169 research outputs found

    Discretization approach

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€(์—๋„ˆ์ง€ํ™˜๊ฒฝ ํ™”ํ•™์œตํ•ฉ๊ธฐ์ˆ ์ „๊ณต),2019. 8. ์ด์›๋ณด.In recent years, many researchers in chemical engineering have made great efforts to develop mathematical models on the theoretical side that are consistent with experimental results. Despite these efforts, however, establishing models for a system with complex phenomena such as multiphase flow or stirred reactors is still considered to be a challenge. In the meantime, an increase in computational efficiency and stability in various numerical methods has allowed us to correctly solve and analyze the system based on the fundamental equations. This leads to the need for a mathematical model to accurately predict the behavior of systems in which there is interdependence among the internal elements. A methodology for building a model based on equations that represent fundamental phenomena can lower technical barriers in system analysis. In this thesis, we propose three mathematical models validated from laboratory or pilot-scale experiments. First, an apparatus for vaporizing liquid natural gas is surrounded with a frost layer formed on the surface during operation, and performance of the apparatus is gradually deteriorated due to the adiabatic effect. Because the system uses ambient air as a heat sink, it is necessary to consider the phase transition and mass transfer of water vapor, and natural gas in the air in order to understand the fluctuation of system characteristics. The model predicts the experimental data of a pilot-scale vaporizer within a mean absolute error of 5.5 %. In addition, we suggest the robust design methodology and optimal design which is able to maintain the efficiency under the weather conditions for a year. Two or more data analysis techniques including discrete waveform transformation and k-means clustering are used to extract features that can represent time series data. Under the settings, the performance in the optimized desgin is improved by 22.92 percentage points compared to that in the conventional system. In the second system, the continuous tubular crystallization reactor has advantages in terms of production capacity and scale-up compared with the conventional batch reactor. However, the tubular system requires a well-designed control system to maintain its stability and durability, and thus; there is a great deal of demand for the mathematical model of this system. We were able to estimate crystal size distribution by considering the population balance model simultaneously with several heat exchanger models. The model constructed based on the first principle reaction scheme successfully predicted the results from the full-factorial experiment. The experiments were conducted with LAM (L-asparagine monohydrate) solution. In the prediction, the average crystal length and standard deviation were within 20% of the results of an experiment where the crystals were not iteratively dissolved in the liquid but maintained a low-level