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Summary 

Obtaining a 3D model for the world is one of the main goals of computer vision. 

The task to achieve this goal is usually divided into several modules, i.e., projective 

reconstruction, affine reconstruction, metric reconstruction, and Euclidean reconstruc-

tion. Camera self-calibration, which is one key step among them, links the so-called 

projective and metric reconstruction. However, a lot of existed self-calibration algo-

rithms are fairly unstable and thus fail to take up this role. The main reason is that sin-

gular cases are not rigorously detected.  

In this thesis, a new camera self-calibration approach based on Kruppa's equations 

is proposed. We assume only the focal length is unknown and constant, the Kruppa's 

equations are then decomposed as two linear and one quadratic equations. All of ge-

neric singular cases, which are nearly correspondent to algebraically singular cases for 

those equations are fully derived and analyzed. We then thoroughly carry out experi-

ments and find that the algorithm is quite stable and easy to implement when the ge-

neric singular cases are excluded. 

 

 

 

 

 

 

 

 

 

 



 vii

List of Tables 

Table 6.1: Calibration results with respect to the principal point estimation ............... 68 

Table 6.2: Experiment considering the stability of this algorithm................................ 70 

Table 6.3: Reconstruction results using calibrated focal length ................................... 74 

Table 6.4: Results calibrated from images containing 3 cups ...................................... 75 

Table 6.5: Results calibrated from images containing a building................................. 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 viii

List of Figures 

Figure 2.1: Line-point dual figure in projective 2D geometry........................................ 9 

Figure 3.1: The pinhole camera model ......................................................................... 15 

Figure 3.2: The Euclidean transformation between the world coordinate system and 
the camera coordinate system ............................................................................... 17 

 
Figure 3.3: Epipolar geometry ...................................................................................... 19 

Figure 3.4: Different structures recovered on different layers of 3D geometry ........... 31 

Figure 4.1: Absolute conic and its image...................................................................... 37 

Figure 5.1: Illustration of critical motion sequences. (a) Orbital motion. (b) Rotation 
about parallel axes and arbitrary translation. (c) Planar motion (d) Pure rotations 
(not critical for self-calibration but for the scene reconstruction). ....................... 52 

 
Figure 5.2: Possible camera center positions when the PAC is not on ∞Π . (a) The 

PAC is a proper virtual circle. All the camera centers are on the line L. (b) The 
PAC is a proper virtual ellipse. All the camera centers are on a pair of 
ellipse/hyperbola. .................................................................................................. 54 

 
Figure 5.3: Illustration of the equidistant case (arrows show the directions of camera's 

optical axes) .......................................................................................................... 55 
 

Figure 5.4: Configuration of non-generic singularity for the linear equations ............. 58 

Figure 6.1: The synthetic object.................................................................................... 61 

Figure 6.2: Relative error of focal length with respect to Gaussian noise level ........... 62 

Figure 6.3: Coordinates of two cameras ....................................................................... 63 

Figure 6.4: Coplanar optical axes (neither parallel nor equidistance case) .................. 64 

Figure 6.5: The two camera centers are near to be equidistant from the intersection of 
the two optical axes............................................................................................... 65 

 
Figure 6.6: The two optical axes are near parallel ........................................................ 65 

Figure 6.7: Some images of the calibration grid........................................................... 67 

Figure 6.8: Effect of the principal point estimation on the focal length calibration..... 69 

Figure 6.9: The middle plane ........................................................................................ 70 

Figure 6.10: Sensitivity of focal length with respect to the angle c.............................. 71 



 ix

Figure 6.11: Images of three cups................................................................................. 76 

Figure 6.12: some images of a building........................................................................ 77 

Figure 6.13: The reconstructed cup. First row: general appearance of the scene, once 
with overlaid triangular mesh. Second row: rough top view of cups and two 
close-ups of the plug in the background (rightmost image shows the near 
coplanarity of the reconstruction). Third row: top views of two of the cups, 
showing that their cylindrical shape has been recovered...................................... 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 x

Nomenclature 

In order to enhance readability of the thesis, a few notations are used throughout 

the thesis. Generally, 3D points are represented in capital form and their images are 

the same letters of low case form. Vectors are column vectors embraced in square 

brackets. Homogeneous coordinates differ with their correspondent inhomogeneous 

dummies by adding a "~" on their heads.  

×             cross product 

.              dot product 

TA          transpose of the matrix A  

P          the projection matrix 

∏            world plane (4-vector) 

∞∏          the plane at infinity 

l              image line (3-vector) 

A            camera intrinsic parameter matrix 

F             fundamental matrix  

AC          absolute conic 

IAC         image of the absolute conic 

DIAC      dual of IAC 

v            Euclidean norm of the vector v  

~              equivalent up to scale 
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Chapter 1. Introduction 

1.1 Motivation 

Computer vision system attempts to mimic human being's vision. They first appear 

in robotics applications. The commonly accepted computational theory of vision pro-

poses that constructing a model of the world is a prerequisite for a robot to carry out 

any visual task [22]. Based on such a theory, obtaining 3D model becomes one of the 

major goals of the computer vision community.  

Increased interests on application of computer vision come from entertainment and 

media industry recently. One example is that a virtual object is generated and merged 

into a real scene. Such application heavily depends on the availability of an accurate 

3D model.  

Conventionally, CAD or 3D modeling system is employed to obtain a 3D model. 

The disadvantage of such approaches is that the costs in terms of labor and time in-

vestment often rise to a prohibitive level. Furthermore, it is also difficult to include 

delicate details of a scene into a virtual object.  

An alternative approach is to use images. Details of an object can be copied from 

images to a generated virtual object. The remaining problem is that 3D information is 

lost by projection. The task is then to recover the lost depth to a certain extent1.  

The work reported in this thesis deals with this task of depth recovery in the recon-

struction of 3D models using 2D information. Due to the limited time and space, it 

does not cover all the details of how to obtain a 3D model. Instead, it focuses on the 

                                                 

1 Details on the different kind of reconstruction (or structure recovery) will be discussed in later 
chapters. 
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so-called camera self-calibration that is a key step for constructing 3D models using 

2D images. 

1.2 From 2D images to 3D model 

As we may see in the later chapters, camera self-calibration is one of important 

steps in automatic 3D modeling. Therefore it is a logical start that we first introduce 

how to reconstruct a 3D model. 

Although it is natural for us to perceive 3D, it is hardly so for a computer. The fun-

damental problems associated with such a perception task are what can be directly ob-

tained from images and what can help a computer to find 3D information from images. 

Those problems are usually categorized as image feature extraction and matching. 

1.2.1 Image feature extraction and matching 

Most of us have the experience that if we look at a homogeneous object (such as a 

white wall), there is no way to perceive 3D. We have to depend on some distinguished 

features to do so. Such distinguished features may be corners, lines, curves, surfaces, 

and even colors. Usually, corners or points are used since they can be easily formu-

lated by mathematics. Harris corner detector [8] shows superior performance consider-

ing the criteria of independence of camera pose and illumination change [27]. Match-

ing between two images is a difficult task in image processing since a little change of 

conditions (such as illumination or camera pose) may produce very different matches. 

Hence current cross-correlation approaches that are widely employed often assume 

that images are not very different from each other.  
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1.2.2 Structure from motion 

After some image correspondences (i.e. pairwise matches) are obtained, the next 

step toward 3D model is to recover the scene's structure. The word "structure" we use 

here does not have the same meaning as what we imagine in the Euclidean world. The 

connotation of structure in the field of computer vision depends on the different layers 

of 3D geometry. This stratification of 3D geometry will be discussed in detail in the 

later chapters. We just give a brief introduction here. Generally, if no information other 

than the image correspondences is available, a projective reconstruction can be done at 

this stage. In fact, as we may see in Chapter 3, the structure is recovered up to a 44×  

arbitrary projective transformation matrix. However, when the camera's intrinsic pa-

rameter matrix is known, the structure could be recovered up to an arbitrary similarity 

transformation. Such similarity transformation has one degree of freedom more than a 

Euclidean transformation, which is determined by a rotation and a translation. That 

one-degree of freedom is exactly the yardstick to measure the real object's dimension. 

At this stage, this process of structure recovery is called the metric reconstruction. 

Early work on structure from motion assumes that the camera intrinsic parameter 

matrix is known. Based on this assumption, camera motion and the scene's structure 

can be recovered from two images [19], [40] or from image sequences [30], [34]. A 

further assumption of the affine camera model can give another robust algorithm [35].  

Since the so-called fundamental matrix was obtained by Faugeras [5] and Hartley 

[9], uncalibrated structure from motion has been drawing extensive attention from re-

searchers. The fundamental matrix computation is the starting point to conduct such 

research. Two papers [36, 43] represent the existing state-of-the-art research in this 

area. After the fundamental matrix is obtained, the camera matrices can be constructed 

with some extent of ambiguity. This will be discussed in detail in Chapter 3.  
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1.2.3 Self-calibration 

Camera self-calibration is the crux that links the projective and metric reconstruc-

tion. Self-calibration means that the cameras can be calibrated just from images with-

out any calibration pattern of known 3D information. It is very interesting since in the 

last subsection, we note that only the projective reconstruction can be obtained from 

images. However, the camera's intrinsic parameter matrix is exactly constrained by the 

so-called images of the absolute conic (IAC), which in fact can be obtained from im-

ages through the so-called Kruppa's equations. We will present this in detail in Chapter 

Four.   

Faugeras and Maybank initiated the research on Kruppa's equations based camera 

self-calibration [6]. Hartley then conducted a singular value decomposition (SVD) 

based simplification of the Kruppa's equations [13]. These simplified Kruppas' equa-

tions clearly show that two images give rise to two independent equations that impose 

constraints on the camera's intrinsic parameter matrix. Since the camera's intrinsic pa-

rameter matrix has 5 unknown parameters, at least three images are needed (One fun-

damental matrix introduces two independent Kruppa's equations. Three images lead to 

three fundamental matrices and then six equations would be obtained if no degenera-

tion occurs).  

A lot of algorithms on camera self-calibration were proposed [45] [46] in the past 

ten years. However, the calibrated results seemed not so satisfactory [47]. Recently, a 

lot of researchers delved into the existing problems in camera self-calibration. Sturm 

showed that some special image sequences could result in incorrect constraints on the 

camera parameter matrix [31, 32]. The corresponding camera motions are then called 

critical motion sequences [31]. The geometric configurations corresponding to critical 

motion sequences are called the singular cases (or the singularities) of a calibration al-
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gorithm in this thesis. In addition to the analyses of the critical motion sequence analy-

ses, some researchers also found constraints on the camera's intrinsic parameters would 

yield more robust results [24] [48]. We propose that if some camera's intrinsic parame-

ters are known first, singularities of a calibration algorithm would be discovered as a 

whole [49]. This part of work on singularities will be discussed in Chapter 5.   

1.2.4 Dense 3D model  

The structure recovered from the approaches discussed in the last subsection has 

only restricted feature points. Those points are not sufficient for robot vision and ob-

ject recognition. Hence a dense 3D model needs to be recovered. However, since after 

structure recovery, the geometry among cameras has been found and then it is easy to 

match other common points in the images. Typical matching algorithms at this stage 

are area-based algorithms (such as [3, 15]) and space carving algorithms (such as [17] 

[28]). Details can be found in the work by P. Torr [37]1. 

1.3 Main contribution 

Before we move on to present the technical details, it is essential to clarify the con-

tribution made by the author.   

1. Theoretically, our work stands on two footstones. Firstly, three calibration 

equations are obtained (in Section 4.3, Chapter 4). One of them is quadratic and 

the remaining is linear. Focal length is in the closed form in these equations, 

and thus solution is easy to obtain. Secondly, all of singular cases associated 

with the equations are described geometrically and derived algebraically (in 

                                                 

1 An alternative way is by optical flow. However, it estimates the camera geometry and dense match-
ing simultaneously and thus we don't discuss it here.  
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Section 5.2, Chapter 5 and Appendix B). Part of the results has been published 

in our paper [2].  

2. Experimentally, intensive tests have been conducted both on simulated and real 

data (in Chapter 6). This part of work together with the theoretical work is de-

scribed in the report  [49]. 

1.4 Thesis outline 

This thesis consists of seven chapters. Chapter 2 introduces basic concepts of pro-

jective geometry that are needed in the later part of the thesis. Since a camera is a 3D 

to 2D projection model, only the 2D projective plane and 3D projective space are pre-

sented in Chapter 2. The concept of duality, which is essential to the Kruppa's equa-

tions, is also introduced in this chapter. Some geometric entities such as points, lines, 

planes, and conics are briefly discussed as well.  

Two-view geometry, which is fundamental to the new self-calibration algorithm in 

this thesis, is then introduced in Chapter 3. We start with the camera model, and two-

view geometry (or epipolar geometry) is then established. The fundamental matrix 

(which is the core of two-view geometry) is then fully presented. Next, the recovery of 

camera matrix from the fundamental matrix is discussed. Here, we also discuss compu-

tation of the fundamental matrix. This section is essential since the fundamental matrix 

computation determines the performance of the calibration algorithm presented in the 

thesis. Finally, the stratification of the 3D geometry is presented. The role of camera 

self-calibration gradually emerges after such stratification. 

In Chapter 4, we focus on camera self-calibration. Kruppa's equations are first in-

troduced through the invariant of the images of the absolute conic (IAC) with respect 

to camera motions. A brief history of camera self-calibration is introduced, and a few 
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relevant important algorithms are reviewed. Our focal length calibration algorithm is 

then presented after the introduction of Hartley's simplification of Kruppa's equations 

[13].   

Chapter 5 starts by discussing so-called critical motions that make camera self-

calibration impossible. After then, we give heuristic and algebraic analysis of singular 

cases for our algorithm. Both of them nearly lead to the same results.  

Both simulation and experiments with actual images are presented in Chapter 6. We 

show that the proposed algorithm is very stable, and the results perfectly match the 

analysis on singular cases of the chapter 5. 

Conclusion is drawn in Chapter 7. To enhance the readability of this text, some of 

mathematical derivations are placed in appendices. 
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Chapter 2. Projective Geometry 

This chapter discusses some important concepts and properties of projective geome-

try. First, some basic concepts of n dimensional projective space are introduced in Sec-

tion 2.1. Then in Section 2.2, the concept of duality is presented. Two important in-

stances of projective geometry (namely the 2D projective plane and the 3D projective 

space) are then discussed in Section 2.3. Some important geometric entities are also 

presented in this section. Various background information discussed in this chapter can 

be found in the books by Faugeras[7], Wolfgang Bohem and Hartmut Prautzsch[1], 

and Semple and Kneebone[29].  

2.1 Introduction 

With the introduction of Cartesian coordinates in Euclidean geometry, geometry 

became closely associated with algebra. Usually, a point in nR  is given by an n-vector 

of coordinates, i.e., [ ]TnxxX ...1= . Homogeneous coordinates, which are footstone of 

projective geometry, however, add one dimension up to an n+1-vector of coordinates, 

i.e., =X~ [ ]Tnxx 11
~...~

+ . Given homogeneous coordinates X , the Euclidean coordinates 

are obtained by 

                                         
1

1
1 ~

~

+

=
nx
xx ,       …,      

1
~
~

+

=
n

n
n x

xx .                                (2.1.1) 

Since the relationship (2.1.1) exists, two points X  and Y  in projective n-space are 

equal if their homogeneous coordinates are related by ii yx λ= , where λ  is a nonzero 

scalar. However, if 0~
1 =+nx , then the Euclidean coordinates go to infinity accordingly. 

In projective geometry, such a point is called an ideal point or a point at the infinity. 

