12000, 512), RSpec(0, 150000)), prio=0, data_len
=0)

1130258148.791649 proto INFO Recv from eth1: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=425000 , MAX=1e+06)

1130258148.793044 driver INFO To driver eth1: RESOURCE -QUERY()
1130258148.794808 proto INFO Recv from eth1: RESOURCE -

INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=425000 , MAX=1e+06)

1130258148.797316 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =400000)

1130258148.798291 client INFO To client 10: RESOURCE -INDICATION
(target=<client.L2Addr (interface 0)/00:C0:DF:25:ED:18>, BW
=400000)

1130258148.805953 proto INFO Recv from eth1: CNX -ACTIVATE -RESP
(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/Ethernet
00:C0:DF:E6:EC:45>, CnxID=1, result=ACCEPT)

1130258148.807321 driver INFO To driver eth1: CNX -MODIFY -REQ(
CnxID=1, tx=( TSpec (75000 , 12000, 75000 , 12000 , 512), RSpec(0,
75000)), rx=(TSpec(0, 12000 , 0, 12000, 512), RSpec(0, 0)))

1130258148.810915 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =425000)

1130258148.812109 driver INFO From driver eth1: CNX -MODIFY -RESP
(1, ACCEPT)

1130258148.813070 client INFO To client 10: CNX -MODIFY -RESP(1,
ACCEPT)

1130258148.814160 proto INFO Recv from eth1: CNX -ACTIVATE -RESP
(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/Ethernet
00:C0:DF:E6:EC:45>, CnxID=2, result=ACCEPT)

1130258148.816722 driver INFO To driver eth1: CNX -MODIFY -REQ(
CnxID=2, tx=( TSpec(0, 12000, 0, 12000 , 512), RSpec(0, 0)), rx=(
TSpec (150000 , 12000, 150000 , 12000 , 512), RSpec(0, 150000)))

1130258148.819840 proto INFO Recv from eth1: CNX -ACTIVATE -RESP
(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/Ethernet
00:C0:DF:E6:EC:45>, CnxID=3, result=ACCEPT)

1130258148.821181 driver INFO To driver eth1: CNX -MODIFY -REQ(
CnxID=3, tx=( TSpec (75000 , 12000, 75000 , 12000 , 512), RSpec(0,
75000)), rx=(TSpec (150000 , 12000 , 150000 , 12000, 512), RSpec(0,
150000)))
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1130258148.824784 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =475000)

1130258148.825946 driver INFO From driver eth1: CNX -MODIFY -RESP
(2, ACCEPT)

1130258148.826873 client INFO To client 10: CNX -MODIFY -RESP(2,
ACCEPT)

1130258148.827948 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =550000)

1130258148.830212 driver INFO From driver eth1: CNX -MODIFY -RESP
(3, ACCEPT)

1130258148.831245 client INFO To client 10: CNX -MODIFY -RESP(3,
ACCEPT)

1130258148.993305 proto INFO Recv from eth1: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=550000 , MAX=1e+06)

1130258148.995028 driver INFO To driver eth1: RESOURCE -QUERY()
1130258148.997765 proto INFO Recv from eth1: RESOURCE -

INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=550000 , MAX=1e+06)

1130258148.999770 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =550000)

1130258149.001095 client INFO To client 10: RESOURCE -INDICATION
(target=<client.L2Addr (interface 0)/00:C0:DF:25:ED:18>, BW
=550000)

1130258151.346851 client INFO From client 10: CNX -DEACTIVATE (1)
1130258151.347706 root INFO Connection 1 deactivated
1130258151.348825 proto INFO Sending through eth1: CNX -

DEACTIVATE(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr
/Ethernet 00:50: BA:C7:F6:A8>, CnxID =1)

1130258151.351341 driver INFO To driver eth1: CNX -DEACTIVATE (1)
1130258151.352648 client INFO From client 10: CNX -DEACTIVATE (2)
1130258151.353452 root INFO Connection 2 deactivated
1130258151.354565 proto INFO Sending through eth1: CNX -

DEACTIVATE(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr
/Ethernet 00:50: BA:C7:F6:A8>, CnxID =2)

1130258151.356082 driver INFO To driver eth1: CNX -DEACTIVATE (2)
1130258151.357397 client INFO From client 10: CNX -DEACTIVATE (3)
1130258151.358190 root INFO Connection 3 deactivated
1130258151.361493 proto INFO Sending through eth1: CNX -

DEACTIVATE(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr
/Ethernet 00:50: BA:C7:F6:A8>, CnxID =3)

1130258151.363307 driver INFO To driver eth1: CNX -DEACTIVATE (3)
1130258151.366015 driver INFO From driver eth1: RESOURCE -

INDICATION(BW =625000)
1130258151.367467 client INFO To client 10: RESOURCE -INDICATION

(target=<client.L2Addr (interface 0)/00:C0:DF:25:ED:18>, BW
=550000)

1130258151.371779 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =775000)
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1130258151.373329 driver INFO From driver eth1: RESOURCE -
INDICATION(BW=1e+06)

1130258151.378587 proto INFO Recv from eth1: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=625000 , MAX=1e+06)

1130258151.380335 driver INFO To driver eth1: RESOURCE -QUERY()
1130258151.382726 proto INFO Recv from eth1: RESOURCE -

INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=625000 , MAX=1e+06)

1130258151.384687 driver INFO From driver eth1: RESOURCE -
INDICATION(BW=1e+06)

1130258151.385954 client INFO To client 10: RESOURCE -INDICATION
(target=<client.L2Addr (interface 0)/00:C0:DF:25:ED:18>, BW
=625000)

1130258151.580969 proto INFO Recv from eth1: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=1e+06, MAX=1e+06)

1130258151.582325 driver INFO To driver eth1: RESOURCE -QUERY()
1130258151.583406 proto INFO Recv from eth1: RESOURCE -

INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=1e+06, MAX=1e+06)

