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Abstract

Decision making in the presence of uncertainty and multiple conflicting objec-

tives is a real-life issue, especially in the fields of engineering, public policy making,

business management, and many others. The conflicting goals may originate from the

variety of ways to assess a system’s performance such as cost, safety, and affordability,

while uncertainty may result from inaccurate or unknown data, limited knowledge,

or future changes in the environment. To address optimization problems that incor-

porate these two aspects, we focus on the integration of robust and multiobjective

optimization.

Although the uncertainty may present itself in many different ways due to a

diversity of sources, we address the situation of objective-wise uncertainty only in the

coefficients of the objective functions, which is drawn from a finite set of scenarios.

Among the numerous concepts of robust solutions that have been proposed and de-

veloped, we concentrate on a strict concept referred to as highly robust efficiency in

which a feasible solution is highly robust efficient provided that it is efficient with

respect to every realization of the uncertain data. The main focus of our study is

uncertain multiobjective linear programs (UMOLPs), however, nonlinear problems

are discussed as well.

In the course of our study, we develop properties of the highly robust efficient

set, provide its characterization using the cone of improving directions associated with
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the UMOLP, derive several bound sets on the highly robust efficient set, and present

a robust counterpart for a class of UMOLPs. As various results rely on the polar and

strict polar of the cone of improving directions, as well as the acuteness of this cone,

we derive properties and closed-form representations of the (strict) polar and also

propose methods to verify the property of acuteness. Moreover, we undertake the

computation of highly robust efficient solutions. We provide methods for checking

whether or not the highly robust efficient set is empty, computing highly robust

efficient points, and determining whether a given solution of interest is highly robust

efficient. An application in the area of bank management is included.
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Chapter 1

Introduction

[The contents of this dissertation include material from the 2016 paper published by

The Sheridan Press titled “Robust multiobjective optimization for decision making

under uncertainty and conflict” by M.M. Wiecek and G.M. Dranichak, the 2017 tech-

nical report titled “On highly robust efficient solutions to uncertain multiobjective

linear programs” by G.M. Dranichak and M.M. Wiecek, and the 2018 technical report

titled “On computing highly robust efficient solutions” by G.M. Dranichak and M.M.

Wiecek. Both technical reports have been submitted for publication. This disserta-

tion includes additional material not included in the above papers. As the words in

the above papers are our own, we do not provide direct quotations.]

Decisions are a part of everyday life. Some decisions are ordinary like, “What

am I going to wear to work today?” Others are more significant like, “What job

should I pursue?” In all decision making, difficulty arises from a multitude of options

and their relative importance, the objectives of the decision, and the constraints sur-

rounding the decision. Balancing all of these aspects, mathematical programming or

optimization acts as an aid in the decision-making process. Depending on the prob-

lem, different techniques or approaches may be preferred, e.g., linear programming
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in which the model only contains linear functions, multiobjective programming that

exploits multiple goals, and robust optimization that handles uncertainty.

Within optimization, consideration of a single objective function for certain

problems is not always adequate. Practical problems in the fields of engineering,

business, and management, as well as many others, often involve conflicting goals

present during the decision-making process such as cost, performance, reliability,

safety, productivity, and affordability (e.g., Rangaiah [120], Barba [2], Mostashari

[112], Xidonas et al. [143], and Figueira et al. [61]). For example, consider a water

dam construction problem where we want to simultaneously minimize the cost and

maximize the storage capacity of the resulting reservoir. One approach to this problem

is using multiple objective functions (or goals), namely two in this case. Similarly to

many practical problems, the construction cost and other goals are conflicting in the

sense that a gain in one is at the expense of another.

Independently of conflict, real-world problems, such as those in the fields of

portfolio management (e.g., Lobo and Boyd [103] and Tütüncü and Koenig [135]),

supply chain management (e.g., Bertsimas and Thiele [14]), structural design (e.g.,

Ben-Tal and Nemirovski [6]), circuit design (e.g., Boyd et al. [21]), and power control

(e.g., Hsiung et al. [72]), may involve some uncertainty and require robust solutions,

that is, solutions that are “best” for all realizations of the uncertain data. As an

example, again consider the water dam construction problem. One possible uncer-

tainty that arises in the problem is the variable conditions at the different possible

locations of the dam. Different locations of the dam on the river may have, e.g.,

dramatically different weather conditions and therefore cause the coefficients in the

objective functions to be uncertain. If uncertainty exists, we intend to find solutions

that are “best” for all possible uncertainties. That is, in the context of our example,

we want solutions that remain “best” regardless of the location of the dam.
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As another example of a problem that includes both multiple criteria and un-

certainty, consider the production problem of manufacturing golf balls. Possible goals

include minimizing production cost and minimizing production time. It is clear that

with the exception of technological advances, the production cost and the production

time are conflicting since decreases in production time require increases in production

cost, so a multiobjective approach is necessary. Moreover, uncertainty can arise in

this production problem in many ways. One such possibility is the cost of the produc-

tion materials. Today, most golf balls are produced with a variety of polyurethanes.

