26 research outputs found

    Development and Implementation of Image-based Algorithms for Measurement of Deformations in Material Testing

    Get PDF
    This paper presents the development and implementation of three image-based methods used to detect and measure the displacements of a vast number of points in the case of laboratory testing on construction materials. Starting from the needs of structural engineers, three ad hoc tools for crack measurement in fibre-reinforced specimens and 2D or 3D deformation analysis through digital images were implemented and tested. These tools make use of advanced image processing algorithms and can integrate or even substitute some traditional sensors employed today in most laboratories. In addition, the automation provided by the implemented software, the limited cost of the instruments and the possibility to operate with an indefinite number of points offer new and more extensive analysis in the field of material testing. Several comparisons with other traditional sensors widely adopted inside most laboratories were carried out in order to demonstrate the accuracy of the implemented software. Implementation details, simulations and real applications are reported and discussed in this paper

    3D reconstruction of particle agglomerates using multiple scanning electron microscope stereo-pair images

    Get PDF
    Scanning electron microscopes (SEM) allow a detailed surface analysis of a wide variety of specimen. However, SEM image data does not provide depth information about a captured scene. This limitation can be overcome by recovering the hidden third dimension of the acquired SEM micrographs, for instance to fully characterize a particle agglomerate's morphology. In this paper, we present a method that allows the three-dimensional (3D) reconstruction of investigated particle agglomerates using an uncalibrated stereo vision approach that is applied to multiple stereo-pair images. The reconstruction scheme starts with a feature detection and subsequent matching in each pair of stereo images. Based on these correspondences, a robust estimate of the epipolar geometry is determined. A following rectification allows a reduction of the dense correspondence problem to a one-dimensional search along conjugate epipolar lines. So the disparity maps can be obtained using a dense stereo matching algorithm. To remove outliers while preserving edges and individual structures, a disparity refinement is executed using suitable image filtering techniques. The investigated specimen's qualitative depth's information can be directly calculated from the determined disparity maps. In a final step the resulting point clouds are registered. State-of-the-art algorithms for 3D reconstruction of SEM micrographs mainly focus on structures whose image pairs contain hardly or even none-occluded areas. The acquisition of multiple stereo-pair images from different perspectives makes it possible to combine the obtained point clouds in order to overcome occurring occlusions. The presented approach thereby enables the 3D illustration of the investigated particle agglomerates. © 2018 SPIE

    AUTOMATED AND ACCURATE ORIENTATION OF COMPLEX IMAGE SEQUENCES

    Get PDF
    The paper illustrates an automated methodology capable of finding tie points in different categories of images for a successive orientation and camera pose estimation procedure. The algorithmic implementation is encapsulated into a software called ATiPE. The entire procedure combines several algorithms of both Computer Vision (CV) and Photogrammetry in order to obtain accurate results in an automated way. Although there exist numerous efficient solutions for images taken with the traditional aerial block geometry, the complexity and diversity of image network geometry in close-range applications makes the automatic identification of tie points a very complicated task. The reported examples were made available for the 3D-ARCH 2011 conference and include images featuring different characteristics in terms of resolution, network geometry, calibration information and external constraints (ground control points, known distances). In addition, some further examples are shown, that demonstrate the capability of the orientation procedure to cope with a large variety of block configurations

    Image Matching with Scale Adjustment

    Full text link
    In this paper we address the problem of matching two images with two different resolutions: a high-resolution image and a low-resolution one. The difference in resolution between the two images is not known and without loss of generality one of the images is assumed to be the high-resolution one. On the premise that changes in resolution act as a smoothing equivalent to changes in scale, a scale-space representation of the high-resolution image is produced. Hence the one-to-one classical image matching paradigm becomes one-to-many because the low-resolution image is compared with all the scale-space representations of the high-resolution one. Key to the success of such a process is the proper representation of the features to be matched in scale-space. We show how to represent and extract interest points at variable scales and we devise a method allowing the comparison of two images at two different resolutions. The method comprises the use of photometric- and rotation-invariant descriptors, a geometric model mapping the high-resolution image onto a low-resolution image region, and an image matching strategy based on local constraints and on the robust estimation of this geometric model. Extensive experiments show that our matching method can be used for scale changes up to a factor of 6