1130258151.586226 driver INFO From driver eth1: RESOURCE -
INDICATION(BW=1e+06)

1130258151.587508 client INFO To client 10: RESOURCE -INDICATION
(target=<client.L2Addr (interface 0)/00:C0:DF:25:ED:18>, BW=1e
+06)

1130258155.027741 proto INFO Recv from eth1: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

A.1.2 Access Point

1130258127.605269 driver INFO From driver ???: REGISTER(ifname=
eth1 , bwmax =1e+06)

1130258127.606040 driver INFO Driver registered to handle
netdevice eth1

1130258135.001641 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])

1130258140.892208 proto INFO Recv from ebtables(eth0 -> ):
RESOURCE -QUERY(dst=<L2Addr/Ethernet 00:C0:DF:25:ED:18>, src=<
L2Addr/Ethernet 00:50: BA:C7:F6:A8 >)

1130258140.893419 driver INFO To driver eth0: RESOURCE -QUERY()
1130258140.894520 driver INFO To driver eth1: RESOURCE -QUERY()
1130258140.897410 driver INFO From driver eth0: RESOURCE -

INDICATION(BW=1e+06)
1130258140.898797 driver INFO From driver eth1: RESOURCE -

INDICATION(BW=1e+06)



A.1. QOS RESOURCE QUERY, CONNECTION ACTIVATION, MODIFICATION, AND DEACTIVATION99

1130258140.899986 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=1e+06, MAX=1e+06)

1130258145.003036 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])

1130258145.836190 proto INFO Recv from ebtables(eth0 -> eth1):
CNX -ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src

=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, CnxID=1, tx=( TSpec
(100000 , 12000 , 100000 , 12000 , 512), RSpec(0, 100000)), rx=(
TSpec(0, 12000, 0, 12000, 512), RSpec(0, 0)), prio=0, data_len
=0)

1130258145.837966 proto INFO Sending through br0: CNX -ACTIVATE
-REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/
Ethernet 00:50: BA:C7:F6:A8 >, CnxID=1, tx=(TSpec (100000 , 12000 ,
100000 , 12000, 512), RSpec(0, 100000)), rx=( TSpec(0, 12000, 0,
12000, 512), RSpec(0, 0)), prio=0, data_len =0)

1130258145.841422 proto INFO Recv from ebtables(eth0 -> eth1):
CNX -ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src

=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, CnxID=2, tx=( TSpec(0,
12000, 0, 12000, 512), RSpec(0, 0)), rx=( TSpec (200000 , 12000,
200000 , 12000, 512), RSpec(0, 200000)), prio=0, data_len =0)

1130258145.843358 proto INFO Sending through br0: CNX -ACTIVATE
-REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/
Ethernet 00:50: BA:C7:F6:A8 >, CnxID=2, tx=(TSpec(0, 12000 , 0,
12000, 512), RSpec(0, 0)), rx=(TSpec (200000 , 12000, 200000 ,
12000, 512), RSpec(0, 200000)), prio=0, data_len =0)

1130258145.846511 proto INFO Recv from ebtables(eth0 -> eth1):
CNX -ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src

=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, CnxID=3, tx=( TSpec
(100000 , 12000 , 100000 , 12000 , 512), RSpec(0, 100000)), rx=(
TSpec (200000 , 12000, 200000 , 12000 , 512), RSpec(0, 200000)),
prio=0, data_len =0)

1130258145.848478 proto INFO Sending through br0: CNX -ACTIVATE
-REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/
Ethernet 00:50: BA:C7:F6:A8 >, CnxID=3, tx=(TSpec (100000 , 12000 ,
100000 , 12000, 512), RSpec(0, 100000)), rx=( TSpec (200000 ,
12000, 200000 , 12000, 512), RSpec(0, 200000)), prio=0, data_len
=0)

1130258145.850593 proto INFO Recv from ebtables(eth1 -> eth0):
CNX -ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src

=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=1, result=ACCEPT)
1130258145.852514 driver INFO To driver eth1: CNX -ACTIVATE -REQ(

global_cnxid =1, tx=(TSpec (100000 , 12000, 100000 , 12000, 512),
RSpec(0, 100000)), rx=(TSpec(0, 12000 , 0, 12000 , 512), RSpec(0,
0)), prio =0)

1130258145.855991 driver INFO To driver eth0: CNX -ACTIVATE -REQ(
global_cnxid =1, tx=(TSpec(0, 12000 , 0, 12000, 512), RSpec(0, 0)
), rx=( TSpec (100000 , 12000, 100000 , 12000 , 512), RSpec(0,
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100000)), prio =0)
1130258145.859438 proto INFO Recv from ebtables(eth1 -> eth0):

CNX -ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src
=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=2, result=ACCEPT)

1130258145.861855 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =900000)

1130258145.863212 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=900000 , MAX=1e+06)

1130258145.864974 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =900000)

1130258145.866284 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=900000 , MAX=1e+06)

1130258145.868106 proto INFO Recv from ebtables(eth1 -> eth0):
CNX -ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src

=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=3, result=ACCEPT)
1130258145.870528 driver INFO From driver eth0: CNX -ACTIVATE -

RESP(1, ACCEPT)
1130258145.871693 driver INFO To driver eth0: CNX -ACTIVATE -REQ(

global_cnxid =2, tx=(TSpec (200000 , 12000, 200000 , 12000, 512),
RSpec(0, 200000)), rx=(TSpec(0, 12000 , 0, 12000 , 512), RSpec(0,
0)), prio =0)

1130258145.874974 driver INFO From driver eth1: CNX -ACTIVATE -
RESP(1, ACCEPT)

1130258145.876282 proto INFO Sending through br0: CNX -ACTIVATE
-RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/
Ethernet 00:C0:DF:E6:EC:45>, CnxID=1, result=ACCEPT)

1130258145.877811 driver INFO To driver eth1: CNX -ACTIVATE -REQ(
global_cnxid =2, tx=(TSpec(0, 12000 , 0, 12000, 512), RSpec(0, 0)
), rx=( TSpec (200000 , 12000, 200000 , 12000 , 512), RSpec(0,
200000)), prio =0)

1130258145.881355 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =700000)

1130258145.882615 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =700000)

1130258145.883942 driver INFO From driver eth0: CNX -ACTIVATE -
RESP(2, ACCEPT)

1130258145.884982 driver INFO To driver eth0: CNX -ACTIVATE -REQ(
global_cnxid =3, tx=(TSpec (200000 , 12000, 200000 , 12000, 512),
RSpec(0, 200000)), rx=(TSpec (100000 , 12000 , 100000 , 12000, 512)
, RSpec(0, 100000)), prio =0)

1130258145.888329 driver INFO From driver eth1: CNX -ACTIVATE -
RESP(2, ACCEPT)

1130258145.889544 proto INFO Sending through br0: CNX -ACTIVATE
-RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/
Ethernet 00:C0:DF:E6:EC:45>, CnxID=2, result=ACCEPT)

1130258145.891123 driver INFO To driver eth1: CNX -ACTIVATE -REQ(
global_cnxid =3, tx=(TSpec (100000 , 12000, 100000 , 12000, 512),
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RSpec(0, 100000)), rx=(TSpec (200000 , 12000 , 200000 , 12000, 512)
, RSpec(0, 200000)), prio =0)

1130258145.894827 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =400000)

1130258145.896183 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =400000)

1130258145.897531 driver INFO From driver eth0: CNX -ACTIVATE -
RESP(3, ACCEPT)

1130258145.898964 driver INFO From driver eth1: CNX -ACTIVATE -
RESP(3, ACCEPT)

1130258145.900175 proto INFO Sending through br0: CNX -ACTIVATE
-RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/
Ethernet 00:C0:DF:E6:EC:45>, CnxID=3, result=ACCEPT)

1130258146.065385 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=400000 , MAX=1e+06)

1130258146.068450 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=400000 , MAX=1e+06)

1130258148.739483 proto INFO Recv from ebtables(eth0 -> eth1):
CNX -ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src

=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, CnxID=1, tx=( TSpec (75000 ,
12000, 75000, 12000, 512), RSpec(0, 75000)), rx=( TSpec(0,

12000, 0, 12000, 512), RSpec(0, 0)), prio=0, data_len =0)
1130258148.741100 proto INFO Sending through br0: CNX -ACTIVATE

-REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/
Ethernet 00:50: BA:C7:F6:A8 >, CnxID=1, tx=(TSpec (75000 , 12000 ,
75000, 12000, 512), RSpec(0, 75000)), rx=( TSpec(0, 12000, 0,
12000, 512), RSpec(0, 0)), prio=0, data_len =0)

1130258148.743234 proto INFO Recv from ebtables(eth0 -> eth1):
CNX -ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src

=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, CnxID=2, tx=( TSpec(0,
12000, 0, 12000, 512), RSpec(0, 0)), rx=( TSpec (150000 , 12000,
150000 , 12000, 512), RSpec(0, 150000)), prio=0, data_len =0)

1130258148.744809 proto INFO Sending through br0: CNX -ACTIVATE
-REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/
Ethernet 00:50: BA:C7:F6:A8 >, CnxID=2, tx=(TSpec(0, 12000 , 0,
12000, 512), RSpec(0, 0)), rx=(TSpec (150000 , 12000, 150000 ,
12000, 512), RSpec(0, 150000)), prio=0, data_len =0)

1130258148.747901 proto INFO Recv from ebtables(eth0 -> eth1):
CNX -ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src

=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, CnxID=3, tx=( TSpec (75000 ,
12000, 75000, 12000, 512), RSpec(0, 75000)), rx=( TSpec (150000 ,
12000, 150000 , 12000, 512), RSpec(0, 150000)), prio=0,

data_len =0)
1130258148.749800 proto INFO Sending through br0: CNX -ACTIVATE

-REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/
Ethernet 00:50: BA:C7:F6:A8 >, CnxID=3, tx=(TSpec (75000 , 12000 ,
75000, 12000, 512), RSpec(0, 75000)), rx=( TSpec (150000 , 12000,
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150000 , 12000, 512), RSpec(0, 150000)), prio=0, data_len =0)
1130258148.751795 proto INFO Recv from ebtables(eth1 -> eth0):

CNX -ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src
=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=1, result=ACCEPT)

1130258148.753437 driver INFO To driver eth0: CNX -MODIFY -REQ(
CnxID=1, tx=( TSpec (75000 , 12000, 75000 , 12000 , 512), RSpec(0,
75000)), rx=(TSpec(0, 12000 , 0, 12000, 512), RSpec(0, 0)))

1130258148.756292 driver INFO To driver eth1: CNX -MODIFY -REQ(
CnxID=1, tx=( TSpec (75000 , 12000, 75000 , 12000 , 512), RSpec(0,
75000)), rx=(TSpec(0, 12000 , 0, 12000, 512), RSpec(0, 0)))

1130258148.759582 proto INFO Recv from ebtables(eth1 -> eth0):
CNX -ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src

=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=2, result=ACCEPT)
1130258148.761183 driver INFO To driver eth0: CNX -MODIFY -REQ(

CnxID=2, tx=( TSpec(0, 12000, 0, 12000 , 512), RSpec(0, 0)), rx=(
TSpec (150000 , 12000, 150000 , 12000 , 512), RSpec(0, 150000)))

1130258148.764045 driver INFO To driver eth1: CNX -MODIFY -REQ(
CnxID=2, tx=( TSpec(0, 12000, 0, 12000 , 512), RSpec(0, 0)), rx=(
TSpec (150000 , 12000, 150000 , 12000 , 512), RSpec(0, 150000)))

1130258148.767103 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =425000)

1130258148.768294 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=425000 , MAX=1e+06)

