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Abstract

Face recognition has attracted many researchers’ attention compared to other biometrics

due to its non-intrusive and friendly nature. Although several methods for 2D face recog-

nition have been proposed so far, there are still some challenges related to the 2D face

including illumination, pose variation, and facial expression. In the last few decades, 3D

face research area has become more interesting since shape and geometry information are

used to handle challenges from 2D faces. Existing algorithms for face recognition are di-

vided into three different categories: holistic feature-based, local feature-based, and hybrid

methods. According to the literature, local features have shown better performance relative

to holistic feature-based methods under expression and occlusion challenges.

In this dissertation, local feature-based methods for 3D face recognition have been

studied and surveyed. In the survey, local methods are classified into three broad cat-

egories which consist of keypoint-based, curve-based, and local surface-based methods.

Inspired by keypoint-based methods which are effective to handle partial occlusion, struc-

tural context descriptor on pyramidal shape maps and texture image has been proposed in

a multimodal scheme. Score-level fusion is used to combine keypoints’ matching score

in both texture and shape modalities. The survey shows local surface-based methods are

efficient to handle facial expression. Accordingly, a local derivative pattern is introduced

to extract distinct features from depth map in this work. In addition, the local derivative

pattern is applied on surface normals. Most 3D face recognition algorithms are focused

to utilize the depth information to detect and extract features. Compared to depth maps,

surface normals of each point can determine the facial surface orientation, which provides

an efficient facial surface representation to extract distinct features for recognition task. An

Extreme Learning Machine (ELM)-based auto-encoder is used to make the feature space

more discriminative. Expression and occlusion robust analysis using the information from

the normal maps are investigated by dividing the facial region into patches. A novel hy-
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brid classifier is proposed to combine Sparse Representation Classifier (SRC) and ELM

classifier in a weighted scheme.

The proposed algorithms have been evaluated on four widely used 3D face databases;

FRGC, Bosphorus, Bu-3DFE, and 3D-TEC. The experimental results illustrate the effec-

tiveness of the proposed approaches. The main contribution of this work lies in identifica-

tion and analysis of effective local features and a classification method for improving 3D

face recognition performance.
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Chapter 1

Introduction

The work presented in this dissertation is related to the research and investigation for im-

proving 3D human face recognition system performance using local features. In this chap-

ter, the preliminary concepts related to the area of 3D face recognition are discussed. In

addition, the motivation and objective of the proposed research are presented in this chapter.

1.1 Face recognition

Biometrics are physiological or behavioral characteristics of people measured and analyzed

for the purpose of verifying identity. The extraction and representation of human charac-

teristic have been an interesting research area in computer vision and pattern recognition

for many years. Among biometrics, the human face attracts a lot of attention because of its

applicability in important areas, such as security and surveillance. Compared to other types

of biometrics such as iris images, finger-prints, palm-prints, and retinal scans; facial images

are more socially acceptable since they are easily captured using contact-free scanners.

Face recognition is defined as a process to identify or verify a person’s identity by

comparing the input face characteristics against known faces from a database. A typical

framework for a face recognition system has been shown in figure 1.1.

There are two different modalities including 2D images (grey scales and color images),

and 3D data (depth maps, point clouds, and meshes) which are common for face recogni-

tion. The main focus of this research is on 3D face data because of the robustness under

variations in lighting, head pose, and sensor viewpoint. 3D data can be captured using dif-

ferent 3D scanners via active or passive techniques [1]. Figure 1.2 illustrates some popular
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Figure 1.1 – A typical face recognition system framework

3D scanners. Before feature extraction and classification, any noise and spikes in captured

data need to be removed. Noise is generated due to optical components of the sensors, the

external ambiance, and the facial properties. Spikes are a common problem found in 3D

captured data because of specular surfaces such as the eyes, the nose tip, and shiny teeth. In

the pre-processing step, the noise and spikes are removed using filtering and thresholding

techniques. The step of feature extraction is an approach to encode the distinct informa-

tion of the face image. An efficient feature extractor should be discriminating for different

subjects, compact, and robust under facial challenges. In the step of face matching, gen-

erally, two scenarios, which include identification and verification are performed. In the

identification scenario, the identity of the input face is determined by searching the gallery

to find the most similar face. During the verification scenario, the claimed identity of the

input face is accepted or rejected by comparing the similarity between the probe face and

the gallery face using a predefined threshold.

1.2 Applications

There are different applications of any face recognition system. It is used in game and

movie industries for modeling and animating human characters. Facial expression is critical
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Figure 1.2 – Popular 3D scanners [1]

to develop advanced human-machine interface [14]. In security and surveillance, it can

be applied to a myriad of aspects such as system log on, internet access, access control,

border control, suspect tracking, and terrorist identification. Medical treatments, such as

facial surgery and maxillofacial rehabilitation have also emerged as other application based

research directions for face recognition [1].

1.3 Challenges

1.3.1 Lighting

Lighting conditions for data acquisition can vary significantly for different subjects on var-

ious times/dates of capturing. Therefore, probe and gallery samples can be captured in

different lighting conditions. Shadows and skin reflections can cause illumination varia-

tions in different samples. These changes cause an increase in intra-class variation which

makes 2D face recognition a challenging task. Compared to 2D face data, 3D images are

more robust under lighting variations due to shape and geometrical information.

1.3.2 Occlusion

Occlusion is one of the main problems in both 2D and 3D face recognition. It can occur

due to the presence of glasses, caps, scarves, covering a part of the face by a hand, and hair

(see some examples in figure 1.3).
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Figure 1.3 – Examples of occlusion. From left to right, eye occlusion, mouth occlusion with a
hand, occlusion caused by eyeglasses and hair [2]

Figure 1.4 – Some samples from happiness expression [2]

1.3.3 Facial expression

One of the major challenges for face recognition systems is expression variation. It can af-

fect the performance of both 2D and 3D face recognition systems. The shape and geometry

of the face can suffer deformations due to expression changes. Thus, facial expression vari-

ations can cause a significant difference between the samples of the same subject. Some

samples from happiness expression have been presented in figure 1.4.

1.3.4 Pose

The probe and gallery samples can be captured with different poses. For example, one sam-

ple could be frontal, while, the other could contain a rotated face. Projective deformation

4



and self-occlusion have a remarkable influence on the accuracy of 2D face system. Since,

pose correction methods can be applied for 3D face recognition, it is more robust under

pose variations. However, extreme pose variation reduces the accuracy of 3D face system

because of self-occlusion.

1.3.5 Generalization

Most 3D face recognition systems [15] have reported their performance on the Face Recog-

nition Grand Challenge (FRGC) database [16] which is most used face database. Achieving

high accuracy on one database cannot guarantee a good performance on other databases as

each database consists of a subset of the challenges related to face recognition. Therefore,

another important goal for a face recognition system is to achieve a good generalization

performance.

1.4 Deep learning for face recognition

Recently, 2D face recognition systems have been improved by applying a deep convolu-

tional neural network (CNN) [17] on public large-scale 2D face databases. Applying deep

CNN for 3D face systems is not a straightforward task due to lack of large set databases.

3D scans are difficult to capture and the number of 3D samples and persons in public 3D

face databases is limited. Kim et al. [18] presented deep 3D face recognition results. They

reported the results on three public databases after fine-tuning the Visual Geometry Group,

VGGFace network [17] on 3D depth images. An augmented database of around 100,000

depth images was used to tune the VGGFace network. Other databases are applied to the

test phase individually. For all databases except one, their results do not outperform the

state-of-the-art conventional methods. Moreover, they did not report the results on the

most challenging 3D face database, FRGC [16], and their fine-tuned model is not publicly

available.
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1.5 Motivation

In the past decades, 2D face recognition has been comprehensively investigated [19, 20].

Although several methods have been proposed so far, there are still many limitations with

2D face recognition. 3D images compared to 2D data provide more reliable geometric

information. Scale, rotation, and illumination do not affect the extraction of certain fea-

tures, from these 3D images [21]. Furthermore, 3D pose estimation is more accurate than

pose estimation with 2D images. Given these advantages, 3D face recognition has become

an active research area aimed at overcoming the existing challenges, arising from 2D face

images. A 3D face contains geometrical information and can be applied to overcome the

challenges arising from illumination and pose. 3D face recognition under facial expres-

sion, extreme pose, and occlusion is still a very challenging task due to large intra-class

variations.

Face recognition approaches are categorized based on the type of data and the algorithm

used. This data is divided into three types: (i) 2D texture image (2D face recognition),

(ii) 3D depth map or point clouds (3D face recognition), and (iii) 2D and 3D face data

(multimodal face recognition) [22]. Approaches for 2D and 3D face recognition are divided

into three categories, including (i) holistic feature-based, (ii) local feature-based, and (iii)

hybrid algorithms [19]. Local features have attracted many researchers’ attention due to

their robustness under pose variation, expression, and occlusion [23]. Therefore, the main

focus of this research is on 3D face recognition using local features.

1.6 Main Contributions

The major contributions of the dissertation are listed as follows:

• As an initial step in the field of 3D face recognition, the existing algorithms in three

different categories, local feature-based, global feature-based, and hybrid methods

have been studied. It was found that among these three categories, the local features

6



are more robust and promising to enhance the performance of the recognition system.

Consequently, a complete survey was performed on the local feature-based methods

for 3D face recognition.

• A methodology is proposed for hybrid face recognition using local features from

shape and texture modalities incorporating histogram matching. This approach achieves

improved performance on two databases as compared to the state-of-the-art algo-

rithms. The overall performance of the proposed hybrid method is also better than

state-of-the-art algorithms.

• An algorithm is proposed to extract local patterns on depth maps and surface nor-

mals. The proposed local descriptor improves the performance of the state-the-art

algorithms on several databases.

• A methodology is proposed using the combination of two different classifiers to en-

hance the performance of the recognition system in terms of accuracy and computa-

tional cost. The approach achieves competitive performance compared to the state-

of-the-art techniques in several databases.

1.7 Organization

This dissertation is organized into six chapters as follows:

• Chapter 2 surveys the local feature-based methods for 3D face recognition in three

different categories including keypoint-based methods, curve-based methods, and

local surface-based methods. The most common 3D face databases are reviewed and

the criteria to evaluate the recognition system is explained. The comparison between

state-of-the-art approaches is discussed with their relative strengths and weaknesses.

• Chapter 3 proposes a novel approach by the combination of 2D and 3D face data

to improve the recognition performance. A new local descriptor is extracted on dif-
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ferent facial shape maps and the texture image. A fusion scheme is used for hybrid

matching and the final decision.

• Chapter 4 introduces the Multiscale Depth Local Derivative Pattern (MsDLDP) de-

scriptor to extract efficient local features from depth maps. Details of how the ex-

pression variation problem is addressed by excluding non-rigid areas of the face and

applying Sparse Representation Classifier (SRC) are discussed.

• Chapter 5 proposes a Weighted Extreme Sparse Classifier (WESC) to handle facial

expression and occlusion using (Local Derivative Pattern) LDP on surface normals.

The details of the weighted hybrid classifier and local pattern on the normal maps are

described.

• Chapter 6 summarizes the research findings and concludes this dissertation by indi-

cating the scope of the future work.
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Chapter 2

Literature Survey

One of the main modules in a face recognition system is feature extraction, which has a

significant effect on the whole system performance. In the past decades, various types of

feature extractors and descriptors have been proposed for 3D face recognition. Although

several literature reviews have been carried out on 3D face recognition algorithms, only a

few studies have been performed on feature extraction methods. The latter have a vital role

to overcome degradation conditions, such as face expression variations and occlusions.

Depending on the types of features used in 3D face recognition, these methods can be

divided into two categories: global and local feature-based methods. Local feature-based

methods have been effectively applied in the literature, as they are more robust to occlusions

and missing data. This survey presents a state-of-the-art for 3D face recognition using local

features, with the main focus being the extraction of these features.

2.1 Introduction

A number of surveys have been published in 3D face recognition during the last decade.

Most of the earlier surveys have focused on the introduction, general summarization, and

challenges of face recognition algorithms [24, 25, 26, 27]. A survey by Scheenstra et al.

[25] reviewed 3D face recognition approaches in four different categories, and compared

them with 2D face recognition methods. 3D face recognition methods alone or in com-

bination with 2D intensity images were discussed in [26]. Various challenges for 2D and

3D face recognition were addressed and the limitations and solutions for different methods

were discussed in [27]. Smeets et al. [28] conducted a survey on 3D face recognition by
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summarizing the main characteristics and challenges of these approaches. A recent survey

by Zhou et al. [29] covered different algorithms by categorizing them into single-modal

and multimodal approaches, along with their advantages and disadvantages. Some of the

recent review papers have focused on a specific challenge in face recognition. For instance,

a survey on pose-invariant face recognition approaches is presented in [30], a comparative

study on 3D face methods, under facial expression challenges, can be found in [31], and

[32, 33] represent a survey on 3D facial expression recognition. In [1], only feature extrac-

tion and selection methods were investigated, for both 2D and 3D face recognition. The

main focus of [1] was the presentation of the different methods, with less emphasis on the

comparison of their advantages and drawbacks.

Approaches for 3D face recognition can be divided into three broad categories: holistic,

feature-based, and hybrid matching methods [19]. In holistic matching methods, the focus

is on the global similarity of faces. The entire 3D face (or model) is described by defining a

set of global features. Examples in this category include the principle component analysis

(PCA)-based method [34], the deformation modeling [35], the signed shape difference map

(SSDM) [36], spherical harmonic features (SHF) [37], closest normal points (CNPs) [38],

and region based 3D deformable model (R3DM) [39]. Feature-based matching methods

rely on finding similar local features from the face or from special regions of the face (e.g.,

eyes and nose). Hybrid approaches are defined based on the combination of different types

of approaches (holistic and feature-based) or data (2D and 3D images).

There are several reasons that make local methods more promising than holistic ones. In

particular, in local methods complete models are not necessary and occlusions can be easily

handled [40]. According to the survey by Abate et al. [27], applying local features is one

possible solution for recognizing partially occluded faces. Recent survey by Zhou et al [29]

mentioned different challenges for face recognition are pose, viewpoint, and expression

that feature-based methods address these problems. Moreover, local descriptors, like Scale

Invariant Feature Transform [41] and Local Binary Pattern [42], have yielded remarkable

results in 2D face recognition. Because the main focus of local descriptors is on the shape
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details, global or holistic methods perform better in similarity search applications, while

local methods are more suitable for matching, identification and verification [40]. Mian

et al. [3] mentioned one limitation for holistic methods : they need accurate normalization

for pose and scale. Generally, the recognition performance of global features is usually

affected by pose and/or scale variations. To solve this problem, manual and automatic

landmark detection are used for normalization, with the manual one being more accurate.

However, it makes the whole process semi-automatic, as in [43]. Recently, Gilani et al.

[39] proposed a landmark detection technique for holistic methods. It uses a deep landmark

identification network and needs a training step with synthetic images. Although, holistic

algorithms apply all the visible facial shape information to create discrimination, obtaining

the needed accurate pose normalization is not easy under noisy or low-resolution 3D scans.

In this case, local features may perform better [44]. Furthermore, local methods can be

robust under facial expressions, because sensitive facial regions can be excluded [31, 3].

In particular, local features can be extracted from the rigid parts of the face that are the least

influenced by expression changes [13].

Based on the above discussion, local feature-based methods are a promising research

topic for 3D face recognition application. We have conducted a survey on local methods to

cover recent works in this area. In particular, none of these surveys specifically focuses on

local feature-based 3D face recognition. Unlike [1] that presents feature extraction algo-

rithms for both 2D and 3D, local and holistic features in combination with feature selection

and fusion techniques, the main focus of this survey is a comprehensive study and com-

parison of different local feature-based techniques for 3D face recognition only. Compared

to [25] that discusses local and global features, our survey covers more recent local-based

works with more details on their performance, under different facial challenges. Therefore,

this chapter provides a survey on various categories of local 3D features, together with

comparisons as well as their limitations and advantages. The survey also aims at helping

researchers to get a good overview on 3D face recognition, and enable them to select the

most effective method for the right situation.
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The remainder of this chapter is organized as follows. The terminology of 3D face

recognition and databases are described in Section 2. Section 3 provides a comprehensive

survey of local feature-based methods for 3D face recognition, including methods cate-

gorization and a detailed review of feature extraction algorithms. Section 4 presents a

discussion on the reviewed methods and their comparison, while Section 5 concludes this

survey, presenting potential future research directions.

2.2 Terminology and 3D databases

There are two scenarios for a typical 3D face recognition system; namely verification (1:1

matching) and identification (1:N matching). For identification, an unknown face (probe)

is matched against known individuals (gallery) to find the best match. Verification refers

to the confirmation or rejection of a claimed identity of a probe face. Furthermore, usually

two metrics are considered for measuring the performance of a face recognition system.

The Receiver Operating Characteristic (ROC) curve is used to measure the verification

accuracy. ROC plots the False Rejection Rate (FRR) or Verification Rate (VR) against the

False Acceptance Rate (FAR); at various thresholds, and interpolates between these points.

FRR refers to the probability of incorrectly rejecting a person (two samples belonging to

the same person) and FAR refers to the probability of accepting an incorrect person (two

samples from two different people). The Cumulative Match Characteristic (CMC) curve,

used to evaluate identification performance, plots the recognition rate against a number

of ranks. The same matching threshold is used for both verification and identification

scenarios.

2.2.1 Databases

There are different types of 3D data applied in the recognition system. Polygonal meshes

of 3D faces are usually used in 3D face recognition applications for computational effi-

ciency. Other types of 3D data include point clouds, a collection of 3D point coordinates,
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Figure 2.1 – 3D face data representations : (a) Range image, (b) Poin cloud, (c) Mesh [1]

and range images or depth maps, where each element represents the distance of a point

from the sensor or from another reference point. Figure 2.1 illustrates a range image, point

cloud and mesh representation as different types of 3D data. There are two types of acqui-

sition systems for capturing 3D faces: active, like laser scanners and structured light, and

passive, like stereo-based systems [1]. In active capturing systems, such as Minolta vivid

scanners, triangulation technique is used. A laser line is shined on the face from a scanner

and an image of the line is recorded by a camera. Although the accuracy of this method for

3D face acquisition is relatively high, it is time consuming. In structured light, for example

Inspeck Mega Capturor II 3D, a pattern of light is projected on a face from a light source

and the deformations of the pattern are measured using a camera. This technique is fast, but

the captured data contains a number of holes and artifacts. In passive techniques based on

stereo systems, for instance 3DMD digitizer and Di3D, two cameras are employed to cap-

ture the location of each point by matching corresponding pixels in two images. Because

of the difficult and time-consuming problem of dense pixel matching, due to the relative

uniformity of a human face for two images, the accuracy of this system is comparatively

low [45]. To evaluate 3D face recognition algorithms, many databases have been created.

Table 2.1 describes the currently popular 3D face databases in four different categories,

according to 3D data type, and provides some details for each.
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Table 2.1 – Popular 3D face databases

Reference/Name Data Type Intensity Number of Number of Scanner
image subjects images

[46]/FSU mesh no 37 222 Minolta Vivid 700
[47]/GavabDB mesh no 61 549 Minolta Vi-700

laser range scanner
[48]/FRAV3D mesh yes 105 - Minolta Vivid 700

red laser light scanner
[49]/BU-3DFE mesh yes 100 2500 Stereo photography,

3DMD digitizer
[50]/UoY mesh yes 350 5000 Stereo vision 3D camera
[16]/FRGCv1 range image yes 273 943 Minolta Vivid 3D scanner
[16]/FRGCv2 range image yes 466 4007 Minolta Vivid 3D scanner
[51]/UND range image yes 277 953 Minolta Vivid 900
[52]/CASIA range image no 123 4059 Minolta Vivid 910
[53]/ND2006 range image yes 888 13,450 Minolta Vivid 910
[35]/MSU range image no 90 533 Minolta Vivid 910
[54]/SHREC08 range image no 61 427 -
[55]/3D-TEC range image yes 214 428 Minolta scanner
[56]/SHREC11 range image no 130 780 Escan laser scanner
[57]/UMB-DB range image yes 143 1473 Minolta Vivid 900

laser scanner
[58]/Texas 3DFRD range image yes 118 1149 MU-2 stereo imaging system
[2]/Bosphorus point cloud yes 105 4666 The Inspeck Mega Capturor II

3D scanner
[59]/BU-4DFE 3D video yes 101 60600 Di3D (Dimensional Imaging)

dynamic system

2.3 3D local feature-based methods

In the context of face recognition, 3D local feature descriptors are built from 3D local facial

information. These features have some advantages over global features, as global descrip-

tors are more sensitive to pose, facial expressions and occlusions [44]. The main objective

of local feature extraction methods is the detection of distinctive compact features, that are

robust to a set of nuisances. To the best of our knowledge, local feature-based algorithms

can be more robust against facial variations such as expression and occlusion, as they ex-

clude parts that might be affected by those changes. In particular, there is no set of local
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attributes that are completely invariant under all variations [26].

A number of 3D local feature descriptors for 3D face recognition have been presented

in the literature. This section surveys and explains the main existing 3D local descriptors

and groups them into three different categories: Keypoints-based, curve-based and local

surface-based methods.