The important role of such a point will be discussed in Section 2.3.2.  
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2.2 Duality 

We note that the n dimensional projective space nΡ  can be expressed in n+1-vector 

homogeneous coordinates. Therefore, a hyperplane in nΡ , when expressed algebrai-

cally, is in the form of 0=xu t . Here, u and x are both n+1-vectors and u  is the hy-

perplane's coordinate vector. Then the coordinates of the hyperplane span another n 

dimensional projective space ∗Ρ  that is called the dual space of nΡ .  

If the term "point" (in the previous paragraph, it is expressed in homogeneous coor-

dinates x ) is interchanged with "hyperplane" and correspondently "collinear" with 

"coincident" and "intersection" with "join", etc., then there is no way to tell the differ-

ence between the projective geometry formed by a space and by its dual space. Spe-

cifically, let us consider a line [ ]T321 in projective 2D geometry. Three points in ho-

mogeneous coordinates [ ]Tp 1111 −−−= , [ ]Tp 1032 −= and [ ]Tp 1153 −−= are on 

this line. However, if we treat these three vectors as the lines' coordinate vectors, then 

the lines finally intersect at a point [ ]T321 . Hence, points are interchanged with lines 

(two dimensional hyperplane) and so are collinear and coincidence. The geometry after 

the interchange is the same as the geometry before the interchange.  Figure 2.1 shows 

such dual relation.  

 

Figure 2.1: Line-point dual figure in projective 2D geometry 
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2.3 Projective 2D and 3D geometry 

Projective 2D and 3D geometry are the two most important projective geometries 

since they correspond to 2D plane and 3D space in Euclidean geometry. In computer 

vision, the 2D projective plane corresponds to the geometry in 2D image plane, while 

projective 3D space corresponds to geometry in 3D world space.  

2.3.1 The 2D projective plane 

The 2D projective plane is the projective geometry of 2Ρ . A point in 2Ρ  is ex-

pressed by a 3-vector [ ]TwyxX ~~~~ = . Its Euclidean coordinates are then given by 

                                                 
w
xx ~
~

= , 
w
yy ~
~

=                                                    (2.3.1) 

In 2Ρ , a line is also represented by a 3-vector. In fact, given a line l , a point X~  is on 

the line if and only if the equation 0~ =Xl T holds. According to the description in the 

last section, here points and lines are a pair of duality.  

Given two points 1
~X  and 2

~X , the line l  passing through these two points is written 

as 21
~~ XXl ×=  since 0~~~

121 =⋅× XXX and 0~~~
221 =⋅× XXX . Because of duality, two 

lines 1l  and 2l  intersect at one point 21
~ llX ×= .  

2.3.2 The 3D projective space 

A point X  in the projective 3D space is represented by a 4-vector 

[ ]TwzyxX ~~~~~ = . The corresponding Euclidean coordinates are 

                                           
w
xx ~
~

= , 
w
yy ~
~

= , 
w
zz ~
~

= .                                            (2.3.2) 

Its dual buddy is a plane Π  given by 0~ =Π XT .  
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A line in the 3D projective space is not easy to express directly since it has four de-

grees of freedom. Four degrees of freedom need a homogeneous 5-vector expression. 

Hence, it is not easy to combine a line in 5-vector with a point and plane in 4-vector. 

The usual way to express a line is based on the fact that a line is the join of two points, 

e.g. 2211
~~ XXl λλ += , or dually it is the intersection of two planes, e.g. 21 ΠΠ= Il .  

2.3.3 The plane at infinity 

In 3D projective geometry, a point at infinity is interpreted as [ ]Tzyxp 0~~~~ =  in 

homogeneous coordinates. The plane at infinity, ∞Π , consists of all the points at infin-

ity. Hence, the homogeneous coordinates of ∞Π  are [ ]T1000 .  

It is well known that ∞Π  is invariant under any affine projective transformation. An 

affine transformation is in the form of 

T

aff pppp
pppp
pppp

P



















=

1000
34333231

24232221

14131211

. The proof is given 

briefly below. 

Result 2.1 The plane at infinity ∞Π is invariant under the affine transformation affP . 

Proof: A point X  is in ∞Π  if and only if 0=Π∞ XT . Since 01 =Π −
∞ XPP affaff
T , ∞Π  is 

transformed to ∞
− ΠT

affP under an affine transformation. Therefore we have, 

                       ∞

−

−

∞
−

∞ Π=



















=







































−

=Π=Π′

1
0
0
0

1
0
0
0

1TT

T

T
affP

pP

0P

 ,                     (2.3.3) 

where P  is the upper 33×  matrix of affP  and p  is the vector of [ ]Tppp 342414=p . 
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Since ∞Π  is fixed under a general affine transformation, it is the basic invariant in the 

affine space, which is the intermediate layer between projective space and Euclidean 

space. Because of this, it plays an important role in the interpretation of different kinds 

of reconstruction.  

2.3.4 Conics and quadrics 

Conic  In 2Ρ , a conic is a planar curve, which is represented by a 33×  symmetric ma-

trix C  up to an unknown scale factor. Points on the conic satisfy the homogeneous 

equation 

                                                 0)( == CxxxS T .                                             (2.3.4) 

Dual conic  The duality of a conic is the envelope of its tangents, which satisfy the fol-

lowing homogeneous equations 

                                                        0=∗lCl T .                                                 (2.3.5) 

Like a conicC , ∗C  is also a 33×  symmetric matrix up to an unknown scale factor.  

Line-conic intersection  A point on the line l  can be expressed as tlx +0 , where t  is 

a scalar and 0x  is a reference point on the line. Following the conic definition, there is 

                                         0)()( 00 =++ tlxCtlx T .                                           (2.3.6) 

Finally the equation (2.3.6) can be expressed as 

                                         02 2
000 =++ ClltCxtlCxx TTT .                                     (2.3.7) 

Therefore, generally, a line has two intersections with a conic. 

Tangent to a conic  From the equation (2.3.7), we know that the line l  is tangent to 

the conic C  if and only if 0)()()( 00
2

0 =⋅− CllCxxCxl TTT . If 0x  is on the conic, then 

we have 

                                                     00 =Cxl T                                                      (2.3.8) 
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So the tangent to a conic is 0~~ xClCl TT , where ~ means it is equivalent up to an 

unknown scale factor. 

The relation between conic and dual conic  Results from the above description dem-

onstrate that the relation between conic and dual conic is 1~ −∗ CC  if the conic does not 

degenerate.  

Quadric   A quadricQ  is a set of points satisfying a homogeneous quadratic equation. 

Therefore, a conic is a special case of quadric in 2Ρ . Like conics, a quadric in nΡ  can 

be represented by a )1()1( +×+ nn  symmetric matrix. Hence, its dual is also a 

)1()1( +×+ nn  symmetric matrix. In 3P , a plane tangent to a quadric is then deter-

mined by Π=Π TQ . Similarly, the dual of a quadric ∗Q satisfies 1~ −∗ QQ .  

2.4 Conclusion 

In this chapter, some basic concepts of projective geometry are introduced. These 

concepts provide the background for the discussion of two-view geometry.  
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Chapter 3. Two-View Geometry 

Two-view geometry is the basic geometry that constrains image correspondences 

between two images. The term "two view" in this thesis means that two images of a 

scene are taken by a stereo rig, (i.e., a two-camera system), or by a rigid motion of a 

camera. Hence there are two camera projection matrices 1P  and 2P  associated with 

these two views.  

This chapter is organized as follows: In Section 3.1, the pinhole camera model is 

briefly introduced. In Section 3.2, epipolar geometry, (i.e., two-view geometry) is de-

scribed. A special matrix called the fundamental matrix F  is then introduced to explain 

the geometry constraint between the two views. Section 3.3 deals with the issue of re-

construction for a given F . In Section 3.4, we briefly review methods for computing 

the fundamental matrix. In Section 3.5, we focus on the stratification of the 3D geome-

try to study different kinds of reconstructions that are achievable in different stratums.  

3.1 Camera model 

In this section, the perspective projection model (also called the pinhole camera 

model) is presented. Basic concepts associated with this model, such as camera center, 

principal axis and intrinsic parameter matrix, are described in detail. We then discuss 

the issue of radial distortion and learn how to correct it. 

3.1.1 Perspective projection camera model 

In computer vision context, the most widely used camera model is the perspective 

projection model. This model assumes that all rays coming from a scene pass through 

one unique point of the camera, namely, the camera center C . The camera's focal 

length f  is then defined by the distance between C  and the image plane. Figure 3.1 
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shows one example of such a camera model. In this model, the origin of the camera 

coordinate system CXYZ  is placed at C . The Z  axis, perpendicular to the image 

plane R  and passing through C , is called the principal axis. The plane passing 

through C  and parallel to R  is the principal plane. The image coordinate system xyc  

is on the image plane R . The intersection of the principal axis with the image plane is 

accordingly called the principal point c . The origin of the image coordinate system 

here is place at c .   

Z

M

camera
coordinate system

C

X

Y

c

x

y
f

m

R

 

Figure 3.1: The pinhole camera model 

At first, we assume that the world coordinate system is the same as the camera coordi-

nate system. Following the simple geometry pictured in Figure 3.1, we have 

                                                          
Z
f

Y
y

X
x

==                                                    (3.1.1) 

Applying homogeneous representation, a linear projection equation can be obtained 
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=  ,                 (3.1.2) 

where I  is the 33×  identity matrix and 0  is a null 3-vector. This is the canonical rep-

resentation of a perspective projection model. Here, m~  and M~  represent the homoge-
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neous coordinates of the image point m  and the world point M , respectively. The 

symbol ~ means the equation is satisfied up to an unknown scale factor s. 

3.1.2 Intrinsic parameters 

In many cases, however, the origin of the image coordinate system is not at the 

principal point. Furthermore, in practice, pixels may not be exact squares and the hori-

zontal axis may not form exact right angle with the vertical axis. To recount for such 

non-ideal situations, we rewrite the equation (3.1.2) as 

                       [ ]MA
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vf
uf
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m ~
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0I=
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βα
,                   (3.1.3) 

with aspect ratio α  the relative scale in image vertical and horizontal axis, skew factor 

β  the skewness of the two axes, f  the focal length and ),( 00 vu  the principal point. 

These five parameters are independent of the camera's orientation and position. Hence 

they are called the intrinsic parameters of the camera and then A  is called the intrinsic 

parameter matrix.  

3.1.3 Extrinsic parameters 

If the position and orientation of the world coordinate system is different from that 

of camera coordinate system, then the two coordinate systems are related by a rotation 

and a translation. Consider Figure 3.2, which illustrates that the rotation R  and the 

translation t  bring the world coordinate system to the camera coordinate system, we 

have 

                                                     [ ]MRAm ~|~~ t  ,                                           (3.1.4) 
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where R  and t  represent the camera's orientation and position, respectively, and they 

are the so-called extrinsic parameters of the camera. 

       Ycam

X

 Y

Z

C

Zcam

       Xcam

      R, t O

 

Figure 3.2: The Euclidean transformation between the world coordinate system and 
the camera coordinate system 

 

The intrinsic parameter matrix and the extrinsic parameter matrix can be combined 

to produce the so-called the projection matrix (or camera matrix) P , i.e., [ ]tRAP |= . 

Therefore,  

                                                             MPm ~~~ .                                               (3.1.5) 

3.1.4 Radial distortion 

The perspective projection model is a distortion-free camera model. Due to design 

and assembly imperfections, the perspective projection model does not always hold 

true and in reality must be replaced by a model that includes geometrical distortion. 

Geometrical distortion mainly consists of three types of distortion: radial distortion, 

decentering distortion, and thin prism distortion [42]. Among them, radial distortion is 

the most significant and is considered here. 

Radial distortion causes inward or outward displacement of image points from their 

true positions [42]. An important property of radial distortion is its strict symmetry 

about the principal axis. Thus the principal point is the center of radial distortion. 

Based on this important property, we can then easily get the form for the expression 

that measures the size of radial distortion. 
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                                 K+++= 7
3

5
2

3
1 ρρρδ ρ kkkr ,                                       (3.1.6) 

where, rρδ  measures the deviation of an observed point from an ideal position, ρ  is 

the distance between a distorted point and the principal point, and 1k , 2k  and 3k  are 

the coefficients of radial distortion. In Cartesian coordinates, equation (3.1.6) becomes 

                                [ ]5222
2

22
1 ),()()( vuOvuukvuukur ++++=δ ,                   (3.1.7) 

                                [ ]5222
2

22
1 ),()()( vuOvuvkvuvkvr ++++=δ ,                    (3.1.8)   

where urδ  and vrδ  are horizontal and vertical components of rρδ , and u  , v   are pro-

jections of ρ  in the horizontal and vertical axes. The location of a distorted image 

point is then given by 

                                                      ),( vuuu urδ+=′ ,                                              (3.1.9) 

                                                      ),( vuvv vrδ+=′ .                                            (3.1.10) 

3.2 Epipolar geometry and the fundamental matrix 

Epipolar geometry is the internal geometry that constrains two views. It is inde-

pendent of scene structure and only depends on the camera's internal parameters and 

relative pose.  

3.2.1 Epipolar geometry 

Consider the two-camera system in Figure 3.3. C  and C ′  are the camera centers. 

The projections of the two camera centers on the left and right image planes e  and 

e′ are formally called epipoles. A 3D world point X  then defines a plane with C  and 

C ′ . Naturally, its two projections x  and x′ on two image planes are also on this plane. 

We call this plane the epipolar plane. In other words, one projection x  of the world 

point X  forms the epipolar plane with the baseline CC ′ . This plane intersects the 

other optical ray of XC ′  at x′  and the other image plane at an epipolar line l ′ . Of 



 19

course, l ′  passes through the epipole e′ . Such geometry discloses the following im-

portant facts: 

1. Epipolar geometry tells us that, instead of searching for an image point's 

correspondence on a two-dimensional plane, we only need to look for it 

along a so-called epipolar line and hence one degree of freedom is elimi-

nated. 

2. All epipolar lines intersect at the common point--- epipole. 

3. It is possible to recover a 3D world point, because this 3D point and one 

pair of correspondences form a triangulation, with the 3D point being the 

intersection of two optical rays. However there is no way to recover any 

point on the baseline since the epipolar plane is degenerate into a line then.  

  l'

e

x

x

c c'e'

x '

 

Figure 3.3: Epipolar geometry 

3.2.2 The fundamental matrix 

In Figure 3.3, the epipolar line l ′  can be expressed as [ ] xexel ′′=′×′=′ × , where ×  

is the cross product, and [ ]×′e  is the skew symmetric matrix of vector e′ . From equa-

tion (3.1.5), we have XPx ′=′  and PXx = . The optical ray back-projected from x  by 
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P  is then given by solving the equation PXx = . Then we have CxPX += +λ 1, 

where +P  is the pseudo-inverse of P , C  is the camera center and λ  is a scalar. Fol-

lowing the last section's epipolar geometry, we find x′ , the image correspondence of 

x , is on x ' s correspondent epipolar line l ′ .  Therefore  

  [ ] [ ] CPxexPPxeCxPPlXPlxl TTTTT ′′′+′′′=+′′=′′=′′= ×
+

×
+ )()()(0 λλ .   (3.2.1) 

Since eCP ′=′ , the second part of the right side of (3.2.1) is zero. We then have 

                               [ ] [ ] 0')( =′′=′′′ +
×

+
× xPPexxPPxe TT .                                     (3.2.2) 

We define [ ] +
× ′′= PPeF as the fundamental matrix. Then the equation (3.2.2) becomes  

                                                         0=′ Fxx T  .                                                    (3.2.3) 

Suppose that the two camera matrices of a stereo rig are  

                                      [ ]0I |AP =     [ ]tR |AP =′ .                                     (3.2.4) 

Then  

                                             







= −+

0
I1AP    








=

1
0

C .                                           (3.2.5) 

Hence  

                               [ ] [ ] [ ] 11 −
×

−−
×

+
× ==′′= RAAARAPPCPF T tAt .                       (3.2.6) 

Equation (3.2.6) is the explicit form of the fundamental matrix in terms of camera mo-

tion. 