1130258148.769975 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =425000)

1130258148.771136 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=425000 , MAX=1e+06)

1130258148.772854 proto INFO Recv from ebtables(eth1 -> eth0):
CNX -ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src

=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=3, result=ACCEPT)
1130258148.774318 driver INFO To driver eth0: CNX -MODIFY -REQ(

CnxID=3, tx=( TSpec (75000 , 12000, 75000 , 12000 , 512), RSpec(0,
75000)), rx=(TSpec (150000 , 12000 , 150000 , 12000, 512), RSpec(0,
150000)))

1130258148.777088 driver INFO To driver eth1: CNX -MODIFY -REQ(
CnxID=3, tx=( TSpec (75000 , 12000, 75000 , 12000 , 512), RSpec(0,
75000)), rx=(TSpec (150000 , 12000 , 150000 , 12000, 512), RSpec(0,
150000)))

1130258148.780248 driver INFO From driver eth0: CNX -MODIFY -RESP
(1, ACCEPT)

1130258148.781500 driver INFO From driver eth1: CNX -MODIFY -RESP
(1, ACCEPT)

1130258148.782597 proto INFO Sending through br0: CNX -ACTIVATE
-RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/
Ethernet 00:C0:DF:E6:EC:45>, CnxID=1, result=ACCEPT)

1130258148.784261 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =475000)
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1130258148.785430 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =475000)

1130258148.786661 driver INFO From driver eth0: CNX -MODIFY -RESP
(2, ACCEPT)

1130258148.787913 driver INFO From driver eth1: CNX -MODIFY -RESP
(2, ACCEPT)

1130258148.789015 proto INFO Sending through br0: CNX -ACTIVATE
-RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/
Ethernet 00:C0:DF:E6:EC:45>, CnxID=2, result=ACCEPT)

1130258148.790634 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =550000)

1130258148.791808 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =550000)

1130258148.793032 driver INFO From driver eth0: CNX -MODIFY -RESP
(3, ACCEPT)

1130258148.794454 driver INFO From driver eth1: CNX -MODIFY -RESP
(3, ACCEPT)

1130258148.795845 proto INFO Sending through br0: CNX -ACTIVATE
-RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/
Ethernet 00:C0:DF:E6:EC:45>, CnxID=3, result=ACCEPT)

1130258148.970069 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=550000 , MAX=1e+06)

1130258148.973114 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=550000 , MAX=1e+06)

1130258151.329726 proto INFO Recv from ebtables(eth0 -> eth1):
CNX -DEACTIVATE(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<

L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, CnxID =1)
1130258151.330851 root INFO Connection 1 deactivated
1130258151.331508 proto INFO Sending through br0: CNX -

DEACTIVATE(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr
/Ethernet 00:50: BA:C7:F6:A8>, CnxID =1)

1130258151.332950 driver INFO To driver eth0: CNX -DEACTIVATE (1)
1130258151.333901 driver INFO To driver eth1: CNX -DEACTIVATE (1)
1130258151.335072 proto INFO Recv from ebtables(eth0 -> eth1):

CNX -DEACTIVATE(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<
L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, CnxID =2)

1130258151.336128 root INFO Connection 2 deactivated
1130258151.336777 proto INFO Sending through br0: CNX -

DEACTIVATE(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr
/Ethernet 00:50: BA:C7:F6:A8>, CnxID =2)

1130258151.340448 driver INFO To driver eth0: CNX -DEACTIVATE (2)
1130258151.342690 driver INFO To driver eth1: CNX -DEACTIVATE (2)
1130258151.345130 proto INFO Recv from ebtables(eth0 -> eth1):

CNX -DEACTIVATE(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<
L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, CnxID =3)

1130258151.346577 root INFO Connection 3 deactivated
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1130258151.347606 proto INFO Sending through br0: CNX -
DEACTIVATE(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr
/Ethernet 00:50: BA:C7:F6:A8>, CnxID =3)

1130258151.349171 driver INFO To driver eth0: CNX -DEACTIVATE (3)
1130258151.351371 driver INFO To driver eth1: CNX -DEACTIVATE (3)
1130258151.353821 driver INFO From driver eth0: RESOURCE -

INDICATION(BW =625000)
1130258151.355124 proto INFO Sending through br0: RESOURCE -

INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=625000 , MAX=1e+06)

1130258151.356883 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =625000)

1130258151.358118 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=625000 , MAX=1e+06)

1130258151.359924 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =775000)

1130258151.361105 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =775000)

1130258151.362448 driver INFO From driver eth0: RESOURCE -
INDICATION(BW=1e+06)

1130258151.363616 driver INFO From driver eth1: RESOURCE -
INDICATION(BW=1e+06)

1130258151.557796 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=1e+06, MAX=1e+06)

1130258151.559839 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:C0:DF:25:ED:18>, BW=1e+06, MAX=1e+06)

1130258155.004385 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])

A.1.3 Mobile Node

1130258130.577453 driver INFO From driver ???: REGISTER(ifname=
eth0 , bwmax =1e+06)

1130258130.578025 driver INFO Driver registered to handle
netdevice eth0

1130258134.999591 proto INFO Recv from eth0: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130258145.000912 proto INFO Recv from eth0: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130258145.836564 proto INFO Recv from eth0: CNX -ACTIVATE -REQ(
dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/Ethernet
00:50: BA:C7:F6:A8>, CnxID=1, tx=( TSpec (100000 , 12000, 100000 ,
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12000, 512), RSpec(0, 100000)), rx=( TSpec(0, 12000, 0, 12000,
512), RSpec(0, 0)), prio=0, data_len =0)

1130258145.838077 driver INFO To driver eth0: CNX -ACTIVATE -REQ(
global_cnxid =1, tx=(TSpec(0, 12000 , 0, 12000, 512), RSpec(0, 0)
), rx=( TSpec (100000 , 12000, 100000 , 12000 , 512), RSpec(0,
100000)), prio =0)