2.3.1 Keypoints-based methods

3D keypoints are interest points of shape, based on the definition of saliency. They are

detected according to some geometric information of the surface. The methods typically

involve two major steps, keypoint detection and feature description [60]. Although these

methods can cope with occlusions and missing parts, their computational cost is much

higher as they use a large number of keypoints, described by high dimensional feature

vectors. Hence, it is very important to only select the most effective keypoints, from the

local descriptors, to create an efficient feature vector.

Methods based on SIFT-like keypoints

Scale invariant feature transform (SIFT) [41] is a successful keypoint detector that has

motivated researchers to use the same scheme in the case of 3D images. The most important

limitation of SIFT keypoint-based methods is their sensitivity to noisy data. However,

these methods do not require very sophisticated registration algorithms. Furthermore, the

convincing representation of SIFT features on shape maps motivated researchers to apply

this framework in 3D.

A framework to detect SIFT-inspired 3D keypoints was first proposed by Mian et al.

[3], where they use the shape variation in combination with 2D SIFT descriptors. To detect

3D keypoints, for points in the sphere of radius r and center p, the mean vector m and

covariance matrix C are calculated. Then, matrix V of the eigenvectors is obtained by

performing principal component analysis (PCA) on C. A point p is defined as a keypoint,
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Figure 2.2 – A keypoint on a 3D face and its corresponding texture [3]

if the difference between the first two principle axes of the local region is greater than a

threshold t. Figure 2.2 illustrates a keypoint on the 3D face and its corresponding texture

image. This method has influenced other researchers; for example SIFT keypoints are used

in [61] to detect relevant interest points on depth images, then local shape descriptors are

defined for the neighborhood of each keypoint. Mayo and Zhang [62] proposed a multiview

keypoint matching method, where SIFT keypoints are extracted from 2.5D images. In [63],

SIFT descriptors are extracted from 2D matrices of curvature maps, where the features are

defined at fixed scales and orientations for fixed locations. SIFT keypoint detection is

applied on multiscale local binary pattern and shape index maps in [64], and on pyramidal

shape index map in [65] for 3D domain and in combination with 2D keypoints, respectively.

The extension work of [65] has been presented in [66] using curvature maps. The main

weakness of these methods is their sensitivity to pose variations. Recently, a Keypoint-

based Multiple Triangle Statistics (KMTS) method has been presented by Lei et al. [67]

to handle pose variations where 3D keypoints are detected based on the method in [3].
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Low-level geometric features [13], described in Section 3.3 of this chapter, are extracted

from the patch around the detected keypoints. Applying low-level geometrical features

without any complicated mathematical operation shows that the approach is time efficient.

According to the experiments reported by authors using an Intel Core 2 Quad CPU and 16

GB RAM, the pre-processing, feature extraction and identification takes 0.62 s, 5.46 s, and

1.82 s, respectively.

Mesh-based methods

Although SIFT-like detectors present the informative features without registration for nearly

frontal scans, they are sensitive to large pose variations or occlusions. To overcome these

limitations, SIFT keypoints detection is applied directly on 3D mesh data in recent works.

Generally, approaches using 2D keypoints detection ideas have allowed the discovery and

implementation of powerful keypoint detectors in the 3D domain.

An extension of SIFT for 3D meshes, called MeshSIFT, was proposed by Maes et

al. [68], then extended by Smeets et al. [4]. The approach consists of four major steps:

keypoint detection, orientation assignment, local feature description, and feature matching.

Given an input mesh M, the mean curvature H is calculated for each vertex i, at each scale s,

to detect salient points. The normal vector of the keypoint neighboring vertices is projected

onto its tangent plane. A weighted histogram is constructed using the projected normal

vectors. The canonical orientations are estimated with the highest peak in the histogram.

Normals and their projections onto the tangent plane are illustrated in Figure 2.3a. A feature

descriptor is defined for each keypoint by the concatenated histograms of nine circular

regions (the shape index and angles between normals), as shown in Figure 2.3b.

The meshSIFT-like keypoint detector has also been applied in [5] using maximum

(kmax) and minimum (kmin) curvatures, estimated in the 3D Gaussian scale space. A salient

point is the vertex whose value is a local extrema within its neighborhood. The detection

of keypoints is illustrated in Figure 2.4a. To calculate the local descriptor, a geodesic disk

with radius R is considered around each keypoint. Then, a circle with radius r1 and eight
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Figure 2.3 – a) Normals and their projections, b) Nine circular regions around a keypoint[4]

Figure 2.4 – a) Salient points by kmax (left) and kmin (right), b) Canonical orientation, salient
point and its neighborhood vertices [5]

circles with radius r2 are extracted, as shown in Figure 2.4b. Three histograms, includ-

ing surface gradient (HoG), shape index (HoS), and gradient of shape index (HoGS) are

calculated for each circle. The concatenation of these three histograms is considered the

local descriptor. A common disadvantage of the above methods is the detection of a large

number of keypoints. None of them presented a solution for selecting salient keypoints.

To overcome the stated problem and extract repeatable keypoints on 3D meshes, Mesh-

DoG [6], an extension framework of [69], proposes a multiring geometric histogram (GH)

as a descriptor. Given a 3D mesh, the mean curvature at each vertex is first computed. The
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Figure 2.5 – a) 3D keypoints detected at each step b) central facet t1 and its neighbors c) the
angle and perpendicular distance [6]

detection of the 3D keypoints is done in three steps, i.e., scale-space, percentage thresh-

old, and corner analysis. Figure 2.5a shows the detected 3D keypoints in the three dif-

ferent steps and GH computation. The normals and the difference between minimum and

maximum perpendicular distance of two facets are calculated to create descriptors (see fig-

ure 2.5). An extension of the framework in [5] is described in [70], where a fine-grained

matching of 3D keypoint descriptors has been proposed to handle degradation conditions.

Among the above mentioned mesh-based SIFT-like matching methods [4, 70] provide a

registration-free recognition scheme.

Recently, Elaiwat et al. [7] proposed a keypoint detector and a local feature descriptor

by integrating different Curvelet elements of different orientations. Since Curvelet trans-

form is based on FFT, the computational complexity of keypoint detection and descriptor

definition is lower than SIFT-based methods. The coefficients of these Curvelet elements

are computed at each scale a and angle θ , as shown in figure 2.6. Keypoints are detected by

comparing the magnitudes of Curvelet coefficients with the mean value of all coefficients

at scale a. A local descriptor is defined around each keypoint in the Curvelet domain for

all the sub-bands of the scale in which the keypoints are extracted. Since the keypoints

are extracted on different frequency bands and directions, they are highly repeatable and

informative.
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Figure 2.6 – Four-scale Curvelet decomposition [7]

Landmark-based methods

Landmarks are facial points extracted according to anatomical studies of the face. Some

methods use a set of landmarks on the face to create feature vectors, obtained by calculating

relationships between these landmarks. Therefore, accurate extraction of these landmarks

is critical to generate reliable local features. The landmarks could be the eyes, nose and

mouth on the facial image. They are also employed to correct the pose in pose sensitive lo-

cal feature-based methods. Their disadvantage is the sparsity that can affect the recognition

performance.

Shape index as curvature map is widely used to detect landmarks. In [71], feature

points, included inside and outside the corners of the eyes and the nose tip, are extracted

by calculating the local shape index at each point of the 3D mesh. In [72], shape index and

spin images are used as local descriptors to extract landmark points. Spin image encodes

each point p on the 3D face surface, with respect to the normal vector n at that point. Fa-

cial curvatures are also used for landmark detection [73, 74]. Triangles, resulting from the

connection of the detected eyes and nose, are used in the recognition stage in [73]. In [74],
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14 manually detected landmarks are used to define a local shape dictionary, consisting of

curvature maps. Keypoints are then extracted from this shape dictionary. An enhanced ver-

sion of this work, presented in [21], uses a non-linear machine learning approach, namely

AdaBoost, to detect keypoints. There are other proposed methods to detect landmarks. In

[75], five landmarks on a range image of the face are extracted using radial symmetry and

shape information. These facial feature points are employed to extract a very small subset

of points on probe images, that are invariant under facial expressions. Gupta et al. [76]

presented an anthropometric approach by detecting 10 fiducial points and calculating the

Euclidean and geodesic distance between them as features. Song et al. proposed a land-

mark localization approach that uses local coordinate coding (LCC) and consists of two

stages: nose detection and resampling [77]. Another landmark-based method is described

in [78], where the authors proposed an automatic 3D landmark localization method that can

handle missing parts, with asymmetry pattern and shape regression. Recently, an automatic

3D facial landmark detection has been proposed in [79] using 2D Gabor wavelet features.

Summary

Table 2.2 summarizes the keypoint-based methods. The latter are categorized into SIFT-

like, mesh-based, and landmarks. The neighborhood of a keypoint is defined based on three

different measurements [80], i.e., Euclidean distance, geodesic distance and multirings.

Methods based on geodesic distances are robust under isometric deformations. On the other

hand, the geodesic distance calculation is time-consuming according to [80]. For example,

the computational complexity for geodesic distance calculation in [4, 70] is O(mlogm),

where m is related to a neighborhood area with radius r. Therefore, for n given vertices, the

complexity for calculating all geodesic distances is O(nr2logr). As constants Pi and 2 will

be removed from the big O notation. The Euclidean distance, according to [7], is easier to

calculate but is sensitive to deformations. When multirings are used, for example like in

[6], the geodesic distance between two points on a mesh is approximated properly. They

are computationally efficient. We have found that the methods described in [3], [4] and [5]
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are exerting more influence on other research works because of their effective results and

deformations handling.

2.3.2 Curve-based methods

These methods use a set of curves from facial surfaces as features. The latter include rich

geometrical information that captures shape information from different facial regions to

represent a 3D face. Compared to keypoint-based methods, they are less sparse and more

robust against facial expressions. In addition, the weight of the reference point (often the

nose tip) is higher than other points, as it contains descriptive shape informataion. Curve-

based methods can be grouped into two categories : contour- and profile-based [31].

Contour-based

Contours are closed curves with different lengths and without intersections. They are de-

fined as level curves classified into iso-depth and iso-geodesic curves. Iso-depth curves,

first introduced in [9], are obtained by translating a plane through the facial surface in one

direction. These curves are described using the intersections between the facial surface and

a plane. For a facial surface S, a set of level curves cλ is obtained, where each cλ consists

of all points p such that F(p) = λ , with F being a depth value function for the z compo-

nent of point p. An extension of this framework is proposed in [8], where level curves of

a facial surface distance function, with the origin being the nose tip, are described as iso-

geodesic curves. An iso-geodesic curve cλ consists of the set of all points, whose geodesic

distance dist, from a reference point r, is in the range [λ − δ ,λ + δ ], for a small positive

δ . A Riemannian analysis framework is employed for comparing facial curves. The latter

have the advantage of being invariant to rotations or translations (isometric transformation).

However, both iso-depth and iso-geodesic curves (illustrated in figure 2.7), are sensitive to

large facial expressions, occlusions and missing parts. Iso-geodesic stripes have also been

applied by Berretti et al. [82]. To extract stripes, the normalized geodesic distance γ̄ is com-
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Figure 2.7 – Level curves of a) geodesic function [8], and b) depth function [9] for several
levels

puted between each face point and the nose tip, and quantized into N intervals c1, ...,cN .

This way, the ith stripe consists of all points whose distances γ̄ are in the interval ci. The

stripes are described by a 3D Weighted Walkthroughs (3DWWs) descriptor and used as

nodes in a graph-based matching scheme. Level curves have been also employed in [83],

[84], [85], [86], and [87]. The main limitation of most of these approaches, apart from

occlusion, is their lack of robustness to extremely large facial expressions.

Profile-based

Profiles are open curves, with starting and end points. Typically, the starting and end points

are in the middle and on the edge of the face, respectively [31]. Radial curves have been

introduced by Drira et al. [88] and extended in [10]. These curves are more efficient than

level curves [9], [8], as they cover different face regions that are related to different fa-

cial expressions. At least some parts of radial curves are available to handle occlusions
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and missing parts. Each curve originates at the nose tip and has an angle α , relative to a

reference curve, which is the vertical curve after rotating the face to the upright position.

The intersection of the plane pα and facial surface S yields the radial curve βα , as shown

in figure 2.8. Radial curves are also used together with level sets in [89] to approximate

the facial surface. The well-known machine learning algorithm, AdaBoost, is used to select

the most efficient features. The machine learning based feature selection method provides a

very compact signature of a 3D face and a fast classification approach for face recognition.

Using all curves, the computational time for recognition is 2.64s. However, with selected

curves the time is reduced to 0.68s, showing that the selection method enhances the system

computational performance. Facial curves are widely used as profile-based methods to han-

dle facial expression. Angular radial signatures (ARS) [11] are defined as a set of curves at

an interval of θ radians (θ ∈ [0,π]), emanating from the nose tip. A binary mask is defined

on the xy−plane to project ARSs along different directions. Each resulting path consists of

20 points, with 3mm distance between any two adjacent points. ARS feature value of these

points is computed from the depth value of each point, using bicubic interpolation at the x

and y coordinates. The ARS extracts significantly a set of discriminative 1D feature vectors

from the complex 3D facial surface that achieves computationally efficiency in recognition

task. On an INTEL Core 2 Quad-CPU and 8 GB RAM, face identification only requires

6.07s. In particular, the features extracted from semi-rigid regions are robust under facial

expressions. Figure 2.9 shows a binary mask, used to extract ARSs, and 17 ARSs on a face.

Another facial curve, obtained by connecting SIFT keypoints, is introduced by Berretti et

al. [90] to handle missing data. Because SIFT descriptors are not discriminant enough to

recognize an identity, facial curves from pairs of keypoints are defined to create effective

features. A graph of facial curves is constructed between matched keypoints. The perfor-

mance of the method in terms of accuracy can be improved at the curve matching level,

when a robust solution is used. In [91] facial curves, the intersection of a plane P and the

facial surface are employed to make a rejection classifier. An adaptive region extraction is

used for matching two 3D faces. The vertical facial curve in the nose tip is called central
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Figure 2.8 – Nose tip, the reference curvature, radial curves [10]

Figure 2.9 – The binary mask and 17 ARSs [11]

profile. Although the partial central profile is less descriptive than the entire one, it is also

less sensitive to facial expression and occlusions, less complex, and hence it is used to make

a rejector. The similarity between a partial central profile and its corresponding profile from

another face is calculated based on the average distance between the two curves, using the

iterative closest point (ICP) algorithm [92]. Generally, curves are less discriminative than

regions. However, they are faster and require less space for storage. Using an Intel Core

Duo 2.34GHz machine with 1GB of memory, the verification process takes less than 9s and

recognition process requires 195 s with rejection (608 s without rejection), which shows
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that the rejection-based method is faster. Vertical central profile has been also used in [93],

where it is defined as the intersection between the symmetry plane, the facial surface and

mean curvature. Authors apply the property of the face bilateral symmetry to develop a fast

algorithm that on a 1-GHz Pentium IV PC with 512 MB RAM takes an average time equal

to 0.5 s for comparison. Recently, some profile-based methods have been proposed that

extend the application of facial curves. A set of Rotation-invariant and Adjustable Integral

Kernels (RAIKs) is computed from the surface patch around a 3D point, in [94]. Nasal

patches and curves are introduced in [95]. First, nasal landmarks are detected, and then

using pairs of landmarks, a set of planes is created. The intersection of these planes with

the nasal surface yields nasal region curves. These curves are applied to make the feature

descriptor. The feature vector is obtained by concatenating histograms of x, y, and z com-

ponents of the normal vectors of the Gabor wavelet filtered surface. A genetic algorithm

(GA) is used to select the more robust features against facial expressions. This method has

shown high class separability compared to previous methods.

Summary

Table 2.3 summarizes our surveyed curve-based methods that we divided into contour-

based and profile-based categories. In most curve-based methods, the nose tip is used as

a reference point or the origin of the system. Since the nose region is rigid, robust under

facial expression, and contains more distinctive shape features than other regions, curve-

based methods are robust under facial expression. However, hair covering the face, large

pose changing, and missing data affect the correct detection of the nose tip. Consequently,

face alignment and facial curve extraction are calculated using an incorrect origin, which

affects the recognition performance of these methods. In particular, we have found that

iso-depth curves [9], iso-geodesic curves [82], and the radial curves [10] are more effective

and have greater influence on other researchers.
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2.3.3 Local surface-based methods

Most local surface-based methods extract local geometric information, from several patches

of the facial surface or from some regions of the surface, that are invariant under facial

expression variations. These methods can be divided into LBP-based, geometric feature-

based and others.

LBP-based

Inspired by the efficient Local Binary Pattern (LBP) for 2D face recognition, LBP-based

methods, as surface descriptors, have been developed for expression-robust 3D face recog-

nition. LBP is a local shape descriptor that was initially introduced by Ojala et al. [42]

for 2D images. LBP was first employed by Li et al. [96] on intensity image and sur-

face in a fusion scheme for 3D face recognition. Later, 3DLBP [97], in combination with

global matching was proposed. A multiscale extended LBP with a SIFT-based strategy

is described in [81]. LBP representation is also applied in [98] where, the face division

pattern is used to extract depth and normal information encoded by LBP. Local normal

pattern (LNP), proposed in [15], encodes facial normal component in the same way as the

LBP operator. LNP is defined by the decimal numbers from the encoding process. The

histogram-based statistics of LNP values are used as the facial descriptor. To overcome

facial expression variations, the weight of each facial normal image patch is learned and

applied in a weighted sparse representation-based classifier. The computational complexity

of the method depends on the gallery size and feature dimension. The identification time

(gallery size: 466) on a PC with Intel Core 2 CPU and 2.66 GHz has been reported at 3.55

s for this method. The results are only reported for face identification and the descriptor is

not evaluated in verification tasks. In addition, basic ICP algorithm has been utilized for

face registration, showing that applying an efficient registration method can improve the

recognition results. Werghi et al. [99] proposed the Mesh-LBP method, where they applied

LBP descriptor on mesh. The method was extended to face recognition in [12]. For each
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Figure 2.10 – Ordered ring construction, three Fout facets adjacent to the fc and sequences of
Fgap facets [12]

central facet fc on the mesh, Fout and Fgap are considered edge facets of fc. Starting with

three Fout facets around fc, the Fgap facets between each pair of Fout facets are extracted

and the outcome of this procedure is a ring of ordered facets around fc (see figure 2.10).

The mesh-LBP is computed for facet fc as ∑
m−1
k=0 s(h( f r

k )−h( fc)).α(k), with s(x)=1 if x ≥

0 and s(x)=0 if x < 0, where r and m are the ring number and the number of facets on the

ring, respectively. The function h( f ) is a scalar function that contains either a geometric

or a photometric information, such as curvature and color or gray level, respectively. For

α(k), two variants are considered, i.e., α1(k) = 1 and α2(k) = 2k. The curvature maps in-

cluding curvedness, Gaussian curvature, shape index, and the gray level are used for h( f )

in two different shape and texture modalities in a fusion scheme. A constructed histogram

over a given neighborhood is considered as a descriptor in the matching step.

Geometric feature-based

Some methods are developed based on geometric features. Xu et al. [100] proposed a 3D

face recognition method using geometric features and shape variation information. First,

the 3D point cloud is converted to a mesh, then a geometric feature vector is built, using

Z-coordinate, Z(vi) of each vertex vi of the mesh. Shape features are extracted on some
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regions of the face, including mouth, nose, left and right eyes. Two vectors, including

geometric and shape features, are concatenated together to make the feature vector. PCA

is then applied to reduce the feature dimension. Li and Zhang [101] proposed a recogni-

tion system by using geometrical attributes consisting of angles, geodesic distances, and

curvatures. To have a stable feature vector under facial expression, expression-insensitive

signatures are constructed using weighted attributes. In [102], an expression-insensitive

descriptor (EID) based on the sparse representation of low-level geometric information is

proposed, where a pooling and ranking scheme is employed to select higher ranked EIDs.

Recently, low-level geometric features have been proposed in [13]. These features measure

distances and angles between vertices of the 3D mesh. They are robust under facial pose

and expression variations as they are calculated for three different regions of the face, viz.,

semi-rigid (eye-forehead), rigid (the nose) and non-rigid (mouth) regions. Each region is

represented using multiple triangles, with one vertex being the nose tip and two randomly

selected vertices, from the surface of the region. Using these triangles, low-level geomet-

ric features are computed from the angle between the two segments connecting each of

the random points to the nose tip (A), the radius of the circumscribed circle (C), the dis-

tance between the two random vertices (D), and the angle between the line connecting

the two vertices and the z-axis (N) (see Figure 2.11). Each feature vector is normalized

into [−1,+1] and quantized into a histogram with m bins. The feature descriptor is calcu-

lated by concatenating the four histograms. A support vector machine (SVM) classifier is

used to recognize test faces. An extension of this work has been proposed in [67] as local

Keypoint-based Multiple Triangle Statistics (KMTS) (Section 3.1). Covariance matrices of

descriptors are proposed by Tabia et al. [103] to capture geometric and special properties

of a region with the correlation of these properties. For a 3D shape with a set of patches

{Pi, i = 1...m} around a representative point pi, a feature vector fi of dimension d for each

point p j in the patch Pi is computed using p j− pc, the distance between p j and pi, and

the volume of the parallelepiped where pc is the patch center and is equal to 1/ni ∑
ni
k=1 pk.