Note that, from equation (3.2.6), the rank of the fundamental matrix is two, since 

[ ] 2)( =×trank  and both A  and R  are full rank.  

                                                 

1 C  is the null space of P  and one solution of the equation PXx =  is xP + . Hence the solution is 
xPCX ++= λ . Since X  is determined up to a scale factor, the solution can be expressed as 

CxPX += +λ  too. 
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3.3 Recovery of camera matrix from the fundamental matrix  

The results from the last section tell us that if a pair of camera matrices P  and P′  

are known, the fundamental matrix F  can then be uniquely determined up to an un-

known scale factor. However, the converse is not true. That is, if a fundamental matrix 

is given, two camera matrices cannot be fully recovered, but can still be recovered up 

to an unknown 44×  projective transformation. This is called the projective ambiguity 

of cameras given F .  

In order to prove the above assertion, we introduce a simple form of a stereo rig.  

3.3.1 Canonical form of camera matrices of a stereo rig 

Consider two camera matrices of a stereo rig P  and P′ . If H  is a nonsingular 

44×  projective transformation matrix1, then the two pairs of camera matrices, namely 

),( PP ′  and ),( HPPH ′ , determine the same fundamental matrix. This result is obvi-

ous since ))(( 1 XHPHPX −=  and ))(( 1 XHHPXP −′=′ . That means a world point 

XH 1−  projected through two camera matrices ),( HPPH ′  has the same projections as 

X  through ),( PP ′ . As a result, these two pairs of camera matrices have the same 

fundamental matrix. 

We can now assume that two camera matrices of a general stereo rig are in canoni-

cal form, i.e., [ ]0I |=P  and [ ]m|MP =′ , where I  is the 33×  identity matrix, 0  is 

a null 3-vector, M  is a 33×  matrix and m  is a 3-vector. In other words, we just place 

the world coordinate system at the position that has the unitary distance with the image 

plane. Three axes of the world coordinate system are of course parallel to those of the 

camera coordinate system.  
                                                 

1 A 44×  projective transformation matrix is a 44×  matrix in projective 3D geometry. 



 22

3.3.2 Camera matrices obtained from F 

   If the camera matrices P  and P′  of a stereo rig are in strictly canonical form, 

then they can be expressed as [ ]0I |=P  and [ ]eSFP ′=′ | [14], where S  is any skew-

symmetric matrix. Luong [20] suggests it is suitable to choose [ ]×′= eS . We will omit 

the proof and just verify the result here. Specifically, let three rows of F  are Tf1 , Tf 2  

and Tf3 , we have 

                         [ ] [ ] [ ] F
f
f
f

eeFeePPeF
T

T

T

=
















×′×′=′′=′′= ××
+

×

3

2

1

,                     (3.3.1) 

since 0=′ Fe T 1.  

Result 3.1. The canonical camera matrices obtained from a fundamental matrix F  are 

                                        [ ]0I |=P    [ ][ ]eveFeP T ′′+′=′ × λ|                       (3.3.2) 

where v  is any 3-vector and λ  a non-zero scalar. 

The above conclusion results from the fact that two projection matrices have in total 

22 degrees of freedom. However, a fundamental matrix can only eliminate 7 degrees of 

freedom. Therefore, 15 degrees of freedom remain and they exactly correspond to the 

degrees of freedom of a 44×  projective transformation.  

3.4 The fundamental matrix computation 

The fundamental matrix represents a basic constraint on two-view geometry, and 

thus plays an important role in structure recovery from two or more views. Intense re-

search has been done to accurately estimate the fundamental matrix in the presence of 

                                                 

1 Since the e′  is the null space of TF , then 01 =⋅′ TT fe . Therefore TT ffee 11 =×′×′  follows. 

In the same principle, it also holds for Tf 2 and Tf3 . 
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image noise. This section just briefly reviews some approaches for fundamental matrix 

computation. Some more intensive treatment of this subject can be found in [43] and 

[36].  

Assume that [ ]Tiii vux ,=  and [ ]Tiii vux ′′=′ ,  are one pair of corresponding points 

in two views. The epipolar geometry indicates that, in general, there is a fundamental 

matrix F  such that 0=′ i
T

i Fxx . In fact we can rewrite this equation as a homogeneous 

equation 

                                                        0=fuT
i ,                                                    (3.4.1) 

where 

[ ]Tiiiiiiiiiiii vuvvvvuuuvuu 1′′′′′′=iu  

[ ]TFFFFFFFFF 333231232221131211=f . 

Consider n corresonding points. Let [ ]TT
n

T
i

TT uuuuU ......21= . Then 

                                                            0=fU                                                    (3.4.2) 

3.4.1 Linear approaches for F  computation 

Since the determinant of F  is zero, a fundamental matrix F  has only seven de-

grees of freedom. Therefore, the minimum number of points needed to compute F  is 

seven. If we apply equation (3.4.2) over 7 points, then the rank of U  is seven. Hence 

the dimension of f  is two. Assume two homogeneous solutions of (3.4.2) are 1f  and 

2f . The fundamental matrix is then the linear combination of these two solutions. We 

then constrain the zero-determinant in the prospective fundamental matrix and then 

obtain a cubic equation. Therefore, there are three solutions for F . The disadvantage 

of this approach is that there is no way to find which one is the exact solution if only 

seven points are given.  



 24

An alternative is to try to use a larger data set. Eight or more points are employed to 

solve (3.4.2). Usually, they are called 8-point algorithm altogether. Because of the 

presence of noise in practice, the rank of U  may be greater than seven. There are 

many approaches to solve such an over-constrained linear system. One popular way is 

to impose a constraint on the norm of solution vector. Usually, the norm can be set to 

one. Hence the solution is the unitary eigenvector of UU T  associated with its smallest 

eigenvalue.  

However, the above linear approach gives poor performance in the presence of 

noise. Two reasons are responsible for this problem. The first is that zero-rank of F  is 

not imposed during the estimation. The other is that the objective of linear approach is 

to solve 2min fU
f

 under some constraint. However, fU  only has algebraic (not geo-

metrical) meaning. Let us consider one row of U , namely, T
iu . The geometrical dis-

tance from the vector f  to the hyperplane determined by iu  is 
i

T
i

u
fu

. Therefore, it is 

more reasonable to minimize such a geometrical distance rather than an algebraic dis-

tance fuTi .  

In linear context, one possible modification of minimization of algebraic distances 

is to normalize the input data prior to performing the 8-point algorithm. Based on this 

scheme, Hartley put forward an isotropic scaling of the input data [12]: 

1. First, the points are translated so that their centroid is at the origin. 

2. The points are then scaled isotropically so that the average distance from the 

origin to all of points is equal to 2 . 

Zhang [43] showed that the normalized 8-point algorithm gives comparable per-

formance with some robust techniques to be described in the next section. Moreover, 
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this algorithm is quick and easy to implement. Hence, in some cases, which are not so 

critical about the accuracy of the fundamental matrix, this normalized 8-point algo-

rithm is reliable. 

3.4.2 Nonlinear approaches for F  computation 

Three nonlinear minimization criteria are discussed here. The first one is to mini-

mize distances of the image points to the epipolar lines. Specifically, consider one ob-

served pair of stereo corresponding points ( ix , ix′ ) and an initial estimation of the fun-

damental matrix F . Since the image points are corrupted by noise to a certain extent, 

ix , ix′  and F  do not exactly satisfy the epipolar geometry 0=′ Fxx T . Then the first 

criterion is interpreted as follows 

                                        )),(),((min 22
i

T
ii

i
iF

xFxdFxxd ′+′∑ .                       (3.4.3) 

From the last section, we find algebraic distance differs from geometrical distance 

by some scale. Such scale changes with different image correspondences. The second 

criterion attempts  to rescale algebraic distance by different weights. Assume a variety1 

Fxx T
F ′=υ , the criterion is  

                                                ∑
i F

F
F

2

2

)(
)(min υσ

υ ,                                     (3.4.4) 

where 2)( Fυσ is the variant of Fυ . If we assume the image points are corrupted by in-

dependent Gaussian noise, then the image points' covariant matrices are given by 

                                                 ( )1,12diagixxi σ=Λ=Λ ′ ,                                   (3.4.5) 

here σ  is the noise level. According to the first order or Sampson approximation [14] 

[26], we have the variance of Fυ  

                                                 

1 A variety is the simultaneous zero-set of one or more multivariate polynomials defined in Rn 
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Here 1l ,  2l ,  and  1l ′ ,  2l′  are first two elements of i
T xF ′  and iFx  respectively. 

Since a constant number does not affect the minimization, the second criterion be-

comes  

                                      ∑ ′+′++′
i

i
T

iV
llllFxx )()(min 2

2
2

1
2
2

2
1

2 .                         (3.4.7) 

The last criterion minimizes the distances between observed image points and re-

projected image points. In Section 3.3, we know that camera projection matrices of a 

stereo rig can be recovered up to an unknown 44×  projective transformation. Based 

on the recovered camera projective matrices, the so-called projective reconstruction 

can be done at this stage. Here, we don't discuss this aspect of techniques. A thorough 

discussion can be found in [10]. From the back-projected 3D points, we re-project 

them into the image planes. If we assume that ix̂  and ix′ˆ  are re-projections, then the 

third criterion is  

                                          ))ˆ,()ˆ,((min 22
ii

i
iiF

xxdxxd ′′+∑ .                              (3.4.8) 

Some researchers [43] [36] point out that the first criterion is slightly inferior to the 

last two. However, the computation cost for the last one is highest because it involves 

two minimization procedures: the first is the minimization in projective reconstruction 

and the second is the minimization in calculating an optimal fundamental matrix. 

Therefore, the criterion (3.4.7) is usually recommended. 

3.4.3 Robust estimation of the fundamental matrix 

Up to now, we assume image correspondences are obtained without poor matches. 

However, due to limited performance of feature detectors and match algorithms, poor 
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matches (or outliers) are often present during the computation of the fundamental ma-

trix. There are two reasons for this. One is the bad localization of an image point. The 

other is false match. Usually, an image point deviating from its expected location by 

more than 3 pixels can be considered as a poor localization. False match means that a 

detected match is not the correct match.  

M-estimators [43] is robust to outliers resulting from poor localization. All estima-

tors we used in the last section rely on least-squares approach. It means a poor local-

ization (and hence a large residual) contributes more to an estimator. Consider the es-

timator ∑∑ ==
i

iFi
iF

rrestimator 2min)(min ρ . The influence of a datum linearly in-

creases with the size of its residual, since i
i

i r
r

r
=

∂ )(ρ
. As a consequence, the scheme of 

M-estimator tries to find a symmetric, positive-definite function with a unique mini-

mum at zero. One choice of such a form of function is the following Tukey function: 

                        






−−=
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i σρ  
otherwise

crif i σ≤||
 ,                           (3.4.9) 

where 6851.4=c and σ  is given by 

                                   ||)]/(51[4826.1 ii
rmedianpn −+=σ ,                             (3.4.10) 

where n  is the size of the data set and p  is the dimension of parameters. 

From (3.4.9), we know the influence of poor matches (when residuals are greater 

than σc ) is refrained by setting residuals to constants. Because of this, M-estimator 

works well with poor matches resulted from bad localization. However, it does not 

demonstrate good performance when outliers result from false matches, because it de-

pends heavily on the initial estimation [43].  



 28

Least Median of Squares (LMedS), however, overcomes the disadvantage of M-

estimator. Its estimator 

                                                   2min ii
rmedian                                                (3.4.11) 

tries to minimize the median of squared residual for an entire data set.  

LMedS is based on the Monte Carlo techniques and thus is difficult to use mathe-

matical formulas to describe it. Usually it first randomly selects m  subsamples of the 

entire data set. For each subsample, one of the linear approaches described in Section 

3.4.1 is employed to provide the initial estimation of the fundamental matrix. One of 

three criteria (see Section 3.4.2) is then applied to obtain the median of the squared re-

siduals. After repeating the above procedures over all subsamples, the optimal estima-

tion of F  is the one that makes residuals the minimal among all subsamples.  

The number of subsamples m  is usually determined by 

                                                   
])1(1log[

)1log(
p

Pm
ε−−

−
= ,                                         (3.4.12) 

where P  is the probability that at least one sub-sample is good (not seriously polluted 

by outliers) and ε  is the proportion of outliers to the entire data set [43].  

Since LMedS does not work well in the presence of Gaussian noise [25], Zhang 

[43] proposed a weighted LMedS procedure, which specifies that when the residual is 

greater than 2.5 times a robust standard deviation σ̂ , the correspondent weight for the 

residual is 0. That means this datum is then discarded. Here σ̂  is given by 

                                          JMpn )]/(51[4826.1ˆ −+=σ ,                             (3.4.13) 

where n  is the number of the data set, p  is the dimension of the parameters to be es-

timated and JM is the root of the least median of the squared residual.  

It is noted that this weighted LMedS procedure is conducted after the normal 

LMedS. 
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3.5 The stratification of the 3D geometry 

Euclidean space is by far the most familiar space to human perception. However, 

when our perception moves from 2D (images) to 3D (world), depth is lost. Without 

some control points in the Euclidean space, there is no way to fully recover the Euclid-

ean structure [5]. However, in many applications, it may not be essential that absolute 

geometry (i.e., the exact dimension and structure) of the world should be recovered. In 

fact, we might find it sufficient to have simpler reconstructions (compared with 

Euclidean reconstruction) of the world on some layers of the 3D geometry. The proc-

ess in which we identify different layers of the 3D geometry is the so-called stratifica-

tion of the 3D geometry. Usually, three-dimensional geometry is stratified to four dif-

ferent structures residing in separate layers in the 3D geometry. When arranged in or-

der of complexity and degree of realism, these structures can be listed as: projective 

structure, affine structure, metric structure, and Euclidean structure.  

3.5.1 The 3D projective structure 

In Section 3.3, we know that, given a fundamental matrix (that means two views), 

camera matrices of a stereo rig can be recovered up to an unknown 44×  projective 

transformation H . The structure recovered from such two camera matrices is then 

called the 3D projective structure. It is the simplest structure obtained from images. 

3.5.2 The 3D affine structure 

We know that an affine transformation does not change the plane at infinity ∞Π , as 

discussed in Section 2.3.3. If ∞Π  can be identified in the projective space, then the 3D 

projective structure can be upgraded to the affine structure. This structure is closer to 

the world since parallelism is invariant in the affine space.  
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One way to identify ∞Π  is to use parallel lines. We know that parallel lines inter-

sect at the infinity. If three vanishing points1 are available, then it is sufficient to con-

struct ∞Π . The identified ∞Π  can be used to construct a projective transformation H , 

which transforms ∞Π  into its canonical form [ ]T1000 .  This H  when acting on other 

points, can produce an affine structure of the scene.  

3.5.3 The 3D metric structure 

In the 3D metric structure, not only parallelism but also angles and ratios of lengths 

are preserved. Hence the structure is very similar to the true one  only the dimension 

of the scene is missing. Concretely, the scene is recovered up to an unknown similarity 

transformation. A 44×  similarity transformation is a scaled Euclidean transformation, 

i.e., 







1T

s
0

tR
, where R  and t  are the rotation matrix and translation vector. 

The key to metric reconstruction is the identification of the absolute conic. (The ab-

solute conic will be explained in detail in the next chapter.) Since the image of the ab-

solute conic (IAC) is invariant to camera motions, the metric reconstruction can be ob-

tained from an affine reconstruction if enough (at least three) images are given. 