supersaturation. Furthermore, to confirm the controllability of the crystal size distribution in the system, we replaced the LAM solution with HEWL (Hen-egg white lysozyme) solution. Finally, we propose a multi-compartment model to predict the behavior of a high-pressure autoclave reactor for polymer production. In order to simulate a complex polymer synthesis mechanism, the rotation effect of impellers in the reactor on polymerization and the influence caused by polymerization heat were sequentially evaluated. As a result, This model turned out to be able to predict the physical properties of the polymers produced in an industrial-scale reactor within 7% accuracy. In this thesis, all three systems are distributed parameter systems which can be expressed as partial differential equations for time and space. To construct a high order model, the system was interpreted based on discretization approach under minimal assumptions. This methodology can be applied not only to the systems suggested in this thesis but also to those consisting of interpdependent variables. I hope that this thesis provides guidance for further researches of chemical engineering in nearby future.์ตœ๊ทผ์— ๋ช‡ ๋…„์— ๊ฑธ์ณ์„œ ๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์ด ์ด๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹คํ—˜ ๊ฒฐ๊ณผ์™€ ์ผ์น˜ํ•˜๋Š” ์ˆ˜ํ•™ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ ์ž ๋งŽ์€ ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์—ฌ ์™”๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ๋…ธ๋ ฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋‹ค์ƒ ํ๋ฆ„ ํ˜น์€ ๊ต๋ฐ˜ ๋ฐ˜์‘๊ธฐ์™€ ๊ฐ™์€ ๋ณต์žกํ•œ ํ˜„์ƒ์„ ๋‚ดํฌํ•œ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ๋ชจ๋ธ์„ ์ˆ˜๋ฆฝํ•˜๋Š” ๊ฒƒ์€ ์—ฌ์ „ํžˆ ํ™”ํ•™ ๊ณตํ•™ ๋ถ„์•ผ์—์„œ ์‰ฝ์ง€ ์•Š์€ ์ผ๋กœ ์—ฌ๊ฒจ์ง„๋‹ค. ์ด ์™€์ค‘์— ๋‹ค์–‘ํ•œ ์ˆ˜์น˜์  ๋ฐฉ๋ฒ•์—์„œ์˜ ๊ณ„์‚ฐ ํšจ์œจ์˜ ์ฆ๊ฐ€์™€ ์•ˆ์ •์„ฑ์˜ ํ–ฅ์ƒ์€ ๊ธฐ๋ณธ๋ฐฉ์ •์‹์— ๊ธฐ์ดˆํ•œ ์‹œ์Šคํ…œ์„ ์ •ํ™•ํ•˜๊ฒŒ ํ•ด๊ฒฐํ•˜๊ณ  ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ์—ˆ๋‹ค. ์ด๋กœ ์ธํ•˜์—ฌ ๋‚ด๋ถ€ ์š”์†Œ๋“ค ๊ฐ„์˜ ์ƒํ˜ธ ์˜์กด์„ฑ์ด ์กด์žฌํ•˜๋Š” ์‹œ์Šคํ…œ์˜ ๊ฑฐ๋™์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ์ˆ˜ํ•™์  ๋ชจ๋ธ์˜ ํ•„์š”์„ฑ์ด ๋ถ€๊ฐ๋˜์—ˆ๋‹ค. ๊ธฐ๋ณธ ํ˜„์ƒ๋“ค์„ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์ •์‹๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์€ ์‹œ์Šคํ…œ ํ•ด์„์— ์žˆ์–ด์„œ ๊ธฐ์ˆ ์  ์žฅ๋ฒฝ์„ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ๋‹ค. ์ด ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ์‹คํ—˜์‹ค ๋˜๋Š” ํŒŒ์ผ๋Ÿฟ ๊ทœ๋ชจ์˜ ์‹คํ—˜์œผ๋กœ๋ถ€ํ„ฐ ์ž…์ฆ๋œ ์„ธ ๊ฐ€์ง€ ์ˆ˜ํ•™์  ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ณต๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์•ก์ƒ์˜ ์ฒœ์—ฐ๊ฐ€์Šค๋ฅผ ๊ธฐํ™”์‹œํ‚ค๋Š” ์žฅ์น˜๋Š” ์šด์ „ ๋„์ค‘์— ๊ธฐํ™”๊ธฐ ํ‘œ๋ฉด์— ์„œ๋ฆฌ ์ธต์ด ํ˜•์„ฑ๋˜๊ณ  ๊ทธ๋กœ ์ธํ•œ ๋‹จ์—ด ํšจ๊ณผ๋กœ ์žฅ๋น„์˜ ์„ฑ๋Šฅ์ด ์„œ์„œํžˆ ์ €ํ•˜๋œ๋‹ค. ์‹œ์Šคํ…œ์€ ์ฃผ๋ณ€ ๊ณต๊ธฐ๋ฅผ ์—ด ํก์ˆ˜์›์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹œ์Šคํ…œ ํŠน์„ฑ์˜ ๋ณ€๋™์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ณต๊ธฐ ์ค‘ ์ˆ˜์ฆ๊ธฐ ๋ฐ ์ฒœ์—ฐ ๊ฐ€์Šค์˜ ์ƒ์ „์ด ๋ฐ ์ „๋‹ฌ ํ˜„์ƒ์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ์ œ์‹œ๋œ ์ˆ˜ํ•™์  ๋ชจ๋ธ์— ์˜ํ•ด ์˜ˆ์ธกํ•œ ๊ฒฐ๊ณผ๋Š” ํŒŒ์ผ๋Ÿฟ ๊ทœ๋ชจ ๊ธฐํ™”๊ธฐ๋กœ๋ถ€ํ„ฐ ์–ป์€ ์‹คํ—˜ ๋ฐ์ดํ„ฐ์™€ 5.5% ํ‰๊ท  ์ ˆ๋Œ€ ์˜ค์ฐจ๋ฅผ ๋ณด์˜€๋‹ค. ์ด์— ๋”ํ•˜์—ฌ, ์•ž์—์„œ ์ œ์‹œํ•œ ๊ธฐํ™”๊ธฐ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ 1๋…„ ๋™์•ˆ์˜ ๊ธฐ์ƒ ์กฐ๊ฑด์—์„œ ์šด์ „ ํšจ์œจ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ์ง€์† ์šด์ „์ด ๊ฐ€๋Šฅํ•œ ๊ธฐํ™”๊ธฐ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๊ณผ ๊ฒฐ๊ณผ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด์‚ฐ ํŒŒํ˜• ๋ณ€ํ™˜๊ณผ k-ํ‰๊ท  ๊ตฐ์ง‘ํ™”๋ฅผ ํฌํ•จํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ์ด์ƒ์˜ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ๋Œ€ํ‘œํ•  ์ˆ˜ ์žˆ๋Š” ํŠน์ง•์„ ์ถ”์ถœํ•œ๋‹ค. ์ถ”์ถœ๋œ ํŠน์ง• ์•„๋ž˜์—์„œ ์ตœ์ ํ™”๋œ ๋””์ž์ธ์€ ๊ธฐ์กด ์ œ์‹œ๋œ ์•ˆ์— ๋น„ํ•ด 22.92% ๋งŒํผ ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์‹œ์Šคํ…œ์€ ์‹  ์ œ์•ฝ ๊ธฐ์ˆ  ๊ณต์ •์ธ ์—ฐ์† ๊ด€ํ˜• ๊ฒฐ์ •ํ™” ๋ฐ˜์‘๊ธฐ๋Š” ๊ธฐ์กด์— ๋„๋ฆฌ ์“ฐ์ด๋˜ ํšŒ๋ถ„์‹ ๋ฐ˜์‘๊ธฐ์— ๋น„ํ•˜์—ฌ ์ƒ์‚ฐ ์†๋„ ๋ฐ ์Šค์ผ€์ผ ์—… ์ธก๋ฉด์—์„œ ์žฅ์ ์ด ๋งŽ๋‹ค. ํ•˜์ง€๋งŒ ์ œ์–ด๊ธฐ์ˆ ์ด ๊ธฐ๋ฐ˜์ด ๋˜์–ด์•ผํ•œ๋‹ค๋Š” ์ ์— ์žˆ์–ด์„œ ๊ทธ ๋„์ž…์ด ๋Šฆ์–ด์กŒ๊ณ  ์ด์— ๋”ฐ๋ผ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๊ฐœ๋ฐœ๋œ ๋ชจ๋ธ ๋˜ํ•œ ์ „๋ฌดํ•˜๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด ์žฅ์น˜์—์„œ ๊ฒฐ์ • ํฌ๊ธฐ ๋ถ„ํฌ๋ฅผ ์ถ”์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ์ธ๊ตฌ ๊ท ํ˜• ๋ชจ๋ธ์„ ์—ด ๊ตํ™˜ ๋ชจ๋ธ๊ณผ ๋™์‹œ์— ๊ณ ๋ คํ•˜์—ฌ ๊ฒฐ์ • ํฌ๊ธฐ ๋ถ„ํฌ๋ฅผ ์ถ”์‚ฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ œ 1์›๋ฆฌ ๊ฒฐ์ • ๋ฐ˜์‘์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตฌ์ถ•๋œ ๋ชจ๋ธ์€ ์™„์ „ ์š”์ธ ๋ฐฐ์น˜๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹คํ—˜๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๊ฒฐ์ •์ด ์•ก์ƒ์— ์šฉํ•ด๋˜์ง€ ์•Š์œผ๋ฉด์„œ ๋‚ฎ์€ ์ˆ˜์ค€์˜ ๊ณผํฌํ™” ์ƒํƒœ๋ฅผ ์œ ์ง€ํ•œ ์‹คํ—˜์— ๋Œ€ํ•ด์„œ๋Š” ํ‰๊ท  ๊ฒฐ์ • ๊ธธ์ด์™€ ํ‘œ์ค€ํŽธ์ฐจ๊ฐ€ ์‹คํ—˜ ๊ฒฐ๊ณผ์™€ 20% ์ด๋‚ด์˜ ์˜ค์ฐจ๋ฅผ ๋ณด์˜€๋‹ค. ์•ž์—์„œ ๋ชจ๋ธ์˜ ๊ฒ€์ฆ์— ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ๊ฐ€ LAM (L-์•„์ŠคํŒŒ๋ผ๊ธด ์ผ ์ˆ˜ํ™”๋ฌผ)์šฉ์•ก์œผ๋กœ๋ถ€ํ„ฐ ์–ป์–ด์ง„ ๊ฒƒ์ด์—ˆ๋‹ค๋ฉด ์ดํ›„์—๋Š” HEWL (๋‹ฌ๊ฑ€ ํฐ์ž ๋ฆฌ์†Œ์ž์ž„)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ œํ’ˆ์˜ ๊ฒฐ์ • ํฌ๊ธฐ ๋ถ„ํฌ์˜ ์กฐ์ ˆ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ํด๋ฆฌ๋จธ ์ƒ์‚ฐ์„ ์œ„ํ•œ ๊ณ ์•• ์˜คํ† ํด๋ ˆ์ด๋ธŒ ๋ฐ˜์‘๊ธฐ์˜ ๊ฑฐ๋™์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์ค‘ ๊ตฌํš ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณต์žกํ•œ ๊ณ ๋ถ„์ž ํ•ฉ์„ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ฐ˜์‘๊ธฐ ๋‚ด ์ž„ํŽ ๋Ÿฌ์˜ ํšŒ์ „์ด ์ค‘ํ•ฉ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ์™€ ์ค‘ํ•ฉ ์—ด๋กœ ์ธํ•œ ์˜ํ–ฅ๋ ฅ์„ ์ˆœ์ฐจ์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ชจ๋ธ์€ 3D ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ์‚ฐ์—…ํ™”๋œ ๋ฐ˜์‘๊ธฐ์—์„œ ์ƒ์‚ฐ๋œ ๋‘ ๊ฐ€์ง€ ๊ณ ๋ถ„์ž์˜ ๋ฌผ์„ฑ์„ 7%์ด๋‚ด ์ •ํ™•๋„๋กœ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค๋ฃจ๋Š” ์‹œ์Šคํ…œ์€ ๋ชจ๋‘ ๋ถ„ํฌ ์ •์ˆ˜๊ณ„ ์‹œ์Šคํ…œ์œผ๋กœ ์‹œ๊ฐ„๊ณผ ๊ณต๊ฐ„์— ๋Œ€ํ•˜์—ฌ ํŽธ๋ฏธ๋ถ„๋ฐฉ์ •์‹์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ณ ์ฐจ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด ์ด์‚ฐํ™” ์ ‘๊ทผ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ตœ์†Œํ•œ์˜ ๊ฐ€์ • ํ•˜์— ์‹œ์Šคํ…œ์„ ํ•ด์„ํ•˜์˜€๋‹ค. ์ด๋Š” ๋…ผ๋ฌธ์— ์ œ์‹œํ•œ ์‹œ์Šคํ…œ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‹œ๊ณต๊ฐ„์—์„œ ์˜ˆ์ธก ์–ด๋ ค์šด ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง€๋Š” ๋ณ€์ˆ˜๋ฅผ ๊ฐ€์ง„ ๋ชจ๋“  ์‹œ์Šคํ…œ์— ๋Œ€ํ•˜์—ฌ ์ ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด ๋…ผ๋ฌธ์ด ์•ž์œผ๋กœ ํ™”ํ•™ ๊ณตํ•™ ๋ถ„์•ผ์˜ ์‹œ์Šคํ…œ์„ ํ•ด์„ํ•˜๋Š” ๋ฐ ์žˆ์–ด์„œ ๋” ๋ฐœ์ „๋œ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์ง€์นจ์„œ๊ฐ€ ๋˜๊ธฐ๋ฅผ ํฌ๋งํ•œ๋‹ค.Abstract i Contents iv List of Figures viii List of Tables xii Chapter 1 1 Introduction 1 1.1 Research motivation 1 1.2 Research objective 3 1.3 Outline of the thesis 4 1.4 Associated publications 9 Chapter 2 10 Distributed parameter system 10 2.1 Introduction 10 2.2 Modeling methods 11 2.3 Conclusion 16 Chapter 3 17 Modeling and design of pilot-scale ambient air vaporizer 17 3.1 Introduction 17 3.2 Modeling and analysis of frost growth in pilot-scale ambient air vaporizer 24 3.2.1 Ambient air vaporizer 24 3.2.2 Experimental measurement 27 3.2.3 Numerical model of the vaporizer 31 3.2.4 Result and discussion 43 3.3 Robust design of ambient air vaporizer based on time-series clustering 58 3.3.1 Background 58 3.3.2 Trend of time-series weather conditions 61 3.3.3 Optimization of AAV structures under time-series weather conditions 63 3.3.4 Results and discussion 76 3.4 Conclusion 93 3.4.1 Modeling and analysis of AAV system 93 3.4.2 Robust design of AAV system 95 Chapter 4 97 Tunable protein crystal size distribution via continuous crystallization 97 4.1 Introduction 97 4.2 Mathematical modeling and experimental verification of fully automated continuous slug-flow crystallizer 101 4.2.1 Experimental methods and equipment setup 101 4.2.2 Mathematical model of crystallizer 109 4.2.3 Results and discussion 118 4.3 Continuous crystallization of a protein: hen egg white lysozyme (HEWL) 132 4.3.1 Introduction 132 4.3.2 Experimental method 135 4.3.3 Results and discussion 145 4.4 Conclusion 164 4.4.1 Mathematical model of continuous crystallizer 164 4.4.2 Tunable continuous protein crystallization process 165 Chapter 5 167 Multi-compartment model of high-pressure autoclave reactor for polymer production: combined CFD mixing model and kinetics of polymerization 167 5.1 Introduction 167 5.2 Method 170 5.2.1 EVA autoclave reactor 170 5.2.2 Multi-compartment model of the autoclave reactor 173 5.2.3 CFD simulation of mixing effects in the autoclave reactor 175 5.2.4 Region-based dividing algorithm 178 5.2.5 Polymerization kinetic model 182 5.3 Results and discussion 191 5.4 Conclusion 203 5.5 Appendix 205 Chapter 6 210 Concluding Remarks 210 6.1 Summary of contributions 210 6.2 Future work 211 Appendix 214 Acknowledgment and collaboration declaration 214 Supplementary materials 217 Reference 227 Abstract in Korean (๊ตญ๋ฌธ์ดˆ๋ก) 249Docto