The representation is generic and other features can be added. A d× d covariance matrix
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Figure 2.11 – Low-level geometric features [13]

Xi = 1/n∑
n
j=1( f j−µ)( f j−µ)T is calculated where µ is the mean of the feature vectors fi.

An extension of this work has been presented in [104].

Other methods

Point signature was initially proposed by Chua et al. [105] as a representation for free-

form surfaces. To deal with expression variations, only the rigid parts of the face are used

in the matching process. Point signature is also used to describe feature points in 3D do-

main in [106]. Multiple overlapping regions around the nose are extracted using surface

curvatures, including mean curvature H and Gaussian curvature K in [107]. An extension

of this work is proposed by Flatemier et al.[108]. In [109], the authors introduced tensors,

where third order tensors are indexed using 4D hash table. Rank-0 tensor fields are also

applied by Al-Osaimi et al. [110], where multiple local tensor fields are computed over

a triangular mesh and used as geometrical cues. Most of these methods work based on

the surface registration and descriptors that are not suitable for real applications and are

computationally expensive. Recently, Ming [111] proposed a regional bounding spherical

descriptor that is computationally efficient and handles facial emotions with high recog-

nition rate. This method takes 5.96 s for the whole data processing, which is considered
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time efficient. In addition, 2D features can be calculated on 2D maps extracted from 3D

meshes to decribe local features such as Gabor filter coefficients in [112]. An extension of

this work using wavelet coefficients has been presented in [113]. The authors apply feature

scoring to define compact signatures that makes the matching more efficient, especially in

large-scale databases. Using an AMD Opteron processor at 2.1 GHz, the algorithm can

perform 1,800,000.00 comparisons per second.

Summary

Table 2.4 summarizes the local surface-based methods that we have presented in this sec-

tion. Some methods such as [15, 12] are inspired by LBP local descriptors with effective

performance. Recently, geometric features have been used, for example in [13] and [103],

yielding robust descriptors that are capable of handling facial expressions. The methods in

[105, 106] use point signatures that are invariant to translations and rotations. Some of the

surface-based methods [107, 108] work on some regions of the face that are extracted based

on the nose tip location. Hence, they are sensitive to the nose tip detection accuracy. How-

ever, these methods are robust under facial expressions. Tensor features, used in [109, 110],

combine global and local geometric features and are robust under rigid transformations.

2.4 Discussion

In the past decade, 3D face recognition has significantly grown in terms of databases, fea-

tures, matching approaches, and even handling degradation conditions. Many 3D face

recognition methods rely on local features to overcome deformations.

Tables 2.5 and 2.6 summarize the performances of the surveyed methods, along with

their category and performance on different databases under different conditions (expres-

sion or neutral (FRGCv2, Bosphorus) pose or frontal (Gavab, Bosphorus)). The criteria

used in the literature consist of rank-1 recognition rate (RR1), equal error rate (EER) and

verification rate (VR). There are some protocols for experiments on FRGCv2 according to
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[16], and most authors reported the results by following these protocols. Hence, table 2.5

has been assigned to performances on FRGCv2 database, including VR and RR1 for the

experiments based on the neutral and non-neutral sets of databases (neutral vs. non-neutral,

vs. neutral, vs. all, and all vs. all) and ROC III experiments [16]. Some earlier papers for

example, [105, 106], present their algorithms without any quantitative results. Because

different experiments in the literature are presented in various situations and for different

conditions and databases, it is difficult to perform an overall fair comparison between all

these different methods.

All local 3D face approaches surveyed in this chapter are divided into keypoint-based,

curve-based, and surface-based. The keypoint-based category is successful in handling

occlusions and missing data [61, 64, 67, 4, 6, 70, 71, 73]. The main disadvantage of these

methods is their sparseness that makes them sensitive to noisy data and extreme expression

changes [62, 63, 64, 67, 4, 6, 71, 73, 76]. Moreover, the high computation cost of some of

the SIFT- and curvature-based methods is another drawback for this category [61, 4, 70, 74].

The comparison of keypoint-based methods shows that some of them work effectively in

fusion scheme. That is when combining 3D and intensity images in multimodal mode,

resulting in high recognition rate [3, 66, 7]. In addition, meshSIFT [4], meshDoG [6], and

keypoint detector using PCA [3] extract the distinct descriptors from the patches around

keypoints and benefit from the advantages of the local surface-based category.

The second category, curve-based methods, considers contours and profiles. Although

curves are less sparse than keypoints, some parts of the face shape can be missing [31].

Hence, most of the methods in this category are not robust against occlusion and miss-

ing data [8, 83, 87, 89, 11, 91, 94, 95]. Most of the profile-based methods, for instance

[89, 11, 91], are computationally efficient and handle facial expressions. Geodesic repre-

sentation of the facial surface describes the invariant properties under isometric deforma-

tions. Therefore, iso-geodesics in [8, 82, 83, 85, 86] provide expression robust recognition

systems. When the nose tip detection is done properly, curve-based methods are more re-

liable than other methods, under expression variations. The methods, described in [10, 90]
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and evaluated on the Gavab database (with scans under pose variations), propose pose-

invariant descriptors, but they are still sensitive under large pose variations.

Surface-based methods, our third category, are based on extracted geometrical invariant

descriptors. Most of these methods are expression invariant, because they rely on extracted

features from regions, that are relatively stable under facial expressions [13, 12, 107, 108],

or they rely on sparse representation to learn weights of expression-insensitive patches and

high-ranked features selection [15, 102], or use covariance matrices with geodesic metrics

[103, 104]. However, methods in this category are sensitive to occlusions and missing data

[13, 15, 101, 103, 104, 106, 108, 110].

Among the more recent works, [13] uses low-level geometric features and is computa-

tionally efficient, since it involves only basic computations, such as angles and distances.

The method proposed by Li et al. [15] is inspired by the computationally efficient LBP de-

scriptor on surface normal component, and hence provides acceptable cost. Furthermore,

3D face verification, using the method in [111], drastically reduces the computational cost

because of its efficient pre-processing and alignment steps, that are done with a simple

implementation. The methods that use ICP to perform matching, like [71, 107, 108] from

tables 2.2 and 2.4, have a good recognition performance, but are not computationally effi-

cient. However, [91] is an exception in this category, as it uses ICP-based matching but still

provides an efficient classification, because of its rejection classifier that quickly eliminates

dissimilar samples.

Some recent works select the most discriminative features to improve the recognition

performance. They use feature selection methods such as AdaBoost, a machine learning

technique, [89], a genetic algorithm-based selector [95], sparse representation learning-

based method [15], and learning technique like PCA [10].

In particular, this survey suggests that no existing algorithms can handle all existing

challenges, including facial expressions, pose variations, occlusions, missing data, hair

covering part of the face and background clutter. Incomplete facial data and artifacts are

still major issues in practical application of local surface-based methods. Deep learning
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might be used to boost the various local feature extraction methods, further improving

recognition performance. The latter will be also improved by applying fusion methods,

that use 3D data and texture images. Furthermore, applying powerful feature selection

methods to find a subset of the most discriminant features is another way to improve the

performance of face recognition

2.5 Conclusion

3D face recognition is a vibrant and popular research area in the computer vision and image

processing field. Face recognition falls in the category of non-rigid object recognition,

where handling deformations effectively still needs improvement. Compared to intensity

images, 3D images are more robust against viewpoint and illumination variations, as they

contain the local geometry of the face. The challenges in this field such as computational

cost reduction and 3D data acquisition techniques enhancement require more work in the

future. This survey reviewed recent advances in 3D face recognition, focusing mainly

on methods that are based on local features. A taxonomy of the 3D local feature-based

methods has been presented in this chapter, together with their advantages and limitations.

Properties, including descriptiveness, robustness, compactness and computation efficiency,

are important criteria when comparing the effectiveness and strength of each descriptor.

Future work could include a comparative study of different local feature extractors for

3D face recognition. We hope this survey will further motivate the researchers in this

area to dedicate more consideration and attention to the use of 3D local features for face

recognition.
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Chapter 3

Multimodal Face Recognition using Local

Descriptors

In this chapter, we propose a local descriptor based multimodal approach to improve face

recognition performance. Pre-processing is done to smooth, re-sample, and register data.

The re-sampled three-dimensional (3D) face data are applied to extract novel descriptors

including pyramidal shape index, pyramidal curvedness, pyramidal mean, and Gaussian

curvatures. Proposed pyramidal shape maps are extracted at each level of the Gaussian

pyramid on each point of the 3D data to have 2D matrices as representatives of 3D ge-

ometry information. A local descriptor structural context histogram, which represents the

structure of the image using scale invariant feature transform, is calculated on pyramidal

shape map descriptors and texture image to find matched keypoints in 3D and 2D modality,

respectively. Score-level fusion by means of sum rule is employed to get a final matching

score. Experimental results on the Face Recognition Grand Challenge (FRGCv2) database

illustrate verification rates of 99% and 98.65% at 0.1% false acceptance rate for all ver-

sus all and ROC III experiments, respectively. On Bosphorus database, verification rate of

95.8% for neutral versus all experiment has been achieved.

3.1 Introduction

Hybrid matching is related to the fusion of holistic and feature-based methods or integra-

tion of two modalities, 2D facial images and 3D facial surfaces. Multimodal methods are

supported by many researches to enhance face recognition. In [115], multimodal method

based on the biological vision-based facial description, perceived facial images, with SIFT-
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based matching is presented. Weights learning for score-level fusion is done by a genetic

algorithm. Keypoint detection based on the curvelet transform on textured 3D face surfaces

is employed in [7]. Feature-based multimodal method is presented in [3] based on keypoint

detection and fitting a surface to the neighbourhood of a keypoint using a PCA: principal

component analysis, subspace of features and SIFT matching in 2D domain. Score and

feature level fusion are employed to combine 2D and 3D results. A multimodal method

employing scale space extreme on shape index (SI) and texture images is proposed in [116].

Al-Osaimi et al. [117] described a method for combining texture and shape data in a data

level fusion approach. Optimisation of fusion function is done to enhance learning capabil-

ity. A hybrid feature-based and holistic matching with a 3D spherical face representation

and SIFT descriptor is used in [22]. In addition, fusion-based approaches are employed in

many works to enhance the recognition accuracy. Huang et al. [81] presented a multiscale

extended local binary pattern with SIFT-based matching using hybrid matching scheme.

Fusion of low-level geometrics features, region-based histogram descriptor, extracted from

eye and nose regions with support vector machine as a classifier is proposed in [13]. Score-

level and feature-level schemes have been tested and compared. The studies show that the

combination of texture and depth information increases face recognition accuracy by mak-

ing the algorithms robust against degradation conditions [29]. Accordingly, we propose

a novel approach to improve recognition accuracy through the conjunction of 2D and 3D

face data.

The organization of this chapter is as follows: Section 2 reviews the proposed method;

Section 3 elaborates the pre-processing, region of interest (ROI) extraction, and noise re-

moval; Section 4 presents structural context; Section 5 describes pyramidal shape maps

of 3D scans and feature extraction on the extracted 2D matrices; Section 6 discusses the

matching approach; Section 7 presents experimental results; and Section 8 draws the con-

clusion.
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3.2 Overview of the proposed method

In this chapter, a multimodal local feature-based face recognition algorithm is presented

that performs better than holistic algorithms. The block diagram of the proposed method is

illustrated in figure 3.1. Nose tip detection is done to extract ROI of face image. Noise and

spikes are removed during pre-processing step. Pyramidal shape maps are proposed for 3D

recognition extracted using estimation curvature on triangular mesh. Histogram of struc-

tural context [118] is calculated on SIFT [41] keypoints on texture image and pyramidal

shape maps that works more efficient than SIFT descriptor to find matched keypoints. Geo-

metric attribute based descriptors, local surface patches such as SI, curvature, and so on, are

applied as 3D local features in the literatures and have proven to be successful [60]. The 2D

features, SIFT descriptors, on 3D SI map have been applied for range image recognition in

[40] and for 3D face recognition in [63]. In addition, Huang et al. [64] reported local fea-

ture hybrid matching using SIFT descriptors on SI and local binary patterns with successful

results in face recognition application. However, these methods are sensitive to the noise.

To handle the sensitivity of the existing methods against noise, we propose to extract shape

maps on three different scales of the Gaussian pyramid. The proposed pyramidal shape

map improves shape information in 3D domain and causes to highly repeatable and robust

keypoint identification. In 2D modality, to present more discriminant descriptor than SIFT,

we apply histogram of structural context [118] that is invariant to intra-class variation, il-

lumination, noise, rotation, and view point change. Furthermore, we apply the descriptor

on pyramidal shape maps obtained from range images to compute similarity between two

faces. The numbers of matched keypoints are considered as the matching score in each

2D and 3D face recognition phase and combined by score-level fusion as final score. We

test our proposed algorithm on two very famous and challengeable 3D face databases, the

Face Recognition Grand Challenge (FRGCv2) [16] and Bosphorus [2]. Preliminary results

of this work presented in [65] report only the results for pyramidal SI descriptor on the

FRGCv2 database for ROC III and all versus all experiments according to FRGC program
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Figure 3.1 – Block diagram of the proposed method

[16]. Different shape descriptors including pyramidal curvedness, mean, and Gaussian cur-

vatures have been proposed in this work and extensive experiments are carried out for each

of pyramidal curvedness, mean, and Gaussian curvatures on two databases under different

conditions including facial expression, pose variations, and partial occlusion.

3.3 Pre-processing

The first step in biometrics recognition systems is pre-processing of the data, which is an

essential and unavoidable task. The proposed algorithm carries out the following tasks in

the pre-processing stage.

i. Nose tip detection and cropping

The approach based on [25] is utilized to extract 3D ROI and its corresponding 2D

scan using nose tip detection. The position of smallest depth (maximum z-value) for each

row is detected, and by computing the number of positions for each column a histogram

is created. The peak of the histogram shows the column including the nose tip, and the

position with the maximum z-value in this column is detected as the nose tip. The ROI

of the corresponding 2D image is extracted by considering the corresponding pixel of the
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Figure 3.2 – a) Three-dimensional ROI extraction and its corresponding 2D ROI b) before and
c) after pre-processing

face oval. To crop the facial surface from the 3D data, a sphere with a radius of 100 mm

and with the centre at nose tip is considered, and in recognition only these points are used.

We resample and interpolate 3D data at a uniform square grid in the XY-plane at a 1 mm

resolution and 400×320 grid size.

ii. Noise removal

Spikes created by sensors are eliminated by means of thresholding and interpolating

during the resampling phase. We employ 2D Wiener filtering on the z-component of point

clouds as in [38]. To enhance the extracted 2D face, a histogram equalisation algorithm is

applied. 3D ROI extraction and its corresponding 2D ROI after and before pre-processing

are displayed in figure 3.2.

iii. Orientation correction

Orientation correction is carried out based on the approach presented in [119]. The

symmetry axis of the SI map is used to remove rotation in the plane by positioning the

detected nose tip at the origin.
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3.4 Structural context

A novel approach for face recognition is proposed using structural context [118]. The de-

scriptor is similar to shape context [120] by means of capturing the relationship between

the current and remaining points that can represent the structure of the image. In the pro-

posed system, histogram of structural context is applied on 2D texture image and 3D maps

to find similar subjects. The first step in calculating the structural context is to extract SIFT

[41] keypoints. The Difference of Gaussian (DoG) function, an approximation of the nor-

malized Laplacian, is convolved with the image and sampled. Keypoints are detected as

local minimal or maximal of the DoG function. Unreliable points are removed by thresh-

olding. To compute a histogram of structural context around each keypoint, the approach

presented in [118] is employed. To make a rotation invariant descriptor, structural orienta-

tion is assigned. An orientation histogram is constructed with 36 bins to cover orientations

of the interest point for each 10 degree. According to the orientation of interest points, the

sum of the scale value of the interest points that fall into each bin is the value of the bin.

The peaks in the orientation histogram represent structural orientation. Then, the coordi-

nates of the descriptor and interest point orientation are rotated relative to the structural

orientation. Outlier keypoints are eliminated by calculating mean distance of the keypoint

to other keypoints and comparing it with the mean distance between all keypoint pairs. If

the former one is 30% larger than the later one, the keypoint is outlier and it is eliminated.

After elimination, the structural context is constructed by a 5× 12 histogram as shown in

figure 3.3, the radius of the log-polar to compute the histogram is r/16, r/8, r/4, r/2, r, in

which r is 2 after the scale normalization. Each bin of a log-polar histogram is the sum

of all scale values of the points in the bin. The structural context descriptor is calculated

according to the following equation

hi(k) =
s(pi)

maxs
∑

p j∈bini(k)
s(p j) (3.1)

In the above equation, s(pi) and maxs are the scale value of point pi and the largest

45



Figure 3.3 – a) Sample keypoint P, b) construction of histogram of structural context

scale of the interest points, respectively. The first part of equation 3.1, s(pi)/maxs is used

for normalization. Since structural context orientation is computed based on the orientation

of all the interest points and orientation correction is done in pre-processing, the descriptor

is rotation invariant. Since interest points (DoG) are robust in illumination changes, the

structural context is illumination invariant.

3.5 Pyramidal shape map

In this section, a new descriptor is proposed and calculated on the 3D shape maps of the

face. The normal vector is the unit vector that emerges from the point on 3D space and

is perpendicular to the surface. The plane that contains the normal vector is called a nor-

mal plane. The 3D curve is the intersection of the normal plane and the surface. There

are different curvatures related to the 3D curves in various normal planes. The minimum

and maximum values of these curvatures are principle curvatures denoted as kmin and kmax,

respectively. Shape maps including SI, curvedness, mean, and Gaussian curvatures are cal-
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culated by means of principle curvatures. There are three different approaches to calculate

these curvatures which consist of local fitting, discrete estimation of curvature, and esti-

mation of curvature tensor. In this chapter, we apply the local cubic order fitting method

to extract the shape maps from 3D face data, which has better performance on facial ex-

pression [5]. In this method, local 3D coordinates frame for each vertex p of a triangular

mesh with the origin at p and the normal vector of the vertex np = (nx,ny,nz)
T as z-axis is

determined. Two orthogonal axes, x and y, are chosen in the tangent plane perpendicular to

the normal vector. The average of the normal vectors of the faces adjacent to the vertex is

considered as vertex normal. A cubic polynomial function and its normal are represented in

equations 3.2 and 3.3. The least-square fitting method is used to solve the fitting equations

3.2 and 3.3. To calculate maximum and minimum curvature, eigenvalues of the Weingarten

matrix equation 3.4 are calculated and estimated as principle curvatures.

z(x,y) =
A
2

x2 +Bxy+
C
2

y2 +Dx3 +Ex2y+Fxy2 +Gy3 (3.2)

(zx′zy′−1) = (Ax+By+3Dx2 +2Exy+Fy2 +Bx+Cy+Ex2 +2Fxy+3Gy2−1) (3.3)

W =

∂ 2z(x,y)
∂x2

∂ 2z(x,y)
∂x∂y

∂ 2z(x,y)
∂x∂y

∂ 2z(x,y)
∂y2

 (3.4)

SI [121] which is used to describe local shape topography by calculating curvature

on triangular mesh is defined as 3.5 at each point p from the 3D surface computed using

maximum curvature kmax and minimum curvature kmin, for which (kmax > kmin). The value

of the SI is between 0 and 1.

SI =
1
2
− 1

π
arcttan

(kmax + kmin)

(kmax− kmin)
(3.5)
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Curvedness (C) [121] also calculates local shape topography using the following equa-

tion:

C =

√
kmin

2 + kmax
2

2
(3.6)

The mean of the principle curvatures is called mean curvature (H) [121] and is equal to

H =
kmin + kmax

2
(3.7)

The product of principle curvatures is called Gaussian curvature (K) [121] and is cal-

culated as

K = kmin× kmax (3.8)

Pyramidal shape map is the proposed descriptor extracted from 3D data, which creates

images at several levels of scales. We use the Gaussian pyramid to decompose 3D data

into information at multiple scales, to extract shape map features, and to attenuate noise.

At each level, the size or scale of the image is equal to half of the scale of the previous

level. The representation consists of two basic operations: smoothing, which works using

a sequence of smoothing filters, each of which has twice the radius of the previous one,

and down-sampling that reduces image size by half after each smoothing. In this work,

the shape map operators including SI, C, H, and K are computed at three levels of the

pyramid to capture the whole face and face parts. The shape features at the coarse level of

the Gaussian pyramid capture high strength shape of the face and at the fine level capture

short and low strength shape information or small details of the triangular mesh from 3D

face data. To extract significant information from 3D data, the pyramidal shape map is

calculated as follows:

• The Gaussian pyramid of the ROI of the 3D face data, x, y, and z, is created at three

levels of scales: 1, 0.5, and 0.25 in the sizes of 400×320, 200×160, and 100×80.
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Figure 3.4 – a) 3D shape maps and b) three-level Gaussian pyramid of the SI, C, H, and K
descriptors

Thus, the 400× 320 image size is considered as the original size of the ROI image

and is the fine level of the pyramid. The shape operators (3.5, 3.6, 3.7, and 3.8) are

used at each level to extract the local shape map.