One way to identify the IAC is to use vanishing points. Consider three vanishing 

points 1v , 2v  and 3v , arising from three pairs of mutually orthogonal scene lines. 

These three points then give rise to three constraints on IAC ω : 

                                                    0 1 =2vv ωT                                                      (3.5.1) 

                                                    0 31 =vv ωT                                                       (3.5.2) 

                                                    0 32 =vv ωT                                                       (3.5.3) 

                                                 

1 A vanishing point is the intersection of images of parallel lines. 
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The above three constraints, together with two other constraints introduced by two 

circular points in the IAC [18], can be used to solve for five unknown parameters in 

the IAC.  

projective reconstruction

affine reconstruction

metric reconstruction

Euclidean reconstruction
 

Figure 3.4: Different structures recovered on different layers of 3D geometry 
 

Figure 3.4 shows different reconstructions on different layers of 3D geometry. The 

left column contains the original objects and the right column contains the recon-

structed objects. The first row shows projective reconstruction. The reconstructed ob-

ject appears to having no resemblance with the original object. Indeed, there is an im-

plicit invariance called cross-ratio beneath the appearance. The second row shows af-

fine reconstruction. The most significant phenomenon is that parallelism is preserved. 

The third row shows metric reconstruction. In this case both angles and parallelism are 
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preserved. However, the final dimension is unknown. The last row demonstrates 

Euclidean reconstruction. In this case, the object is fully recovered.  

3.5.4 Camera self-calibration, the bond between projective reconstruction 

and metric reconstruction 

Camera self-calibration means automatically calibrate camera's parameters1 without 

any 3D information. From the knowledge of Section 3.5.1, 3.5.2 and 3.5.3, we know 

metric structure can be achieved when affine reconstruction is completed and IAC is 

identified. However, with the knowledge of camera's intrinsic parameters, metric struc-

ture can be directly obtained from projective structure. Specifically, when the intrinsic 

parameter matrix A  is known, the fundamental matrix can be reduced to the so-called 

essential matrix E . In fact the relation between F  and E  is 

                                                  FAAE T=                                                         (3.5.4) 

As a result, 2)()( == FrankErank . The SVD of E  takes the form of TVUdiag )0,1,1( , 

where U  and V are two orthogonal matrices. Consider the rotation R  and translation 

t  between two cameras of a stereo rig. Then we have the following result [9]: 

Result 3.2 Suppose that the SVD of a given essential matrix is TVUdiagE )0,1,1(= , 

and the first camera matrix is [ ]0I |=P . Then there are four possible choices for the 

second camera matrix P′ : 

[ ]3| uTUWV , or [ ]3| u−TUWV , or [ ]3| uTTVUW , or [ ]3| u−TTVUW , 

where 














 −
=

100
001
010

W , and 3u  is the third column of U . 

                                                 

1 Usually, only intrinsic parameters are calibrated. However, in some special cases (such as station-
ary cameras), it is possible to obtain extrinsic parameters. 
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In the four possible forms of P′  above, only one can make the reconstructed points 

to be in front of both the cameras. Thus with a single point, the correct camera matrix 

could be found.  

The above solution of camera matrix leaves one ambiguity: the scale of translation. 

Other than that, the metric reconstruction is completed. In turn, this means if A is 

automatically calibrated, it is possible to directly upgrade from projective structure to 

metric structure.  
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Chapter 4. Camera self-calibration 

Camera self-calibration means camera's parameters can be calibrated without any 

3D information. In other words, a camera is calibrated from images alone. Traditional 

calibration methods need a calibration pattern. The orientation and position with re-

spect to the camera are known for a calibration pattern. These approaches all lead to 

linear and nonlinear least squares problems, and these solutions can be obtained with 

high precision [41]. However, such a pattern is not cheap to manufacture (The calibra-

tion object used in this thesis costs more than $3000). Furthermore, in many applica-

tions, it is not flexible and even impossible to place a calibration object before a cam-

era. Camera self-calibration is then put forward to solve such problems.  

In this chapter, we first discuss Kruppa's equations based camera self-calibration in 

Section 4.1. Afterwards, some well-known self-calibration algorithms are reviewed.  

At last, our focal length calibration algorithm is then directly obtained from the simpli-

fied Kruppa's equations.  

4.1 Kruppa's equations based camera self-calibration 

Kruppa's equations were firstly discovered by Kruppa in 1913 [16]. However, they 

were not well known until Maybank and Faugeras introduced them into the field of 

computer vision for camera self-calibration. Geometrically, "Kruppa's equations im-

pose that the epipolar lines, which correspond to the epipolar planes tangent to the ab-

solute conic, should be tangent to its projection in both images" [50]. We will show 

this in the next sections. 

4.1.1 Absolute conic and image of the absolute conic 
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The first camera self-calibration algorithm [6] is based on Kruppa's equations. In 

fact, camera self-calibration is equivalent to recovering the image of a distinguished 

conic1 in the plane at infinity ∞∏ . Such a distinguished conic is the so-called absolute 

conic. Its definition is  

                                                     0222 =++ zyx  .                                         (4.1.1) 

All solutions of equation (4.1.1) are imaginary, however, its properties are a little dif-

ferent from any other conic. 

The most important property of the absolute conic is that it maps onto itself when it 

undergoes the scaled Euclidean transformation2.  

Theorem 1: The absolute conic (AC) Ω  is mapped onto itself under the scaled Euclid-

ean transformation 

Proof: Assume that a point [ ]Tzyx 0  is on the absolute conic. By applying the scaled 

Euclidean transformation, the transformed point also falls onto ∞∏ . Its first three co-

ordinates x′ , y′  and z′  are determined by 

                                             
zsrysrxsrz
zsrysrxsry

zsrysrxsrx

333231

232221

131211

++=′

++=′

++=′

.                                      (4.1.2) 

In the above equations, s  is the unknown scale, ijr  (with i = 1, 2, 3 and j = 1, 2, 3) 

represent the 9 elements of a rotation matrix. Thus we have  

0)( 2222222 =++=′+′+′ zyxszyx  

The image of the absolute conic (IAC) is the projection of the absolute conic onto 

the image plane. It is totally determined by the intrinsic parameter matrix A of a cam-

era. In fact, we have the following property of IAC. 
                                                 

1 A conic is a quadratic in a plane 
2 Scaled Euclidean transformation is also called the similarity transformation 
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Theorem 2: The image of the absolute conic is determined by the intrinsic parameter 

matrix, and is invariant under rigid displacement of the camera, provided that the cam-

era's intrinsic parameter matrix remains unchanged. 

Proof: Consider a point [ ]Tzyxp 0= in the camera coordinate system. The projec-

tion [ ]Tvu of such a point is given by 
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                                          (4.1.3) 

Substituting (4.1.3) to (4.1.1) yields 

[ ] [ ] 011 1 =−− TT vuAAvu I  

Thus the coordinates of IAC are determined by 1−− AA T , and totally parameterized 

by A . If p  undergoes a rigid displacement (which is equivalent to camera displace-

ment), then its corresponding image is 

[ ]
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u

s

0
1

t , 

where R  is the rotation matrix and t  the translation vector. Therefore the correspond-

ing IAC is 

111 −−−−−− = AAARRA TTT I . 

We finally conclude that IAC is invariant under rigid displacement of the camera. 

Since IAC is determined by only the intrinsic parameter matrix A, if we have 

enough constraining points on the IACs, then A can be fully recovered from images. 
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4.1.2 Kruppa's equations 

Kruppa's equations represent the constraints on camera calibration matrix. Specifi-

cally, given two views, Kruppa's equations are in the form of two quadratic equations 

involving intrinsic parameters. Thus totally three camera motions are needed to deter-

mine all five intrinsic parameters. 

c1 c2
e1 e2

∞∏

p1 p2

 

Figure 4.1: Absolute conic and its image 

Consider a camera undergoing a rigid displacement. Then the arrangement involv-

ing the two location of the camera before and after the motion constitutes a stereo rig. 

As Figure 4.1 shows, c1 is the first camera center, and c2 is the second camera center. 

The baseline c1c2 then intersects the two image planes p1 and p2 at e1 and e2, respec-

tively, which are the epipoles. In Figure 4.1, the conic in ∞∏  is the absolute conic. 

There are two planes that pass through the baseline and are tangent to the absolute 

conic. The intersections of these two planes with the two image planes form the corre-

spondent epipolar lines. In Chapter 1, we have known a line l  through two points x  

and x′  can be determined by xxl ′×= . Hence, eipolar lines can be parameterized as 

the cross product of the epipole and a point at infinity. Specifically, let 
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[ ]Tpppp 321= be an epipole and [ ]Tyyy 021= be a point at infinity. Then the cor-

respondent epipolar line is ypl ×= . An equivalent way to treat such a conic is to take 

it as a dual conic which is enveloped by all of its tangent lines. Here, the parameter 

matrix of such a dual conic is the inverse of the original parameter matrix. Therefore 

the parameter matrix of the dual of the image of the absolute conic (DIAC) is TAA . 

Thus, l  is tangent to an IAC if and only if it lies on the dual conic, i.e.,  

                                               0)()( =×× ypAAyp TT                                      (4.1.4) 

Using Kruppa's notation [16], we define  

                                        
















−
−

−
==

1212

1133

2323

δδδ
δδδ
δδδ

TAAD 1 .                                  (4.1.5) 

Substituting (4.1.5) for (4.1.4),  

                                       02 2
2222112

2
111 =++ yAyyAyA  ,                                       (4.1.6) 

where  

321
2
212

2
31311 2 ppppA δδδ −−−=  

311322
2
33211212 pppppppA δδδδ ++−=  

312
2
112

2
32322 2 ppppA δδδ −−−=  

Since IAC is invariant under rigid Euclidean transformation, for the IAC in the second 

image, (4.1.6) also holds. We just replace 1p , 2p , 3p  with the second epipole's coor-

dinates 1p′ , 2p′ , and 3p′  to obtain 

                                          02 2
2222112

2
111 =′′+′′′+′′ yAyyAyA                                     (4.1.7) 

                                                 

1 We just show that D is a symmetric matrix like this equation demonstrates. In fact, we can easily 
get what is 1δ ,  …, 

23δ  by computing TAA . 
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Since epipolar lines in the two images in Figure 4.1.1 define the epipolar geometry, 

there is a 22×  transformation that relates those epipolar lines, i.e.  
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Let 12 yy=τ and 12 yy ′′=′τ , equations (4.1.6) and (4.1.7) further reduce to 

                                            02 2
221211 =++ ττ AAA                                               (4.1.8) 

                   0)())((2)( 2
2212

2
11 =+′+++′++′ aAacbAcbA ττττ                         (4.1.9) 

The above two equations have the same roots. Therefore the coefficients of τ  in these 

two equations differ by a scale s. Hence we have 

        0)()2( 111211221212
2

11
2

2212 =′+′+′+′−′+′+′ AabAbcAaAcAacAcAaAA           (4.1.10) 

               0)2()2( 11
2

11221212
2

11
2

2222 =′+′+′−′+′+′ AbAAbAacAcAaAA                 (4.1.11) 

Equations (4.1.10) and (4.1.11) are the so-called Kruppa's equations. 

4.1.3 Simplified Kruppa's equations 

Kruppa's equations given in the last section are not in the explicit form; that is, the 

intrinsic parameters are implicitly contained in the coefficients. Furthermore, if we fol-

low the above derivation to compute the camera's intrinsic parameters, we will need to 

compute first the epipoles and then estimate that 22×  transformation matrix. The 

computation cost is high. The most serious disadvantage is that computation of epi-

poles is very sensitive to noise. Hence equations (4.1.10) and (4.1.11) usually are not 

used in practice. 

A simplified form of Kruppa's equations based on singular value decomposition of 

the fundamental matrix was firstly presented in [13]. It states that given one fundamen-

tal matrix or two views, there are two equations constraining the camera's intrinsic pa-

rameters. All of the parameters are enclosed in a matrix, which can be entirely taken as 
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an unknown variable. The coefficients with respect to intrinsic parameters are obtained 

from the SVD of the fundamental matrix. 

Let F  be the fundamental matrix constraining the epipolar geometry of a two-

camera system. If we transform two image coordinates such that epipoles coincide at 

the origins and the correspondent epipolar lines have identical coordinates, then the 

transformed fundamental matrix is in a special form, i.e,  















 −
=′

000
001
010

F  

If T  and T ′  are the corresponding transformations, then the two DIACs are TT TTAA  

and TTTAAT ′′  respectively. Since epipoles are at the origin and epipolar lines have 

identical coordinates, we can parameterize the epipolar lines as [ ]T0µλ . Then equa-

tion (4.1.4) can be reformulated as follows: 

                                        02 22
2

1211
2 =++ ddd µλµλ                                          (4.1.12) 

                                        02 22
2

1211
2 =′+′+′ ddd µλµλ                                          (4.1.13) 

where TT TTAA
ddd
ddd
ddd

D =
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333231

232221

131211

, and TT TAAT
ddd
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ddd

D ′′=
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=′

333231

232221

131211

. 

Since equations (4.1.12) and (4.1.13) have the same roots, their coefficients are identi-

cal up to an unknown scale factor, i.e., 
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′
=

′
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′
                                               (4.1.14) 

This is another form of the Kruppa's equations.  

To derive the explicit form of 11d , 12d , 22d , 11d ′ , 12d ′ , 22d ′ , we first assume that the 

SVD of F  is TUSVF = , where U  and V  are orthogonal matrices. If the two nonzero 

singular values of F  are a  and b , then the SVD of F  can be expressed as, 
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Let TUb
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, TVT
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 and TAAC = . Then we have 11
2

11 Cuuad T= , 

2112 Cuabud T= , 22
2

22 Cuubd T= , 2211 Cvvd T=′ , 1212 Cvvd T−=′  and 1122 Cvvd T=′ . Here 

1u , 2u , 1v  and 2v  are first two columns of U  and V . As a result, Kruppa's equations 

obtained from the SVD of the fundamental matrix are 

                               
11

22
2

12

21

22

11
2

Cvv
Cuub

Cvv
Cuabu

Cvv
Cuua

T

T

T

T

T

T

=
−

= .                                  (4.1.16) 

4.2 Review of Camera self-calibration  

Since the possibility of camera calibration from images was proved in [6], intense 

research has been conducted on this topic. Several important algorithms have been 

proposed. Some of them consider special motions [11][4][21]. Others deal with special 

objects such as planar scenes [39]. Most of these approaches assume that camera's in-

trinsic parameters are constant. Recently, some algorithms based on varying parame-

ters were also put forward [24].  

4.2.1 Self-calibration for stationary cameras 

In [11], Hartley gives a linear algorithm when there is no translation between two 

cameras. Since two cameras cannot construct a stereo rig in pure rotation case, 

Kruppa's equations are not valid here. However, there is a projective transformation 

that relates two images obtained from the two cameras. Specifically, consider two 

camera matrices [ ]011 RAP = , [ ]022 RAP =  and a 3D point X . Then the point in 
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first image is XARu 11 =  and in second image is XARu 22 = . Hence we have 

2
11

211 uARARu −−= . Since 11
21

−−= ARARP  can be established by image correspon-

dences, the problem is then to find an upper triangular matrix A  that transforms P  

into a rotation matrix. Using the property of rotation matrix TRR −= , we have 

TTT PAAPAA =− . Such an equation is easily reformulated to the form of 0=Xa . 