1130258145.838740 client INFO To client 8: CNX -INDICATION(CnxID
=1, tx=(TSpec (100000 , 12000 , 100000 , 12000, 512), RSpec(0,
100000)), rx=(TSpec(0, 12000 , 0, 12000, 512), RSpec(0, 0)), ber
= -1.000000e+00, data_len =0)

1130258145.840663 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =900000)

1130258145.841316 driver INFO From driver eth0: CNX -ACTIVATE -
RESP(1, ACCEPT)

1130258145.841977 proto INFO Sending through eth0: CNX -
ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<
L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=1, result=ACCEPT)

1130258145.842937 proto INFO Recv from eth0: CNX -ACTIVATE -REQ(
dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/Ethernet
00:50: BA:C7:F6:A8>, CnxID=2, tx=( TSpec(0, 12000, 0, 12000 , 512)
, RSpec(0, 0)), rx=(TSpec (200000 , 12000, 200000 , 12000 , 512),
RSpec(0, 200000)), prio=0, data_len =0)

1130258145.844201 driver INFO To driver eth0: CNX -ACTIVATE -REQ(
global_cnxid =2, tx=(TSpec (200000 , 12000, 200000 , 12000, 512),
RSpec(0, 200000)), rx=(TSpec(0, 12000 , 0, 12000 , 512), RSpec(0,
0)), prio =0)

1130258145.845810 client INFO To client 8: CNX -INDICATION(CnxID
=2, tx=(TSpec(0, 12000 , 0, 12000 , 512), RSpec(0, 0)), rx=(TSpec
(200000 , 12000 , 200000 , 12000 , 512), RSpec(0, 200000)), ber
= -1.000000e+00, data_len =0)

1130258145.846877 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =700000)

1130258145.847605 proto INFO Recv from eth0: CNX -ACTIVATE -REQ(
dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/Ethernet
00:50: BA:C7:F6:A8>, CnxID=3, tx=( TSpec (100000 , 12000, 100000 ,
12000, 512), RSpec(0, 100000)), rx=( TSpec (200000 , 12000,
200000 , 12000, 512), RSpec(0, 200000)), prio=0, data_len =0)

1130258145.848945 client INFO To client 8: CNX -INDICATION(CnxID
=3, tx=(TSpec (100000 , 12000 , 100000 , 12000, 512), RSpec(0,
100000)), rx=(TSpec (200000 , 12000 , 200000 , 12000, 512), RSpec
(0, 200000)), ber = -1.000000e+00, data_len =0)

1130258145.849912 driver INFO From driver eth0: CNX -ACTIVATE -
RESP(2, ACCEPT)

1130258145.850432 proto INFO Sending through eth0: CNX -
ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<
L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=2, result=ACCEPT)

1130258145.851271 driver INFO To driver eth0: CNX -ACTIVATE -REQ(
global_cnxid =3, tx=(TSpec (200000 , 12000, 200000 , 12000, 512),
RSpec(0, 200000)), rx=(TSpec (100000 , 12000 , 100000 , 12000, 512)
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, RSpec(0, 100000)), prio =0)
1130258145.852915 driver INFO From driver eth0: RESOURCE -

INDICATION(BW =400000)
1130258145.853525 driver INFO From driver eth0: CNX -ACTIVATE -

RESP(3, ACCEPT)
1130258145.854063 proto INFO Sending through eth0: CNX -

ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<
L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=3, result=ACCEPT)

1130258148.739625 proto INFO Recv from eth0: CNX -ACTIVATE -REQ(
dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/Ethernet
00:50: BA:C7:F6:A8>, CnxID=1, tx=( TSpec (75000 , 12000, 75000 ,
12000, 512), RSpec(0, 75000)), rx=( TSpec(0, 12000, 0, 12000,
512), RSpec(0, 0)), prio=0, data_len =0)

1130258148.740712 driver INFO To driver eth0: CNX -MODIFY -REQ(
CnxID=1, tx=( TSpec (75000 , 12000, 75000 , 12000 , 512), RSpec(0,
75000)), rx=(TSpec(0, 12000 , 0, 12000, 512), RSpec(0, 0)))

1130258148.742394 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =425000)

1130258148.743197 proto INFO Recv from eth0: CNX -ACTIVATE -REQ(
dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/Ethernet
00:50: BA:C7:F6:A8>, CnxID=2, tx=( TSpec(0, 12000, 0, 12000 , 512)
, RSpec(0, 0)), rx=(TSpec (150000 , 12000, 150000 , 12000 , 512),
RSpec(0, 150000)), prio=0, data_len =0)

1130258148.744326 driver INFO To driver eth0: CNX -MODIFY -REQ(
CnxID=2, tx=( TSpec(0, 12000, 0, 12000 , 512), RSpec(0, 0)), rx=(
TSpec (150000 , 12000, 150000 , 12000 , 512), RSpec(0, 150000)))

1130258148.745884 driver INFO From driver eth0: CNX -MODIFY -RESP
(1, ACCEPT)

1130258148.746437 proto INFO Sending through eth0: CNX -
ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<
L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=1, result=ACCEPT)

1130258148.747334 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =475000)

1130258148.747887 driver INFO From driver eth0: CNX -MODIFY -RESP
(2, ACCEPT)

1130258148.748495 proto INFO Sending through eth0: CNX -
ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<
L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=2, result=ACCEPT)

1130258148.749393 proto INFO Recv from eth0: CNX -ACTIVATE -REQ(
dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/Ethernet
00:50: BA:C7:F6:A8>, CnxID=3, tx=( TSpec (75000 , 12000, 75000 ,
12000, 512), RSpec(0, 75000)), rx=( TSpec (150000 , 12000, 150000 ,
12000, 512), RSpec(0, 150000)), prio=0, data_len =0)