• The shape map images are interpolated into the original size. Therefore, three shape

map descriptors are extracted at the same size.

• All three local shape descriptors are added together. The resulting matrix is a pyrami-

dal shape map feature. The values of the pyramidal shape map are related carefully

to the importance (strengths and shapes) of face structure.

An example of 3D shape maps, including SI, curvedness (C), mean, and Gaussian

curvatures (H and K) are illustrated in figure 3.4a. Three levels of the Gaussian pyramid

of shape map descriptor operators are represented in figure 3.4b. As the first two of the

three levels figures in part b illustrate, SI and curvedness contain more significant features

relative to the second two figures, which are mean and Gaussian curvatures.
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3.5.1 Feature extraction on pyramidal shape maps

Similarity of two faces are measured using structural context descriptor [118] and finding

accurate matched SIFT keypoints. The structural context is calculated on our novel pro-

posed 3D descriptor, pyramidal shape maps. We assume that by occurring a change in

facial expression, some small local areas such as nose and the areas around that change

slightly and keep invariant. In this way, these regions are utilized in 3D face recognition

to handle facial expression variations. Accordingly, our hybrid method, structural context

on pyramidal shape maps, is robust to expression variation. The pyramidal shape maps

provide the larger numbers of SIFT keypoints that enhance matching performance com-

pared with texture face images and shape maps. It guarantees keypoints repeatability and

provides more sufficient distinct features. Keypoints appear at nearly the same location

in two different samples of the same person. According to our experiments, descriptors

extracted from the pyramidal SI have a larger number relative to pyramidal curvedness,

pyramidal mean, and Gaussian curvatures. In our experiments, the average number of the

keypoints obtained from 2D texture face images, before and after histogram equalisation, is

40 and 125. From the SI map and pyramidal SI map, 925 and 1430 keypoints are obtained.

Figure 3.5a shows keypoints extracted from texture image, the SI map, and the pyramidal

SI map. A histogram of structural context descriptor is calculated on each SIFT keypoint

according to [118] and applied to the matching process. A histogram of structural context

descriptor for a sample keypoint P is displayed in figure 3.5b for pyramidal SI and pyrami-

dal curvedness maps. As this figure depicts, the number of keypoints increases by means

of pyramidal shape maps significantly, and our proposed descriptor improves recognition

performance.

3.6 Matching approach

This part consists of two phases: histogram of structural context matching on texture im-

ages and pyramidal shape maps. The number of matched keypoints is considered to be the
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Figure 3.5 – a) Keypoints extracted from the texture images, SI, and pyramidal SI maps and b)
histogram of structural context from the pyramidal shape index and curvedness

matching score at each phase. The final score is calculated by means of score-level fusion.

3.6.1 Texture image

The histogram of structural context for each 2D face image from gallery set is extracted and

saved as template in the 2D database. For each 2D face image from the probe, a histogram

of structural context is extracted and compared with all templates saved in the database to

find the number of matched keypoints as the 2D matching score S′sc using the following

equation:

S′sci j
=

1
2

K

∑
k=1

[
h2Di(k)−h2D j(k)

]2
h2Di(k)+h2D j(k)

(3.9)

where h2Di and h2D j are structural context histograms extracted from 2D images of the

gallery and probe sets and K is the number of histogram bins. Matched keypoints using a
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comparison of structural context for two texture images of the same subject and different

subjects are illustrated in figure 3.6a.

3.6.2 Pyramidal shape map

Histogram of the structural context on the pyramidal shape maps is employed to calculate

the 3D matching score S′sm (number of matched keypoints). To detect similarities between

two 3D face samples, differences between probe and gallery descriptors are calculated

using 3.10 as the 3D matching score S′sm

S′smi j
=

1
2

K

∑
k=1

[
h3Di(k)−h3D j(k)

]2
h3Di(k)+h3D j(k)

(3.10)

where h3Di and h3D j are structural context histograms extracted from pyramidal shape

maps of the gallery and probe sets and K is the number of histogram bins. For example,

matched keypoints for two pyramidal SI maps of the same subject and different subjects are

illustrated in figure 3.6b. Applying a histogram of the structural context of 3D pyramidal

shape maps to extract local information has the advantage of improving matching scores

under degradation conditions including pose, scale, rotation, translation, illumination, and

expression variations. If there is a facial expression, the local areas such as nose, eyes, and

so on that are invariant to expression changes cause our proposed method to be expression

invariant throughout the matching process. In figure 3.6c, the differences between the

numbers of matched keypoints on texture images, the SI map, and the pyramidal SI map

are given. As the figure shows, applying the proposed pyramidal SI map can improve the

matching score.

3.6.3 Score-level fusion

The final matching score from 2D and 3D face data can be fused in different ways. Accord-

ing to [122], the sum rule provides better results than other score fusion rules. In this work,
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the weighted sum based on 3.11 is applied to emphasize the 3D face features using a gener-

alization of the sum rule, as it turns out that the histogram of structural context descriptors

on pyramidal shape maps are more distinctive and reliable than the texture image.

s = kscs′sc + ksms′sm (3.11)

In the above equation, s′sc and s′sm are normalized similarity scores obtained from 2D

and 3D matching, respectively. To normalize scores, min-max normalization is applied to

the scores produced by the 2D and 3D matches. Thus, we shift the minimum and maximum

scores to 0 and 1, respectively, using 3.12. In this equation, for a set of matching scores{
sq
}

, q = 1,2, ,n, the qth element of each vector corresponds to the similarity between the

probe and the qth gallery face and s′q is the normalized score. 2D and 3D matching scores

are normalized to calculate final score s.

s′q =
sq−min
sq−max

(3.12)

As 3.11 shows, the overall similarity of the probe with the gallery is calculated using

a confidence weighted sum rule, and ksc and ksm are the confidences for each individual

similarity measure. To calculate these confidences based on the approach presented in [3],

3.13 is employed and can be conducted offline from the results obtained on training data or

dynamically during online recognition. In this equation, s̄q, min, and min 2 are the mean

value, first, and the second minimum of score vector, respectively.

kq =
s̄q−min

s̄q−min2
(3.13)

3.7 Experimental results

To evaluate the performance of the proposed method, FRGC database [16] that consists of

large subjects with various facial expression and Bosphorus database [2] for more assess-
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ments under expression, pose variations, and partial occlusions are utilized.

3.7.1 Experiments on FRGC database

In this section, the FRGC database [16] is applied to examine the proposed method. Dif-

ferent types of tests are employed to show the effectiveness of the algorithm. The database

consists of FRGCv1 and FRGCv2 sets as a training and validation sets, respectively. Both

sets were collected with a Minolta Vivid 3D scanner. The 3D data is given in a 640×480

grid. Each point in the grid has X, Y, and Z coordinates in millimetres and a valid flag. For

each 3D scan, there is an accompanying 640×480 2D colour image. The first set, FRGCv1

(Spring 2003 session), includes 943 scans of 275 persons. All records are neutral and em-

ployed for training to determine the threshold values in both texture and shape modalities

and confidences in score-level fusion. The second set, FRGCv2, (Fall 2003 and Spring

2004 sessions) is comprised of 4007 scans of 466 persons. The records including neutral

and non-neutral images are applied for the validation phase according to the experimental

protocol in [16]. The implemented system used MATLAB on a computer with an Intel

Core i7 3.60 GHz CPU with 8 GB RAM. Among detected keypoints, some outliers are

eliminated based on the approach presented in Section 5. By testing 1000 random matches,

we could find our multimodal method achieves one full match in an average of 0.35 s.

However, our main goal in this work is more on the verification accuracy, easy implemen-

tation, and robustness compared with the computational time. In the first experiments, from

the validation set (4007 scans), the first sample of each subject with a neutral expression

is considered as a gallery set (466 samples). The remaining scans, 3541 samples, are used

as a probe set and consist of 1944 scans with neutral expression and 1597 scans with non-

neutral expression. A verification result at 0.1% false acceptance rate (FAR) is usually

reported in the literature as a general performance criterion. In shape modality, we evaluate

the performance of the four proposed pyramidal shape descriptors for the neutral versus all

test according to FRGC program [16]. A verification rate at 0.1% FAR is represented for
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each shape descriptor in table 3.1. As the results show, the verification rate for the pyra-

midal SI is equal to 97.76%, which is the best 3D pyramidal shape map descriptor result

compared with pyramidal curvedness, mean, and Gaussian curvatures. Based on this result,

we continue our experiments only for the pyramidal SI as the most powerful 3D descrip-

tor in the next experiments. ROC curves for texture and shape modalities and the results

after score-level fusion for neutral versus neutral, neutral versus non-neutral, and neutral

versus all tests according to FRGC program [16] are shown in figure 3.7a. According to

this figure, at 0.1% FAR, the verification rate for our proposed 3D feature is 99.8% and

97.76% for neutral and all expressions respectively. The multimodal verification rate by

means of scorelevel fusion is 99.9% and 99.3% for probes with neutral and all expressions

respectively. Since the structural context descriptor is invariant against pose, scale, and il-

lumination changes, and the proposed pyramidal SI works on shape information of 3D data

and is invariant relative to expression variations in eyes and nose regions, the combination

of these two descriptors can improve face recognition performance significantly. In the

following experiments, we apply two protocols all versus all and ROC III according to the

FRGC program [16]. In the all versus all verification experiment, all 4007 records are used

as gallery and probe. A 4007× 4007 full similarity matrix is obtained, and self matches

are neglected. In the ROC III verification experiment, the gallery and probe records are

from different sessions. The images taken in Fall 2003 are considered as the gallery set

and the images taken in Spring 2004 form the probe set. Figure 3.7b illustrates the ROC

curves for texture image, pyramidal SI map, and score-level fusion. From ROC curve for

all versus all, the verification rate at 0.1% FAR for multimodal face recognition is 99%.

This rate is 96.52% and 87.3% using the pyramidal SI map and texture image matching

approach. For the ROC III experiment, which is the hardest experiment due to the time

gap between gallery and probe records, the achieved results for verification rate at 0.1%

FAR are 98.65%, 95.12%, and 84.2% for 2D and 3D fusion scores, 3D matching, and 2D

matching, respectively. Tables 3.2 and 3.3 represent a comparison of our proposed method

verification rates with related works. Some of the methods [22, 115, 7, 3, 116, 117] are
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Table 3.1 – Verification rate for neutral versus all at 0.1% FAR for pyramidal shape map de-
scriptors on two different databases

Pyramidal shape map SI% C% H% K%
on FRGCv2 [16] 97.76 94.54 91.15 88.73
on Bosphorus [2] 93.46 91.21 89.93 85.24

multimodal approaches that use 2D and 3D face data. Approaches presented in [81, 13]

employ hybrid matching and feature- and score-level fusion, respectively. Compared with

state-of-the-art, our proposed approach presents a higher verification rate at FAR 0.1% in

all experiments.

For the identification experiment, the cumulative match characteristics curve is given

in figure 3.8 for neutral versus all experiment. In this experiment, the neutral records are

considered as the gallery and all of the records that are a combination of neutral and non-

neutral expressions make up the probe set. The proposed multimodal approach has a 96.9%

rank-1 identification rate and a 95.85% individual rate for 3D matching. In table 3.4, we

compare the rank-1 identification rate for the neutral versus neutral and neutral versus all

experiments with the state-of-the-art based on the results on FRGC database reported in

the literature. The performance of our system has a higher rate for neutral versus neutral

and non-neutral experiments. Although, the result for neutral versus all experiment is not

the best in the table, but we can still state that the proposed algorithm achieves a high

identification rate among similar methods.

3.7.2 Experiments on Bosphorus database

To further validate the effectiveness of the proposed method under degradation conditions

including expression, pose variations, and partial occlusions, in this section the Bosphorus

database [2] is employed. It contains 34 facial expressions (action units and six emotions),

13 pose variations (yaw, pitch, and cross-rotations), and 4 occlusions (eye with hand, mouth

with hand, hair, and eyeglasses). It consists of 4666 records from 105 subjects. The 3D
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Figure 3.7 – ROC curves for texture and shape modalities and the results after score-level
fusion a) Neutral vs Neutral, Neutral vs Non-neutral, and Neutral vs All experiments, b) All vs
All, and ROC III experiments

point clouds were acquired with a structured-light technique, the Inspeck Mega Capturor

II 3D scanner. In the experiments, we consider two different tests. First, the samples that
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Figure 3.8 – Cumulative match characteristics curve

Table 3.2 – VR for Neutral versus neutral, Neutral versus nonneutral, and Neutral versus all at
FAR = 0.1% on FRGCv2 database

Algorithm Modality Neutral versus Neutral versus Neutral versus
neutral,% non-neutral,% all,%

[22]2007 2D+3D face 99.74 98.31 99.3
(feature based and holistic)

[115]2011 2D+3D face 99.9 97.1 98.9
(optimized weighted sum fusion)

[7]2015 2D+3D face 99.9 98 99.2
(curvelet local features)

[3]2008 2D+3D face 99.9 96.6 98.6
(keypoints and local features)

[116]2011 2D+3D face 99.5 92.9 96.3
(resolution invariant local feature based)

[117]2012 2D+3D face 99.83 97.93 −
(optimised data level fusion)

[81]2012 3D face (hybrid matching, 99.6 97.2 98.4
local and holistic analysis)

[13]2013 3D face (fusion of local − 97.6 −
low-level features)

this work 2D+3D face (local descriptors, 99.9 98.5 99.3
score-level fusion)

are nearly frontal consists of 3301 samples with facial expression or partial occlusion and

second, all 4666 samples including pose variations are employed. In both experiments,
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Table 3.3 – VR for All versus all and ROCIII at FAR = 0.1% on FRGCv2 database

Algorithm Modality All versus all,% ROCIII,%
[7]2015 2D+3D face - 97.8(FAR=0.1)

(curvelet local features)
[111]2015 3D face, SI - 95
[6]2014 3D face, keypoints - 86.6
[81]2012 3D face (hybrid matching, 94.2 95

local and holistic analysis)
[36]2010 3D face (local shape 98 98.1

difference boosting)
[119]2010 3D face 85.6 -

(curvature descriptors)
[108]2008 3D face 94.8 93.2

(fusion of results)
[4]2013 3D face, keypints 79 77.2

(meshSIFT)
[22]2007 2D+3D face - 86.6

(feature based and holistic)
this work 2D+3D face (local descriptors, 99 98.65

score-level fusion)

Table 3.4 – Comparison of rank-1 identification rate on FRGCv2 database

Algorithm Modality Neutral versus Neutral versus
neutral,% all,%

[22]2007 2D+3D face 99.02 96.2
(feature based and holistic)

[115]2011 2D+3D face 99.6 98.0
(optimized weighted sum fusion)

[7]2015 2D+3D face 99.4 97.1
(curvelet local features)

[3]2008 2D+3D face 99.4 96.1
(keypoints and local features)

[116]2011 2D+3D face 99.4 96.2
(resolution invariant local feature based)

[117]2012 2D+3D face 99.17 97.4
(optimized data level fusion)

[81]2012 3D face (hybrid matching, 99.2 97.6
local and holistic analysis)

[70]2015 3D face (feature level fusion) − 96.3
this work 2D+3D face (local descriptors, 99.6 96.9

score-level fusion)

a gallery set is constructed using the first neutral facial scan and the probe set is made
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using the remaining samples. The verification rate of 3D modality on Bosphorus database

at 0.1% FAR for each shape descriptor is shown in table 3.1 which the highest rate is for

pyramidal SI map. Using this map, our multimodal method achieved the verification rate

VR = 98.4% at FAR = 0.1% and rank-1 recognition rate RR = 97.2% for the first test and

VR = 95.8% and RR = 94.5% for the second test. These results show that pose variation

can affect the proposed method performance. Verification rate at FAR = 0.1% for second

test compared with the multimodal approach [7] with VR= 91%, is 4.8% higher. The rank-

1 recognition rate for the second test compared with feature-based fusion method [5] with

RR = 94.1% is 0.4% higher. The fusion-based method in [70] achieved RR = 96.56% with

high computational cost for the second test. For the first test, the rank-1 recognition rate of

our method is 0.2% higher than the method [81] with RR = 97%. The results show that our

algorithm achieves high performance on the Bosphorus database under facial expression

and occlusion.

3.8 Conclusion

In this chapter, we proposed a novel local descriptor based multimodal algorithm for face

recognition. Pyramidal shape map descriptors were proposed and applied to extract dis-

criminative features from 3D data. Histograms of structural context were used in both 2D

and 3D matching processes. Score-level fusion improves the final score efficiently. The

proposed method is scale, translation, rotation, and expression invariant due to the use of

SIFT keypoints, structural context, and pyramidal shape map descriptors. Experimental

results on the most challenging 3D databases, FRGCv2 and Bosphorus illustrate high per-

formance of the proposed approach. In the future work, feature extraction from 3D data

without 2D feature support that is more robust against facial challenges will be studied.
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Chapter 4

Multiscale Depth Local Derivative Pattern for

Sparse Representation Based 3D Face

Recognition

3D face recognition is a popular research area due to its vast application in biometrics

and security. Local feature-based methods gain importance in the recent years for their

robustness under degradation conditions. In this chapter, a novel high-order local pattern

descriptor in combination with sparse representation based classifier (SRC) is proposed

for expression robust 3D face recognition. 3D point clouds are converted to depth maps

after pre-processing. Multidirectional derivatives are applied in spatial space to encode

the depth maps based on the local derivative pattern (LDP) scheme. Directional pattern

features are calculated according to local derivative variations. Since LDP computes spatial

relationship of neighbors in a local region, it extracts distinct information from the depth

map. Multiscale depth-LDP is presented as a novel descriptor for 3D face recognition.

The descriptor is employed along with the SRC to increase the range data distinctiveness.

A histogram on the derivative pattern creates a spatial feature descriptor that represents

the distinctive micro-patterns from 3D data. We evaluate the proposed algorithm on two

famous 3D face databases, FRGCv2 and Bosphorus. The experimental results demonstrate

that the proposed approach achieves acceptable performance under facial expression.
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4.1 Introduction

For many years 2D face recognition has been studied among researchers as an important

and popular biometrics. However, degradation conditions such as illumination and pose

variations have influenced on 2D face recognition system performance. To overcome these

limitations, 3D face data that contains spatial information has attracted researchers atten-

tion.

Applying efficient descriptors in 2D face recognition on depth images helps researchers

to achieve high performance in 3D dimensionality like Gabor wavelet [123] and LBP [64].

Huang et al. [64] proposed feature-based method using shape index (SI) and local binary

pattern (LBP) for 3D facial surface representation. LBP is considered as a simple and most

efficient local 2D face descriptor that is first proposed by Ojala et al. [42]. Recently, LBP

has been applied by researchers as an effective local descriptor in 3D face area. Multi-

scale extended LBP [81] that is a facial surface descriptor extracts local shape changes and

applies SIFT-based matching for face recognition. In [98], depth and normal information

of 3D data are extracted and encoded using LBP to create a face descriptor. The surface

normal that determines a surface orientation at each point and includes local shape infor-

mation also is applied by Li et al. [15] for feature-based 3D face recognition. Local normal

pattern inspired by LBP is used to describe shape information and extended as a multiscale

and multicomponent descriptor to improve the recognition system performance. To handle

facial expression, they applied a weighted sparse representation-based classifier (W-SRC).

The whole face is divided into local patches and local normal-based features are extracted

and used in the training step to learn weights. The W-SRC is also employed in [124] along

with region-based extended LBP descriptor for 3D face recognition.

Sparse representation [125] which is a subspace algorithm can be used as a feature

representation method to extract more distinct feature and dimension reduction for depth

images. The sparse regression model is proposed in [126] to embed the facial descrip-

tors into the low dimensional matrix and handle occlusions and hair covering. In [102],
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Figure 4.1 – The framework of the proposed method

authors apply sparse representation framework in combination with feature pooling and

ranking scheme for low-level features. A local descriptor called local shape pattern (LSP)

is presented by Huang et al. [127] to extract both differential structure and orientation

information from 3D face data. They applied SRC to classify the local shape features.

In this chapter, we propose multiscale depth local derivative pattern (MsDLDP) for 3D

face recognition. Unlike LBP that is a non-directional first-order local pattern, LDP cap-

tures the change of derivative directions among local neighbors. High-order LDP performs

better results for extracting more discriminative features compared to LBP. In our proposed

algorithm, we apply learning-based approach using sparse representation (SR) to select

prominent features and boost recognition rate. Similar to LBP, LDP is also modeled using

a histogram of the extracted micro patterns. In the proposed approach, the histogram of

MsDLDP is fed into SR classifier to do recognition task. The overview of the proposed

approach has been presented in figure 4.1.