In order to have the most player-friendly golf balls, companies must constantly alter

the materials used to produce the golf balls, and as a result, there is great uncertainty

in the cost of the materials used. Hence, a robust approach is also necessary.

Other problems involving uncertainty and multiple criteria are numerous. For

example, authors have explored problems ranging from portfolio management to

transportation planning to crop irrigation strategy. Fliege and Werner [52], for in-

stance, consider the well-known Markowitz portfolio (i.e., financial asset portfolio)

optimization problem in which conflicting objectives such as revenue and risk are op-

timized under uncertain future expected returns. Similarly, Kuhn et al. [95] examine

two types of transportation problems: aircraft route guidance and hazardous materi-

als transportation. In the first, the goals to be optimized are travel distance and risk

posed by weather under the unpredictability of the weather for a given route; in the

second, travel time, distance, and fuel cost must be minimized under unknown travel

times for a given plan. Moreover, Crespo et al. [28] inspect crop irrigation strategy

in which objectives such as revenue, resource usage, and sustainability are optimized

subject to the variability of the weather.

More specifically, practical applications often suffer from uncertainty in the

coefficients of the objective functions for any of several reasons including that they
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are subjectively specified by a decision maker(s) or that they are estimated (possibly

by linear regression). One well-known example where multiple criteria are needed

and imprecision of the objective function coefficients is known to exist is public-sector

decision problems due to the complexity of the issues under consideration and the

difficulty of estimating social costs and benefits (see Bitran [18], Candea et al. [23],

and Cohon and Marks [27]). Another well-studied example where multiple criteria

are used and uncertainty in the objective coefficients is present is the aircraft route

guidance problem mentioned above (see Kuhn et al. [95]).

The remainder of this chapter is organized as follows. In Section 1.1, we

review the current literature on robust optimization (both single-objective and mul-

tiobjective). In particular, we provide a short overview of methodologies for treating

uncertainty in single-objective problems (SOPs) in Section 1.1.1, focusing on the ro-

bust optimization approach of Ben-Tal and Nemirovski [7]. Next, in Section 1.1.2,

we thoroughly review the emerging field of robust multiobjective optimization, which

has developed to treat uncertainty in multiobjective programs (MOPs). Within this

section, we review the sources of uncertainty that are reflected in uncertain MOPs

(UMOPs) in Section 1.1.2.1, the different models that have been considered and their

associated solution concepts in Section 1.1.2.2, solution methods to solve these prob-

lems in Section 1.1.2.3, and applications that have benefited from being modeled as

UMOPs in Section 1.1.2.4. Then in Section 1.1.2.5, we consider two particular mod-

els found within robust multiobjective optimization and concentrate on one solution

concept, highly robust efficiency, that is addressed in the literature and is the focus of

this dissertation. Finally, we discuss the research goals of our work to satisfy aspects

of highly robust efficient solutions that have not been addressed yet in the literature

in Section 1.2, and give an overview of the dissertation in Section 1.3.
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1.1 Literature Review

In order to address the difficulty of solving problems involving uncertainty, the

field of robust optimization developed in the late 1990s (e.g., Ben-Tal and Nemirovski

[7]). Initially, researchers focused on SOPs establishing a varied field of theory and

solution methods (refer to Ben-Tal et al. [5]). More recently, however, a separate field

concentrating on MOPs has emerged.

1.1.1 Robust Single-Objective Optimization

As mentioned, many real-world optimization and decision-making problems

involve uncertainty. The uncertainty can result from a crude or limited knowledge

of the data at the time the decision is being made (as is the case when data is only

estimated), or from the data being completely unknown due to possible changes in

the future, or any number of other possibilities. To address this challenging issue,

several methodologies generally employing any of three classical mathematical mod-

eling perspectives, probabilistic, possibilistic, and deterministic, have been developed

(see Liu [102]). The probabilistic type relies on distributions to evaluate the event

probability (e.g., Schneider and Kirkpatrick [123]); the possibilistic type uses fuzzy

sets and membership functions to assess the event plausibility (e.g., Lodwick and

Kacprzyk [104]); and the deterministic type uses crisp sets to define domains within

which uncertainties vary.