Therefore this algorithm is linear. After the calibration matrix A  is determined from 

the above linear equations, 3D points can be recovered and thus we can obtain repro-

jected image points. Hence an iterative estimation of the calibration matrix A can be 

further derived if we try to minimize errors between observed and reprojected image 

points. However, as Hartley [11] points out, "In the examples used for experimentation 

it turned out that this (iterative estimation) did not yield very great benefits. The solu-

tion for A given by the non-iterative method was so good that the difference between 

the estimates found with and without this final estimation step did not differ very sig-

nificantly". Experiments in [11] show the calibrated focal length are accurate within 

8% of the true one.  

The disadvantage of Hartley's algorithm is that the camera must be stationary. That 

means no translation of camera centers is permitted. Since it is difficult to find a cam-

era's center, keeping a camera's center still while rotating it is not easy.  

4.2.2 Kruppa's equations based self-calibration for two special motions 

From Section 4.1.2, we know that to self-calibrate a camera, at least three images 

are needed. However Kruppa's equations degenerate in some special cases. Hence 

there will be situations where three views may not be sufficient to calibrate a camera. 

In [21], Ma points out that when the rotation axis is parallel or perpendicular to the 

direction of translation, Kruppa's equations can be rewritten into three linear equations. 
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However, one of them may depend on the other two. Ma argues that it is possible to 

find the common scale factor λ  generated from Kruppa's equations. Hence Kruppa's 

equations are in the form of three linear equations. Normally, it is not easy to find such 

a scale factor, but Ma determines it for the two special motions above. When the rota-

tion axis is parallel to the translation, the square of scale factor is given by 

FTF T ′= ˆ2λ , where F  is the fundamental matrix, and T ′ˆ  is the skew symmetric ma-

trix of the normalized translation vector T ′ . When the rotation axis is perpendicular to 

the translation, λ  is one of the two non-zero eigenvalues of TF T ′ˆ . Since those three 

linear equations are interdependent, we still need three images to calibrate the camera. 

However, Ma proposes that cross-multiplying out Kruppa's equations only imposes 

one constraint on the calibration matrix A  in the perpendicular case. Hence three im-

ages are not enough.  

Like Hartley's work, Ma’s result can only be used in limited scenarios. The more 

important problem is that in perpendicular case, we cannot know which eigenvalue 

of TF T ′ˆ  is correct before we try all solutions. As his simulation shows in this case, two 

eigenvalues are close to each other and thus it is difficult to determine which one is 

correct. This accordingly makes calibration difficult.  

4.2.3 Self-calibration from special objects 

Triggs generalized Kruppa's equations by introducing the absolute quadric [38]. 

Absolute quadric is a 44×  matrix, such as 







00
033xI

. Like the absolute conic, it is also 

invariant to the scaled Euclidean transformation. His generalized constraints for cam-

era intrinsic parameters are then called absolute quadric projection constraints. Let Ω  
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be the absolute quadric and ω  be the image of the absolute quadric. If P  is the camera 

matrix which projects Ω  onto its image ω , the constraints are, 

                                                  0)( =Ω× T
ii PPω                                                (4.2.1) 

or in other words,  

                                                         T
iii PPΩ= λω                                                   (4.2.2) 

where ×  denotes the cross product operation. Eliminating the constants iλ , we obtain 

the following equations: 

                                   0)()( )()()()( =Ω−Ω ′′′′ jk
T

iikjkj
T

iijk PPPP ωω                            (4.2.3) 

where (jk) represents the matrix element on row j and column k. Geometrically, these 

constraints mean that an angle formed by two projection planes measured by Ω  is 

equal to that contained in image lines measured by ω . Kruppa's equations, in this con-

text, are just the projection of these constraints onto the epipolar planes.  

Triggs's self-calibration algorithm is based on numerical approaches. Specifically, 

from the equation, we know the left hand side of the equation is a skew symmetric ma-

trix. Hence for one view, the equation imposes 1569 =+  constraints on unknown 

variables.  In other words, it will generate 15 bilinear equations, where only 5 are line-

arly independent [38]. However, there are totally 13 (5 for ω  and 8 for Ω ) unknowns 

in the equation. Thus at least three views are needed to solve the equation. Triggs then 

employs nonlinear minimization algorithms to optimize the unknown parameters. The 

object function is equation (4.2.3), and the initial estimation could be I=0ω  and 









=Ω

00
0

0

I
, where I  is the 33×  identity matrix. The intrinsic parameter matrix A  is 

then the Choleski decomposition of ω .  

One special case of Triggs's algorithm is that the object is a planar scene [39]. In 

this case, one of the images is taken as the planar scene. Hence, this image is related by 
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homographies1 with the remaining images. Unlike the equation (4.2.3), homographies 

rather than projection matrices impose constraints on ω  (Explicit form of the con-

straints can be found in [39]). Triggs points out that one view only provides two con-

straints on ω . Hence, five unknowns in ω  and other four unknown parameters2 need 

at least five views.  

Homographies computation is simpler and more robust than the fundamental matrix 

computation. Hence this algorithm generally gives good performance. However, poor 

initial estimation of Ω  may make nonlinear estimation fall into local minima.  

4.3 Focal length self-calibration from two images 

In this section, we introduce our calibration algorithm. It is based on the simplified 

Kruppa's equations (4.1.16). Although the equations give neat constraints on camera's 

intrinsic parameter matrix, it is not easy to solve for these parameters since there are 

multiple solutions for these nonlinear equations [13]. Specifically, there are totally five 

unknown parameters in A , but one fundamental matrix only gives two constraints. 

Therefore three fundamental matrices or three images are needed to fully calibrate a 

camera. However, three images represent six constraints. It is difficult to know 

whether these six constraints are independent. Even they are actually independent, so-

lutions from any five of the six constraints could be different. Thus there are 3225 =  

possible solutions. We need to eliminate spurious solutions case by case.  

Another problem is that implicit singularities occur when a camera is under some 

special motions [21, 31]. Singularities generated from both special motions and general 

motions will be discussed in the next chapter. 

                                                 

1 A homography is the projective transformation in two planes. 
2 Specifically, they are parameters of two circular points [14]. 
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Among the five parameters of A , focal length is the most important. Actually, in 

most cases, aspect ratio can be assumed to be 1 and skew factor to be 0. Furthermore, 

it is safe to assume that the principal point is at the image center. After some proper 

coordinate transformations, Kruppa's equations in (4.1.16) can be further simplified. 

Specifically, assume camera's intrinsic parameter matrix  
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and the fundamental matrix F. We then transform the image coordinate system such 

that the principal point is at the origin of the coordinate system. At the new image co-

ordinate system, the intrinsic parameter matrix becomes 
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where the transformation matrix T is  
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Accordingly, the new fundamental matrix F ′  is 1−−=′ TFTF T . 

Consider the SVD of F' is TVSUF   '= . Then the simplified Kruppa's equations 

(4.1.16) in turn yield: 
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Expanding the above equations, we further obtain 
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Due to the orthogonality of U and V, the three fractions are rewritten as 
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Note that the rightmost fraction degenerates to a constant factor s. Rearranging the 

equation (4.3.1), we obtain 
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and      
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These two linear and one quadratic equations are our calibration equations. From equa-

tion (4.3.1), we know these three equations are dependent. However, we will find that 

they degenerate in different cases in the next chapter.  

The advantages of the above algorithm are that: (1). Kruppa's equations degenerate 

to two linear and one quadratic equations, with the focal length of the camera in closed 

form in those equations; and (2). Singular cases of these equations are explicit and easy 

to find. We will discuss them in the next chapter. 
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Chapter 5 Singular cases analyses 

In the last chapter, we know camera self-calibration is equivalent to recovering the 

image of the absolute conic (IAC). However, some special motion sequences of a cam-

era may lead to a spurious IAC. Accordingly, the calibrated parameters of the camera 

are not correct. In fact, when these motion sequences happen, camera cannot be cali-

brated by any algorithm. Sturm calls such motion sequences the critical motion se-

quences for self-calibration [31]. We call the geometric configurations corresponding 

to critical motion sequences the singular cases (or singularities) of a calibration algo-

rithm.  

In this chapter, Sturm's work on critical motion sequences is presented in Section 

5.1. In Section 5.2, we then focus on the discussion of singular cases of our calibration 

algorithm, which is given in Section 4.2, Chapter 4. We work out two ways to obtain 

the singular cases. One way is based on heuristic analyses, which are an extension of 

Sturm's work [32]. The other is based on algebraic derivation. We then find that, for 

the quadratic equation (4.3.4), the singular cases obtained from both approaches are 

identical; for the linear equations (4.3.2) and (4.3.3), the two sets of singular cases are 

a little different. Considering the practical importance, we then argue that a subset of 

the singular cases obtained from the linear equations, i.e., the coplanar optical axes, is 

the singular case of our calibration algorithm. 

5.1 Critical motion sequences for camera self-calibration 

The work of Sturm [31][32] on critical motion sequences is presented here. A criti-

cal motion sequence is a sequence of camera motions that give spurious results for 

self-calibration or structure recovery. Naturally, if we cannot self-calibrate a camera 

from a motion sequence, then structure recovery is also impossible. However, the in-
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verse of this conclusion is not necessarily true. Later, we will discuss this point in de-

tail. 

5.1.1 Potential absolute conics 

From the discussion of the last two chapters, we know that camera self-calibration 

is nothing but the recovery of the image of the absolute conic (IAC), and that metric 

reconstruction is the recovery of the absolute conic (AC). The main property of IAC is 

that it is invariant under any rigid motion. However, it is quite possible that the image 

of a "normal" 1  conic is invariant under some special rigid motions. Hence, self-

calibration from these camera motions means the recovery of the image of some conic 

other than the absolute conic. We call such a conic the Potential Absolute Conic 

(PAC).  

The PAC is one kind of Proper Virtual Conic (PVC). All PVCs are of central sym-

metry [1], and hence they can be transformed to their Euclidean normal form. The 

Euclidean normal form of a PVC in 2Ρ  is represented by a 33×  diagonal matrix, 

where the diagonal elements are the conic's three eigenvalues. If the three eigenvalues 

are all distinct, then the conic is an ellipse. Otherwise, it is a circle.  

5.1.2 PAC on the plane at infinity 

 In this case, Sturm proposes that if the eigenvalues of the PAC are identical, the 

PAC is exactly the absolute conic (AC). Hence motion sequences are of course not 

critical. If there are only double distinct eigenvalues, then the eigenspaces of the PAC 

are a plane and a line orthogonal to the plane. Hence, any rotation about the line or a 

rotation of o180  about a line in the plane that is incident to the other line, will leave the 

                                                 

1 We say it is normal since it is other than the absolute conic.  
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PAC unchanged and thus it is critical. If three eigenvalues are all distinct, then the ei-

genspaces of the PAC are three orthogonal lines. Hence, a rotation about any one of 

the three lines, or a rotation of o180  about lines perpendicular to a line, preserves the 

PAC. Such motion is, of course, critical.   

5.1.3 PAC not on the plane at infinity 

In this case, Sturm works out critical sequences in this way: He starts from a PAC 

and from a specific camera position, and then attempts to find all rigid motions of the 

camera that will obtain identical images for the PAC.   

The above proposal simplifies the problem. Sturm then find that camera centers in 

critical motion sequences are on two circles at equal distance from the plane support-

ing the PAC.  

Consider the cone K  that contains the projection of the PAC and the camera center. 

Sturm then draws the following conclusion for critical motion sequences: 

1. If K  is a circular cone and the PAC is a circle, then the camera centers can only 

be in two different positions along the line perpendicular to the plane supporting 

the PAC. These two positions form a pair of reflections with respect to the plane. 

The camera may rotate about the line by any angle, or by °180  about a line per-

pendicular to the line linking the two reflections.  

2. If K  is a circular cone and the PAC is an ellipse, then there are only four possi-

ble camera positions. All of them are located in the plane that is perpendicular to 

the supporting plane and contains the main axis of the ellipse. The camera can 

rotate about the projective axis by any angle, or by °180  about the line perpen-

dicular to it. 
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3. If K  is an elliptic cone and the PAC is also an ellipse, then there are eight pos-

sible camera positions. They form a rectangular parallelepiped. At each position, 

four orientations are possible [31].  

4. If K  is an elliptic cone and the PAC is a circle, then the camera centers are on 

the two circles (refer to the description in second paragraph of this section). In 

each position, there are four possible orientations as in case 3. 

5.1.4 Useful critical motion sequences in practice 

The above description of the critical motions is purely heuristic. However, there are 

some special cases corresponding to the above analysis, which are practically useful.   

We learn from Section 5.1.2 that if two of the PAC's eigenvalues are identical, then 

the eigenvectors corresponding to the same eigenvalue span a plane Π . Consequently 

camera centers are on the plane that is parallel to the plane Π , and thus make the mo-

tion sequence critical. Therefore, planar motions are critical for camera self-

calibration. It is even impossible to do self-calibration for cameras rotating about paral-

lel axis and undergoing arbitrary translation, since it is obvious that in these cases, the 

cameras will definitely obtain the same images for a PAC. By the same principle, or-

bital motions are critical for camera self-calibration. It should be noted that pure rota-

tions are not critical for camera self-calibration although there are infinite PACs that 

give the same projections on the image planes. The reason is that all of the PACs lie on 

the same projection cone as the absolute conic (AC). However, pure rotations are criti-

cal for affine reconstruction and then metric reconstruction since there are infinite 

PACs not lying on the plane at infinity. Figure 5.1 shows such motions. 
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                                         (a)        (b)  

  (c)                   (d) 

Figure 5.1: Illustration of critical motion sequences. (a) Orbital motion. (b) Rotation 
about parallel axes and arbitrary translation. (c) Planar motion (d) Pure rotations (not 
critical for self-calibration but for the scene reconstruction).  

5.2 Singular cases for the calibration algorithm in Section 4.3 

In this section, singular cases of our focal length calibration algorithm are analyzed. 

We work out two ways to obtain the singular cases. One way is based on heuristic 

analyses, which are an extension of Sturm's work [32]. They are presented in Section 

5.2.2. The other is based on algebraic derivation. We then find, for the quadratic equa-

tion (4.3.4), the singular cases obtained from both approaches are identical; for the lin-

ear equations (4.3.2) and (4.3.3), the two sets of singular cases are a little different. 

Considering the practical importance, we then argue that a subset of the singular cases 

obtained from the linear equations, i.e., the coplanar optical axes, is the singular case 

of our calibration algorithm.  

5.2.1 Generic singularities 

We first state that based on the assumption of our calibration algorithm in Section 

4.3 (that is, only the focal length is unknown but constant), singular cases occur when: 

1. The optical axes are parallel to each other or 
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2. The optical axes intersect in a finite point and the optical centers are equidistant 

from this point.  

For convenience, we call these geometric configurations the generic singularities of 

the calibration algorithm. 

5.2.2 Heuristic interpretation of generic singularities 

The assumptions of the discussion on critical motions in Section 5.1 are that all of 

five intrinsic parameters are unknown and constant in motion sequences. However, if 

the assumptions are relaxed to allow the hypothesis that only the focal length is un-

known, the singular cases are made more specific. Sturm's research results from [32] 

give the background knowledge for obtaining the generic singularities of our calibra-

tion algorithm.  

Assume that focal length is varied and other parameters are known when a camera 

undergoes rigid camera motions, Sturm proposes that, in the scenario described in the 

last paragraph, the projection of a PAC is a proper virtual circle φ . It is then argued 

that when 

1. PAC is on the plane at infinity ∞Π ,  

singular cases occur when optical axes are parallel to each other; 

2. PAC is not on the plane at infinity ∞Π  

there are three different singular cases: 

Case 1. The optical axes are parallel to each other. 

Case 2. The optical centers are collinear and the line passing through all the optical 

centers is perpendicular to the plane supporting the PAC. 

Case 3. The optical centers lie on an ellipse/hyperbola pair as shown in Figure 5.2. 