    Camera self-calibration and analysis of singular cases

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Error Characterization of Flight Trajectories Reconstructed Using Structure from Motion

    Get PDF
    This research effort assessed the accuracy of Structure from Motion (SFM) algorithms in replicating aircraft fight trajectories. Structure from Motion techniques can be used to estimate aircraft trajectory by determining the position and pose of an aircraft mounted camera from a sequential series of images taken during flight. An algorithm is proposed and implemented that successfully reconstructed aircraft trajectory using only a known starting position and a sequential series of images. The error in and reliability of the algorithm was found to be a function of image resolution as well as the amount of overlap and angular separation between sequential images. The trajectory estimated by the algorithm drifted from the true trajectory as a function of distance traveled. The drift was dominated by uncertainty in the scale of the reconstruction as well as angular errors in estimated camera orientations. A proposed system architecture that incorporated scale and attitude updates was tested on actual flight test data. The architecture successfully reconstructed a variety of trajectories but drift rates were highly variable

    Multi-view 3D Reconstruction of a Scene Containing Independently Moving Objects

    Get PDF
    In this thesis, the structure from motion problem for calibrated scenes containing independently moving objects (IMO) has been studied. For this purpose, the overall reconstruction process is partitioned into various stages. The first stage deals with the fundamental problem of estimating structure and motion by using only two views. This process starts with finding some salient features using a sub-pixel version of the Harris corner detector. The features are matched by the help of a similarity and neighborhood-based matcher. In order to reject the outliers and estimate the fundamental matrix of the two images, a robust estimation is performed via RANSAC and normalized 8-point algorithms. Two-view reconstruction is finalized by decomposing the fundamental matrix and estimating the 3D-point locations as a result of triangulation. The second stage of the reconstruction is the generalization of the two-view algorithm for the N-view case. This goal is accomplished by first reconstructing an initial framework from the first stage and then relating the additional views by finding correspondences between the new view and already reconstructed views. In this way, 3D-2D projection pairs are determined and the projection matrix of this new view is estimated by using a robust procedure. The final section deals with scenes containing IMOs. In order to reject the correspondences due to moving objects, parallax-based rigidity constraint is used. In utilizing this constraint, an automatic background pixel selection algorithm is developed and an IMO rejection algorithm is also proposed. The results of the proposed algorithm are compared against that of a robust outlier rejection algorithm and found to be quite promising in terms of execution time vs. reconstruction quality

    Geometric and photometric affine invariant image registration

    Get PDF
    This thesis aims to present a solution to the correspondence problem for the registration of wide-baseline images taken from uncalibrated cameras. We propose an affine invariant descriptor that combines the geometry and photometry of the scene to find correspondences between both views. The geometric affine invariant component of the descriptor is based on the affine arc-length metric, whereas the photometry is analysed by invariant colour moments. A graph structure represents the spatial distribution of the primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs represent connectivities by extracted contours. After matching, we refine the search for correspondences by using a maximum likelihood robust algorithm. We have evaluated the system over synthetic and real data. The method is endemic to propagation of errors introduced by approximations in the system.BAE SystemsSelex Sensors and Airborne System

    Robust Parameter Estimation in Computer Vision

    Full text link

    Ricerche di Geomatica 2011

    Get PDF
    Questo volume raccoglie gli articoli che hanno partecipato al Premio AUTeC 2011. Il premio è stato istituito nel 2005. Viene conferito ogni anno ad una tesi di Dottorato giudicata particolarmente significativa sui temi di pertinenza del SSD ICAR/06 (Topografia e Cartografia) nei diversi Dottorati attivi in Italia
    corecore