The latter perspective has been exploited by Ben-Tal and Nemirovski [7, 8, 9]

who developed robust optimization for uncertain SOPs (USOPs) and initially focused

on optimizing over worst-case realizations of uncertain data. In subsequent studies,

e.g., Ben-Tal et al. [5] and Bertsimas et al. [13], other concepts of robust solutions

have been developed and have led to a variety of robust optimization approaches. As
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a result, the way in which the concept of robust solutions or “worst case” is defined

determines the specific robust optimization approach.

Practically, robust optimization may be preferred over possibilisitc or proba-

bilistic approaches because both of these perspectives commonly allow constraints to

be violated (see Ben-Tal and Nemirovski [7]). For example, in engineering contexts,

the violation of constraints may be unacceptable. In addition, the probabilistic case

requires knowledge of the distribution of the uncertain data, which is not guaranteed

to be known or easily estimated. On the other hand, crisp sets can often times be

provided by experienced decision makers, an advantage for robust optimization. As

a result, the deterministic approach of robust optimization may be used rather than

possibilistic or probabilistic approaches.

In the study of robust optimization, uncertainty can exist in both the objective

and constraint function coefficients. However, it is not necessary to consider the

variety of resulting combinations because it is possible to reformulate a USOP with

uncertainty in any of the data, e.g., objective coefficients, constraint coefficients, or

right-hand side (RHS) values. In particular, we may assume without loss of generality

(WLOG) that the uncertainty is in the constraint coefficients, i.e., the left-hand side

(LHS) values of the constraints (see Ben-Tal and Nemirovski [8]). If the uncertainty

is in the objective function coefficients, an auxiliary variable may be used to move the

objective function involving uncertainty down into the constraints. Similarly, if the

uncertainty is in the RHS of the constraints, a variable that does not influence the

objective function value (i.e., contributes a value of zero) may be used to move the

unknown RHS values into the LHS by multiplying the new variable and the RHS and

adding a constraint forcing the new variable to be 1. In either case, the uncertainty

can easily be restricted to only the LHS of the constraints. Refer to Appendix A for

complete derivations of the aforementioned transformations.
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As with any optimization or decision-making problem, the main question of

interest is how to identify “best” solutions. The classical approach of Ben-Tal and

Nemirovski [7] is that of forming and solving a robust counterpart (RC). Since the

uncertain problem itself has no well-defined solution concept, the RC is used. The

RC is a deterministic problem, i.e., a problem whose data is determined, known, or

certain, whose solutions are the solutions to the original uncertain problem. Given

an uncertainty set or set of scenarios (of which the particular structure is not yet

important), the RC is the problem that has all instances of the constraint functions

as its set of constraints. Feasible solutions to the RC are considered robust feasible

solutions to the original USOP, and optimal solutions to the RC are called robust

optimal solutions, i.e., “best” solutions to the original USOP. The fact that a deter-

ministic problem is used to compute the solutions to the USOP, along with the use

of deterministic or crisp uncertainty sets, is why robust optimization is referred to as

a deterministic approach.

Of important note is that the RC in this setting is in fact a semi-infinite

program (refer to Goberna and Lopez [59]), i.e., under the reasonable assumption

that the uncertainty set is infinite, the RC has an infinite number of constraints. One

might expect then that the RC is always intractable, but this is not the case. For

specific structures or geometries of the uncertainty set, the RC is explicitly known and

computationally solvable. A specific example in which this is the case is ellipsoidal

uncertainty (see Ben-Tal and Nemirovski [8]). For more in-depth studies of robust

(single-objective) optimization, the interested reader may reference Ben-Tal et al. [5].

We also recognize the beginning efforts relating multiobjective optimization

to USOPs in which the former is used to solve the latter. Steuer [127] is perhaps

the first to do so by applying multiobjective linear programming to single-objective

linear programs with interval objective function coefficients. However, this does not
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fall under robust optimization and is instead found in literature in the field of interval

programming. Refer to Ishibuchi and Tanaka [86] and Chanas and Kuchta [25] for a

similar line of investigation. The first efforts to specifically relate multiobjective and

robust optimization were undertaken by Kouvelis and Yu [93] who use the former

for the benefit of the latter. A general perspective is laid down by Hites et al. [68].

Assuming a finite number of realizations of uncertainty in the USOP objective func-

tion, the USOP is reformulated into a deterministic MOP, which is further explored

by Köbis and Tammer [92], Klamroth et al. [89], Iancu and Trichakis [76], and Köbis

[91]. A reverse effort is undertaken by Gorissen and Den Hertog [60] who make use

of robust optimization as a tool to approximate the set of solutions to multiobjective

linear programs (MOLPs).