1130258148.750485 driver INFO To driver eth0: CNX -MODIFY -REQ(
CnxID=3, tx=( TSpec (75000 , 12000, 75000 , 12000 , 512), RSpec(0,
75000)), rx=(TSpec (150000 , 12000 , 150000 , 12000, 512), RSpec(0,
150000)))

1130258148.752056 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =550000)
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1130258148.752652 driver INFO From driver eth0: CNX -MODIFY -RESP
(3, ACCEPT)

1130258148.753194 proto INFO Sending through eth0: CNX -
ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<
L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=3, result=ACCEPT)

1130258151.329277 proto INFO Recv from eth0: CNX -DEACTIVATE(
dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/Ethernet
00:50: BA:C7:F6:A8>, CnxID =1)

1130258151.329942 root INFO Connection 1 deactivated
1130258151.330289 client INFO To client 8: CNX -ACTIVATE -RESP(1,

REJECT)
1130258151.330694 driver INFO To driver eth0: CNX -DEACTIVATE (1)
1130258151.331950 driver INFO From driver eth0: RESOURCE -

INDICATION(BW =625000)
1130258151.336900 proto INFO Recv from eth0: CNX -DEACTIVATE(

dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/Ethernet
00:50: BA:C7:F6:A8>, CnxID =2)

1130258151.337462 root INFO Connection 2 deactivated
1130258151.337815 client INFO To client 8: CNX -ACTIVATE -RESP(2,

REJECT)
1130258151.338198 driver INFO To driver eth0: CNX -DEACTIVATE (2)
1130258151.339168 driver INFO From driver eth0: RESOURCE -

INDICATION(BW =775000)
1130258151.345652 proto INFO Recv from eth0: CNX -DEACTIVATE(

dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/Ethernet
00:50: BA:C7:F6:A8>, CnxID =3)

1130258151.346233 root INFO Connection 3 deactivated
1130258151.346573 client INFO To client 8: CNX -ACTIVATE -RESP(3,

REJECT)
1130258151.346967 driver INFO To driver eth0: CNX -DEACTIVATE (3)
1130258151.347942 driver INFO From driver eth0: RESOURCE -

INDICATION(BW=1e+06)
1130258155.002274 proto INFO Recv from eth0: ANNOUNCE(dst=<

L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

A.2 Resource degradation and autodiscovery of APs

A.2.1 Access Router

1130349947.328791 client INFO From PA client 10: <client.
ResourceQueryList object at 0xb79d81ec >

1130349947.329707 client INFO From client 10: <client.
ResourceQueryList object at 0xb79d81ec >

1130349947.331304 proto INFO Sending through eth1: RESOURCE -
QUERY(dst=<L2Addr/Ethernet 00:50: BA:2B:A7:48>, src=<L2Addr/
Ethernet 00:50: BA:C7:F6:A8 >)
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1130349947.341828 proto INFO Recv from eth1: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:50: BA:2B:A7:48>, BW=1e+06, MAX=1e+06)

1130349947.343481 driver INFO To driver eth1: RESOURCE -QUERY()
1130349947.345702 driver INFO From driver eth1: RESOURCE -

INDICATION(BW=1e+06)
1130349951.297905 proto INFO Recv from eth1: ANNOUNCE(dst=<

L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130349961.298932 proto INFO Recv from eth1: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130349966.351331 proto INFO Recv from eth1: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:50: BA:2B:A7:48>, BW=500000 , MAX=1e+06)

1130349966.352706 driver INFO To driver eth1: RESOURCE -QUERY()
1130349966.354713 driver INFO From driver eth1: RESOURCE -

INDICATION(BW=1e+06)
1130349971.299941 proto INFO Recv from eth1: ANNOUNCE(dst=<

L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130349981.301000 proto INFO Recv from eth1: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130349982.169728 proto INFO Recv from eth1: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:50: BA:2B:A7:48>, BW=100000 , MAX=1e+06)

1130349982.171063 driver INFO To driver eth1: RESOURCE -QUERY()
1130349982.173061 driver INFO From driver eth1: RESOURCE -

INDICATION(BW=1e+06)
1130349982.174104 client INFO To client 10: RESOURCE -

DEGRADATION ([(< client.L2Addr eth1 /00:50: BA:2B:A7:48>, 100000) ])
1130349991.302011 proto INFO Recv from eth1: ANNOUNCE(dst=<

L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

A.2.2 Access Point

1130349919.295589 driver INFO From driver ???: REGISTER(ifname=
eth1 , bwmax =1e+06)

1130349919.296338 driver INFO Driver registered to handle
netdevice eth1

1130349921.667103 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])

1130349931.668457 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])
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1130349941.670329 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])

1130349947.708034 proto INFO Recv from ebtables(eth0 -> ):
RESOURCE -QUERY(dst=<L2Addr/Ethernet 00:50: BA:2B:A7:48>, src=<
L2Addr/Ethernet 00:50: BA:C7:F6:A8 >)

1130349947.709248 driver INFO To driver eth0: RESOURCE -QUERY()
1130349947.709922 driver INFO To driver eth1: RESOURCE -QUERY()
1130349947.712791 driver INFO From driver eth0: RESOURCE -

INDICATION(BW=1e+06)
1130349947.714147 driver INFO From driver eth1: RESOURCE -

INDICATION(BW=1e+06)
1130349947.715324 proto INFO Sending through br0: RESOURCE -

INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:50: BA:2B:A7:48>, BW=1e+06, MAX=1e+06)

1130349951.671705 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])

1130349961.673097 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])

1130349966.724712 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =500000)

1130349966.725699 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:50: BA:2B:A7:48>, BW=500000 , MAX=1e+06)

1130349971.674472 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])

1130349981.675874 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])

1130349982.543773 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =100000)

1130349982.544738 proto INFO Sending through br0: RESOURCE -
INDICATION(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr
/Ethernet 00:50: BA:2B:A7:48>, BW=100000 , MAX=1e+06)

1130349991.677262 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])