    A Framework to Develop Anomaly Detection/Fault Isolation Architecture Using System Engineering Principles

    Get PDF
    For critical systems, timely recognition of an anomalous condition immediately starts the evaluation process. For complex systems, isolating the fault to a component or subsystem results in corrective action sooner so that undesired consequences may be minimized. There are many unique anomaly detection and fault isolation capabilities available with innovative techniques to quickly discover an issue and identify the underlying problems. This research develops a framework to aid in the selection of appropriate anomaly detection and fault isolation technology to augment a given system. To optimize this process, the framework employs a model based systems engineering approach. Specifically, a SysML model is generated that enables a system-level evaluation of alternative detection and isolation techniques, and subsequently identifies the preferable application(s) from these technologies A case study is conducted on a cryogenic liquid hydrogen system that was used to fuel the Space Shuttles at the Kennedy Space Center, Florida (and will be used to fuel the next generation Space Launch System rocket). This system is operated remotely and supports time-critical and highly hazardous operations making it a good candidate to augment with this technology. As the process depicted by the framework down-selects to potential applications for consideration, these too are tested in their ability to achieve required goals

    Muiltifunctional fuel additives for reduced jet particlate emissions

    Get PDF
    ReportUsing Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them

    Chemical Characterization of African Biomass Burning Over the Southeast Atlantic Ocean.