1.1.2 Robust Multibjective Optimization

In addition to uncertainty, many real-world optimization and decision-making

problems involve multiple conflicting criteria. As in the single-objective context,

problems incorporating both uncertainty and multiple competing goals may be viewed

from either probabilistic, possibilistic, or deterministic perspectives. Following the

previous discussion on these perspectives, we focus on deterministic approaches, and

in particular, robust multiobjective optimization. However, it is important here to

note that robust optimization is not the only deterministic approach that has been

applied to UMOPs. Specifically, Dellnitz and Witting [32] and Witting et al. [142]

employ parametric optimization (refer to, e.g., Fiacco [51] and Domı́nguez et al. [34])

to analyze UMOPs with uncertain objective data. The advantage of taking such an

approach is that a solution provides a mapping of the full range of optimal decision and

function values before knowing the exact conditions represented by the (uncertain)
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parameters, and thus may provide a more full picture to the decision maker. However,

the use of this approach in the literature is currently still limited, perhaps because

parametric multiobjective optimization is not yet well developed (refer to Wiecek et

al. [141]).

Robust multiobjective optimization emerged as an independent research field

more than a decade ago starting with (deterministic) concepts of robust (efficient)

solutions in engineering design (e.g., Deb and Gupta [31] and Li and Azarm [100]).

In their work, robustness finds solutions with respect to a mean representation of the

objective function values over its vicinity rather than the original objective functions

or with respect to the original objective functions but only in a neighborhood deter-

mined by a user. Acceptable variation regions (AVR) for constraint and objective

functions are proposed by Gunawan and Azarm [64] and Li et al. [101], and the so-

lutions that remain feasible for each AVR are referred to as feasibly and objectively

robust, respectively. In Besharati and Azarm [16], the concepts of absolute regret

and dispersion are defined as measures of robustness. The engineering interest in de-

veloping robustness measures is only recently again undertaken by Wang et al. [137]

who define the robustness of efficient solutions in terms of their performance with

respect to problem specific indices that are different from the objective functions.

In the literature, different types of UMOPs are formulated based on various

sources of uncertainty, which are discussed below. Additionally, uncertainty can be

modeled with infinite or finite sets depending on the real-life context. In any case, the

goal of robust multiobjective optimization is to solve the UMOP for robust efficient

solutions, i.e., solutions that are feasible for every realization of uncertainty and that

may be efficient for some or all realizations. Depending on the formulation resulting

from modeling one or more of the sources of uncertainty, a variety of robustness

concepts are defined and studied with respect to RCs, existence properties, solution
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methods, and applications.

1.1.2.1 Sources of Uncertainty

Uncertainty may be associated with MOPs in several different ways yielding

a UMOP. A natural tactic is to perform a mathematical scrutiny of the assumed

general formulation and ask what elements can be made uncertain. The answer is

facilitated by the system view of Beyer and Sendhof [17] who integrate uncertainty into

single-objective optimization for the purpose of enhancing the realism of modeling the

process of system design. In this setting, the decision variables play the role of design

variables that assume values constrained by a set of feasible designs. The objective

function is optimized over the set of feasible designs so that the design variables are

naturally the optimization variables. Four sources of uncertainty are discussed:

(i) Endogenous perturbations such as tolerances affecting manufacturing processes

and systems. They are represented by parameters, which influence the design

variables and indirectly the objective and/or constraint functions, and are not

optimization variables.

(ii) Feasibility uncertainties affecting the set of feasible designs and the fulfillment

of constraints the design variables must obey. They are modeled as parameters

that along with the design variables directly affect the constraint functions but

are not optimization variables.

(iii) Exogenous factors such as temperature, pressure, and material properties origi-

nating from the environment in which the system operates. They are modeled

as parameters that along with the design variables directly affect the objective

function but are not optimization variables.
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(iv) System output uncertainties reflecting imprecision in evaluating system perfor-

mance or errors due to the use of models instead of real physical objects. They

are accounted for by one (or more) uncertain objective function(s).

Since multiobjective optimization is an extension of single-objective optimiza-

tion, we directly adopt these four types of uncertainty into the former. However,

since multiobjective optimization plays a broader role in decision making than single-

objective optimization, we also propose two other sources of uncertainty that are

characteristic for multiobjective settings.

(v) Scalarization parameters transforming an MOP into an SOP that are needed

when single-objective optimization methods are used to solve an MOP (e.g.,

Wiecek et al. [141]). The challenge in the use of these methods results from the

choice of the actual method, which may not be obvious, and once the method

has been selected, also from the choice of the scalarizing parameters’ values. In

general, these values may be unknown and the decision maker faces a difficult

situation of making a choice possibly under a great deal of uncertainty. For

example, choosing weights as scalarizing parameters is discussed extensively

from a psychological perspective by Eckenrode [41] and from an engineering

point of view by Marler and Arora [108]. In any case, a scalarized MOP becomes

a USOP and could benefit from being treated as such.