The remaining part of this work is presented as follows: in section 2, pre-processing of

3D face data is explained. Section 3 provides the proposed method that consists of feature

extraction, MsDLDP descriptor, and classification using SR. Experimental results includ-

ing the proposed algorithm performance and comparison with state-of-the-art is presented

in section 4, and section 5 describes conclusion and future work.
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Figure 4.2 – Illustration of samples of the face pre-processing on the FRGCv2 database

4.2 Pre-processing

The output of the 3D capturing device is noisy and needs to be smoothed. In the pre-

processing part, the 3D face scans are processed to smooth noise, remove spikes, and fill

holes [1]. The region of interest (ROI) extraction is next part that is performed using nose

tip detection.

In this chapter, we apply 3D face pre-processing tool developed by Szepticki et al.

[128]. The median filter is used to remove spikes and noises. Hole filling is done using the

square surface fitting. The curvature-based method is employed to detect nose tip and ROI

extraction.

We apply iterative closest point (ICP) algorithm [129] to correct pose by considering

five frontal scans with neutral expression from each database as models. We resize each

pre-processed range image into 120× 96 for next steps. To handle facial expression, we

consider the rigid (nose) and semi-rigid (eye-forehead and cheek) areas and exclude the

most impressed area by the expression, non-rigid area (mouth). The pre-processed faces

from FRGCv2 database [16] have been shown in figure 4.2.
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4.3 Proposed method

4.3.1 Multiscale depth local derivative pattern descriptor

Depth-LDP descriptor

Local derivative pattern on depth map that is a high-order multidirectional derivative texture

pattern descriptor is proposed in this section for 3D face. LDP first is introduced by Zhang

et al. as a texture pattern descriptor for 2D images [130]. It can be considered as a denoising

function for its special binarization function.

To calculate LDP for a depth image D(P), the first-order derivative D′(P) for different

directions including 0o,45o,90o, and 135o is calculated using the following equations

D′0o(P0) = D(P0)−D(P4) (4.1)

D′45o(P0) = D(P0)−D(P3) (4.2)

D′90o(P0) = D(P0)−D(P2) (4.3)

D′135o(P0) = D(P0)−D(P1) (4.4)

where, P0 is a point in D(P) and Pi, i = 1, ...,8 is the neighboring point around the P0 as

figure 4.3 shows.

To compute second-order directional LDP with direction α at P0, the following equation

is applied.

DLDP2
α(P0) = ( f (D′α(P0),D′α(P1)), f (D′α(P0),D′α(P2))

, ..., f (D′α(P0),D′α(P8))) (4.5)

A binary coding function f is used to determine local pattern transition types. The

consistency of two neighboring derivatives is described using f defined as
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f (D′α(P0),D′α(Pi)) =

0, if D′α(P0).D′α(Pi)> 0

1, if D′α(P0).D′α(Pi)≤ 0
(4.6)

The encoding system is applied on the binary derivative calculations to make the integer

value of the LDP descriptor. In our proposed method, according to above explanation, each

pixel in depth map is assigned an integer value at specific direction α . Each depth map is

divided into some local patches. The statistical distribution of the calculated features in the

local regions is computed and presented using a histogram. The length of each histogram

is 2m which m is the number of the neighbors around the center point P0. The calculated

histograms from each local patch are concatenated together to make the histogram in each

direction. Final descriptor is created using histogram concatenation of different directions

(see figure 4.4).

Multiscale approach

Like LBP, LDP can be extended with different local neighborhood sizes for different scales.

A set of sampling points around the central point P0 is considered as the local neighborhood.

The arrangement of the sampling points is defined using a various number of the points

and radius (P,R). Figure 4.3 illustrates different LDP neighborhoods. MsLDP is defined

by changing the value of radius R. This scheme for LBP, MsLBP, firstly is proposed by

Ojala et al. for texture classification [42] and applied for 2D face recognition by Chan et al.

[131]. Later, Huang et al. [64] applied it for 3D face recognition. In this work, we propose a

multiscale strategy for depth-LDP calculation that is quite a different and new presentation

of LDP for 3D face recognition. The local derivative pattern at different radiuses computes

local shape variations and extracts highlight details.
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Figure 4.3 – Eight neighborhood around P0 with different R, (a) R=1, (b) R=2, (c) R=3

nth-order MsDLDP descriptor

The higher-order derivatives of the MsDLDP is computed by applying equations 4.1 through

4.4 on MsDLDP iteratively and using equation 4.6 for binarization. In this way, the nth-

order derivative for our proposed descriptor is calculated as follows:

MsDLDPn
α(P0) = f (Dn−1

α,R (P0),Dn−1
α,R (Pi)), i = 1, ...,8 (4.7)

where R is the different values for the radius to generate the multiscale descriptor.

4.3.2 Sparse Representation-based classifier

The sparse representation classifier firstly introduced by Wright et al. [125] for 2D face

recognition. They consider the problem of recognizing of the frontal faces under varying

expression and lighting which can be addressed using sparse signal representation. L1-

minimization is used to compute a sparse representation as a general classification algo-

rithm. This framework provides the insight that if the sparsity could be harnessed properly,

the performance of the classification would be improved. Base on this representation, for

a frontal test sample, the sparsity of the coefficient vector is high except for the same class

samples. These coefficients for the ones from other classes are zero or close to zero.

We apply the above framework for 3D face scans by considering the probe face as a

68



Figure 4.4 – Construction of depth-LDP descriptor

sparse linear combination of gallery samples. Given ni training 3D face samples of the

class i, Ai = [vi,1,vi,2, ...,vi,ni] ∈ Rm×ni , any probe sample from the same class is defined

using the linear relation of the training samples in class i based on the following equation

y = βi,1vi,1 +βi,2vi,2 + ...+βi,nivi,ni (4.8)

where βi, j ∈ R, j = 1,2, ...,ni. A new matrix A is defined for all training samples by con-

catenating of the n samples from i different 3D face classes. In this way, the linear repre-

sentation of the probe sample can be defined as follows:
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y = Ax0 ∈ Rm,

x0 = [0, ...,0,βi,1,βi,2, ...,βi,ni,0, ...,0]
T ∈ Rn (4.9)

where x0 is a coefficient vector with entries equal to zero or close to zero except those

related to the subject of y. It is obvious that when m > n, the system based on the equa-

tion 4.9 is over-determined and the vector x0 can easily be found as its unique solution.

However, in 3D face recognition application, it is worth noting that for each subject there

is only one sample in the gallery as training sample which is based on the most common

setting in 3D face recognition systems. Consequently, in 3D face recognition applications

the system y = Ax0 is typically under-determined that its solution is not unique. For the

frontally aligned faces, the expression variation problem is another challenge that we han-

dle it in our proposed method by considering the rigid, and semi-rigid parts of the face as

it is explained in section 2. To solve the sparse vector x the following solution using the

minimum l0−norm according to [125] is applied as follows:

x̂0 = argmin||x||0 s.t.||Ax− y||2 ≤ ε (4.10)

where ε ∈ Rn and represents a deviation vector. For sparse x0 the above equation can

be solved using solving the problem of L1-Norm [125] and reconstruction residuals ri(y)

calculation as follows:

x̂2 = argmin||x||2 s.t.||Ax− y||2 ≤ ε (4.11)

ri(y) = ||y−Aδi(x̂1)||22 (4.12)
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where δi represents a characteristic function that is used to select the coefficient related

to the ith sample of the gallery. Consequently, the identity of the probe y is determined with

the index of minimal ri(y).

4.4 Experimental results

In this section, we evaluate the proposed approach that consists of a new facial local de-

scriptor along with sparse representation classifier. The following databases are used for

the comprehensive evaluation of the proposed method under expression variations.

4.4.1 FRGC DB

The FRGCv2 [16] database consists of 4007 texture and 3D face scans under different

facial expression from 466 persons. It is the largest set of the 3D face database that has

been used in literature as the benchmark for 3D face recognition algorithms evaluation. The

face acquisition system is the Minolta Vivid 900 scanner. The face scans are in controlled

lighting and pose and they are under facial expressions such as happiness and surprise. In

the experiments, the gallery consists of 3D face scans with neutral expression from each

subject that are 466 samples to make the dictionary A of the SRC after applying MsDLDP

descriptor of these samples. The remaining samples including 3541 3D face scans make

up probe samples, y in equation 4.8.

4.4.2 Bosphorus DB

To further evaluation of the proposed algorithm under facial expression variations, in this

section, we apply the Bosphorus database [2] that compromises of 4666 texture and 3D

records from 105 persons. This database contains 34 facial expressions including action

units and 6 emotions, 13 different pose variations that consist of the pitch, yaw, and cross

rotations, and 4 occlusions including hair, eye glasses, eye, and mouth with the hand. The
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hardware device used to capture 3D face scans is the Inspeck Mega Capturor II 3D scanner.

For the experiments using the Bosphorus database, we apply same approach for the pre-

processing used for the FRGC database. In this experiment, we consider nearly frontal

faces with expression changes and partial occlusions. These scans consist of 3301 samples.

A gallery set (105 scans) is made up using the first sample with the neutral expression and

the remaining samples make up the probe set (3196 scans).

4.4.3 Experiments

To compare different orders of the proposed multiscale local descriptor, the recognition

rate of different orders using SRC has been reported for neutral vs. all experiment based

on the experimental protocols presented in [16]. Increasing order of the local pattern can

improve the recognition results for second and third-order descriptors based on the results

presented in figure 4.5. Since the accuracy of the recognition system using fourth-order

has been decreased, it means that not only increasing the order to four does not add more

information but also causes to convert the facial image to the noisy data and destroy the

recognition rate.

In the next experiment, we evaluate the effectiveness of sparse representation-based

classifier. The Chi-square distance is used in the literature as a popular similarity measure-

ment for histogram-based descriptors like LBP, LDP, and etc.[132]. To show the effective-

ness of sparse-based classifier, we compare the recognition rate of SRC and Chi-square

based classifier using the same facial descriptor with different orders. Tables 4.1 and 4.2

present the rank-one recognition rate (RR1) for neutral vs. all experiment on FRGCv2

and Bosphorus databases respectively. From the tables, it is obvious that the SRC outper-

forms the performance of Chi-square classifier and shows applying sparse-based classifier

is effective along with local derivative pattern descriptor.

To evaluate the effectiveness of the proposed approach under facial expression, we test

our algorithm on two sets from FRGCv2 database by dividing the probe samples into two
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Figure 4.5 – Comparison of rank-one recognition rate of MsDLDP descriptor on FRGCv2 and
Bosphorus databases for different orders

Table 4.1 – The comparison of RR1 for two different classifiers on the FRGCv2 database

Local descriptors RR1 (Chi-square) RR1 (SR)
MsLBP 75.34% 83.16%

MsDLDP(2nd-order) 82.7% 94.81%
MsDLDP(3rd-order) 88.46% 98.3%
MsDLDP(4th-order) 83.6% 95.2%

Table 4.2 – The comparison of RR1 for two different classifiers on the Bosphorus database

Local descriptors RR1 (Chi-square) RR1 (SR)
MsLBP 72.8% 80.06%

MsDLDP(2nd-order) 79.1% 92.54%
MsDLDP(3rd-order) 85.9% 97.45%
MsDLDP(4th-order) 82.41% 94.87%

different sets including neutral and non-neutral facial scans. In this experiment, we consider

the third-order descriptor that is the most effective one based on the experimental results.

Table 4.3 reports the performance of the system under facial expression and compares the

obtained results with the state-of-the-art. As the results illustrate our proposed method is

robust under expression by applying the local derivative pattern in the multiscale scheme

that extracts discriminant enough information and as we exclude the non-rigid parts in the

pre-processing step.
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Table 4.3 – The performance of the proposed method under facial expression on the FRGCv2
database

Methods RR1 (Neutral) RR1 (Non-neutral)
Huang et al.[64] 99.1% 92.5%

Li et al.[15] 98% 94.2%
MsDLDP(3rd-order)+SRC 99.3% 97.1%

Table 4.4 – The performance comparison with LBP-based methods on the FRGCv2 and
Bosphorus databases

Methods RR1 RR1
(FRGCv2 DB) (Bosphorus DB)

Huang et al.2012[81] 97.6% 97%
Tang et al.2013[98] 94.89% -

Li et al.2014[15] 96.3% 95.4%
Lv et al.2015[124] 97.8% -

This work 98.3% 97.45%

In the next experiment, the proposed approach is compared with the state-of-the-art 3D

face recognition approaches that belong to LBP-based category method. We evaluate our

algorithm on both databases for neutral vs. all and compare with other methods under the

same experimental conditions. The performance comparison is reported in table 4.4. From

the results presented in the table, we can find that our proposed descriptor in combination

with sparse representation-based classifier outperforms state-of-the-art. Among different

local pattern-based descriptor in the table, the local derivative pattern can extract more

distinct features since it works based on the spatial relationship of the neighbor points in

the local region.

4.5 Conclusion

In this chapter, a new facial descriptor called high-order multiscale depth local derivative

pattern (MsDLDP) has been proposed. The descriptor contains more spatial information

compared to local binary pattern (LBP), since it encodes the various distinct spatial relation-

ship in a local region. The proposed multiscale strategy provides more discriminative in-
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formation and represents local shape features more comprehensively. In addition, to select

most distinct features and improve recognition performance sparse representation-based

classifier has been employed. The experimental results illustrate that the SRC is more effi-

cient than distance-based classifier. The algorithm can handle expression variations prop-

erly since we exclude the expression sensitive non-rigid areas in the pre-processing step.

The presented algorithm is robust under facial expression for aligned nearly frontal faces.

However, it is sensitive to pose variations.

In the future, we will extend our proposed descriptor on different shape maps and Gabor

features. The weighted classifier to handle expression is another research direction that we

will work on it to apply the whole face including non-rigid areas. Also, working on the

recognition system robustness under pose variations is another plan to extend our work to

face with this challenge.
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Chapter 5

Weighted Extreme Sparse Classifier and Local

Normal Derivative Pattern for 3D Face

Recognition

A novel weighted hybrid classifier and high-order local normal derivative pattern descriptor

is proposed for 3D face recognition. Local derivative pattern captures detailed information

based on local derivative variation in different directions. LDP is computed on three normal

maps in x, y, and z directions and different scales. Surface normal captures the orientation

of a surface at each point of 3D data. Compared to depth, more informative local shape

information is extracted using surface normal. The nth-order LDP on the surface normal

is proposed to encode more detailed features from (n - 1)th-order local derivative direc-

tion variations. An extreme learning machine-based autoencoder using multilayer network

structure is employed to select more discriminant features and provide faster training speed.

A weighted hybrid framework is proposed to handle facial challenges by a combination of

ELM and sparse representation classifier. The speed advantage of ELM and the accu-

racy advantage of SRC in a weighted scheme is used to enhance the performance of the

recognition system. Experimental results on four famous 3D face databases illustrate the

generalization and effectiveness of the proposed method in both computational cost and

recognition accuracy.
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5.1 Introduction

Generally, there are two critical factors related to any face recognition system. First, facial

feature extraction which needs to be not sensitive under various challenges and distinc-

tive for different subjects. Second, the design of a classifier with distinguishing capability

between genuine and imposter samples.

In this work, we propose a novel local derivative descriptor to robustly recognize per-

son’s identity. There are some characteristics for an effective descriptor including high

ability to differentiate between classes, low intraclass variations, and low computational

complexity. Pose correction is performed using rigid-ICP [133] algorithm to extract pose

invariant features. However, under extreme pose variation, the feature extraction may fail

due to self-occlusion. To overcome the mentioned problem where some parts of the face

are not visible, we propose a weighted hybrid classifier which combines sparse representa-

tion and extreme learning machine as a powerful classifier to manage noisy and incomplete

data with fast learning speed.

The main contributions of this work are as follows:

A high-order descriptor called multiscale local normal derivative pattern, MsLNDP,

is proposed which is able to robustly represent facial images under expression and pose

variation. The proposed descriptor works on surface normals in x, y, and z directions and

applies score level fusion in a multidirection scheme for a final decision. An ELM-based

dimension reduction method is employed to extract distinct efficient features. A learning-

based framework is employed to compute local patches weights of 3D facial surfaces to

make discriminant features that are robust under facial challenges. A novel hybrid classifier

called weighted extreme sparse classifier, WESC, is proposed which consists of two steps:

first, learning of an ELM network and adopting a discriminant criteria to decide about ELM

output reliability is performed. Second, in the case of unreliable output, the test image is

fed into sparse representation classifier. By extracting sub-dictionary from ELM output the

computational cost of the SRC can be reduced. To the best of our knowledge, no high-order
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local pattern has been applied for 3D face representation and the combination of ELM and

SR is the first attempt in the literature to recognize the 3D face.

5.1.1 Local Feature-based Methods

Face recognition system consists of different modules that one of them is feature extraction.

It has an important role to handle degradation conditions and improve system efficiency.

Feature extractors are divided into two different categories: global and local features [1].

There are several reasons that make local features more promising than global ones includ-

ing their robustness under facial expression, occlusion, and missing parts [29]. A compre-

hensive literature survey on local feature methods for 3D face recognition can be found in

[23]. A summary of local feature methods categorization is shown in figure 5.1. As the fig-

ure illustrates local features are divided into three different categories consist of keypoints,

curves, and local surface features.

3D keypoints are computed using geometrical information of the surface to define shape

saliency [67]. Since these methods use a large number of interest points it causes to increase

computational complexity. One of the first methods for 3D keypoints is proposed by Mian

et al. [3] using principle component analysis and scale invariant feature transform. Some

methods extract keypoints directly from mesh data to handle large pose variations or occlu-

sions like meshSIFT [4], meshDoG [6], and meshCurvelet [7]. Some of them are applied

to different facial maps. For instance, SIFT-like keypoints on curvature maps using hybrid

scheme have been proposed in [66]. Landmarks are another kind of keypoints extracted

based on the anatomical studies of the face. Their main disadvantage is their sparsity.

Curves contain rich geometrical information by capturing shape features from different

parts of the 3D face. Compared with keypoints, curves present less sparse features from

the facial surface. They are divided into contours such as level curves including iso-depth

[9] and iso-geodesic curves [82] and profiles like radial curves [10]. Nose tip is used as a

reference point in most of the curve-based methods. Since nose region is rigid, these meth-
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Figure 5.1 – Local feature methods categorization

ods can handle facial expression effectively. Correct nose tip detection can be influenced

by hair covering, large pose variation, and missing data. Consequently, exact curve extrac-

tion and then system performance can be affected. Recently, nasal patches and curves have

been applied in [95] for expression robust 3D face recognition. Most of the methods in this

category have been proposed to handle facial expression [23].

Local geometric information is extracted from different patches or regions of the facial

surface. Consequently, they can handle facial expression effectively. Local surface meth-

ods are divided into LBP-based, geometric features, and other methods [23]. LBP is one

of the most effective local surface patterns which is initially introduced by Ojala et al. [42]

as a texture descriptor. It has been applied in fusion scheme with intensity image [96] for
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3D+2D based face recognition, then used for 3D face recognition such as 3DLBP [97],

multiscale extended LBP [81], local normal pattern [15], and mesh-LBP [12]. Low-level

geometric features which consist of distances and angles between 3D mesh vertices have

been proposed by Lei et al. [13]. Covariance matrices of descriptors [103] to compute

spatial and geometric properties of a region is another example for this category. These ge-

ometric features-based algorithms are not able to handle occlusion and missing data. Since

the local features inspired by LBP demonstrate efficient performance on 3D face recog-

nition [15], [81], [12] in terms of competitive performance and computational efficiency,

we propose a new descriptor by encoding spatial relationship in a local region for different

directions.

5.1.2 ELM-based Methods

One of the most efficient machine learning algorithms for pattern recognition and multi-

class classification is the extreme learning machine. Compared to support vector machine,

ELM needs milder optimization constraints, that improves learning speed with consider-

able performance [134]. 2D face recognition based on ELM has been discussed in many

types of research such as [135, 136, 137, 138]. The basic and regularized ELM are adopted

for face recognition in [135]. ELM is employed by Choi et al. [136] to learn face local

patches sequentially. Basic ELM also is used in [137] with tensor subspace analysis for

face representation. Baradarani et al. [138] apply ELM for face recognition to solve short-

coming of conventional methods like SVM and neural network including slow learning

speed and poor computational scalability.

5.1.3 Sparse-based Methods

Sparse representation classifier has shown encouraging results in image classification [139,

140]. It was proposed by Wright et al. [125] for 2D face recognition under expression,

occlusion, and illumination. Sparse representation coefficients of a query sample are es-
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timated using a dictionary whose basis atoms are features extracted from gallery samples.

There are several advantages to the methods based on the sparse representation. Finding

the only one optimal matching by solving L-norm minimization problem is effective for

face recognition applications. Since SR applied error separation property, the presence of

some irrelevant features can not affect the system performance. However, it only causes

to increase computational cost. In the SR framework, the number of persons in the gallery

will enhance the sparsity and will not destroy the performance like the conventional meth-

ods. In this way, it is good for 3D face recognition in which there is one sample per person

in the gallery. SR has been applied to geometrical features after feature ranking based on

the fisher linear discriminant analysis in [141] for 3D face recognition. It also is employed

to construct a patch-based point correspondence model of 3D faces [142] and to analyze

feature representation [126]. Moreover, SRC is used to classify local shape patterns by

Huang et al. [127]. SR classification method has been applied to local patterns extracted

from depth map in [143]. To handle facial expression non-rigid regions of the face that are

very sensitive under expression variations are excluded. Spherical sparse representation is

proposed in [144] for dimension reduction on depth images for 3D face recognition. Face

matching is done using the sparse comparison of facial features in [90]. SR framework on

3D faces is employed in [102] using low-level geometric features after feature pooling and

ranking. Although SR presents superior robustness to occlusions, it cannot handle facial

expression directly. Facial expression may cover entire facial area, whatever occlusion only

occur some parts of the face. Weighted SR classifier is proposed by Li et al. [15] to handle

facial expression variations using local normal histograms. However, they did not address

the other challenges related to the recognition system.

