5 research outputs found

    Biometric Spoofing: A JRC Case Study in 3D Face Recognition

    Get PDF
    Based on newly available and affordable off-the-shelf 3D sensing, processing and printing technologies, the JRC has conducted a comprehensive study on the feasibility of spoofing 3D and 2.5D face recognition systems with low-cost self-manufactured models and presents in this report a systematic and rigorous evaluation of the real risk posed by such attacking approach which has been complemented by a test campaign. The work accomplished and presented in this report, covers theories, methodologies, state of the art techniques, evaluation databases and also aims at providing an outlook into the future of this extremely active field of research.JRC.G.6-Digital Citizen Securit

    3D FACE RECOGNITION USING LOCAL FEATURE BASED METHODS

    Get PDF
    Face recognition has attracted many researchers’ attention compared to other biometrics due to its non-intrusive and friendly nature. Although several methods for 2D face recognition have been proposed so far, there are still some challenges related to the 2D face including illumination, pose variation, and facial expression. In the last few decades, 3D face research area has become more interesting since shape and geometry information are used to handle challenges from 2D faces. Existing algorithms for face recognition are divided into three different categories: holistic feature-based, local feature-based, and hybrid methods. According to the literature, local features have shown better performance relative to holistic feature-based methods under expression and occlusion challenges. In this dissertation, local feature-based methods for 3D face recognition have been studied and surveyed. In the survey, local methods are classified into three broad categories which consist of keypoint-based, curve-based, and local surface-based methods. Inspired by keypoint-based methods which are effective to handle partial occlusion, structural context descriptor on pyramidal shape maps and texture image has been proposed in a multimodal scheme. Score-level fusion is used to combine keypoints’ matching score in both texture and shape modalities. The survey shows local surface-based methods are efficient to handle facial expression. Accordingly, a local derivative pattern is introduced to extract distinct features from depth map in this work. In addition, the local derivative pattern is applied on surface normals. Most 3D face recognition algorithms are focused to utilize the depth information to detect and extract features. Compared to depth maps, surface normals of each point can determine the facial surface orientation, which provides an efficient facial surface representation to extract distinct features for recognition task. An Extreme Learning Machine (ELM)-based auto-encoder is used to make the feature space more discriminative. Expression and occlusion robust analysis using the information from the normal maps are investigated by dividing the facial region into patches. A novel hybrid classifier is proposed to combine Sparse Representation Classifier (SRC) and ELM classifier in a weighted scheme. The proposed algorithms have been evaluated on four widely used 3D face databases; FRGC, Bosphorus, Bu-3DFE, and 3D-TEC. The experimental results illustrate the effectiveness of the proposed approaches. The main contribution of this work lies in identification and analysis of effective local features and a classification method for improving 3D face recognition performance

    Creating 3D Model of Temporomandibular Joint

    Get PDF
    Dizertační práce pojednává o 3D rekonstrukci temporomandibulárního kloubu z 2D řezů tkání získané z magnetické rezonance. Současná praxe používá 2D MRI řezů pro určení diagnózy. 3Dmodel má mnoho výhod pro určení diagnózy, které vycházejí ze znalosti prostorové informace. Současná medicína používá 3D modely tkání, ale u tkáně čelistního kloubu existuje problém se segmentací kloubního disku. Tato malá tkáň, která má malý kontrast a velice podobné statistické vlastnosti, jako její okolí, lze jen složitě segmentovat. Pro segmentaci kloubního disku byly vyvinuty nové metody založené na znalosti anatomie oblasti kloubního disku a dále na statistice využívající genetického algoritmu. Soubor 2D řezu má různé rozlišení v osách x,y a ose z. Pro sjednocení rozlišení byl vyvinut algoritmus nadvzorkování, který se snaží zachovat tvarové vlastnosti tkáně. V poslední fázi tvorby 3D modelů bylo využito již standardně používaných metod, avšak tyto metody pro decimaci a vyhlazení mají různé možnosti nastavení (počet polygonů modelu, počet iterací algoritmu). Protože výsledkem práce je získání co nejvěrnějšího modelu reálné tkáně, bylo nutné vytvořit objektivní metody, pomocí kterých by bylo možné nastavit algoritmy tak, aby bylo dosaženo co nejlepšího kompromisu mezi mírou zkreslení a dosažením věrohodnosti modelu.The dissertation thesis deals with 3D reconstruction of the temporomandibular joint from 2D slices of tissue obtained by magnetic resonance. The current practice uses 2D MRI slices in diagnosing. 3D models have many advantages for the diagnosis, which are based on the knowledge of spatial information. Contemporary medicine uses 3D models of tissues, but with the temporomandibular joint tissues there is a problem with segmenting the articular disc. This small tissue, which has a low contrast and very similar statistical characteristics to its neighborhood, is very complicated to segment. For the segmentation of the articular disk new methods were developed based on the knowledge of the anatomy of the joint area of the disk and on the genetic-algorithm-based statistics. A set of 2D slices has different resolutions in the x-, y- and z-axes. An up-sampling algorithm, which seeks to preserve the shape properties of the tissue was developed to unify the resolutions in the axes. In the last phase of creating 3D models standard methods were used, but these methods for smoothing and decimating have different settings (number of polygons in the model, the number of iterations of the algorithm). As the aim of this thesis is to obtain the most precise model possible of the real tissue, it was necessary to establish an objective method by which it would be possible to set the algorithms so as to achieve the best compromise between the distortion and the model credibility achieve.

    Reconnaissance Biométrique par Fusion Multimodale de Visages

    Get PDF
    Biometric systems are considered to be one of the most effective methods of protecting and securing private or public life against all types of theft. Facial recognition is one of the most widely used methods, not because it is the most efficient and reliable, but rather because it is natural and non-intrusive and relatively accepted compared to other biometrics such as fingerprint and iris. The goal of developing biometric applications, such as facial recognition, has recently become important in smart cities. Over the past decades, many techniques, the applications of which include videoconferencing systems, facial reconstruction, security, etc. proposed to recognize a face in a 2D or 3D image. Generally, the change in lighting, variations in pose and facial expressions make 2D facial recognition less than reliable. However, 3D models may be able to overcome these constraints, except that most 3D facial recognition methods still treat the human face as a rigid object. This means that these methods are not able to handle facial expressions. In this thesis, we propose a new approach for automatic face verification by encoding the local information of 2D and 3D facial images as a high order tensor. First, the histograms of two local multiscale descriptors (LPQ and BSIF) are used to characterize both 2D and 3D facial images. Next, a tensor-based facial representation is designed to combine all the features extracted from 2D and 3D faces. Moreover, to improve the discrimination of the proposed tensor face representation, we used two multilinear subspace methods (MWPCA and MDA combined with WCCN). In addition, the WCCN technique is applied to face tensors to reduce the effect of intra-class directions using a normalization transform, as well as to improve the discriminating power of MDA. Our experiments were carried out on the three largest databases: FRGC v2.0, Bosphorus and CASIA 3D under different facial expressions, variations in pose and occlusions. The experimental results have shown the superiority of the proposed approach in terms of verification rate compared to the recent state-of-the-art method
    corecore