The optical axes are all tangent to the ellipse or hyperbola.  
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                                        PAC                                                           PAC 
                                                                                        Ψh                    
                                                                                 
      L                                                                                                         
 
                                                             
 
                                                                  (a)                                                           (b) 
 

Figure 5.2: Possible camera center positions when the PAC is not on ∞Π . (a) The 
PAC is a proper virtual circle. All the camera centers are on the line L. (b) The PAC is 
a proper virtual ellipse. All the camera centers are on a pair of ellipse/hyperbola. 

 

Actually, Case 2 occurs when the PAC is a proper virtual circle. The camera orien-

tations can be the rotations about L except that the camera centers are in two special 

positions. In these two positions, the projections of the PAC are the same as that of the 

absolute conic (AC), and thus the cameras can be in arbitrary orientations. In other 

words, Case 2 means that camera undergoes pure forward translations with two excep-

tions. Case 3 occurs when the PAC is a proper virtual ellipse. Then the camera centers 

are on an ellipse/hyperbola pair. The supporting planes of the ellipse, hyperbola and 

the PAC are mutually perpendicular. The optical axes are then in the directions of the 

tangents of the ellipse/hyperbola pair.  

Now consider a two-view system and assume that camera's focal length is constant. 

If a camera undergoes general motions, Case 2 does not apply. Consider Case 1, if two 

optical axes are parallel, the corresponding motion is a critical motion. Consider Case 

3, if two camera centers are either on the hyperbola or the ellipse, a critical motion also 

takes place. Since we have assumed that the focal length is constant, the two camera 

centers are certainly symmetrical about one of the hyperbola or ellipse's axes. There-

fore, the two camera centers are equidistant from the intersection of the two optical 

         Ψe 
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axes. Those singularities are exactly generic singularities we propose in the last sub-

section. Figure 5.3 shows those generic singularities.  

 
Figure 5.3: Illustration of the equidistant case (arrows show the directions of 

camera's optical axes) 

5.2.3 Algebraic interpretation of generic singularities 

Since camera's intrinsic parameters except focal length are known, we can trans-

form image correspondences from uncalibrated space to a so-called semi-calibrated 

space. The corresponding fundamental matrix is then called the semi-calibrated fun-

damental matrix G . Specifically, consider the rotation matrix R  and translation vector 

t  (Here t is the translation that brings the coordinates of the second camera to the first 

camera. It is different from the t defined in Section 3.2). The fundamental matrix is 

then [ ] 1~ −
×

− ARAF T t . Hence G  is  

                [ ]
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where τ  is the aspect ratio, ),( 00 vu  is the principal point and f  is the focal length.  

Based on G , coplanarity of optical axes can be algebraically expressed as 033 =G . 

(Coplanarity of optical axes means that two principal points are image correspon-

dences satisfying the epipolar geometry. In G, the homogeneous coordinates of the two 

principal points are [0 0 1]T. That follows the conclusion). Here 33G  is the lower-

rightmost element of G .    
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We duplicate the equations (4.3.2), (4.3.3) and (4.3.4) here for ease of reference. 
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Based on the above notations, the coplanarity of optical axes is reinterpreted as 

02323131333 =+= vbuvauG . 

The linear equation (5.2.2) is singular if and only if  

     0)( 232313131323 =+ vbuvauvu  and 0)1()1( 2
232313

2
132313 =−+− uvbvvuau       (5.2.5) 

The linear equation (5.2.3) is singular if and only if  

     0)( 232313132313 =+ vbuvauvu and 0)1()1( 2
232313

2
132313 =−+− vubuuvav        (5.2.6) 

The conditions (5.2.5) and (5.2.6) can be reduced to the following sub-conditions:  

                                                   01323 == vu                                                     (5.2.5) 

                                                   02323 == vu                                                     (5.2.6) 

                                                   01313 == vu                                                     (5.2.7) 

                                                   02313 == vu                                                     (5.2.8)  

                                      2313 uv ±=  and 2313 bvau m=                                          (5.2.9) 

                                      1323 uv ±=  and 2313 buav m=  .                                     (5.2.10) 

Among the above six conditions, only equations (5.2.6) and (5.2.7) do not corre-

spond to coplanar optical axes. The rest are all generic singularities.  

The quadratic equation (5.2.4) is degenerate when 
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and  
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The above conditions then can be reduced to  
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or 
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13
2
23 vv =                                      (5.2.15) 

They are equivalent to  

                                   ba = , 1323 vu ±=  and 1323 uv m=                                  (5.2.16) 

                                         ba = , 1323 uu ±=  and 1323 vv m=                                  (5.2.17) 

                                   ba = , 1323 vu ±=  and 1323 uv ±=                                  (5.2.18) 

                                   ba = , 1323 uu ±=  and 1323 vv ±=                                  (5.2.19) 

Equations (5.2.16) and (5.2.17) correspond to coplanar optical axes, but equations 

(5.2.18) and (5.2.19) do not.  

Analysis is then carried out in two scenarios, i.e., the coplanar optical axes and non-

coplanar optical axes. For easier reading, only the main conclusions on singularities 

appear here. All of algebraic derivations and detail discussions are included in Appen-

dix B.  

Based on the above conditions, it can be seen that when two optical axes are copla-

nar, the two linear equations definitely vanish. However, the quadratic equation van-

ishes only when the two optical axes are parallel or when the two optical centers are 

equidistant from the intersection of the two optical axes. Specifically, when the two 

optical axes are parallel, the quadratic equation may vanish if the second optical center 

lies on the optical axis of the first camera, or may degenerates into one of the following 

two linear equations 
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if 01313 == vu  

The latter degenerate case happens when the rotation angle measured from the 

horizontal axis is °0  or °180 . When the two optical axes are not parallel but coplanar, 

the linear equations still vanish. However, the quadratic equation reduces to one of the 

two linear equations above and is only singular in the equidistance case.  
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Figure 5.4: Configuration of non-generic singularity for the linear equations 

When the two optical axes are not coplanar, it is found that there is one non-generic 

singularity for the linear equations. That is, the second optical axis lies in the plane, 

which contains the baseline and is orthogonal to the plane spanned by the baseline and 

the first optical axis. Of course, this is of little practical importance. Figure 5.4 shows 

such a configuration. For the quadratic equation, however, there is no non-generic sin-

gularity. That means the equation (5.2.18) or (5.2.19) alone can only give spurious so-

lutions, which can be easily eliminated.   

5.2.4 Conclusion 
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From the analysis in Section 5.2.2 and 5.2.3, we know that there is no non-generic 

singularity for the quadratic equation (5.2.4), i.e., both singular cases obtained from the 

heuristic analysis in Section 5.2.2 and algebraic analysis in Section 5.2.3 are identical. 

The two linear equations (5.2.2) and (5.2.3), however, not only degenerate in generic 

singular cases, but also in non-generic singular cases. Therefore, the singularities of the 

quadratic equation are a subset of those of the linear equations. However, it is easy to 

avoid coplanarity of optical axes. Hence, practically, we consider coplanarity of optical 

axes as the singularity of our calibration algorithm.  
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Chapter 6 Experiment results 

We carried out a large number of experiments in order to study the performance of 

the algorithm and examine its singular cases described in Chapters 3 and 4. Section 6.1 

presents the results of experiments in which synthetic images were used to assess the 

performance of the algorithm and detect the various singular cases for the linear and 

quadratic equations. Experiments on real images were then conducted and results are 

reported in Section 6.2. First, a special calibration grid was employed in order to obtain 

good matches. At this stage, the performance of the algorithm was evaluated rigor-

ously. It has been found that the quality of the algorithm was largely determined by the 

relation between the two optical axes --- whether they were coplanar or not. At last, 

two arbitrary scenes --- one containing three cups and the other containing a building, 

were used to calibrate the camera. The results are presented and analyzed in Section 

6.2.3. 

6.1 Experiment involving synthetic object 

In this experiment, a synthetic object was used to do calibration. The experiment 

was conducted in two steps. First, the performance of our calibration algorithm with 

respect to Gaussian noise level was evaluated. Next, singular cases for the linear and 

quadratic equations were investigated and verified in the experiment.  

6.1.1 Synthetic object and images 

The configuration used in this experiment is shown in Figure 6.1. The object is 

composed of two planar grids that form a °135  angle with each other. In each grid, 

there  
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Figure 6.1: The synthetic object 

are a total of 105 points. As Figure 6.1 shows, the object is placed at a distance of 

1,300 units from the camera center. We assume that two images are taken with a cam-

era motion. Without loss of generality, the first camera matrix is ]|[ 1 0IAP =  and the 

second camera matrix is ]|[ 2 tRAP = , where I  is the 33×  identity matrix, 0  the null 

3-vector, R  and t  are the orientation and position of the second camera with respect 

to the first camera coordinate system. The camera's intrinsic parameters are: 

600== vu ff , 3200 =u , 2400 =v , and the skew factor 0=β .  

6.1.2 Performance with respect to Gaussian noise level 

It has been shown that, practically, the coplanarity of optical axes is the singularity 

of our calibration algorithm in Section 4.3, Chapter 4. Based on this fact, we designed 

a two-camera system in which the two optical axes are purposely avoided to being co-

planar. In this experiment, the image coordinates of the grid points were perturbed by 

independent Gaussian noise with mean of 0 and a standard deviation of σ  pixels. The 

noise level was varied from 1.0  pixels to 0.2  pixels. For each noise level, a total of 

100 trials were performed. Therefore, in each experiment corresponding to each noise 
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level, there were 100 calibration results in total. The average of these 100 data sets was 

then taken as the calibrated focal length with respect to this noise level. The estimated 

focal length was then compared with the "ground truth" given in the last subsection. 

The relation between the relative error of focal length and noise level is shown in Fig-

ure 6.2.  

 

Figure 6.2: Relative error of focal length with respect to Gaussian noise level 

The results shown in Figure 6.2 are obtained by using the quadratic equation. It can 

be seen that the relative errors of focal length generally increase with the noise level. 

However, at some noise levels such as level 0.8, the errors are less than those in the 

intervals with less noise levels. A probable reason is that image noise may not strictly 

be Gaussian noise.  

6.1.3 Detecting different singular cases for the linear and quadratic equa-

tions 

As described in the last chapter, the linear equations generally degenerate when the 

two optical axes are coplanar and the quadratic one degenerates in generic singular 

cases. In this experiment, we try to simulate the coplanarity of optical axes and generic 
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singular cases in order to observe the performance of the linear and quadratic equa-

tions.  

θ 
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Figure 6.3: Coordinates of two cameras 

In order to detect the difference of singular cases between the linear and quadratic 

equations, we first emulated the coplanarity of two optical axes. Figure 6.3 shows the 

two camera coordinates. Here, the Y  axis points towards the reader. The translation is 

on the XOZ  plane. Hence, coplanarity means that the camera rotates only about the Y  

axis by θ . The baseline forms an angle α  with the Z  axis. If the two optical axes are 

parallel, then °= 0θ  (here we only consider °<180θ ). If the two optical axes form the 

equidistance case, αθ 2180 −°= . In this experiment, α  is set to be °45 . Then °= 90θ  

is equivalent to the equidistance case. In a word, when θ  is equal to °0  and °90 , the 

calibration algorithm works in generic singular cases. 

In this experiment, the noise level is 2.0  pixels and the every experiment associated 

with one rotation angle was repeated with 100 trials. The result was the average of 

every 100 data. 

Figures 6.4, 6.5 and 6.6 show the performance of the quadratic and linear equations 

when the two optical axes are coplanar. The horizontal axis represents the rotation an-

gle θ and vertical axis represents the relative error of focal length. Figure 6.4 shows 

that the relative errors of the quadratic equation are 2~7 times less than those of the 

linear equations. Hence in non-generic singular cases, the quadratic equation demon-
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strates better performance than the two linear equations. Figure 6.5 and Figure 6.6 

show that when the two-camera setup approaches to be generic singular, i.e., θ  ap-

proaches to be °0  or °180 , the quadratic equation gives poor performance --- the rela-

tive errors increase from nearly 20% to 400%. In contrast to the quadratic equation, the 

linear equations show less variation of the errors in these two figures. Hence, the linear 

equations are more stable than the quadratic equation when the two-camera system ap-

proaches to be generic singular. However, this phenomenon is of little practical impor-

tance since the relative errors are greater than the expected (they are usually should be 

less than 15%).  

In a nutshell, this experiment clearly demonstrates the difference of singularities be-

tween the quadratic and the linear equations, i.e., the quadratic equation degenerates in 

generic singular cases, and the linear equations degenerate when the two optical axes 

are coplanar.  

 

 

Figure 6.4: Coplanar optical axes (neither parallel nor equidistance case) 
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Figure 6.5: The two camera centers are near to be equidistant from the intersection 
of the two optical axes  

 

Figure 6.6: The two optical axes are near parallel 

6.2 Experiment involving actual images 

In this part of experiment, we first measured the effect of the assumption of the 

principal point position on the focal length calibration. Next, tests were carried out to 

quantify the sensitivity of the algorithm with respect to a numerical entity that gauges 

the coplanarity of optical axes. We then used the calibrated results to do reconstruction 
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in order to evaluate the effectiveness of this algorithm. All of the above procedures 

employed the precise calibration pattern routinely used in INRIA-Grenoble. Two sets 

of arbitrary scenes were then used for self-calibration.  

Note: in order to obtain good image correspondences, all experiments consider nar-

row baseline.  

6.2.1 Camera setup  

Practically, it is easy to avoid coplanarity of optical axes. There are multiple ways 

to achieve this goal. One approache is as follows: Since it is often safe to assume that 

the principal point is at the image center, when taking images with a camera, we first 

focus the image center on one object point and then take one image. Next we move the 

camera horizontally and try to make the image center nearly at the same object point. 

Then we tilt the camera upwards or downwards. Such an arrangement ensures that the 

two optical axes are not on the same plane.  

The camera we used in all experiments is a Sony DSC-P31 digital camera with 

5mm focal length. We first used the software toolkit Tele2 [23] developed in INRIA-

Grenoble to calibrate the camera. The resulting focal length of 625 pixels is used as 

"ground truth" in the following experiments.  

6.2.2 Experiment involving images taken from a special object 

In this experiment, the special calibration object routinely used in INRIA-Grenoble 

was applied for calibration. This calibration object consists of three planes, namely, 

Face 1, Face 2 and Face 3. Face 1 forms a °90  angle with Face 2 and Face 3. The an-

gle between Face 2 and Face 3 is °120 . In Face 1, there are 62 white dots that are care-

fully designed with the tolerance less than 1mm. Face 2 and Face 3 both have 49 white 

dots respectively.  
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In total 10 images were used in this experiment. The images were taken from ten 

different positions, covering a roughly circular path around the grid. Specifically, first, 

we took one image in one position. This position was purposely designated as the left-

most position. We tilted the camera as described in Section 6.2.1. We then moved to 

the right to a new position and take another picture. We did this ten times. The tenth 

position was of course the rightmost position. Since we applied small tilt angles, thus 

among 45 possible image pairs, some have approximately coplanar optical axes and 

some are quite distant from that situation. Here these 10 images are then called an im-

age sequence. Figure 6.7 shows some pictures of this image sequence. The resolution 

of all these images is 480640× .  

 

     

     

Figure 6.7: Some images of the calibration grid 
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I. Effect of principal point estimation on the focal length calibration 

As described before, this focal length calibration algorithm is based on the assump-

tion that the other intrinsic parameters are known. This experiment demonstrates that 

the principal point estimation error has little effect on the focal length calibration when 

the aspect ratio is assumed to be 1 and the skew factor 0.  