According to the simple implementation, high learning speed and good generalization

performance of the ELM and the efficiency of SRC in term of accuracy we apply a hybrid

scheme on local features for 3D face recognition to handle various facial challenges. To the

best of our knowledge, this approach is the first research on 3D face recognition that makes

sub-dictionary for sparse representation based on the results of ELM method to improve
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the recognition system accuracy and computational cost.

The rest of this chapter is organized as follows. Section 2 provides details on the pro-

posed MsLNDP descriptor. The proposed weighted hybrid classifier, WESC, is described

in section 3. Section 4 presents the experimental setting and recognition results to verify

the efficiency and effectiveness of the proposed algorithm, while section 5 concludes this

work.

5.2 Proposed descriptor

We propose a novel feature extraction on surface normals that provides more distinct in-

formation compared to the depth map. This work significantly extends our previous work

[145] in which local derivative pattern on normal components was extracted and matched

using a simple histogram intersection to handle only facial expression. However, in this

chapter, we improve the distinctiveness of the descriptor by using multiscale scheme and

auto-encoder for effective feature selection.

5.2.1 Surface Normal

This work is inspired by recent algorithms [38, 95, 15] in which surface normals have been

applied for 3D face recognition. For a set of n points P = {p1, p2, ..., pn} of 3D point cloud

pi ∈ R3, the data matrix is P = [p1, p2, ..., pn]
T where pi = [pix, piy, piz]

T based on the 3D

coordinates of the points. A normal vector ni = [nix,niy,niz]
T is defined for every point pi

using a set of k neighbor points Qi = {qi1,qi2, ...,qik} , qi j ∈ P, qi j 6= pi. The neighbor

matrix Qi and the augmented one Q+
i including all neighbors and the central point pi are

defined as follows

Qi = [qi1,qi2, ...,qik]
T ,Q+

i = [pi,qi1,qi2, ...,qik]
T (5.1)
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Normal estimation approaches are divided into optimization and averaging method [146].

In this work, we adopt optimization method since it can be applied to both 3D point clouds

and mesh 3D data types [15]. In this method, normal vector ni is calculated by solving

the optimization problem minA(pi,Qi,ni) where A is a cost function to penalize a certain

criteria which can be the distance of points to a local plane or the angle between normal

and tangential vectors. (see figure 5.2). Based on the normal estimation, each 3D range

image P with m× n× 3 data matrix is defined by three normal components in x, y, and z

direction as follows

N(P) =
[
nx

jk,n
y
jk,n

z
jk

]
,

Nx = nx
jk,Ny = ny

jk,Nz = nz
jk,

1≤ j ≤ m,1≤ k ≤ n (5.2)

where ‖(nx
jk,n

y
jk,n

z
jk)‖2 = 1.

For comparison between depth map and three normal components, figure 5.2 shows

some samples from same and different subjects of face recognition grand challenge, FRGC

database [16]. As it is obvious, normal components contain more information compared to

the depth image.

5.2.2 Multiscale local normal derivative pattern

In this section, LDP is introduced and adopted on three normal components and depth map

to create a novel descriptor in 3D. LDP first proposed by Zhang et al. [130] for 2D face

recognition. Inspired by LBP as a gray-scale invariant texture descriptor, LDP works on

high-order derivative variations. To compute LBP, a 3× 3 neighborhood of each pixel is

considered. The threshold function is applied to each central point and its neighbors (see
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Figure 5.2 – Surface normal components for same subjects (first and second column) and
different subjects (other columns) on FRGCv2, depth map,normal x, normal y, normal z in
each row respectively

figure 5.3) as follow

f (I(pi), I(qi j)) =0, if I(qi j)− I(pi)≤ threshold

1, if I(qi j)− I(pi)> threshold
, j = 1,2, ...,8 (5.3)
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LBP is a non-directional local pattern since it encodes all directions using first-order deriva-

tive pattern. However, LDP by extracting high-order derivative information provides more

detailed distinct descriptor. Given normal components N = [Nx,Ny,Nz], the first-order

LNDP along four different directions including 0◦,45◦,90◦, and 135◦ is considered as

N′α(pi) = [N′xα(pi),N′yα(pi),N′zα(pi)] and calculated as follows

N′0◦(pi) = N(pi)−N(qi4) (5.4)

N′45◦(pi) = N(pi)−N(qi3) (5.5)

N′90◦(pi) = N(pi)−N(qi2) (5.6)

N′135◦(pi) = N(pi)−N(qi1) (5.7)

The second-order directional LNDP is defined as

LNDP2
α(pi) ={ f (N′α(pi),N′α(qi1)), f (N′α(pi),N′α(qi2)), ...,

f (N′α(pi),N′α(qi8))} (5.8)

where f is a binary coding function which is defined as follows

f (N′α(pi),N′α(qi j)) =0, if N′α(qi j).N′α(pi)> 0

1, if N′α(qi j).N′α(pi)≤ 0
, j = 1, ...,8 (5.9)

Second-order LNDP is computed by concatenating four directions

LNDP2(pi) = {LNDP2
α |α = 0◦,45◦,90◦,135◦} (5.10)
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To calculate third-order local normal derivative pattern, first the second-order pattern using

equation 5.8 is calculated and denoted as N′′(pi) along four different directions

LNDP3
α(pi) ={ f (N′′α(pi),N′′α(qi1)), f (N′′α(pi),N′′α(qi2)), ...,

f (N′′α(pi),N′′α(qi8))} (5.11)

By applying concatenation of four directions we have

LNDP3(pi) = {LNDP3
α |α = 0◦,45◦,90◦,135◦} (5.12)

The general formula to calculate nth-order normal derivative pattern is calculated by a bi-

nary string to describe gradient variations in a local area of (n−1)th-order normal derivative

pattern

LNDPn
α(pi) ={ f (Nn−1

α (pi),Nn−1
α (qi1)), f (Nn−1

α (pi),

Nn−1
α (qi2)), ..., f (Nn−1

α (pi),Nn−1
α (qi8))} (5.13)

where f is defined as

f (N(n−1)
α (pi),N

(n−1)
α (qi j)) =0, if N(n−1)

α (qi j).N
(n−1)
α (pi)> 0

1, if N(n−1)
α (qi j).N

(n−1)
α (pi)≤ 0

, j = 1, ...,8 (5.14)

and concatenating of four directions results in

LNDPn(pi) = {LNDPn
α |α = 0◦,45◦,90◦,135◦} (5.15)

The above equation defines each pixel of normal maps with a 32-bit binary encoding pat-

tern. Figure 5.4 represents 32 templates to calculate binary functions of local derivative
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Figure 5.3 – (a) Eight neighbors around pi, (b) LBP micro-pattern example

pattern on normal maps.

The figure shows from left to right to calculate

f (N(n−1)
α (pi),N

(n−1)
α (qi1)), f (N(n−1)

α (pi),N
(n−1)
α (qi5)),

f (N(n−1)
α (pi),N

(n−1)
α (qi2)), f (N(n−1)

α (pi),N
(n−1)
α (qi6)),

f (N(n−1)
α (pi),N

(n−1)
α (qi3)), f (N(n−1)

α (pi),N
(n−1)
α (qi7)),

f (N(n−1)
α (pi),N

(n−1)
α (qi4)), f (N(n−1)

α (pi),N
(n−1)
α (qi8)),

and α is 0◦,45◦,90◦,and135◦ for first, second, third, and forth row respectively, N =

[Nx,Ny,Nz].

Since LDP encodes the different distinct spatial relationships in a local neighborhood of

each point, it contains more spatial details compared to LBP to extract distinctive features.

Spatial histogram HLNDP is applied to model the distributions of high-order local deriva-

tive pattern. Each normal images in x, y, and z direction is divided into L local patches and

the histogram is extracted from each patch. The final descriptor is created using concate-

nation of all histograms extracted from each local patch (see figure 5.5).

HLNDP(l,α) ={HLNDPα(Rl)|l = 1, ...,L;

α = 0◦,45◦,90◦,135◦} (5.16)

Inspired by LBP, LNDP can be computed using different local neighborhood size in differ-

ent scales. Multiscale LBP first has been proposed in [42] for texture classification and then

used for 3D face recognition [64]. Around each central point pi, a set of sampling points
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Figure 5.5 – Histogram of LNDP for x, y, and z normal maps

Figure 5.6 – Example of different scales, from left to right: R = 1, R = 2, and R = 3 for U = 8

are considered with different numbers U and radius R. As figure 5.6 illustrates multiscale

LNDP is created by considering different values for R. We use 8 number of the neighbor

points as U to compute LNDP.

The general form of the proposed high-order derivative descriptor, nth-order MsLNDP

is computed using the following equation

MsLNDPn
α(pi) = { f (Nn−1

x,α,R(pi),Nn−1
x,α,R(qi j)),

f (Nn−1
y,α,R(pi),Nn−1

y,α,R(qi j)), f (Nn−1
z,α,R(pi),Nn−1

z,α,R(qi j))

, j = 1, ...,U} (5.17)

where U and R represents the different values for the neighboring points and radius to

generate multiscale descriptor.
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5.2.3 Dimension reduction

Histogram of the proposed descriptor on different patches for different angles results in a

feature vector with high dimension for each sample. We apply the ELM-based multilayer

architecture autoencoder [147] for dimension reduction that provides efficient generaliza-

tion performance. Autoencoder is an artificial neural network that consists of an encoder

and a decoder network. Transforming of the input data with high dimension into the fea-

ture space with lower dimension is done in encoder part. In the autoencoder applied in this

work, the current weights of the encoding layer are replaced with the previous decoding

layer to keep much correlation with the input data. Therefore, more distinct significant

features can be simplified in this approach.

For given descriptors d = [d1, ...,dM], a basic autoencoder objective is minimizing the

reconstruction error J between inputs d and reconstructed outputs d̂, J = ∑‖di− d̂i‖, i =

1, ...,M. Encoding and decoding process in a basic auto-encoder is defined as follows

H f = G(w f ,b f ,d)

d̂ = G(wn,bn,H f ) (5.18)

where w f and wn are encoding and decoding layer weights, b f and bn are defined as bias

term, and G describes a general hidden neuron.

In a multilayer network, feature data which is the output of the hidden layer is computed

as

H i
f = G(wi

f ,bi
f ,H i−1

f ) (5.19)

where H i
f and H i−1

f are the output data of the ith and (i−1)th layer respectively. Using the

architecture in [147] with an invertible activation function G and maximum loop number

LO the decoding layer parameters wn,bn are calculated based on the ELM equations and

used to update the encoding layer parameters w f ,b f and the feature data H i
f . The final

feature data H i
f is employed in next sections for our classifier input. The summary of the
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Algorithm 5.1 The proposed MsLNDP descriptor
Input: 3D face data P

for points in P do
Calculate normal maps (Nx, Ny, and Nz)

end for
for different scales R and number of neighbors U do

for each N do
Divide into L patches

end for
for al pha = 0◦,45◦,90◦,135◦ do

for each patch do
for each pixel in patch of N do

Apply equation 5.17
end for
Histogram construction

end for
Concatenate the histogram for different patches

end for
Concatenate the histogram for different α

return HLNDPn
x , HLNDPn

y , HLNDPn
z

end for
ELM-based autoencoder for dimension reduction
return MsLNDPn descriptor

proposed descriptor is presented in algorithm 5.1.

5.3 Proposed weighted hybrid classifier

In this section, we propose a hybrid classification method called weighted extreme sparse

classifier, WESC, for 3D face recognition. The motivation of applying ELM and sparse

representation methods is fast learning and ability to handle noisy and imperfect data (such

as faces under occlusion and large pose variations). We believe that combination of ELM

and SRC can improve recognition performance. Before presenting the hybrid classifier,

in the following sub-sections, we briefly describe the concepts related to ELM and sparse

representation.

91



5.3.1 Extreme Learning Machine

ELM is known as one of the state-of-the-art multiclass classification methods that works

originally for single hidden layer feedforward networks (SLFNs). The hidden layer param-

eters (weights and biases) need not be tuned [134]. The following equation represents the

objective function of ELM

minβ‖H(X)β −T‖2
2 +

1
λ
‖β‖2

2 (5.20)

where X = [x1,x2, ...,xS] is a set of training samples, H ∈ IRS×P denotes hidden layer output

matrix with P nodes in the hidden layer, β is the output weight vector with length P, T

denotes the class labels vector of length S, and λ is the regularization parameter. To solve

the equation 5.20, the following solution is applied [148]

when P > S

β̂ = H†T = HT (Iλ +HHT )−1T (5.21)

when P < S

β̂ = H†T = (Iλ +HT H)−1HT T (5.22)

where H† is the pseudo-inverse of H, HT denotes the transpose of the H, and I is the

identity matrix.

5.3.2 Sparse Representation

Sparse representation of a query sample y is estimated using dictionary atoms ai that are

extracted features from training data xi.

y≈ a1x1 +a2x2 +a3x3 + ...+aNxN (5.23)

92



For Ni training samples for ith subject [xi,1,xi,2, ...,xi,Ni] ∈ IRM×Ni , any test sample yi ∈ IRM

is

yi ≈ ai,1xi,1 +ai,2xi,2 +ai,3xi,3 + ...+ai,Nixi,Ni (5.24)

where ai, j ∈ IR, j = 1,2, ...,Ni. Since based on the most common experimental protocols,

there is only one training sample for each subject in the gallery for 3D face recognition

system, the equation 5.23 is modified as

yi = ai,1xi,1 + ε (5.25)

where ε ∈ IRM is an error term by different challenges. In this way, for N 3D faces in

gallery (one sample per subject), the dictionary is defined as D = [x1,x2, ...,xN ] ∈ IRM×N

and any probe y = Dc+ε , where c is the coefficient vector approximated via the following

optimization

ĉ = argminc‖y−Dc‖2
2 (5.26)

using a characteristic function δi to select the coefficient related to the ith gallery sample,

the reconstruction residual is calculated

ri(y) = ‖y−Dδi(ĉ)‖2
2, i = 1,2, ...,N (5.27)

To find the probe label the minimum residual is applied

label(y) = argminri(y) (5.28)

5.3.3 Weighted Extreme Sparse Classifier

In this section, a new weighted hybrid classifier is proposed to take advantage of the fast

model training speed of ELM classifier and sparse representation capability to handle noisy

images. Inspired by a combination of ELM and SRC for 2D face recognition in [149, 150],
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a hybrid framework is proposed for 3D face scans. A discriminating criteria, the absolute

difference between the first two largest elements of the ELM vector, is considered to make

the hybrid classifier. If the difference is larger than a predefined threshold the classifica-

tion is completed, otherwise, the query scan is reclassified by an adaptive sub-dictionary

selection for SRC. Sub-dictionary is defined to classify the query sample and diminish

computational cost effectively compared to applying the entire dictionary. We record the

indexes of k largest elements in the ELM output. The sub-dictionary is constructed by

picking up the atoms related to training samples with the same labels. The sub-dictionary

is defined as D∗y = [Dm(1),Dm(2), ...,Dm(k)], where m(i) ∈ 1,2, ...,m denotes the indexes of

the k largest entries. Applying sub-dictionary instead of computing the sparse coefficient

over all training samples is as follows

ĉ = argminc‖y−D∗yc‖2
2 + τ‖c‖1 (5.29)

where τ is the regularization parameter for SRC [149].

Inspired by weighted SRC to handle occlusion for 2D face [125] and expression han-

dling for 3D face [15] a weighted framework for hybrid classifier is proposed to overcome

various challenges. We divide each face into L different patches with learned weight w′.

Feature vector is xi = [xi1,xi2, ...,xil], l = 1,2, ...,L. ELM parameters are defined as wi =

[wi1,wi2, ...,wil], bi = [bi1,bi2, ...,bil]. The sub-dictionary is described as D∗y = [D∗1,D
∗
2, ...,D

∗
l ]

and D∗yl = [x∗1,l,x
∗
2,l, ...,x

∗
N,l] and any probe y can be written as [y1, ...,yL].

Weight learning

To handle degradation conditions for face recognition the weight of each patch is learned to

create a weighted hybrid classifier. Local patch weight learning has been applied in several

2D face recognition works [151, 125, 152]. These works show different regions of the

face result in various contributions for the face recognition performance. Consequently, we

apply different weights related to different patches in the hybrid classifier.
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Algorithm 5.2 Proposed Weighted Extreme Sparse Classifier (WESC)
Input: A training database D with m classes, desired output TN×m, a query image y, regu-

larized ELM parameter λ , regularized SRC parameter τ , threshold σ

Output: y class label
1: Hidden node parameters generation randomly

(wil,bil), i = 1,2, ...,P
2: Calculate

L

∑
l=1

w′lH(w1l, ...,wPl,x1l, ...,xNl,b1l, ...,bPl)

3: Calculate weight matrix β̂ = H†T
4: ELM output O calculation for a probe sample y

O =
L

∑
l=1

w′lH(w1l, ...,wPl,yl,b1l, ...,bPl)β̂

5: if O f irst−Osecond > σ then
6: label(y) = argmax(O)
7: else
8: Find the indexes of k largest elements in O
9: Apply the weighted sub-dictionary D∗yl

10: ĉ = argminc ∑
L
l=1 w′l‖yl−D∗ylc‖2

2 + τ‖c‖1

11: for i ∈ {m(1), ...,m(k)} do
12: Calculate ri(y) = ∑

L
l=1 w′l‖yl−D∗ylδ (ĉ)‖2

2
13: end for
14: label(y) = argminri(y)
15: end if

To learn weights for all following experiments, different datasets are applied. In the

experiments, four different 3D face databases are used including FRGCv2 [16], Bospho-

rus [2], Bu-3DFE [49], and 3D-TEC [55]. Since the Bosphorus dataset has the highest

variations in the expression, pose, and occlusion, it is used for weight learning in all ex-

periments in which FRGCv2, BU-3DFE, and 3D-TEC are the test data. While to evaluate

the performance on Bosphorus, BU-3DFE is employed for weight learning. By applying

ESC classifier for different patch sizes on the database weights can be learned. From figure

5.7, it is obvious that the rigid areas such as the regions around nose and forehead have

the highest weight and those ones that are sensitive under expression such as the regions
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Figure 5.7 – Patch weights for three normal maps (x, y, and z direction) from FRGC database
and local patch size equal to 40×32

around mouth have the smallest weight. The proposed hybrid classifier is summarized in

algorithm 5.2.

5.4 Experiments and results

In this section the pre-processing step and evaluation of the proposed descriptor and clas-

sifier on four databases have been presented for 3D face recognition.

The most famous 3D face database, FRGC, contains two sets textured 3D face scans:

v1 and v2 with 943 scans of 273 subjects and 4007 scans of 466 subjects respectively cap-

tured with the Minolta Vivid 900 scanner. The FRGCv1 scans are acquired with neutral

expression and 640× 480 resolution. The second one samples are captured under a lim-

ited range of facial expression (such as happiness and surprise) and controlled light and

pose. Bosphorus database is made up of 4666 textured 3D scans of 105 subjects in an

uncontrolled environment under different facial expression (neutral, happy, surprise, fear,
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Table 5.1 – Specification of 3D databases used in this work

Name Subjects/Scans Scanner Pose Expression Occlusion

FRGCv2[16] 466/4007 Laser ±15◦ Mild to extreme No
Bosphorus[2] 105/4666 Sterio Yes 7 types 4 types
Bu-3DFE[49] 100/2500 Sterio Frontal 6 types(4 levels) No
3D-TEC[55] 214/428 Laser Frontal 2 types No

sadness, anger, and disgust), action units, poses, and occlusion. 3D scans are captured using

Inspeck Mega Capturor II scanner and each range image has 1600×1200 resolution. BU-

3DFE database contains 2500 3D facial scans of 100 subjects under 6 different expression

including happiness, disgust, fear, anger, surprise, and sadness with four intensity levels

and one neutral expression. The scans are acquired using 3D Imaging System (3DMD)

and saved as a polygonal mesh with a resolution from 20000 to 35000 polygons. 3D-TEC

database consists of scans from 214 subjects including 106 pairs of identical twins and a

set of triplets with a neutral and smiling scan per subject. The specification and details of

the four 3D databases applied in this work have been provided in table 5.1.