(vi) Human preferences that determine the solution concept for an MOP. Uncer-

tainty in preferences may result from the different backgrounds and expecta-

tions of the decision makers representing the various parties engaged in the

decision-making process (see Keeney and Raiffa [88] and Weber et al. [138]),

as well as a decision maker’s inability to articulate a preference. This type of

uncertainty may be embedded in the convex cone representation used to model
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preferences. In the particular case of polyhedral convex cones, the entries of the

matrices describing these cones can fulfill that role.

Depending on the source (or sources) of uncertainty that are taken into ac-

count, the formulation changes to reflect the specific situation.

1.1.2.2 Models and Solution Concepts

The models that have been developed in the literature to account for un-

certainty and multiple conflicting criteria can be categorized as any of seven types

depending on the sources of uncertainty that are being considered as previously de-

scribed. The seven types of models, which we explore below along with their solu-

tion concepts, assume uncertainty in different aspects of the problem as follows: (i)

uncertainty in only the constraint function coefficients, (ii) uncertainty in only the

objective function coefficients, (iii) objective and constraint function coefficient un-

certainty, (iv) uncertainty in the decision variables, (v) uncertain objective functions

(where the criteria are treated as uncertain, not just the coefficients), (vi) uncertainty

in scalarization parameters, and (vii) preference uncertainties.

First, UMOPs only accounting for feasibility uncertainties in the form of uncer-

tain constraint coefficients are considered by Doolittle et al. [37], as well as Goberna

et al. [57] who only consider linear problems. Such problems are treated by Doolittle

et al. [37] in the same manner as USOPs are by Ben-Tal and Nemirovski [7], i.e.,

robustness is considered with respect to the worst-case realizations of the constraints,

since they only differ from them by the vector-valued objective function. As a re-

sult, solutions to these problems are considered conservative, and methodologies for

treating these problems rely upon the robust single-objective paradigm.

On the other hand, UMOPs modeling only exogenous uncertainties, which
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cause objective coefficients to be uncertain, are considered in numerous studies and

do not follow the same line of research as in the single-objective setting. The rea-

son for the different directions of investigation is the result of several factors. First,

although in robust (single-objective) optimization uncertainty in the objective coeffi-

cients has not been considered as much due to Ben-Tal and Nemirovski (as mentioned

in the previous section), the multiple objective functions present in UMOPs provide

many opportunities for introducing new concepts of robustness beyond the scope of

USOPs. In particular, solution concepts combining efficiency and robustness can be

proposed. As MOPs have solution sets with many or infinitely many elements, the

possibility exists for some efficient solutions to remain efficient and be robust so that

their efficiency is not lost due to robustness. This is in contrast to SOPs, which

typically have unique optimal solutions that are very unlikely to also be robust, and

their optimality is sacrificed for robustness. Second, since efficiency and robustness

may be combined in different ways, various concepts of robustness may be defined

with attention to meaningful concepts in application. Even though UMOPs modeled

in this way may be reformulated using auxiliary variables to move the uncertain ob-

jectives into the constraints resulting in a UMOP with only feasibility uncertainties,

the aforementioned factors allow for researchers to provide information to decision

makers that would be unavailable otherwise. In the following paragraphs, we review

the solution concepts for this type of model that have been studied, highlighting three

(flimsily, highly, and set-based min-max robust) in particular.

A permissive concept of robustness only requires efficiency with respect to

at least one instance of the objective function over the feasible set. Such solutions,

referred to as flimsily robust efficient, are defined by Ide and Schöbel [82] and Kuhn et

al. [95]. This concept is first mentioned in 1980 by Bitran [18] in the context of interval

multiobjective programming in which the uncertain objective coefficients fall within a
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closed interval that is assumed to be known. The solutions are referred to as possibly

efficient solutions, a term that is borrowed from modal logic (see Inuiguchi and Kume

[83]). Further studies of possibly efficient solutions can be found in Inuiguchi and

Kume [84], Ida [77], Inuiguchi and Sakawa [85], and Oliveira and Antunes [116]. Due

to their permissive nature, no RC is needed; in fact, any instance of the problem can

serve as an RC (since its solutions are immediately robust).

On the other extreme, a restrictive concept of robustness requiring efficiency

with respect to every instance of the objective function simultaneously over a common

feasible set, referred to as highly robust efficiency, is provided by Ide and Schöbel [82]

and Kuhn et al. [95]. A more detailed analysis of this solution concept is given in

Section 1.1.2.5 because this concept is of special interest to our work.

As a compromise between these two extreme concepts, set-based min-max

(objective-wise worst-case, strict) robustness, which incorporates the concept of set

domination from set-valued optimization (see Eichfelder and Jahn [46]), is explored

by Ehrgott et al. [45], Bokrantz and Fredriksson [19], and several others. Similar to

the case of uncertainty only in the constraint coefficients, robustness is considered

with respect to the worst-case instance of the objective function and is thus still con-

servative. It is also worth noting that set-based min-max robust solutions may be

interior points, and the set of these solutions need not be connected, even in the linear

case (see Majewski [106] and Ehrgott et al. [45]). These two properties are potential

downsides as they suggest solving UMOPs for set-based min-max robust solutions is

a global optimization task. Not only that, the properties are also in stark contrast

to the deterministic linear case in which solutions (to nontrivial problems) are on the

boundary of the feasible region and the solution set is connected, which lead directly

to the effectiveness and applicability of multiobjective simplex methods.

Other concepts of robustness have also been proposed. For example, Kuhn et
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al. [94] propose ε-(representative) lightly robust solutions that are obtained as set-

based min-max robust solutions in a neighborhood of a nominal scenario. Other set-

dominance relations are also adopted from set-valued optimization in order to define

several more concepts of set-based robustness as in Ide et al. [81], Ide and Köbis

[80], and Wang et al. [136], but in the interest of brevity, we do not go into detail

here. More recently, Sigler [125] has proposed ordering relations in order to define

Pareto optimality under uncertainty directly as is done in deterministic multiobjective

optimization. For a comprehensive survey of ten concepts of robust efficiency and

their numerous relationships, refer to Ide and Schöbel [82].

Another modeling approach combines exogenous and feasibility uncertainties

and is undertaken by Fliege and Werner [52], Kuroiwa and Lee [96], Wang et al. [137],

and Goberna et al. [58] (who study uncertain MOLPs (UMOLPs) and highly robust

efficient solutions). In Fliege and Werner [52], the authors first apply two scalariza-

tions, the weighted-sum scalarization and the epsilon-costraint scalarization, to the

deterministic MOP associated with a single scenario, and then they “robustify” the

resulting SOPs. Second, they apply the same scalarizations to the RC, which assumes

the worst-case constraints (as in Dooltittle et al. [37]) and the worst-case objectives

(as in Ehrgott et al. [45]), that is, after the “robustification.” Doing so, they examine

whether the scalarization and the robustification are commutative operations.

UMOPs modeling endogenous uncertainty that require the decision variables

to be uncertain are covered by Eichfelder et al. [47]. Motivation for this situation

includes the design of a magnetic system in which the implementation of a decision is

inexact, thereby leading to the uncertainty that must be accommodated. Robustness

is defined in terms of set dominance in the objective space, and point-to-set maps

to model the decision uncertainty are used. The work is a general extension of the

single-objective approach of regularization robustness (see Lewis [98] and Lewis and
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Pang [99]).

Doolittle et al. [36] address system output uncertainty that is reflected in the

objective functions themselves being uncertain (not simply the coefficients). Moti-

vation for such considerations include the design of a four-bar plane truss structure

found in Engau and Wiecek [49] in which the weight of the truss and its displace-

ment due to different loading conditions remain in conflict while the truss geometry

that minimizes both is sought. Treating the displacement as an uncertain objective

function would make the model more realistic. Other problems involving infinitely

many objective functions that are encountered in control, game theory, and statis-

tics, as mentioned by Engau [48], may also benefit since a finite number of uncertain

functions could be used instead to account for the infinite criteria.

Uncertainty present in scalarization parameters involved in transforming MOPs

into SOPs is important to examine due to the widespread use of scalarization meth-

ods to solve MOPs (see Wiecek et al. [141]). Studies on the uncertain weights in the

weighted-sum method are reported by Palma and Nelson [117] and Hu and Mehro-

tra [73]. Other investigations regarding six scalarizations of MOLPs are provided in

Doolittle et al. [35].

Finally, modeling human preferences using cones has been shown to be ben-

eficial by Sawaragi et al. [122] in terms of gaining new mathematical insight, and

by Hunt et al. [74], Klimova and Noghin [90], Noghin [115], and Wiecek [139] in

the context of providing a tool for modeling decision makers’ preferences. However,

uncertainty in the preferences defining the cones may exist. The uncertainty may

arise due to differences in human preferences and can be assumed into the cones that

model these preferences. Under conditions of pointedness (of the cone) and rank (of

cone defining matrices), a RC that takes the form of a UMOP modeling exogenous

uncertainties is obtained. As a result, the robust concepts defined in that situation
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are directly applicable to the current discussion (see Wiecek and Dranichak [140]).