    Get PDF
    M.S. Thesis. University of Hawaiสปi at Mฤnoa 2018

    Data Requirements to Enable PHM for Liquid Hydrogen Storage Systems from a Risk Assessment Perspective

    Get PDF
    Quantitative Risk Assessment (QRA) aids the development of risk-informed safety codes and standards which are employed to reduce risk in a variety of complex technologies, such as hydrogen systems. Currently, the lack of reliability data limits the use of QRAs for fueling stations equipped with bulk liquid hydrogen storage systems. In turn, this hinders the ability to develop the necessary rigorous safety codes and standards to allow worldwide deployment of these stations. Prognostics and Health Management (PHM) and the analysis of condition-monitoring data emerge as an alternative to support risk assessment methods. Through the QRA-based analysis of a liquid hydrogen storage system, the core elements for the design of a data-driven PHM framework are addressed from a risk perspective. This work focuses on identifying the data collection requirements to strengthen current risk analyses and enable data-driven approaches to improve the safety and risk assessment of a liquid hydrogen fueling infrastructure

    An unmanned aerial vehicle sampling platform for atmospheric water vapor isotopes in polar environments

    Get PDF
    Above polar ice sheets, atmospheric water vapor exchange occurs across the planetary boundary layer (PBL) and is an important mechanism in a number of processes that affect the surface mass balance of the ice sheets. Yet, this exchange is not well understood and has substantial implications for modeling and remote sensing of the polar hydrologic cycle. Efforts to characterize the exchange face substantial logistical challenges including the remoteness of ice sheet field camps, extreme weather conditions, low humidity and temperature that limit the effectiveness of instruments, and dangers associated with flying manned aircraft at low altitudes. Here, we present an unmanned aerial vehicle (UAV) sampling platform for operation in extreme polar environments that is capable of sampling atmospheric water vapor for subsequent measurement of water isotopes. This system was deployed to the East Greenland Ice-core Project (EastGRIP) camp in northeast Greenland during summer 2019. Four sampling flight missions were completed. With a suite of atmospheric measurements aboard the UAV (temperature, humidity, pressure, GPS) we determine the height of the PBL using online algorithms, allowing for strategic decision-making by the pilot to sample water isotopes above and below the PBL. Water isotope data were measured by a Picarro L2130-i instrument using flasks of atmospheric air collected within the nose cone of the UAV. The internal repeatability for ฮดD and ฮด18O was 2.8โ€‰โ€ฐ and 0.45โ€‰โ€ฐ, respectively, which we also compared to independent EastGRIP tower-isotope data. Based on these results, we demonstrate the efficacy of this new UAV-isotope platform and present improvements to be utilized in future polar field campaigns. The system is also designed to be readily adaptable to other fields of study, such as measurement of carbon cycle gases or remote sensing of ground conditions.publishedVersio