5.4.1 Pre-processing

There are some factors including noise which comes from the sensor and pose variation

that can impact the rendered images. To diminish these factors and convert 3D models to

high-quality 2D maps, the pre-processing is done on 3D scans using the pre-processing

tool [128]. The median filter is applied to remove spike and noises. Hole filling is done

by fitting square surface. We employ a curvature-based method to detect nose tip to crop

region of interest (ROI). For the 3D-TEC dataset manually annotated nose tips positions

are used. For pose correction, all the facial models are aligned together using a rigid-ICP

algorithm [133]. We resized each pre-processed image into 120×96.
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5.4.2 Performance of proposed descriptor

To evaluate the effectiveness of the proposed local derivative descriptor for 3D face recog-

nition, a set of experiments on the largest 3D face database, FRGCv2, has been performed.

The experiments are conducted in the MATLAB R2016a on a computer with an Intel Core

i7, 3.60 GHz CPU with 8 GB RAM. Histogram intersection (HI) is used for recognition

task to show the effectiveness of the proposed descriptor. The experiment is according to

the protocol in [16] which the first scan of each subject is considered as a gallery and the

remaining scans are used to make a probe set (neutral versus all).

First, to select the best dimension for extracted features we conduct the experiment

to compare recognition results versus the number of features for depth, normal x, normal

y, and normal z maps in figure 5.8. According to this figure, the best recognition rate is

obtained for feature vectors with 600 dimensions for all descriptors. In other next experi-

ments, we apply this value for feature dimension. In our experiments, we have set G as a

sine function, LO = 2, and the number of layers i = 4.

Figure 5.9 demonstrates the recognition rate for various orders of the local derivative

pattern on different maps. We employ local patches with 12× 12 size to extract local

pattern. According to the results, the recognition accuracy is effectively improved by in-

creasing the order of local pattern from first-order to the second and third orders that means

high order local pattern can extract more detailed distinct information from face data. How-

ever, by further increasing the order to forth-order, fifth-order, and sixth-order the accuracy

drops that shows further detailed information contained in high-order local pattern converts

face scan into noisy data and deteriorates the recognition rate.

Based on the above results, we employ third-order LDP in the next experiments. The

effectiveness of different scales of LDP on different maps is evaluated and shown in figure

5.10. In all experiments, we use 8 neighbors around the central point to compute local

derivative descriptor. In addition, we need to change the size of local patches for different

scale size in this test. We tried six different radiuses to calculate LDP on normal images.
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Figure 5.8 – Recognition accuracy versus feature dimension on FRGCv2 for depth (DLDP),
normal x (LNDPx), normal y (LNDPy), and normal z (LNDPz)

For the two smallest scales R = 1,2 the local patches with the finest size, 12×12, for R =

3,4, patch size 20×16, and for R = 5,6, patch size 40×32 are considered. As the figure

shows changing the scale to calculate LDP on depth and normal maps affect recognition

performance. The scale 3 is the best one for all maps. The fusion of multiple encoding

scales can enhance the recognition accuracy (A in figure 5.10). Based on the experiments

we found that fusion of top three encoding scales based on the recognition rate provides

the highest accuracy (T includes scales 2, 3, and 5 in figure 5.10). Score-level fusion with

sum rule is applied to calculate the similarity of the multiscale descriptor. From figures

5.8-5.10 it is obvious that the LDP extraction on all three normal images outperforms the

depth map. Using the above parameters, feature dimension: 600, order: 3, and multiscale

scheme of scales: 2, 3, and 5, the fusion of three directions x, y, and z of the proposed

pattern is considered as a final descriptor.

Finally, the comparison of the final proposed descriptor to other LBP-based methods
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Figure 5.9 – Effectiveness of different orders of LDP on FRGCv2

including shape map and multiscale local binary pattern, SI+MS-LBP, [64], multiscale

extended LBP, Ms-eLBP, and hybrid matching [81], the self-adaptive voting LBP, V-LBP

[98], multiscale and multicomponent local normal patterns, MsMc-LNP, in combination

with weighted SRC[15], multiscale depth local derivative pattern, MsDLDP, using SRC

[143] and local normal derivative pattern, LNDPxyz, with HI [145] has been summarized

in table 5.2. The neutral vs. all experiment is performed based on the same protocol

on FRGCv2. As the results show our proposed enhanced descriptor is comparable to the

state-of-the-art as well as our recent work [143] by applying ELM-based feature selection

method and selective multiscale scheme. The high R1RR in [143] is for excluding non-rigid

parts of the facial samples. While in this work, we have applied our proposed descriptor on

whole faces.
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Figure 5.10 – Effectiveness of different scales of LDP on the recognition rate on FRGCv2, A:
all scales are fused, T: scales 2, 3, and 5 (top three RR) are fused

5.4.3 Performance of proposed classifier

In this part to show the effectiveness of the proposed classifier, experimental results are

conducted using multiscale depth local derivative pattern descriptor, MsDLDP.

To set the threshold σ and number of k for the proposed ESC, we calculated the R1RR

and matching time per image on FRGCv2. As figure 5.11 depicts the recognition rate is

improved by increasing σ and the number of k. However, according to the results in table

5.3 which report testing time per image for the different number of k, increasing the number

of k causes computational cost. Moreover, it is obvious that a larger threshold results in

higher recognition rate but more samples have been assigned to the time-consuming sparse

classifier and computational complexity increases. Therefore, the best parameter setting is

a trade-off between accuracy and time. Accordingly, we set the threshold value equal to

0.4 and k = 200. The regularized parameters for ELM and SRC is equal to 2 and 0.1 on
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Table 5.2 – Comparison of the proposed descriptor with other LBP-based methods on FRGCv2

Method R1RR
SI+Ms-LBP2010[64] 96.10%

Ms-eLBP2012[81] 97.60%
V-LBP2013[98] 94.90%

MsMc-LNP+WSRC2014[15] 96.30%
MsDLDP+SRC2017[143] 98.30%
Proposed descriptor+HI 98.20%

Figure 5.11 – R1RR of proposed ESC for different thresholds σ and different number k of
largest entries

FRGCv2. By repeating the experiments we found that we can set the number of largest

entries nearly equal to half of the number of gallery samples.

We also studied the affection of two various popular activation functions, the sigmoid

and hyperbolic tangent functions, for the different number of hidden nodes to evaluate ELM

and proposed ESC performance. Based on the results in figure 5.12, we choose a sigmoid

function for the classifiers. In addition, the figure illustrates the effectiveness of the ESC
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Table 5.3 – Testing time per image for different number k of largest entries

k 50 80 110 140 170 200
Testing time

(sec) 0.0035 0.0052 0.0089 0.0134 0.0165 0.0227

Figure 5.12 – R1RR using two activation functions

compared to ELM and the best result is obtained for 1200 hidden nodes.

The performance of the Weighted ESC and Non-weighted ESC is compared with other

classifiers including ELM method, and SRC on FRGCv2 database using the MsDLDP de-

scriptor. The results in table 5.4 show the effectiveness of the proposed method in terms

of accuracy and speed. The proposed WESC classifier provides higher recognition rate

compared to ELM and SRC classifiers. Not only combination of ELM and SRC improves

computational complexity of the sparse representation classifier but also causes to increase

the accuracy of the recognition system. Weighted scheme of the proposed ESC can han-

dle facial challenges efficiently and has the highest classification accuracy among other

methods.
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Table 5.4 – Comparison of the proposed WESC algorithm with other classifiers on FRGCv2

Algorithm R1RR Training Testing
time (sec) time (sec)

ELM 93.89% 4.12 0.0063
SRC 95.21% - 0.2450
ESC 95.83% 3.36 0.0227

WESC 97.65% 3.85 0.0290

5.4.4 Performance on different databases

According to the experiments in the previous sections, we continue the experiments on

different 3D face databases using the fusion of three normal descriptors in the multiscale

scheme, proposed MsLNDP, by employing proposed weighted ESC to overcome facial

challenges. Table 5.5 compares the R1RR for different experiments according to the proto-

cols in [16] on FRGCv2 with the state-of-the-art. The results depict the high quality of the

proposed algorithm in all experiments. Compared with [15] and [95], that apply normal

components as the basis of their feature space, there is 1.9% and 0.45% improvement in

R1RR when the neutral samples are used as the probes. For non-neutral samples as the

probe, the improvement of the proposed method is 0.1% and 4.4% relative to [95], and

[15] respectively. Our method outperforms [95], and [15] with 1.4% and 3% improvement

in R1RR when all samples made the probe.

Another criteria to evaluate the 3D face recognition approach is computational com-

plexity. Table 5.6 reports matching time for the proposed method along with recognition

rate and the comparison with state-of-the-art methods on FRGCv2 database for neutral vs.

all experiment. As the table depicts our proposed method runs faster than other methods

with higher recognition rate. Unlike other methods that compare a probe face with every

gallery samples, our SRC-based method compares the probe with all gallery samples at the

same time. In addition, feature dimension reduction and applying sub-dictionary instead of

whole dictionary for sparse classifier could improve our method’s processing time.

To more evaluate the performance of the proposed algorithm we continue the experi-
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Table 5.5 – Comparison of 3D face recognition methods in term of R1RR on FRGCv2

Algorithm neutral vs. neutral vs. neutral vs.
neutral non-neutral all

Mian et al.2008[3] 99.40% 92.10% 96.10%
Huang et al.2011[127] 99.20% 95.10% 97.60%

Lei et al.2013[13] - 95.6% -
Drira et al.2013[10] 99.20% 96.80% 97.0%

Berretti et al.2013[90] 97.30% 92.80% 95.60%
Smeets et al.2013[4] - - 89.6%

Ocegueda et al.2013[113] - - 96.6%
Li et al.2014[15] 98.0% 94.20% 96.30%

Elaiwat et al.2015[7] 99.4% 94.1% 97.1%
Li et al.2015[70] - - 96.3%

Al-Osaimi2016[94] 99.1% 96.49% 97.78%
Soltanpour and Wu2016[66] 99.60% 96.0% 96.9%

Lei et al.2016[67] 99.6% 92.2% 96.3%
Emambakhsh and Evans2017[95] 98.45% 98.5% 97.9%

This work 99.9% 98.6% 99.3%

ments on Bosphorus dataset. For this experiment, the BU-3DFE dataset is used for weight

learning. There are different experiments on this dataset due to expression, pose, and oc-

clusion challenges. For test under expression, the gallery consists of 105 neutral samples

belong to different subjects, and 2797 samples with neutral and non-neutral expression

make up probes. Some researchers reported the results on 381 samples under pose, 3196

frontal samples under expression and occlusion challenges, and nearly 4561 samples under

all challenges including expression, pose, and occlusion. We have evaluated our algorithm

under expression and all challenges. A comparison with sate-of-the-art is provided in ta-

ble 5.7. The table depicts remarkable performance of our method under facial challenges.

The 2.93% drop in R1RR for all challenges (105/4561) compared to the experiment un-

der facial expression (105/2797) shows the proposed method is sensitive under extreme

pose and occlusion variations. However, our algorithm improves R1RR, 2.4%, and 2.35%

compared to normal-based feature approaches [95, 15] respectively. Although the accuracy

of the proposed algorithm on Bosphorus samples under pose variations and occlusion has
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Table 5.6 – Comparison of 3D face recognition methods in term of matching time on FRGCv2

Algorithm Matching time(s) RR1
Huang et al.2011[127] 0.32 97.60%

Drira et al.2013[10] 1.27 97.0%
Berretti et al.2013[90] 0.2 95.60%

Li et al.2014[15] 0.5 96.30%
Elaiwat et al.2015[7] 0.36 97.1%

Lei et al.2016[67] 2.41 96.3%
Soltanpour and Wu2016[66] 0.35 96.9%

This work 0.1 99.3%

been reduced. However, our method achieves competitive performance compared to the

state-of-the-art.

In tables 5.8 and 5.9, we evaluate our algorithm on BU-3DFE and 3D-TEC datasets

and compare the results with others. On BU-3DFE which is challenging dataset for its

samples with intense facial expression, the 100 neutral samples make up the gallery and

the remaining samples under different types of expression create the probes. On 3D-TEC

we apply the protocol in [55]. The database contains twins samples with neutral and smile

expression. One person in each pair is labeled A and the other one B and four cases are

applied for the experiment. In case 1, twin A with the smile and twin B with the smile, in

case 2, neutral twin A and neutral twin B, in case 3, twin A with the smile and neutral twin

B, and in case 4, neutral twin A and twin B with the smile make up the galley. In each case,

the remaining samples make up the probes. According to the results, our method performs

better or comparable with other works on these two databases. Comparison with the state-

of-the-art on four different databases proves a successful generalization of our proposed

method.

5.5 Conclusion

In this chapter, a novel classification method called WESC inspired by recent advances

in extreme learning machine and sparse representation has been proposed. An adaptive
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Table 5.7 – Comparison of 3D face recognition methods in term of R1RR on Bosphorus (”n:
neutral”, ”e: expression”, ”o: occlusion”, ”p: pose”, ”all: e, o, p”).

Algorithm Type(gallery/probe) R1RR
Huang et al.2011[127] (n/e,o) 97.0%

Li et al.2011[5] (n/all) 94.1%
Drira et al.2013[10] (n/o) 87%

Berretti et al.2013[69] (n/all) 93.40%
Smeets et al.2013[4] (n/e) 97.70%

(n/all) 93.70%
Ocegueda et al.2013[113] (n/all) 93.8%

Berretti et al.2014[6] (n/all) 94.5%
Li et al.2014[15] (n/e) 95.40%

Al-Osaimi2016[94] (n/e) 92.41%
(n/o) 84.78%
(n/all) 90.28%

Soltanpour and Wu2016[66] (n/e,o) 97.20%
(n/all) 94.50%

Emambakhsh and Evans2017[95] (n/e) 95.35%
This work (n/e) 97.75%

(n/all) 94.82%

Table 5.8 – Comparison of 3D face recognition methods in term of R1RR on BU-3DFE

Algorithm R1RR
Mpiperis et al.2007[86] 84.4%
Berretti et al.2013[69] 87.5%

Li et al.2014[15] 92.21%
Berretti et al.2014[6] 88.2%
Werghi et al.2016[12] 93.42%

Lei et al.2016[67] 93.25%
Emambakhsh and Evans2017[95] 88.9%

Kim et al.2017[18] 95%
Li et al.2018[153] 95.25%

This work 95.36%

weighted sub-dictionary selection for SRC and regularized ELM was used to construct

the classifier. In addition, a novel multiscale local derivative pattern has been proposed

to further handle facial challenges by extracting distinct features. An ELM-based autoen-

coder has been employed to extract robust distinct features. Different experiments on four
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Table 5.9 – Comparison of 3D face recognition methods in term of R1RR on 3D-TEC

Algorithm 3D-TEC
Case 1 Case 2 Case 3 Case 4

Faltemier et al.2008[108] 94.4% 93.5% 72.4% 72.9%
Huang et al.2010[64] 92.1% 93.0% 83.2% 83.2%

Li et al.2014[15] 95.8% 96.7% 95.3% 95.3%
Al-Osaimi2016[94] 95.79% 97.2% 87.38% 85.98%
Kim et al.2017[18] 94.8% 94.8% 81.3% 79.9%

This work 96.3% 98.6% 97.1% 96.7%

databases have been performed to evaluate the performance of the proposed algorithm un-

der different scenarios. The experimental results reveal a reasonable generalization on

different databases and performance improvement in term of accuracy and computational

complexity. The proposed feature extraction and classifier can be applied to other 3D ob-

ject recognition applications. In this work, we have employed the rigid-ICP method for face

registration. Face registration algorithm to extract pose corrected face data is an interesting

research area for the future.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

Recognition of 3D human faces is an interesting and active research area in the field of

computer vision and pattern recognition. Despite the interest in this research field, handling

deformations remained a challenging task due to non-rigid nature of the face. Extraction of

geometric information of the 3D face data makes it more promising than 2D texture images

since shape information is not sensitive to viewpoint and illumination variations.

There are three different categories of face recognition algorithms: holistic feature-

based, local feature-based and hybrid methods. Recent advances in 3D face recognition

with main focus on local feature-based methods were presented in chapter 2. Advantages

and limitations of various 3D local feature-based methods were summarized for three dif-

ferent categories. According to the survey, local feature-based methods show more efficient

results compared to holistic feature-based methods. Complete models are not required in

local feature-based methods and consequently, occlusion can be handled. Some effective

and robust 2D face descriptors such as SIFT and LBP can be applied on 3D maps to extract

local descriptors which are robust under facial expression. Moreover, local descriptors can

handle expression variations by excluding sensitive facial regions. In addition, local fea-

tures can be detected on rigid patches or parts of the faces which are the least affected

under expression. The holistic methods require accurate normalization for pose and scale.

To normalize 3D data in holistic methods manual and automatic landmark detection is

used which the manual landmarking is more accurate. However, it is time-consuming and

makes the whole process semi-automatic. Moreover, pose normalization under noisy or
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low-resolution 3D scans is a challenging task. Based on the literature, local feature-based

methods are more suitable for matching, identification, and verification, since the main fo-

cus of local methods is on shape details. However, for similarity in search applications,

the holistic features work better compared to local feature-based methods. In particular,

the survey conducted in this dissertation shows no existing methods can handle all facial

recognition challenges, which include expression, occlusion, missing data, and background

clutter.

The third chapter was inspired by keypoint-based methods which are efficient under

expression challenges and occlusion. A novel local descriptor was proposed to detect SIFT

keypoints on shape maps in three different levels of the Gaussian pyramid to guarantee

keypoints repeatability and provide more distinct features. SIFT keypoints were also de-

tected on texture image to enhance the recognition system performance in a multimodal

scheme. In addition, score level fusion was applied to calculate the final score using tex-

ture and shape modality’s matching score. Experimental results depict that verification

rate on FRGCv2 database has achieved 1% and 0.55% improvement compared to state-

of-the-art for the most challenging experiments, all vs. all and ROCIII respectively. The

improvement on Bosphorus database is equal to 4.8% for the verification rate and 0.4% for

identification rate.

In the fourth chapter, 3D face recognition using LBP-based local surface methods was

presented. Since LBP is an efficient local descriptor in 2D face recognition applications, a

novel multiscale high-order local pattern called MsDLDP was proposed; which can handle

facial expression by excluding non-rigid parts of the face and sparse representation-based

classifier. The proposed descriptor contains more spatial information compared to LBP by

encoding the various distinct spatial relationships in a local neighborhood. The multiscale

strategy was proposed to enhance the effectiveness of the detected features. A comparison

was performed on sparse representation and distance-based classifier results. The pro-

posed algorithm using SRC could enhance recognition rate 9.84% on FRGCv2 database

and 11.55% on Bosphorus database compared to Chi-square classifier. The comparison
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with LBP-based methods illustrates 0.5% and 0.45% recognition rate improvement for

FRGCv2 and Bosphorus databases respectively.

In the last chapter, the local derivative pattern on surface normals in the x, y, and z

directions called MsLNDP using a weighted hybrid classifier was presented. Moreover,

an ELM-based dimension reduction method was applied to extract distinct features. A

learning-based framework was considered to calculate local patch weights to handle differ-

ent facial challenges. A combination of SRC and ELM classifiers called weighted extreme

sparse classifier was proposed by learning an ELM network and adopting a discriminant cri-

teria to decide about the ELM output reliability. In the case of unreliable output, the features

are fed into SRC to extract sub-dictionary and reduce computational burden. The proposed

WESC could improve the recognition rate and testing time 2.44% and 0.216sec compared

to SRC on FRGCv2 database respectively. The proposed algorithm including MsLNDP and

WESC achieved 1.4% improvement for neutral vs. all experiment on FRGCv2 database. In

term of computational complexity the proposed method could enhance the matching speed

twice for neutral vs. all experiment on FRGCv2 database. On Bosphorus database, the pro-

posed method could provide 0.32% improvement for the recognition rate for neutral vs. all

experiment. On BU-3DFE database, the improvement by 0.11% and on 3D-TEC database,

the average improvement by 1.4% have been achieved for the recognition rate.

6.2 Suggestions for Future Work

There are a number of areas which future research could explore, they are as follows:

• The local feature-based methods for 3D face recognition have been surveyed us-

ing the experiment results from other works. For further investigation, each local

feature-based method can be implemented and evaluated on different databases hav-

ing different challenges.

• The main focus of this dissertation was local feature extraction and classification
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algorithms. The existing tools for pre-processing and pose correction were applied

in this work. In the future, new algorithms for face pre-processing, registration and

pose correction could be investigated. Further work could be conducted on land-

marking algorithms for nose tip detection and segmentation of the region of interest.

Denoising, hole filling, and spike removal methods can also be areas of future work.

• The proposed local pattern was applied on depth and surface normal maps. In the

future, the proposed descriptor can be applied on pyramidal shape maps to investigate

the generalization of the proposed local pattern.

• In this work, an ELM-based auto-encoder was used for dimension reduction. Investi-

gating other methods to extract more distinct and robust features is another interesting

and useful research direction.

• The last algorithm applied patch-based weight learning to handle facial challenges.

In the future, different algorithms such as GA for weight learning could be used and

the results compared.

• The presence of artifacts and incomplete facial data can create challenges in practical

applications of 3D local feature-based methods. Moreover, 3D face data acquisition

is computationally more expensive than 2D data capturing. Therefore, handling arti-

facts and 3D data acquisition need more attention to improve.

• Unavailability of a large-scale 3D face database which contains a combination of

different challenges including extreme expression, pose variation, and occlusion is a

major limitation in the 3D face recognition area. Therefore, a creation of such a 3D

face database could be an important task to be done.