1.1.2.3 Solution Methods

Solution methods to solve UMOPs modeled in any of the seven ways described

directly above largely do not exist in the literature. The ones that do either rely

on brute-force attacks or directly follow from other research areas (e.g., determin-

istic multiobjective optimization or robust optimization). In other words, the so-

lution methods currently available are not specially designed to solve UMOPs (or

even UMOLPs). We review four solution methods that have been proposed to solve

UMOPs with uncertainty in the constraint coefficients, in the objective coefficients,

and in both. The methods either borrow from robust (single-objective) optimization,

depend on scalarizations from deterministic multiobjective optimization, or rely on

two-stage processes in which supersets of the desired solution set are first enumerated.

In the case of uncertainty in the constraint coefficients, a semi-infinite MOP, in

which the set of constraints contains the constraints associated with each realization

of uncertainty, is presented by Doolittle et al. [37] as the RC. As in the single-objective

setting, this RC must be reformulated twice under several assumptions (including that

Lagrangian duality holds) before being solved. The resulting MOP is easily solvable

and generates the desired robust solutions.

When uncertainty is considered only in the objective function coefficients, the

solution method depends upon the desired solution concept. If the concept is set-

based min-max robustness, for example, then one approach is the following. First, an

RC, which is a bilevel MOP that optimizes with respect to the worst-case instance of

the objective function, is formulated. Second, the inner MOP is scalarized and solved

for its efficient solutions. In Bokrantz and Fredriksson [19], necessary and sufficient

conditions that rely on the existence of a scalarizing function for the inner problem are
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developed, but no methodology for obtaining these functions is given. Nevertheless,

Ehrgott et al. [45] provide sufficient conditions for two common scalarizations, the

weighted-sum and epsilon constraint methods, which can be used as methods to obtain

solutions, but are clearly not guaranteed to find all solutions.

Alternatively, if the problem is the special case in which there are two ob-

jective functions with one deterministic and the other uncertain, then a method for

obtaining highly and flimsily robust efficient solutions, as well as a method for ε-

(representative) lightly and (a second method for) set-based min-max robust solu-

tions, is demonstrated by Kuhn et al. [95] provided that the uncertainty set is finite

or can be considered as such due to its special structure. Refined subsets of highly

and flimsily robust efficient solutions are computed by first solving the determin-

istic MOP associated with every scenario, while subsets of set-based min-max and

ε-(representative) lightly robust solutions are found by first obtaining the efficient set

associated with the deterministic problem whose objectives are taken to be every in-

stance of the objective functions. In either case, the second step is a filtering process

that is applied to reduce the obtained sets to the desired robust solutions. Based on

the algorithms, the authors also provide complexity results specific to each type of

solution.

If the model takes into account uncertainty in both the objective and constraint

coefficients, then a method that does not fully exercise robust optimization is given

by Wang et al. [137]. In this context, a two-stage post-optimality approach is taken

to obtain robust solutions. A deterministic MOP is solved under a nominal scenario

yielding an efficient set, and then robust solutions are selected depending on their

performance with respect to the chosen index (or measure of robustness).
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1.1.2.4 Applications

Many of the above models, solution concepts, and solution methods have been

exploited for the benefit of various applications including portfolio management (e.g.,

Fliege and Werner [52]), routing and transportation (e.g., Kuhn et al. [95]), the wood-

cutting industry (e.g., Ide [79]) proton therapy for cancer treatment (e.g., Chen et

al. [26], and Bokrantz and Fredriksson [19]), wind turbine design (Wang et al. [137]),

and Internet routing (e.g., Doolittle et al. [37]). Other applications include forest man-

agement (e.g., Palma and Nelson [117]), irrigation strategy (e.g., Crespo et al. [28]),

and multiobjective games (e.g., Yu and Liu [144]).

In particular, a model with only uncertain constraint coefficients is applied by

Doolittle et al. [37] to an Internet routing problem that is modeled as an uncertain

biobjective multicommodity flow problem on an Internet network. The uncertainty

originates from an unknown amount of traffic for each commodity, which is caused

by the cost of data collection and the complexity of data analysis, and is modeled

by polyhedral sets. Robust efficient paths between all nodes in the network are

computed along with their performance with respect to two conflicting criteria given

by maximum and mean link utilizations.