We selected the first and last images from the image sequence. The experiment pro-

cedure was as follows: First we assumed that the principal point was at the point that 

deviates from the image center by –25 pixels, along both the horizontal and the vertical 

axes. We then used this assumed principal point to calibrate the focal length. We next 

moved the assumed principal point along the positive horizontal axis by 5 pixels. The 

new resulting principal point was then used to calibrate the camera. After repeating 

this procedure by 11 times, we moved back and next moved along the vertical axis by 

5 pixels. We then moved along the horizontal axis in steps of 5 pixels as described 

above. We kept moving until we finally obtained 121 focal lengths.    

Table 6.1 and Figure 6.8 show the calibrated 121 focal lengths in total. In Table 6.1, 

the row represents the displacement of the principal point in horizontal axis. The col-

umn represents the displacement of the principal point in vertical axis. In Figure 6.8, 

the horizontal axis represents the deviation of the principal point from the image cen-

ter. The vertical axis represents the mean of all focal lengths calibrated from all of the 

cases when one coordinate of the principal point is constant and the other is changing.  

Table 6.1: Calibration results with respect to the principal point estimation 

  f -25 -20 -15 -10 -5 0 5 10 15 20 25 
-25 624.3 621.1 618.0 615.2 612.5 610.0 607.6 605.4 603.4 601.6 599.9
-20 626.7 623.6 620.7 617.9 615.3 612.9 610.7 608.6 606.7 605.0 603.4
-15 629.2 626.2 623.3 620.7 618.2 615.9 613.8 611.9 610.1 608.4 607.0
-10 631.7 628.8 626.1 623.5 621.2 619.0 617.0 615.1 613.4 611.9 610.6
-5 634.3 631.5 628.8 626.4 624.1 622.0 620.1 618.4 616.8 615.4 614.1
0 636.9 634.2 631.7 629.3 627.1 625.1 623.3 621.7 620.2 618.9 617.8
5 639.6 637.0 634.5 632.3 630.2 628.3 626.6 625.0 623.7 622.5 621.4
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10 642.4 639.8 637.5 635.3 633.3 631.5 629.9 628.4 627.1 626.0 625.1
15 645.2 642.7 640.4 638.3 636.4 634.7 633.2 631.8 630.7 629.7 628.8
20 648.1 645.7 643.5 641.5 639.7 638.0 636.6 635.3 634.2 633.3 632.6
25 651.0 648.7 646.6 644.7 642.9 641.4 640.0 638.8 637.8 637.0 636.4

 

From Figure 6.8, we find that even if the principal point deviates from the image 

center by 25 pixels along one direction, the relative error is less than 3% of the "true" 

focal length. The standard deviation of these 121 focal lengths is 11.7 pixels, which is 

only 1.8% of the focal length. The conclusion is that principal point estimation has lit-

tle effect on the focal length calibration. Hence it is safe to assume that the principal 

point is at the image center when we use this algorithm for focal length calibration. 

 

Figure 6.8: Effect of the principal point estimation on the focal length calibration 

II. Experiment considering the stability of the algorithm 

In order to show that the algorithm is stable, the whole image sequence was used. 

The experiment considered all the possible combinations of any two images selected 

from those 10 images. The final results are presented in Figure 6.10 and Table 6.2. 

From these results, we can easily find some instances close to the coplanar case. Here, 

in order to measure how close the two optical axes to become coplanar, we first intro-
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duce a middle plane. This middle plane has the same angle with the two planes passing 

through the baseline and two optical axes. Figure 6.9 shows such a middle plane. 

c
c

Op1

Op2

O1 O2baseline

middle plane

p1

p2

 

Figure 6.9: The middle plane 

In Figure 6.9, the camera center O1 and the optical axis Op1 determine the plane 

P1. In the same principle, O2 and Op2 determine the plane P2. Thus the middle plane 

is the plane that has the same angle with P1 and P2. Then whenever the two optical 

axes are coplanar, the angle c is zero. 

In addition to the middle plane, the angle of the two optical axes is also used to de-

termine whether they are parallel. 

For 10 images, there are 45 pairings involving any two images, and thus there are 

totally 45 data points as shown in Figure 6.10.  

Table 6.2: Experiment considering the stability of this algorithm 

 ln_f q_f c aifa class 
1-2 636.2353 636.2395 4.8573 6.0396 1 
1-3 600.1616 600.1912 0.5897 22.0678 2 
1-4 623.0289 623.0317 6.5393 22.2417 1 
1-5 484.2163 486.643 0.1736 36.6282 2 
1-6 623.9774 623.9774 7.8822 39.9875 1 
1-7 593.3703 593.6393 1.0431 30.9349 2 
1-8 621.2885 621.2889 8.1031 35.2266 1 
1-9 589.6953 589.71 1.1768 46.3984 2 
1-10 625.1382 625.1398 8.1051 51.4649 1 
2-3 630.9762 630.9808 3.895 17.5298 1 
2-4 617.8473 617.8569 3.5662 16.5518 1 
2-5 634.5881 634.5937 4.2864 32.4806 1 
2-6 623.6124 623.6145 4.519 34.797 1 
2-7 640.0187 640.0226 3.1195 26.3194 1 
2-8 617.2789 617.3563 5.1751 29.8387 1 
2-9 643.8241 643.8366 3.3721 42.648 1 
2-10 623.2157 623.2172 4.0974 46.9018 1 
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3-4 626.4769 626.4804 4.5722 8.2717 1 
3-5 645.546 645.5533 0.4692 14.9909 2 
3-6 625.4553 625.4643 6.2595 18.1764 1 
3-7 582.4486 582.5931 0.4708 8.8291 2 
3-8 619.7153 619.7275 9.1716 14.5359 1 
3-9 575.4857 575.5017 0.4711 25.5331 2 
3-10 630.2692 630.2941 6.7836 29.6834 1 
4-5 626.3529 626.4069 5.4596 19.8588 1 
4-6 637.1915 637.1915 1.276 19.3917 3 
4-7 627.7637 627.8199 4.8415 13.0145 1 
4-8 620.514 620.5269 1.577 13.5955 1 
4-9 631.2502 631.3146 5.2192 30.4966 1 
4-10 644.4139 644.4146 1.447 32.775 3 
5-6 621.9666 621.9669 2.9185 8.8633 1 
5-7 750.3711 754.1453 0.0876 6.9522 2 
5-8 632.4635 632.4653 14.705 12.221 1 
5-9 614.7621 614.7783 1.3369 10.9525 3 
5-10 633.8803 633.8822 7.5776 15.2936 1 
6-7 626.1481 626.1482 6.6629 9.8358 1 
6-8 915.0939 989.8468 0.2226 6.7671 2 
6-9 634.6316 634.6531 9.705 15.115 1 
6-10 726.1053 727.373 0.685 14.2146 2 
7-8 626.9702 626.9791 3.4095 8.711 1 
7-9 620.5535 620.5669 1.5752 17.8957 1 
7-10 634.9671 634.9674 8.5253 21.2163 1 
8-9 630.5471 630.5547 9.518 21.1004 1 
8-10 744.1491 757.852 0.9408 20.9112 2 
9-10 624.2798 624.2932 2.1835 8.9243 1 

 

 

Figure 6.10: Sensitivity of focal length with respect to the angle c 

 

Several remarks can be made from Figure 6.10 and Table 6.2: 
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 In Table 6.2, the first column represents a possible image pair, i.e., 1-2 

represents the combination of the image 1 and 2 and so on. The second column 

ln_f represents the focal length calibrated from the linear equations. The third 

column q_f represents the focal length calibrated from the quadratic equations. 

The fourth column c is the angle as shown in Figure 6.9. The column aifa repre-

sents the angle of two optical axes. The last column class represents the classifi-

cation of the calibrated focal lengths.  

 In this experiment, radial distortion was first corrected. The first order coef-

ficient k1 and the second order coefficient k2 of the radial distortion were 

7-3.7791e- and  12-1.3596e respectively.  

 From Figure 6.10, we find that the relationship between the focal length and 

the angle c are nearly exponential functions. In fact, by inspection of the figure, 

we can detect that when c is larger than °5.1 , the calibrated focal lengths are 

quite stable. The mean of the focal lengths falling into this interval is 627.6 pix-

els, which is very close to the "true" one. The standard deviation of the esti-

mated focal lengths is about 6.5285 pixels, which is within 1.1% of the "true" 

focal length. Based on this fact, we classify the data into 3 classes. In class 1, c 

is greater than °5.1 , and the algorithm is running safely. The results are quite 

good. In Figure 6.10, we can easily find when the angle c is less than °0.1 , the 

calibrated results are not stable. The errors vary from 25~280 pixels. We desig-

nate this case as class 2. In Figure 6.10, the class 3 is obtained when c is be-

tween °0.1  and °5.1 . In this class, the algorithm works in a transitional interval, 

the calibrated results are not bad, but they are worse than class 1. It is better to 

avoid this case. 
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 A careful reader may find that the quadratic equation gives similar perform-

ance to the linear equations when two optical axes are nearly coplanar (class 2). 

The reason is that the current algorithm for the fundamental matrix estimation is 

not designed for special cases. In fact, coplanarity of the optical axes is a special 

case. As described in the previous sections, when two optical axes are coplanar, 

the entry at the third row and third column of the semi-calibrated fundamental 

matrix G33 is 0. However, in practical cases, we cannot ensure that when optical 

axes are near coplanar, this element is near zero. In fact, in most cases, this ele-

ment is larger than what is expected. Hence, the third coefficient of the quad-

ratic equation (5.2.4) is not near zero. It is even larger than the first two coeffi-

cients. Thus, the quadratic equation does not work well in these cases. Never-

theless, we conclude that the quadratic equation works marginally better than 

the two linear equations.  

III. Reconstruction results using the calibrated focal length 

Having calibrated the focal length, we can estimate the relative position of the two 

considered images [14] and carry out a 3D reconstruction of the matched image points 

[10]. We did this for several image pairs. In order to evaluate the quality of the 3D re-

construction, we compare it to the known geometry of the calibration grid. We take 

two steps to achieve this objective. Firstly, we fit planes to the 3 subsets of coplanar 

points (cf. Figure 6.7). We decide on a relative distance to evaluate the coplanarity of 

points. We first measure the distances of points to the fitted plane. Then we measure 

the largest distance between pairs of the considered points. We next express in percent, 

the distances of the points to the plane, relative to that largest distance, the so-called 

relative distance. Secondly, we measure the angles between each pair of planes and 
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compare it to "ground truth": one of the grid's planes forms °90  angles with the two 

others, which themselves form a °120  angle.  

The results of our evaluation are displayed in Table 6.3. They are shown for 5 pairs, 

which share one common image. Note that from the left to the right, the baseline de-

creases. Row f contains the calibrated focal lengths. The rows Axy show the angles be-

tween pairs of planes. The rows Stdx show, for the 3 planes, the standard deviation of 

the relative distances as described above, which is useful to evaluate the coplanarity of 

points.  

We observe that for the two image pairs with the largest baseline, the angles are all 

within °3.0  from their true values. With decreasing baseline, the errors increase, both 

for the angles and the coplanarity measure, although they still stay relatively small.  

Table 6.3: Reconstruction results using calibrated focal length 

 Ground 
truth 

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 

f 625.0 625.1 630.3 633.9 634.9 624.3 
A12 90.0 90.26 89.94 91.01 90.94 89.84 
A13 90.0 89.74 89.23 92.35 91.49 88.69 
A23 120.0 119.73 119.76 120.48 120.66 118.17 
Std1 0.0 0.000146 0.000162 0.000255 0.000321 0.000296
Std2 0.0 0.00037 0.000359 0.00029 0.000399 0.000251
Std3 0.0 0.000289 0.000325 0.000522 0.000558 0.000394

6.2.3 Calibration using arbitrary scenes 

In the previous experiments, since we used a special calibration object, matching 

was not a serious problem. However, in real applications, matching plays an important 

role in calibration. This part of experiments covers the complete camera self-

calibration procedures --- from corner detection to the fundamental matrix computa-

tion. From the calibration results, we can conclude that when matching and the funda-

mental matrix computation are carefully conducted, this calibration algorithm can give 

convincing results. 
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In all the following experiments, the techniques given in [43] were used to obtain 

correspondent points and fundamental matrix. The software developed on Linux is 

available at http://www-sop.inria.fr/robotvis/personnel/zzhang/softwares.html. 

I. Calibration with indoor scene 

Indoor scenes are quite static and can be easily controlled. In the scene used for this 

experiment, three cups were placed together. The background was a white wall, so 

there were few depth cues. We could also move the camera close to the objects in or-

der to capture enough features. In this experiment, the camera function setting used in 

the previous experiments was employed. Therefore, we can compare the calibrated re-

sults with those in the last section. We took in total four images of the three cups. They 

are shown in Figure 6.11. The calibrated results are presented in Table 6.4. 

Table 6.4: Results calibrated from images containing 3 cups 

Image 
pair 

Ground 
truth 

12 13 14* 23 24 34 

f 625.0 599.2 605.3 584.3 617.7 607.8 624.6 
*: In this case, the c angle (see last section) is °1.0114 .  
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Figure 6.11: Images of three cups 

Compared with the "ground truth", the maximum relative error is about 6.5%, and 

the average relative error is less than 5%. After the case of 14 that is near the coplanar 

case is excluded, the maximum relative error is about 4%, and the average relative er-

ror is less than 2.3%. 

II. Calibration with outdoor scene 

We used the same camera setting to take 5 images of an outdoor scene. This is a 

building on the campus of the National University of Singapore. The distance between 

the camera and the building was about 25 meters. The calibrated results are presented 

in Table 6.5. 

Table 6.5: Results calibrated from images containing a building 

Image 
pair 

Ground 
truth 

12 14 15 23 25 34 35 

f 625.0 638.4 655.4 597.6 697.8 685.1 589.3 664.3 
We note the following points when analyzing the results in Table 6.4 and Table 6.5:  

 The first row of Table 6.4 and Table 6.5 is the combination of images. For 

example, case 12 is the combination of the first and second images. In Table 

6.5, camera configurations near the coplanar case are excluded. 

 Although the same camera setting was used, the camera focused on objects 

at different distances, especially in the building case.  Hence, relative errors in 
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the calibrated result were expected up to several percent. Here, the maximum 

relative error is about 10%, which seems reasonable for this experiment.  

 In Figure 6.12, we find the building is of a large depth variety. Although 

large depth variety may be better for calibration, it may lead to serious problems 

for matching (A little displacement in an image means a great displacement in 

the 3D world). Hence large depth variety may be one factor that affects the cali-

brated results in Table 6.5. 

          

          

Figure 6.12: some images of a building 

III. The reconstructed model from the arbitrary scenes 

Like we did for the images of the calibration grid, we performed a 3D reconstruc-

tion of the indoor scene of 3 cups using the calibrated result. We first used the tech-

niques described in [10] to recover the scene's structure. A triangular mesh was semi-

automatically adjusted to the reconstructed 3D points, and used to create textured 
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VRML models. A few renderings of one of the models are shown in Figure 6.13. Due 

to the sparseness of the extracted interest points, the reconstruction of the scene is not 

complete of course. However, Figure 6.13 shows that it is qualitatively correct. The 

second row of the scene shows the coplanarity of the close-ups of the plug, and third 

row shows the cylindrical shape of the cups. 

  

   

  

Figure 6.13: The reconstructed cup. First row: general appearance of the scene, 
once with overlaid triangular mesh. Second row: rough top view of cups and two 
close-ups of the plug in the background (rightmost image shows the near coplanarity of 
the reconstruction). Third row: top views of two of the cups, showing that their cylin-
drical shape has been recovered.  

