5 research outputs found

    Non-weighted aggregate evaluation function of multi-objective optimization for knock engine modeling

    Get PDF
    In decision theory, the weighted sum model (WSM) is the best known Multi-Criteria Decision Analysis (MCDA) approach for evaluating a number of alternatives in terms of a number of decision criteria. Assigning weights is a difficult task, especially if the number of criteria is large and the criteria are very different in character. There are some problems in the real world which utilize conflicting criteria and mutual effect. In the field of automotive, the knocking phenomenon in internal combustion or spark ignition engines limits the efficiency of the engine. Power and fuel economy can be maximized by optimizing some factors that affect the knocking phenomenon, such as temperature, throttle position sensor, spark ignition timing, and revolution per minute. Detecting knocks and controlling the above factors or criteria may allow the engine to run at the best power and fuel economy. The best decision must arise from selecting the optimum trade-off within the above criteria. The main objective of this study was to proposed a new Non-Weighted Aggregate Evaluation Function (NWAEF) model for non-linear multi-objectives function which will simulate the engine knock behavior (non-linear dependent variable) in order to optimize non-linear decision factors (non-linear independent variables). This study has focused on the construction of a NWAEF model by using a curve fitting technique and partial derivatives. It also aims to optimize the nonlinear nature of the factors by using Genetic Algorithm (GA) as well as investigate the behavior of such function. This study assumes that a partial and mutual influence between factors is required before such factors can be optimized. The Akaike Information Criterion (AIC) is used to balance the complexity of the model and the data loss, which can help assess the range of the tested models and choose the best ones. Some statistical tools are also used in this thesis to assess and identify the most powerful explanation in the model. The first derivative is used to simplify the form of evaluation function. The NWAEF model was compared to Random Weights Genetic Algorithm (RWGA) model by using five data sets taken from different internal combustion engines. There was a relatively large variation in elapsed time to get to the best solution between the two model. Experimental results in application aspect (Internal combustion engines) show that the new model participates in decreasing the elapsed time. This research provides a form of knock control within the subspace that can enhance the efficiency and performance of the engine, improve fuel economy, and reduce regulated emissions and pollution. Combined with new concepts in the engine design, this model can be used for improving the control strategies and providing accurate information to the Engine Control Unit (ECU), which will control the knock faster and ensure the perfect condition of the engine

    An Investigation of Life Cycle Sustainability Implications of Emerging Heavy-Duty Truck Technologies in the Age of Autonomy

    Get PDF
    Heavy-duty trucks (HDTs) play a central role in U.S. freight transportation, carrying most of the goods across the country. The projected increase in freight activity (e.g. truck-miles-traveled) raises concerns regarding the potential sustainability impacts of the U.S. freight industry, marking HDTs as an ideal domain for improving the sustainability performance of U.S. freight transportation. However, the transition to sustainable trucking is a challenging task, for which multiple sustainability objectives must be considered and addressed under a variety of emerging HDT technologies while composing a sustainable HDT fleet. To gain insights into the sustainability implications of emerging HDT technologies as well as how they can be adopted by freight organizations, given their implications, this research employed an integrated approach composed of methods and techniques, grounded in sustainability science, operations research, and statistical learning theory, to provide a scientific means with public and private organizations to increase the effectiveness of policies and strategies. The research has contributed to the scientific body of knowledge in three useful ways; (1) by comprehensively analyzing HDT electrification based on regional differences in power generation practices and price forecasts, (2) by conducting the first life cycle sustainability assessment (LCSA) on HDT automation and electrification, and (3) providing a case study of an unsupervised machine learning application for sustainability science. Consequently, the research has found that, given the transformation of the U.S. energy system towards renewables, automation and electrification of HDTs offer significant potential for improving the sustainability performance of these vehicles, especially in terms of global warming potential, life cycle costs, gross domestic product, import independence, and income generation. The research has also found that, under the prevailing techno-economic circumstances and except for energy security reasons, natural gas as a transportation fuel option for freight trucks is by almost no means a viable alternative to diesel

    Robust Solutions to Uncertain Multiobjective Programs

    Get PDF
    Decision making in the presence of uncertainty and multiple conflicting objec-tives is a real-life issue, especially in the fields of engineering, public policy making, business management, and many others. The conflicting goals may originate from the variety of ways to assess a system’s performance such as cost, safety, and affordability, while uncertainty may result from inaccurate or unknown data, limited knowledge, or future changes in the environment. To address optimization problems that incor-porate these two aspects, we focus on the integration of robust and multiobjective optimization. Although the uncertainty may present itself in many different ways due to a diversity of sources, we address the situation of objective-wise uncertainty only in the coefficients of the objective functions, which is drawn from a finite set of scenarios. Among the numerous concepts of robust solutions that have been proposed and de-veloped, we concentrate on a strict concept referred to as highly robust efficiency in which a feasible solution is highly robust efficient provided that it is efficient with respect to every realization of the uncertain data. The main focus of our study is uncertain multiobjective linear programs (UMOLPs), however, nonlinear problems are discussed as well. In the course of our study, we develop properties of the highly robust efficient set, provide its characterization using the cone of improving directions associated with the UMOLP, derive several bound sets on the highly robust efficient set, and present a robust counterpart for a class of UMOLPs. As various results rely on the polar and strict polar of the cone of improving directions, as well as the acuteness of this cone, we derive properties and closed-form representations of the (strict) polar and also propose methods to verify the property of acuteness. Moreover, we undertake the computation of highly robust efficient solutions. We provide methods for checking whether or not the highly robust efficient set is empty, computing highly robust efficient points, and determining whether a given solution of interest is highly robust efficient. An application in the area of bank management is included
    corecore