A.2.3 Mobile Node

1130349924.322551 driver INFO From driver ???: REGISTER(ifname=
eth0 , bwmax =1e+06)

1130349924.323138 driver INFO Driver registered to handle
netdevice eth0
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1130349931.017902 proto INFO Recv from eth0: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130349941.017292 proto INFO Recv from eth0: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130349951.016103 proto INFO Recv from eth0: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130349961.014949 proto INFO Recv from eth0: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130349971.013677 proto INFO Recv from eth0: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130349981.012424 proto INFO Recv from eth0: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130349991.011125 proto INFO Recv from eth0: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

A.3 Handover preparation and execution

A.3.1 Access Router

1130324044.661775 driver INFO From driver ???: REGISTER(ifname=
eth1 , bwmax =1e+06)

1130324044.662649 driver INFO Driver registered to handle
netdevice eth1

1130324045.158308 proto INFO Recv from eth1: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130324055.160153 proto INFO Recv from eth1: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

1130324057.336959 proto INFO Recv from eth1: HO-EXECUTE(dst=<
L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr/Ethernet 00:C0:
DF:E6:EC:45>, serving_node=<L2Addr/None >)

1130324057.339015 proto INFO Sending through eth1: CNX -
ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<
L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, CnxID=1, tx=(TSpec (200000 ,
12000, 200000 , 12000, 512), RSpec(1, 200000)), rx=( TSpec
(200000 , 12000 , 200000 , 12000 , 512), RSpec(1, 200000)), prio=0,
data_len =0)

1130324057.359920 proto INFO Recv from eth1: CNX -ACTIVATE -RESP
(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/Ethernet
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00:C0:DF:E6:EC:45>, CnxID=1, result=ACCEPT)
1130324057.361610 driver INFO To driver eth1: CNX -ACTIVATE -REQ(

global_cnxid =1, tx=(TSpec (200000 , 12000, 200000 , 12000, 512),
RSpec(1, 200000)), rx=(TSpec (200000 , 12000 , 200000 , 12000, 512)
, RSpec(1, 200000)), prio =0)

1130324057.364859 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =600000)

1130324057.365958 driver INFO From driver eth1: CNX -ACTIVATE -
RESP(1, ACCEPT)

1130324057.366898 client INFO To client 8: CNX -ACTIVATE -RESP(1,
ACCEPT)

1130324065.161555 proto INFO Recv from eth1: ANNOUNCE(dst=<
L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])

A.3.2 Access Point

1130324046.463978 driver INFO From driver ???: REGISTER(ifname=
eth1 , bwmax =1e+06)

1130324046.465049 driver INFO Driver registered to handle
netdevice eth1

1130324055.159415 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])

1130324057.334855 proto INFO Recv from ebtables(eth1 -> eth0):
HO -EXECUTE(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<

L2Addr/Ethernet 00:C0:DF:E6:EC:45>, serving_node=<L2Addr/None
>)

1130324057.336051 proto INFO Sending through br0: HO-EXECUTE(
dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr/Ethernet
00:C0:DF:E6:EC:45>, serving_node=<L2Addr/None >)

1130324057.341551 proto INFO Recv from ebtables(eth0 -> eth1):
CNX -ACTIVATE -REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src

=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, CnxID=1, tx=( TSpec
(200000 , 12000 , 200000 , 12000 , 512), RSpec(1, 200000)), rx=(
TSpec (200000 , 12000, 200000 , 12000 , 512), RSpec(1, 200000)),
prio=0, data_len =0)

1130324057.343324 proto INFO Sending through br0: CNX -ACTIVATE
-REQ(dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/
Ethernet 00:50: BA:C7:F6:A8 >, CnxID=1, tx=(TSpec (200000 , 12000 ,
200000 , 12000, 512), RSpec(1, 200000)), rx=( TSpec (200000 ,
12000, 200000 , 12000, 512), RSpec(1, 200000)), prio=0, data_len
=0)

1130324057.347247 proto INFO Recv from ebtables(eth1 -> eth0):
CNX -ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src

=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=1, result=ACCEPT)
1130324057.348832 driver INFO To driver eth1: CNX -ACTIVATE -REQ(

global_cnxid =1, tx=(TSpec (200000 , 12000, 200000 , 12000, 512),
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RSpec(1, 200000)), rx=(TSpec (200000 , 12000 , 200000 , 12000, 512)
, RSpec(1, 200000)), prio =0)

1130324057.350268 driver INFO To driver eth0: CNX -ACTIVATE -REQ(
global_cnxid =1, tx=(TSpec (200000 , 12000, 200000 , 12000, 512),
RSpec(1, 200000)), rx=(TSpec (200000 , 12000 , 200000 , 12000, 512)
, RSpec(1, 200000)), prio =0)

1130324057.354741 driver INFO From driver eth0: RESOURCE -
INDICATION(BW =600000)

1130324057.355688 driver INFO From driver eth1: RESOURCE -
INDICATION(BW =600000)

1130324057.357358 driver INFO From driver eth0: CNX -ACTIVATE -
RESP(1, ACCEPT)

1130324057.358384 driver INFO From driver eth1: CNX -ACTIVATE -
RESP(1, ACCEPT)

1130324057.359270 proto INFO Sending through br0: CNX -ACTIVATE
-RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<L2Addr/
Ethernet 00:C0:DF:E6:EC:45>, CnxID=1, result=ACCEPT)

1130324065.160805 proto INFO Sending through br0: ANNOUNCE(dst
=<L2Addr/Ethernet FF:FF:FF:FF:FF:FF>, src=<L2Addr/Ethernet
00:50: BA:2B:A7:48>, nodelist =[])

A.3.3 Mobile Node

1130324057.334997 client INFO From client 10: HO-EXECUTE(<
L3Addr fec0 :1::1 >)

1130324057.335951 proto INFO Sending through eth0: HO-EXECUTE(
dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8 >, src=<L2Addr/Ethernet
00:C0:DF:E6:EC:45>, serving_node=<L2Addr/None >)