• It would be interesting to analyze the proposed methods’ sensitivity using low-resolution

3D samples or the 3D samples approximated from 2D scans. The reason behind this

is although 3D laser scanners have been decreasing the cost, many of the existing

databases are in 2D modality.
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[48] C. Conde, Á. Serrano, and E. Cabello, “Multimodal 2D, 2.5D & 3D face verifica-

tion,” in IEEE International Conference on Image Processing, 2006, pp. 2061–2064.

[49] L. Yin, X. Wei, Y. Sun, J. Wang, and M. J. Rosato, “A 3D facial expression database

for facial behavior research,” in IEEE International Conference on Automatic Face

and Gesture Recognition (FG), 2006, pp. 211–216.

118



[50] T. Heseltine, N. Pears, and J. Austin, “Three-dimensional face recognition using

combinations of surface feature map subspace components,” Image and Vision Com-

puting, vol. 26, no. 3, pp. 382–396, 2008.

[51] K. I. Chang, K. W. Bowyer, and P. J. Flynn, “An evaluation of multimodal 2D+ 3D

face biometrics,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 27, no. 4, pp. 619–624, 2005.

[52] C. Xu, T. Tan, S. Li, Y. Wang, and C. Zhong, “Learning effective intrinsic features

to boost 3D-based face recognition,” in European Conference on Computer Vision.

Springer, 2006, pp. 416–427.

[53] T. C. Faltemier, K. W. Bowyer, and P. J. Flynn, “Using a multi-instance enrollment

representation to improve 3D face recognition,” in IEEE International Conference

on Biometrics: Theory, Applications, and Systems (BTAS), 2007, pp. 1–6.

[54] F. B. Ter Haar, M. Daoudi, and R. C. Veltkamp, “Shape retrieval contest 2008: 3D

face scans,” in Shape Modeling International, 2008, pp. 225–226.

[55] V. Vijayan, K. Bowyer, and P. Flynn, “3D twins and expression challenge,” in IEEE

International Conference on Computer Vision Workshops (ICCVW), 2011, pp. 2100–

2105.

[56] R. C. Veltkamp, S. van Jole, H. Drira, B. B. Amor, M. Daoudi, H. Li, L. Chen,

P. Claes, D. Smeets, J. Hermans et al., “Shrec’11 track: 3D face models retrieval,”

in 3DOR, 2011, pp. 89–95.

[57] A. Colombo, C. Cusano, and R. Schettini, “UMB-DB: A database of partially oc-

cluded 3D faces,” in IEEE International Conference on Computer Vision Workshops

(ICCVW), 2011, pp. 2113–2119.

119



[58] S. Gupta, K. R. Castleman, M. K. Markey, and A. C. Bovik, “Texas 3D face recog-

nition database,” in IEEE Southwest Symposium on Image Analysis & Interpretation

(SSIAI), 2010, pp. 97–100.

[59] L. Yin, X. Chen, Y. Sun, T. Worm, and M. Reale, “A high-resolution 3D dynamic

facial expression database,” in IEEE International Conference On Automatic Face

& Gesture Recognition (FG), 2008, pp. 1–6.

[60] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, and N. M. Kwok, “A comprehen-

sive performance evaluation of 3D local feature descriptors,” International Journal

of Computer Vision, vol. 116, no. 1, pp. 66–89, 2016.

[61] S. Berretti, A. del Bimbo, and P. Pala, “3D partial face matching using local shape

descriptors,” in Proceedings of the Joint ACM Workshop on Human Gesture and

Behavior Understanding. ACM, 2011, pp. 65–71.

[62] M. Mayo and E. Zhang, “3D face recognition using multiview keypoint matching,”

in IEEE International Conference on Advanced Video and Signal Based Surveillance

(AVSS), 2009, pp. 290–295.

[63] T. Inan and U. Halici, “3D face recognition with local shape descriptors,” IEEE

Transactions on Information Forensics and Security, vol. 7, no. 2, pp. 577–587,

2012.

[64] D. Huang, G. Zhang, M. Ardabilian, Y. Wang, and L. Chen, “3D face recognition

using distinctiveness enhanced facial representations and local feature hybrid match-

ing,” in IEEE International Conference on Biometrics: Theory Applications and

Systems (BTAS), 2010, pp. 1–7.

[65] S. Soltanpour, Q. J. Wu, and M. Anvaripour, “Multimodal 2D-3D face recognition

using structural context and pyramidal shape index,” in IET International Confer-

ence on Imaging for Crime Prevention and Detection (ICDP), 2015, pp. 2–6.

120



[66] S. Soltanpour and Q. J. Wu, “Multimodal 2D-3D face recognition using local de-

scriptors: pyramidal shape map and structural context,” IET Biometrics, vol. 6, no. 1,

pp. 27–35, 2016.

[67] Y. Lei, Y. Guo, M. Hayat, M. Bennamoun, and X. Zhou, “A two-phase weighted col-

laborative representation for 3D partial face recognition with single sample,” Pattern

Recognition, vol. 52, pp. 218–237, 2016.

[68] C. Maes, T. Fabry, J. Keustermans, D. Smeets, P. Suetens, and D. Vandermeulen,

“Feature detection on 3D face surfaces for pose normalisation and recognition,” in

IEEE International Conference on Biometrics: Theory Applications and Systems

(BTAS), 2010, pp. 1–6.

[69] S. Berretti, N. Werghi, A. Del Bimbo, and P. Pala, “Matching 3D face scans using

interest points and local histogram descriptors,” Computers & Graphics, vol. 37,

no. 5, pp. 509–525, 2013.

[70] H. Li, D. Huang, J.-M. Morvan, Y. Wang, and L. Chen, “Towards 3D face recog-

nition in the real: a registration-free approach using fine-grained matching of 3D

keypoint descriptors,” International Journal of Computer Vision, vol. 113, no. 2, pp.

128–142, 2015.

[71] X. Lu, A. K. Jain, and D. Colbry, “Matching 2.5D face scans to 3D models,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 1, pp. 31–

43, 2006.

[72] P. Perakis, G. Passalis, T. Theoharis, and I. A. Kakadiaris, “3D facial landmark

detection under large yaw and expression variations,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 35, no. 7, pp. 1552–1564, 2013.

[73] A. Colombo, C. Cusano, and R. Schettini, “3D face detection using curvature anal-

ysis,” Pattern Recognition, vol. 39, no. 3, pp. 444–455, 2006.

121



[74] C. Creusot, N. Pears, and J. Austin, “Automatic keypoint detection on 3D faces using

a dictionary of local shapes,” in IEEE International Conference on 3D Imaging,

Modeling, Processing, Visualization and Transmission, 2011, pp. 204–211.

[75] M. L. Koudelka, M. W. Koch, and T. D. Russ, “A prescreener for 3D face recognition

using radial symmetry and the hausdorff fraction,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2005, pp. 168–168.

[76] S. Gupta, M. K. Markey, and A. C. Bovik, “Anthropometric 3D face recognition,”

International Journal of Computer Vision, vol. 90, no. 3, pp. 331–349, 2010.

[77] M. Song, D. Tao, S. Sun, C. Chen, and S. J. Maybank, “Robust 3D face landmark

localization based on local coordinate coding,” IEEE Transactions on Image Pro-

cessing, vol. 23, no. 12, pp. 5108–5122, 2014.

[78] F. M. Sukno, J. L. Waddington, and P. F. Whelan, “3D facial landmark localization

with asymmetry patterns and shape regression from incomplete local features,” IEEE

Transactions on Cybernetics, vol. 45, no. 9, pp. 1717–1730, 2015.

[79] M. A. de Jong, A. Wollstein, C. Ruff, D. Dunaway, P. Hysi, T. Spector, F. Liu,

W. Niessen, M. J. Koudstaal, M. Kayser et al., “An automatic 3D facial landmark-

ing algorithm using 2D Gabor Wavelets,” IEEE Transactions on Image Processing,

vol. 25, no. 2, pp. 580–588, 2016.

[80] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3D object recognition in

cluttered scenes with local surface features: a survey,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 36, no. 11, pp. 2270–2287, 2014.

[81] D. Huang, M. Ardabilian, Y. Wang, and L. Chen, “3D face recognition using eLBP-

based facial description and local feature hybrid matching,” IEEE Transactions on

Information Forensics and Security, vol. 7, no. 5, pp. 1551–1565, 2012.

122



[82] S. Berretti, A. Del Bimbo, and P. Pala, “3D face recognition using isogeodesic

stripes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32,

no. 12, pp. 2162–2177, 2010.

[83] S. Jahanbin, H. Choi, Y. Liu, and A. C. Bovik, “Three dimensional face recogni-

tion using iso-geodesic and iso-depth curves,” in IEEE International Conference on

Biometrics: Theory, Applications and Systems (BTAS), 2008, pp. 1–6.

[84] I. Mpiperis, S. Malasiotis, and M. G. Strintzis, “3D face recognition by point signa-

tures and iso-contours,” in International Conference on Signal Processing, Pattern

Recognition, and Applications. ACTA Press, 2007, pp. 328–332.

[85] L. Li, C. Xu, W. Tang, and C. Zhong, “3D face recognition by constructing deforma-

tion invariant image,” Pattern Recognition Letters, vol. 29, no. 10, pp. 1596–1602,

2008.

[86] I. Mpiperis, S. Malassiotis, and M. G. Strintzis, “3D face recognition with the

geodesic polar representation.” IEEE Transactions on Information Forensics and Se-

curity, vol. 2, no. 3-2, pp. 537–547, 2007.

[87] S. Feng, H. Krim, and I. Kogan, “3D face recognition using euclidean integral in-

variants signature,” in IEEE Workshop on Statistical Signal Processing, 2007, pp.

156–160.

[88] H. Drira, B. B. Amor, M. Daoudi, and A. Srivastava, “Pose and expression-invariant

3D face recognition using elastic radial curves,” in British Machine Vision Confer-

ence, 2010, pp. 1–11.

[89] L. Ballihi, B. B. Amor, M. Daoudi, A. Srivastava, and D. Aboutajdine, “Boosting

3D geometric features for efficient face recognition and gender classification,” IEEE

Transactions on Information Forensics and Security, vol. 7, no. 6, pp. 1766–1779,

2012.

123



[90] S. Berretti, A. Del Bimbo, and P. Pala, “Sparse matching of salient facial curves

for recognition of 3D faces with missing parts,” IEEE Transactions on Information

Forensics and Security, vol. 8, no. 2, pp. 374–389, 2013.

[91] X. Li and F. Da, “Efficient 3D face recognition handling facial expression and hair

occlusion,” Image and Vision Computing, vol. 30, no. 9, pp. 668–679, 2012.

[92] P. J. Besl, N. D. McKay et al., “A method for registration of 3D shapes,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–

256, 1992.

[93] L. Zhang, A. Razdan, G. Farin, J. Femiani, M. Bae, and C. Lockwood, “3D face

authentication and recognition based on bilateral symmetry analysis,” The Visual

Computer, vol. 22, no. 1, pp. 43–55, 2006.

[94] F. R. Al-Osaimi, “A novel multi-purpose matching representation of local 3d sur-

faces: A rotationally invariant, efficient, and highly discriminative approach with an

adjustable sensitivity,” IEEE Transactions on Image Processing, vol. 25, no. 2, pp.

658–672, 2016.

[95] M. Emambakhsh and A. Evans, “Nasal patches and curves for expression-robust 3D

face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 39, no. 5, pp. 995–1007, 2017.

[96] S. Z. Li, C. Zhao, M. Ao, and Z. Lei, “Learning to fuse 3D+ 2D based face recogni-

tion at both feature and decision levels,” in International Workshop on Analysis and

Modeling of Faces and Gestures. Springer, 2005, pp. 44–54.

[97] Y. Huang, Y. Wang, and T. Tan, “Combining statistics of geometrical and correlative

features for 3D face recognition,” in BMVC. Citeseer, 2006, pp. 879–888.

[98] H. Tang, B. Yin, Y. Sun, and Y. Hu, “3D face recognition using local binary patterns,”

Signal Processing, vol. 93, no. 8, pp. 2190–2198, 2013.

124



[99] N. Werghi, S. Berretti, and A. Del Bimbo, “The mesh-LBP: a framework for ex-

tracting local binary patterns from discrete manifolds,” IEEE Transactions on Image

Processing, vol. 24, no. 1, pp. 220–235, 2015.

[100] C. Xu, Y. Wang, T. Tan, and L. Quan, “Automatic 3D face recognition combining

global geometric features with local shape variation information,” in IEEE Interna-

tional Conference on Automatic Face and Gesture Recognition, 2004, pp. 308–313.

[101] X. Li and H. Zhang, “Adapting geometric attributes for expression-invariant 3D face

recognition,” in IEEE International Conference on Shape Modeling and Applica-

tions (SMI), 2007, pp. 21–32.

[102] X. Li, T. Jia, and H. Zhang, “Expression-insensitive 3D face recognition using sparse

representation,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2009, pp. 2575–2582.

[103] H. Tabia, H. Laga, D. Picard, and P.-H. Gosselin, “Covariance descriptors for 3D

shape matching and retrieval,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2014, pp. 4185–4192.

[104] W. Hariri, H. Tabia, N. Farah, A. Benouareth, and D. Declercq, “3D face recognition

using covariance based descriptors,” Pattern Recognition Letters, vol. 78, pp. 1–7,

2016.

[105] C. S. Chua, F. Han, and Y. K. Ho, “3d human face recognition using point signa-

ture,” in IEEE International Conference on Automatic Face and Gesture Recogni-

tion, 2000, pp. 233–238.

[106] Y. Wang and C.-S. Chua, “Robust face recognition from 2D and 3D images using

structural hausdorff distance,” Image and Vision Computing, vol. 24, no. 2, pp. 176–

185, 2006.

125



[107] K. I. Chang, K. W. Bowyer, and P. J. Flynn, “Multiple nose region matching for

3D face recognition under varying facial expression,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1695–1700, 2006.

[108] T. C. Faltemier, K. W. Bowyer, and P. J. Flynn, “A region ensemble for 3D face

recognition,” IEEE Transactions on Information Forensics and Security, vol. 3,

no. 1, pp. 62–73, 2008.

[109] A. S. Mian, M. Bennamoun, and R. A. Owens, “Matching tensors for pose invari-

ant automatic 3D face recognition,” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2005, pp. 120–120.

[110] F. R. Al-Osaimi, M. Bennamoun, and A. Mian, “Integration of local and global

geometrical cues for 3D face recognition,” Pattern Recognition, vol. 41, no. 3, pp.

1030–1040, 2008.

[111] Y. Ming, “Robust regional bounding spherical descriptor for 3D face recognition and

emotion analysis,” Image and Vision Computing, vol. 35, pp. 14–22, 2015.

[112] I. A. Kakadiaris, G. Passalis, G. Toderici, M. N. Murtuza, Y. Lu, N. Karampatzi-

akis, and T. Theoharis, “Three-dimensional face recognition in the presence of fa-

cial expressions: An annotated deformable model approach,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 640–649, 2007.

[113] O. Ocegueda, T. Fang, S. K. Shah, and I. A. Kakadiaris, “3D face discriminant

analysis using Gauss-Markov posterior marginals,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 35, no. 3, pp. 728–739, 2013.

[114] C. Beumier and M. Acheroy, “Automatic 3D face authentication,” Image and Vision

Computing, vol. 18, no. 4, pp. 315–321, 2000.

[115] D. Huang, W. B. Soltana, M. Ardabilian, Y. Wang, and L. Chen, “Textured 3D

face recognition using biological vision-based facial representation and optimized

126



weighted sum fusion,” in IEEE Computer Society Conference on Computer Vision

and Pattern Recognition Workshops (CVPRW), 2011, pp. 1–8.

[116] G. Zhang and Y. Wang, “Robust 3D face recognition based on resolution invariant

features,” Pattern Recognition Letters, vol. 32, no. 7, pp. 1009–1019, 2011.

[117] F. R. Al-Osaimi, M. Bennamoun, and A. Mian, “Spatially optimized data-level fu-

sion of texture and shape for face recognition,” IEEE Transactions on Image Pro-

cessing, vol. 21, no. 2, pp. 859–872, 2012.

[118] W. Liu and Y. Yang, “Structural context for object categorization,” in Pacific-Rim

Conference on Multimedia. Springer, 2009, pp. 280–291.

[119] N. Alyuz, B. Gokberk, and L. Akarun, “Regional registration for expression resistant

3D face recognition,” IEEE Transactions on Information Forensics and Security,

vol. 5, no. 3, pp. 425–440, 2010.

[120] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using

shape contexts,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 24, no. 4, pp. 509–522, 2002.

[121] J. J. Koenderink, Solid shape. MIT press, 1990.

[122] A. Jain, K. Nandakumar, and A. Ross, “Score normalization in multimodal biometric

systems,” Pattern Recognition, vol. 38, no. 12, pp. 2270–2285, 2005.

[123] M. Emambakhsh and A. Evans, “Nasal patches and curves for an expression-robust

3D face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 2016, 2016.

[124] S. Lv, F. Da, and X. Deng, “A 3d face recognition method using region-based ex-

tended local binary pattern,” in IEEE International Conference on Image Processing

(ICIP), 2015, pp. 3635–3639.

127



[125] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recogni-

tion via sparse representation,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 31, no. 2, pp. 210–227, 2009.

[126] Y. Ming and Q. Ruan, “Robust sparse bounding sphere for 3d face recognition,”

Image and Vision Computing, vol. 30, no. 8, pp. 524–534, 2012.

[127] D. Huang, K. Ouji, M. Ardabilian, Y. Wang, and L. Chen, “3D face recognition

based on local shape patterns and sparse representation classifier,” in International

Conference on Multimedia Modeling. Springer, 2011, pp. 206–216.

[128] P. Szeptycki, M. Ardabilian, and L. Chen, “A coarse-to-fine curvature analysis-based

rotation invariant 3D face landmarking,” in IEEE International Conference on Bio-

metrics: Theory, Applications, and Systems, 2009, pp. 1–6.

[129] Z. Zhang, “Iterative point matching for registration of free-form curves,” Ph.D. dis-

sertation, Inria, 1992.

[130] B. Zhang, Y. Gao, S. Zhao, and J. Liu, “Local derivative pattern versus local binary

pattern: face recognition with high-order local pattern descriptor,” IEEE Transac-

tions on Image Processing, vol. 19, no. 2, pp. 533–544, 2010.

[131] C.-H. Chan, J. Kittler, and K. Messer, “Multi-scale local binary pattern histograms

for face recognition,” in International Conference on Biometrics. Springer, 2007,

pp. 809–818.

[132] O. Pele and M. Werman, “The quadratic-chi histogram distance family,” in European

Conference on Computer Vision. Springer, 2010, pp. 749–762.

[133] U. Castellani and A. Bartoli, “3D shape registration,” in 3D Imaging, Analysis and

Applications. Springer, 2012, pp. 221–264.

128



[134] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for re-

gression and multiclass classification,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 42, no. 2, pp. 513–529, 2012.

[135] I. Marques and M. Graña, “Face recognition with lattice independent component

analysis and extreme learning machines,” Soft Computing, vol. 16, no. 9, pp. 1525–

1537, 2012.

[136] K. Choi, K.-A. Toh, and H. Byun, “Incremental face recognition for large-scale

social network services,” Pattern Recognition, vol. 45, no. 8, pp. 2868–2883, 2012.

[137] S.-J. Wang, H.-L. Chen, W.-J. Yan, Y.-H. Chen, and X. Fu, “Face recognition and

micro-expression recognition based on discriminant tensor subspace analysis plus

extreme learning machine,” Neural Processing Letters, vol. 39, no. 1, pp. 25–43,

2014.

[138] A. Baradarani, Q. J. Wu, and M. Ahmadi, “An efficient illumination invariant face

recognition framework via illumination enhancement and DD-DTCWT filtering,”

Pattern Recognition, vol. 46, no. 1, pp. 57–72, 2013.

[139] S. Gao, L.-T. Chia, and I. W.-H. Tsang, “Multi-layer group sparse coding for concur-

rent image classification and annotation,” in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2011, pp. 2809–2816.

[140] J. Yang, L. Zhang, Y. Xu, and J.-y. Yang, “Beyond sparsity: The role of l1-optimizer

in pattern classification,” Pattern Recognition, vol. 45, no. 3, pp. 1104–1118, 2012.

[141] H. Tang, Y. Sun, B. Yin, and Y. Ge, “3D face recognition based on sparse represen-

tation,” The Journal of Supercomputing, vol. 58, no. 1, pp. 84–95, 2011.

[142] G. Pan, X. Zhang, Y. Wang, Z. Hu, X. Zheng, and Z. Wu, “Establishing point corre-

spondence of 3D faces via sparse facial deformable model,” IEEE Transactions on

Image Processing, vol. 22, no. 11, pp. 4170–4181, 2013.

129



[143] S. Soltanpour and Q. J. Wu, “Multiscale depth local derivative pattern for sparse

representation based 3d face recognition,” in IEEE International Conference on Sys-

tems, Man, and Cybernetics (SMC), 2017, pp. 560–565.
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