    Experimental and Numerical Analysis of Ethanol Fueled HCCI Engine

    Get PDF
    Presently, the research on the homogeneous charge compression ignition (HCCI) engines has gained importance in the field of automotive power applications due to its superior efficiency and low emissions compared to the conventional internal combustion (IC) engines. In principle, the HCCI uses premixed lean homogeneous charge that auto-ignites volumetrically throughout the cylinder. The homogeneous mixture preparation is the main key to achieve high fuel economy and low exhaust emissions from the HCCI engines. In the recent past, different techniques to prepare homogeneous mixture have been explored. The major problem associated with the HCCI is to control the auto-ignition over wide range of engine operating conditions. The control strategies for the HCCI engines were also explored. This dissertation investigates the utilization of ethanol, a potential major contributor to the fuel economy of the future. Port fuel injection (PFI) strategy was used to prepare the homogeneous mixture external to the engine cylinder in a constant speed, single cylinder, four stroke air cooled engine which was operated on HCCI mode. Seven modules of work have been proposed and carried out in this research work to establish the results of using ethanol as a potential fuel in the HCCI engine. Ethanol has a low Cetane number and thus it cannot be auto-ignited easily. Therefore, intake air preheating was used to achieve auto-ignition temperatures. In the first module of work, the ethanol fueled HCCI engine was thermodynamically analysed to determine the operating domain. The minimum intake air temperature requirement to achieve auto-ignition and stable HCCI combustion was found to be 130 ยฐC. Whereas, the knock limit of the engine limited the maximum intake air temperature of 170 ยฐC. Therefore, the intake air temperature range was fixed between 130-170 ยฐC for the ethanol fueled HCCI operation. In the second module of work, experiments were conducted with the variation of intake air temperature from 130-170 ยฐC at a regular interval of 10 ยฐC. It was found that, the increase in the intake air temperature advanced the combustion phase and decreased the exhaust gas temperature. At 170 ยฐC, the maximum combustion efficiency and thermal efficiency were found to be 98.2% and 43% respectively. The NO emission and smoke emissionswere found to be below 11 ppm and 0.1% respectively throughout this study. From these results of high efficiency and low emissions from the HCCI engine, the following were determined using TOPSIS method. They are (i) choosing the best operating condition, and (ii) which input parameter has the greater influence on the HCCI output. In the third module of work, TOPSIS - a multi-criteria decision making technique was used to evaluate the optimum operating conditions. The optimal HCCI operating condition was found at 70% load and 170 ยฐC charge temperature. The analysis of variance (ANOVA) test results revealed that, the charge temperature would be the most significant parameter followed by the engine load. The percentage contribution of charge temperature and load were63.04% and 27.89% respectively. In the fourth module of work, the GRNN algorithm was used to predict the output parameters of the HCCI engine. The network was trained, validated, and tested with the experimental data sets. Initially, the network was trained with the 60% of the experimental data sets. Further, the validation and testing of the network was done with each 20% data sets. The validation results predicted that, the output parameters those lie within 2% error. The results also showed that, the GRNN models would be advantageous for network simplicity and require less sparse data. The developed new tool efficiently predicted the relation between the input and output parameters. In the fifth module of work, the EGR was used to control the HCCI combustion. An optimum of 5% EGR was found to be optimum, further increase in the EGR caused increase in the hydrocarbon (HC) emissions. The maximum brake thermal efficiency of 45% was found for 170 ยฐC charge temperature at 80% engine load. The NO emission and smoke emission were found to be below 10 ppm and 0.61% respectively. In the sixth module of work, a hybrid GRNN-PSO model was developed to optimize the ethanol-fueled HCCI engine based on the output performance and emission parameters. The GRNN network interpretive of the probability estimate such that it can predict the performance and emission parameters of HCCI engine within the range of input parameters. Since GRNN cannot optimize the solution, and hence swarm based adaptive mechanism was hybridized. A new fitness function was developed by considering the six engine output parameters. For the developed fitness function, constrained optimization criteria were implemented in four cases. The optimum HCCI engine operating conditions for the general criteria were found to be 170 ยฐC charge temperature, 72% engine load, and 4% EGR. This model consumed about 60-75 ms for the HCCI engine optimization. In the last module of work, an external fuel vaporizer was used to prepare the ethanol fuel vapour and admitted into the HCCI engine. The maximum brake thermal efficiency of 46% was found for 170 ยฐC charge temperature at 80% engine load. The NO emission and smoke emission were found to be below 5 ppm and 0.45% respectively. Overall, it is concluded that, the HCCI combustion of sole ethanol fuel is possible with the charge heating only. The high load limit of HCCI can be extended with ethanol fuel. High thermal efficiency and low emissions were possible with ethanol fueled HCCI to meet the current demand

    Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing

    Get PDF
    Near-infrared (NIR, 740-780 nm) optogenetic systems are well-suited to spectral multiplexing with blue-light-controlled tools. Here, we present two protocols, one for regulation of gene transcription and another for control of protein localization, that use a NIR-responsive bacterial phytochrome BphP1-QPAS1 optogenetic pair. In the first protocol, cells are transfected with the optogenetic constructs for independently controlling gene transcription by NIR (BphP1-QPAS1) and blue (LightOn) light. The NIR and blue-light-controlled gene transcription systems show minimal spectral crosstalk and induce a 35- to 40-fold increase in reporter gene expression. In the second protocol, the BphP1-QPAS1 pair is combined with a light-oxygen-voltage-sensing (LOV) domain-based construct into a single optogenetic tool, termed iRIS. This dual-light-controllable protein localization tool allows tridirectional protein translocation among the cytoplasm, nucleus and plasma membrane. Both procedures can be performed within 3-5 d. Use of NIR light-controlled optogenetic systems should advance basic and biomedical research.Peer reviewe