  

6.3 Conclusion 

In the above experiments, first we showed that focal length calibration is nearly in-

dependent of principal point estimation. Experiments on the special calibration grids 

demonstrated that the self focal length calibration algorithm given here is robust. Cali-
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bration results obtained from arbitrary scenes make certain that this algorithm can be 

used in many applications. Although we do not hope to use this algorithm to provide 

calibration results as accurate as those obtained by calibration methods involving cali-

bration grids, the calibrated results are still convincing. We believe it will help to fill 

the gap in applications concerning automatic structure from motion. 
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Chapter 7 Conclusion 

The thesis presents a new approach for camera's focal length calibration. The ap-

proach assumes only the camera's focal length is unknown and constant. Thus the 

Kuppa's equations, which are popularly used to self-calibrate a camera are decomposed 

as two linear and one quadratic equations. Then the first advantage of these calibration 

equations is that they give closed form solutions. 

A conventional wisdom in computer vision community is that Kruppa's equations 

based camera self-calibration is unstable. Based on Sturm's critical motion sequences 

analyses for camera self-calibration and structure recovery, we can give all of singular 

cases for our self-calibration algorithm. These singular cases that we call generic sin-

gular cases are nearly correspondent to all of algebraic degeneration of those equa-

tions. After excluding those singular cases, we find that our algorithm is really stable 

and easy to implement.  

The work presented here is not near the end. Nonlinear estimation can be included 

to refine the algorithm in the future research. Focal length might not be necessary con-

stant. If so, zoom and different focus can be employed when we calibrate a camera and 

thus it is more flexible. Of course, we shall not forget that 3D modeling rather than 

calibration is our final goal. Thus a complete system should be finally established. This 

system as we described in the Chapter 1, should include image feature extraction and 

matching, camera self-calibration, structure from motion and dense model reconstruc-

tion. After all of these components are embedded in the system, we can find the input 

of the system is a sequence of images and the output is the 3D model. The system can 

then be implanted in robots, media industry and so on. 
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Appendix A 

Orthogonal least squares problem 

The problem initially originates from finding the solution of a homogeneous equa-

tion 0=AX , where A  is an nm×  matrix with nm > . Obviously the trivial solution 

0=X should be excluded. In order to find a nontrivial solution, the column rank of the 

matrix is less than n . 

In practice, the matrix A  is perturbed by noise. Thus A  may be full column rank. 

The problem is then reinterpreted as  

AXX
X

minarg=   (1) 

subject to 1=X 1 

Applying the Lagrangian multiplier for the minimization object function (1): 

XXAXAX TTT λ−min  (2) 

Set the first derivative of (2) to be zero. (2) is then: 

XAXAT λ=  (3) 

The solution is then the eigenvector of the matrix AAT . 

Place (3) into (1), the solution is λ . Therefore the solution of the orthogonal linear 

least squares problem is the eigenvector associated with least eigenvalue of the matrix 

AAT . 

 

 

 

                                                 

1 Since multiplying a scalar to a homogeneous equation does not influence the final solution of the 
problem, it is reasonable to assume the Euclidean norm of the solution is 1. 
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Appendix B1 

B.1 The equivalent form of the semi-calibrated fundamental ma-

trix 

Before the discussion of the coplanar and noncoplanar singular cases, a special 

parameterization of the relative camera pose should be firstly adopted. Without loss of 

generality, the first camera is assumed in canonical position, besides that it is rotated 

about its optical axis (the Z-aixs of the reference frame) by a rotation 1,ZR . The optical 

center of the second camera can then be assumed to lie e.g. in the plane 0=X , i.e. its 

coordinates are (0, Y, Z). Furthermore, its orientation is given via three basic rotation 

matrices: XYZ RRRR 2,2 = . It can be shown that the fundamental matrix is then given by: 

































































×
f

R
Z
YRRR

f
G ZXYZ

00
010
0010

00
010
001

~ 1,2,  (1) 

Importantly, due to the special form of ZR , the matrix G can be rewritten as: 

1,2,

00
010
0010

00
010
001

~ Z

H

XYZ R
fZ

YRR
f

RG

44444 344444 21
































































×

. (2) 

Due to the special form of ZR  and the orthogonality of the left and right singular ma-

trices of an SVD, it can be shown that G  and H  have the same singular values, and 

that the third rows of their respective singular matrices are equal. Specifically, this 

means that the SVDs of G  and H  lead to the same values for a , b , 13u , 23u , 13v  and 

23v , and thus to the same calibration equations. 

                                                 

1 The contents in this appendix appear in a pending paper: 
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Hence, the matrix of the following form 

















−−
+

−−

βββαα
αα

βββαα

sinsincos)cossin(
00sincos
coscossin)cossin(

~
2YffZYZf

YZ
fYZYZ

H  (3) 

is equivalent to the matrix G  in terms of the calibration equations in this paper. Here 

α  and β  are the angles of the X  and Y  rotations. 

Note that the directions of the optical axes of the two cameras are given by: 

















1
0
0

~1D  and 














 −

βα
βα

β

coscos
cossin

sin
~2D  

B.2 Coplanar optical axes 

Follow the equation (3), coplanar optical axes means 0=Y or 0sin =β .  

First case: 0=Y . This means that the second optical center lies on the optical axis of 

the first camera (since both X  and Y  are equal to 0). In this case, the first epipole has 

coordinates ( )T100 . However, the first epipole is equal to the third column 3v  of the 

matrix V in the SVD of H . Due to the orthogonality ofV , this implies that 02313 == vv . 

Hence the quadratic equation becomes linear (neglecting the trivial solution 0=f ): 

0)())1()1(( 2
23

22
13

22
23

22
13

22 =−+−−− ubuaubuaf . (4) 

One necessary condition for the quadratic equation to vanish is ba = . It can be 

shown that this happens exactly if 0sinsin == βα . This however means nothing else 

than that the optical axes are parallel to each other. Hence, there is no non-generic sin-

gularity for the quadratic equation in this case. 

For the linear equations, it can be shown that the matrix THH has the following ei-

genvector with a non-zero eigenvalue: 
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0
sincos

sin
βα

α
. 

However, this eigenvector is equal to either 1u  or 2u . Hence, either 013 =u or 023 =u . 

Combining the condition 02313 == vv , the linear equations vanish. 

Second case: 0sin =β . In this case, HH T  and THH  have ( )T001 as an eigenvector with 

non-zero eigenvalue. Hence, one of the first two columns of U and one of first two 

rows of TV have this form. However, the column and row indices must be different 

(otherwise, the (1, 1) or (2, 2) element of H  may not be zero). This means that either 

02313 == vu or 01323 == vu , which implies that the linear equations vanish and that the 

quadratic one becomes linear: 

0)())1()1(( 2
23

22
13

22
23

22
13

22 =−+−−− vbuavbuaf  (5) 

if 01323 == vu  or  

0)())1()1(( 2
23

22
13

22
23

22
13

22 =−+−−− ubvaubvaf   (6) 

if 02313 == vu . 

The equation (5) vanishes when ba =  and 2
23

2
13 vu = . In the same principle, the equation 

(6) vanishes when ba =  and 2
13

2
23 vu = . It can be shown that the three eigenvalues of 

THH are  

01 =λ , 222
2 ZYf +=λ and 22

3 )cossin()sincos( ααααλ YZYZ −++=  

Hence ba =  exactly if 

22)sincos( ZYZ =+ αα  (7) 

and 22)cossin( YYZ =− αα 1 (8) 

                                                 

1 We only consider the case, which is independent of the focal length. 



 91

However, (7) and (8) are equivalent since both of them mean the two camera centers 

are equidistant from the intersection of two optical axes. Specifically, a point on the 

second optical axis is given by: 



















+



















0
cos
sin

0

1

0

α
α

λ
Z
Y  (9) 

For non-parallel optical axes ( 0sin ≠α ), we obtain the intersection point of the optical 

axes for αλ sin/Y−= : 





















−
=

1
sin
cos

0
0

α
αYZ

Q  (10) 

It is easy to verify that both of (7) and (8) make the two camera centers are equidistant 

from Q . 

After (7) and (8) are applied to H , it is easy to find  
















−=

21

21

/10/1
/0/
010

dd
ZdfYfYdZU  and 
















−=

21

21

/1/10
//0
001

dd
ZdfYfYdZV  

if 01323 == vu  

or 















−=

21

21

/1/10
//0
001

dd
ZdfYfYdZU and 
















−=

21

21

/10/1
/0/
010

dd
ZdfYfYdZV  

if 02313 == vu , where 1)/( 2
1 += fYZd and 1)/( 2

2 += ZfYd  

Then we can immediately find in the former case 2
23

2
13 vu = and the latter case 2

23
2
23 vu = . 

That means the equidistance is equivalent to the degeneration of (5) and (6) and hence 

the quadratic equation. 
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Summary. Whenever the optical axes are coplanar, the two linear equations (in chap-

ter 5) vanish and the quadratic equation (in chapter 5) becomes linear. The latter van-

ishes exactly if the optical axes are parallel or if the optical centers are equidistant from 

thee intersection of the optical axes. Hence all of singular cases of the quadratic and 

linear equations in coplanar case are generic singular cases, i.e. the equivalent alge-

braically singular cases. 

B.3 Non-coplanar optical axes 

B.3.1 Linear equations 

As Chapter 5 shows, for linear equations, the non-coplanar singular cases are: 

02323 == vu  

01313 == vu  

First case: 02323 == vu . In the following, the SVD of H  is considered. As described in 

section B.1, the first epipole 3v  is TZfY ),,0( . Hence we have: 

44344214434421
TVU

SVD

ZfY
vv

vvv
b

a

uu
uuu
uuu

YffZYZf
YZ

fYZYZ
H

































































−−
+

−−

0
0

000
00
00

0
~

sinsincos)cossin(
00sincos
coscossin)cossin(

~

2221

131211

3313

322212

312111

2 βββαα
αα

βββαα

1 (11) 

From the orthogonality of rows 2 and 3 of TV , it follows that 022 =v and from this, that 

011 =v . From 02322 == HH , it also follows that 012 =u . Hence (11) is rewritten as: 

                                                 

1 Here unitary determine of the orthogonal matrix is not imposed. 
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−−
+

−−

ZfY
v

vv
b

a

uu
uu
uuu

YffZYZf
YZ

fYZYZ

0
00

0

000
00
00

0
0~

sinsincos)cossin(
00sincos
coscossin)cossin(

21

1312

3313

3222

312111

2 βββαα
αα

βββαα
. (12) 

The right hand side of the equation determines the (3, 1) element of the left hand side 

to be zero. Thus  

0cossin =− αα YZ  or 0cos =β  

is the necessary condition for non-coplanar singular cases for the linear equations in 

the first case.  

If 0cos =β , then 1sin ±=β . H  becomes: 
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−+
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−
+
−

ZfY
t

fYZ
t

ft

t
ZYYZ
YZYZ

YffZ
YZ
YZ

0
00

0

000
00
00

00
sincossincos0
sincoscossin0

~
0

00sincos
00cossin

21

2

1
2

αααα
αααα

αα
αα

 (13) 

or  
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−+
−−+−

















−
+
+−

ZfY
t

fYZ
t

ft

t
ZYYZ
YZYZ

YffZ
YZ
YZ

0
00

0

000
00
00

00
sincossincos0
sincoscossin0

~
0

00sincos
00cossin

21

2

1
2

αααα
αααα

αα
αα

(14) 

where 22
1 ZYt += and 222

2 ZYft += . It is easy to verify (13) and (14) really satisfy 

the condition of SVD. Thus we find a SVD for the fundamental matrix with 

02323 == vu  when 0cos =β . The geometrical configuration of this case is the second 

optical axis points in the X direction, i.e. the normal direction of the plane spanned by 

the two optical centers and the first optical axis. 

If 0cossin =− αα YZ , since 0≠Y  (otherwise the optical axes are coplanar), hence 

0sin ≠α  and the condition is then: 

YZ
α
α

sin
cos

= . 

H  then becomes: 
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−
+

−

βαβα

βαβα

ββ
αα

ββ

sinsinsincos0
001

cossincoscos0
~

sinsin0
00sincos
coscos0

~

2

2

ff

f

YffZ
YZ

fYZ
H

 (15) 

An SVD for this is (possibly up to ordering the singular values): 
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− αα

αα

ββ

ββ

cossin0
00

sincos0

000
010
00

cos0sin
00

sin0cos

1

21

2

f
t

ftt

f
t

f
 (16) 

with αα 222
1 cossin += ft and ββ 222

2 cossin += ft . Hence, there is also an SVD of 

H that satisfies 02323 == vu when 0cossin =− αα YZ . The geometrical interpretation of 

0cossin =− αα YZ is as follows: the second optical axis lies in the plane orthogonal to 

the plane spanned by the optical centers and the first optical axis and containing the 

baseline. Of course this case is of little practical importance. 

Second case: 01313 == vu . The analysis can be done analogously as above, leading to 

the same conclusions (the SVDs are the same, up to swapping of the singular values 

and corresponding columns of U and V ). Which one of the cases 02323 == vu or  

01313 == vu  occurs in practice, depends on which one of the singular values is larger. 

B.3.2 Quadratic equation 

The conditions in the case of non-coplanar optical axes are: 

ba = , 1323 vu ±=  and 1323 uv ±=  

ba = , 1323 vu ±=  and 1323 uv ±=  . 
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First case: ba = , 1323 vu ±=  and 1323 uv ±= . Like the disposition in the linear case, H  

in this case is: 
















±

































± ZfY
vvv

vvv
a

a

uuu
uuu
uuu

H
SVD

0000
00
00

~ 132221

131211

331313

322212

312111

 (17) 

Due to the orthogonality of columns of TV , there are scalars λ  and µ with: 
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00
13

13

21

11

v
v

v
v

λ
λ
m  and 
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0
23

13

22

12

v
v

v
v

µ
µ

 

Then the symmetric matrix HHX T= is thus given by: 

















10
0

00
~ 2

2

µ
µµ

λ
X  (18) 

Compared (18) with (3), there follows two sets of equations: 

0)cossinsincos(sincos 22 =−+− ααααββ YfZfZYZ  

0)cossincossin(sincos 22 =+−− ααααββ YfZfYZfY  

or equivalently: 

0)cossin)(1(sincos 2 =−− ααββ YZfZ  (19) 

0)cossin)(1(sincos 2 =−−− ααββ YZffY  (20) 

Excluded the trivial cases 12 =f and 0=Z and coplanar case 0=Y and 0sin =β , the 

above two equations imply 0cos =β  or αα cossin YZ = . 

With 0cos =β , the eigenvalues of HH T can be computed to be: 

01 =λ , 22
2 ZY +=λ and )( 2222

3 ZYff +=λ  

Then the condition of the identical eigenvalues gives the two trivial solutions for f : 

12 =f  or 
2

22
2

Y
ZYf +

−=  

Hence there is no geometrical configuration correspondent to the case of 0cos =β .  
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Consider now the case αα cossin YZ = . Following the same scheme in section B.3.1, 

the matrix H  becomes 















 −

































− αα

αα

ββ

ββ

cossin0
00

sincos0

000
010
00

cos0sin
00

sin0cos
~ 1

21

2

f
t

ftt

f
t

f
H  (21) 

with αα 222
1 cossin += ft and ββ 222

2 cossin += ft .  

Applied the initial conditions ba = , 1323 vu ±=  and 1323 uv ±= , (21) implies: 

121 =tt  

0sin =βf  

0sin =αf  

This exactly means 0sinsin == βα , i.e. the two optical axes are parallel and thus the 

optical axes are coplanar. 

Second case: ba = , 1323 vu ±=  and 1323 uv ±=  . As the same scheme in the last subsec-

tion, there are the same constrains as the equations (19) and (20) and then the same 

conclusions can be obtained. 

Summary: There is no singular case for the quadratic equation when the optical axes 

are not coplanar. 

 

 

 

 

 

 

 

 