1130324057.347255 proto INFO Recv from eth0: CNX -ACTIVATE -REQ(
dst=<L2Addr/Ethernet 00:C0:DF:E6:EC:45>, src=<L2Addr/Ethernet
00:50: BA:C7:F6:A8>, CnxID=1, tx=( TSpec (200000 , 12000, 200000 ,
12000, 512), RSpec(1, 200000)), rx=( TSpec (200000 , 12000,
200000 , 12000, 512), RSpec(1, 200000)), prio=0, data_len =0)

1130324057.348432 proto INFO Sending through eth0: CNX -
ACTIVATE -RESP(dst=<L2Addr/Ethernet 00:50: BA:C7:F6:A8>, src=<
L2Addr/Ethernet 00:C0:DF:E6:EC:45>, CnxID=1, result=ACCEPT)

1130324057.349230 client INFO To client 8: CNX -INDICATION(CnxID
=1, tx=(TSpec (200000 , 12000 , 200000 , 12000, 512), RSpec(1,
200000)), rx=(TSpec (200000 , 12000 , 200000 , 12000, 512), RSpec
(1, 200000)), ber = -1.000000e+00, data_len =0)

1130324057.349854 client INFO To client 10: CNX -INDICATION(
CnxID=1, tx=( TSpec (200000 , 12000, 200000 , 12000 , 512), RSpec(1,
200000)), rx=(TSpec (200000 , 12000 , 200000 , 12000, 512), RSpec

(1, 200000)), ber = -1.000000e+00, data_len =0)
1130324065.164580 proto INFO Recv from eth0: ANNOUNCE(dst=<

L2Addr/Ethernet FF:FF:FF:FF:FF:FF >, src=<L2Addr/Ethernet 00:50:
BA:2B:A7:48>, nodelist =[])
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List of Abbreviations

3GPP 3rd Generation Partnership Program

4GW 4th Generation

4GW 4th Generation Wireless

ACL Asynchronous Connection-oriented Log-
ical

AL Abstraction Layer

AN Access Network

AP Access Point

API Application Programming Interface

APN Access Point Name

AR Access Router

ARM Advanced Routing Mechanism

ARQ Automatic Repeat reQuest

ARROWS Advanced Radio Resource Man-
agement On Wireless Services

ATM Asynchronous Transfer Mode

BE Best Effort

BER Bit Error Rate, Bit Error Ratio

BNEP Bluetooth Network Encapsulation Pro-
tocol

BS Base Station

CAN Content Adaptation Node

CARD Candidate Access Router Discovery

CFP Contention Free Period

CL Controlled Load

CMS Central Monitoring System

CN Core Network

GARP Generic Attribute Registration Proto-
col

GCC GNU Compiler Collection

GLL Generic Link Layer

GMRP GARP Multicast Registration Proto-
col

COPS Common Open Policy Service

CP Contention Period

CRC Cyclic Redundancy Check

CSMA Carrier Sense Multiple Access

DAIDALOS Designing Advanced network In-
terfaces for the Delivery and Administra-
tion of Location independent, Optimised
personal Services

DCF Distributed Coordination Function

DSBM Distributed Subnet Bandwidth Man-
ager

DSCP Differentiated Services CodePoint

EDCF Enhanced Distributed Coordination Func-
tion

FEC Forward Error Correction

GGSN Gateway GPRS Support Node

GMPLS Generalised Multi Protocol Label Switch-
ing

GNU GNU’s Not Unix

GPRS General Packet Radio Service
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GSM Global System for Mobile Communica-
tions

HCF Hybrid Coordination Function

IAL Interface Abstraction Layer

IEEE Institute of Electrical and Electronics
Engineers

IETF Internet Engineering TaskForce

IIS Intelligent Interface Selection

IP Internet Protocol

IPFIX Internet Protocol Flow Information Ex-
port

IST Information Society Technologies

L2CAP Logical Link Control and Adaptation
Protocol

LAN Local Area Network

LDP Label Distribution Protocol

LSP Label Switched Path

MAC Media Access Control

MBMS Multimedia Broadcast/Multicast Ser-
vice

MIH Media Independent Handover

MIHF Media Independent Handover Function

MIP Mobile IP

MN Mobile Node

MPLS Multi Protocol Label Switching

MT Mobile Terminal

MTC Mobile Terminal Controller

MTU Maximum Transmission Unit

NME Network Monitoring Entity

NSAPI Network Service Access Point Identi-
fier

NSIS Next Steps In Signalling

OSI Open Systems Interconnect

PA Performance Attendant

PBNM Policy Based Network Management

PBNMS Policy Based Network Monitoring Sys-
tem...

PCF Point Coordination Function

PDP Packet Data Protocol

PDU Protocol Data Unit

PM Performance Manager

QoS Quality of Service

QoSAL QoS Abstraction Layer

RAB Radio Access Bearer

RAN Radio Access Network

RFC Request For Comments

RNC Radio Network Controller

RRM Radio Resource Manager

RSVP Resource ReSerVation Protocol

RTP Real Time Protocol

SAP Service Access Point

SAR Segmentation And Reassembly

SBM Subnet Bandwidth Manager

SCO Synchronous Connection Oriented

SDL Specification and Description Language

SDU Service Data Unit

SGSN Serving GPRS Support Node

SIG Special Intererst Group

SIP Session Initiation Protocol

SLA Service Level Agreement

SLS Service Level Specification

TBF Token Bucket Filter

TCP Transmission Control Protocol

TCS Traffic Conditioning Specification

TE Terminal Equipment, Traffic Engineering

TFT Traffic Flow Template

TOS Type Of Service

UML Unified Modelling Language
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UMTS Universal Mobile Telecommunications
System

VLAN Virtual LAN

VPN Virtual Private Network

WLAN Wireless Local Area Network

WMAN Wireless Metropolitan Area Network

WP Work Package
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