    Graphite lubrication mechanism under high mechanical load

    Get PDF
    Viele tribologische Extremanwendungen wie im Vakuum, in sauren Umgebungen, bei Hochtemperaturanwendungen oder unter hoher Last sind anspruchsvoll und fรผhren oft zum Versagen herkรถmmlicher flรผssiger Schmierstoffe wie ร–le und Fette. Fรผr diese Fรคlle stellen Festschmierstoffe wie Graphit eine exzellente Alternative dar. Trotz seiner frรผhen Entdeckung ist das Verstรคndnis des Graphitschmiermechanismus weiterhin unvollstรคndig. Zwei Modelle werden hierbei bis heute viel zitiert: das von Bragg postulierte, so genannte Deck-of-Card-Modell und das Adsorptionsmodell von Savage. Ersteres liefert keine eindeutige Erklรคrung zur Feuchtigkeitsabhรคngigkeit der Graphitschmierung und wurde experimentell widerlegt. Das Adsorptionsmodell von Savage bezieht die Wirkung der Wassermolekรผle mit ein, wurde jedoch hauptsรคchlich auf atomar flachen Oberflรคchen oder fรผr kleine Normalkrรคfte getestet. Die vorliegende Arbeit beschรคftigt sich mit der Untersuchung des Schmierungsmechanismus von Graphit als Festschmierstoff und die tiefgreifende Erforschung der mรถglichen EinflussgrรถรŸen. In dieser Arbeit wurden deshalb Mikrotribometer-Gleitexperimente im Kugel-Platte-Kontakt durchgefรผhrt, um die Graphitschmierung vor allem unter hohen Flรคchenpressungen zu untersuchen. Als Proben dienen hierfรผr mittels eines Airbrush-Sprรผhverfahren graphitbeschichteten Eisenplatten. Erste Parameterstudien widmeten sich dem Einfluss von Normalkraft und Schichtdicke und zeigten eine starke Korrelation sowie niedrigste Reibung bei hรถchster Normalkraft und dรผnnster Schichtdicke. Die Substrat-Beschichtungs-Adhรคsion hat hierbei einen limitierenden Einfluss auf die Schichtlebensdauer, weshalb die Substratrauigkeit graduell variiert und untersucht wurde. Eine gute Reibminderung sowie lange Lebensdauer konnten auf die Bildung einer dรผnnen Kohlenstoffschicht zurรผckgefรผhrt werden, welche bei industrie-nahen Oberflรคchenrauheiten gebildet wurde. Ein weiterer wichtiger Aspekt dieser Arbeit war im Anschluss die eingehende Analyse der Feuchtigkeitsabhรคngigkeit auf die Graphitschmierung. Mittels Transmissionselektronenmikroskopie konnte die Umformung von Graphit in turbostratischen Kohlenstoff nachgewiesen werden und somit ein neuer, erweiterter Schmiermechanismus vorgeschlagen werden. Diese in-situ-Bildung des turbostratischen Kohlenstoffs an der Gleitflรคche wurde sowohl bei hohen als auch bei niedrigen Lasten beobachtet. Als letzter Aspekt wurde der Graphitschmierstoff unter Rollreibung getestet. Hierdurch konnte Korrelationen zur gewรผnschten Anwendung, einem Axialwรคlzlager, gezogen und wichtige Erkenntnisse gewonnen werden. Es wurde die Bildung eines dรผnnen Tribofilms auf dem Gegenkรถrper beobachtet und durch Raman-Spektroskopie bestรคtigt, welcher die tribologische Leistung der Graphitbeschichtung maรŸgeblich zu beeinflussen scheint
    • โ€ฆ
    corecore