A model with only uncertain objective coefficients is used by Ide [79] who con-

siders an uncertain multiobjective wood-cutting industry problem. The uncertainty

is the result of the unknown quality of the wood at the time cutting occurs and is

modeled by finite sets. Set-based min-max robust cutting patterns with respect to

quality are computed using the weighted-sum method proposed by Ehrgott et al. [45],

and their performance is compared to existing manual cutting plans. Similarly, in the

study of aircraft route guidance and hazardous materials transportation, Kuhn et

al. [95] consider biobjective problems in which only one objective function involves
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uncertainty that results from the unpredictability of weather and travel times, respec-

tively.

Utilizing a model that accounts for both constraint and objective coefficient

uncertainty, Fliege and Werner [52] analyze an uncertain portfolio management prob-

lem in which revenue (to be maximized) and risk (to be minimized) are in conflict,

and uncertainty in the objective and constraint function coefficients enters through

estimates of expected returns and covariances. In contrast, Wang et al. [137] take an

engineering approach to robust optimization in the examination of a multiobjective

wind turbine design problem in which the uncertainty results from, for example, wind

speed and temperature fluctuations over short periods of time. The authors instead

consider robustness in terms of one of two different indices (or measures) that are

quite problem specific, but provide a measure of a solution’s ability to be efficient in

different design environments.

1.1.2.5 Highly Robust Efficient Solutions

In the literature on robust multiobjective optimization, as mentioned in Sec-

tion 1.1.2.2, various models and solution concepts have been proposed. Among the

models, one that offers insightful study involves uncertain objective coefficients (with

and without uncertain constraint coefficients) since in this case concepts combining

efficiency and robustness in which efficiency is not lost due to robustness may be

introduced. Further, among the many concepts available for problems modeled in

this way, a restrictive concept referred to as highly robust efficiency has not been

exhaustively analyzed. As a result, we focus on highly robust efficient solutions to

UMOPs with uncertain objective coefficient data by examining the current literature

and determining promising research directions.

Highly robust efficiency is a conservative concept of robustness requiring effi-
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ciency with respect to every instance of the objective function coefficient data simul-

taneously over a common feasible set. This definition of robustness is provided by

Ide [79], Ide and Schöbel [82], and Kuhn et al. [94, 95] in the context of UMOPs with

only uncertain objective coefficients (and a deterministic feasible set), and also by

Goberna et al. [58] in terms of uncertain objective and constraint coefficients (where

the feasible set is thus uncertain so feasibility is considered with respect to every

realization of the constraints). Moreover, as with flimsily robust efficient solutions,

highly robust efficient solutions are first defined in the context of interval multiob-

jective programming by Bitran [18] and are called necessarily efficient solutions. For

this type of problem, solution methods are presented by Bitran [18], Benson [12],

Inuiguchi and Kume [84], Ida [77], Inuiguchi and Sakawa [85], Oliveira and Antunes

[116], and Hlad́ık [69], while complexity analysis is studied by Hlad́ık [70]. Addi-

tionally, Ida [78] computes necessarily efficient solutions to an uncertain biobjective

quadratic portfolio selection problem.

Although highly robust efficient solutions have not been the focus of major

research, some results are known. In particular, there is an existence result, various

relationships and features, a computational method, and at least two applications.

In terms of existence, assume the UMOP has only uncertain objective function

coefficients. Ide [79] and Ide and Schöbel [82] show that if one of the objective

functions of the UMOP is deterministic (certain), i.e., does not contain any uncertain

parameters, and if the optimization (minimization or maximization) of this objective

yields a unique optimal solution, then this solution is also a highly robust efficient

solution to the UMOP. That is, for this class of problems, the existence of highly

robust efficient solutions is guaranteed and may be explicitly found by solving a

deterministic SOP. It is important to note that the existence of an objective function

which does not contain any uncertainty is not completely unrealistic in practice. For
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example, if the captain of a ship wants to minimize the length and the travel time

of a trip, then the length of any path is exactly known while the travel time may

depend, e.g., on weather conditions and ocean currents.

The various relationships between highly robust efficient solutions and other

solution concepts are considered both when no assumptions about the uncertainty

set are made and when it is assumed to be objective-wise, i.e., the uncertainties in

the conflicting objective functions are independent of each other. On the other hand,

a reduction result is given when the UMOP has only objective-wise uncertainty in

the objective coefficient data (refer to Ide [79], Ide and Schöbel [82], and Kuhn et

al. [94, 95]), while several features are provided when the UMOP has uncertain data

in both the objective and constraint coefficients (see Goberna et al. [58]).

First, when no assumptions about the structure of the uncertainty set are

made, Ide [79] and Ide and Schöbel [82] demonstrate a variety of relationships with

other solution concepts such as flimsily robust efficiency and set-based min-max ro-

bustness. The most evident relationship is that if a solution is highly robust efficient,

then it is also flimsily robust efficient (by definition). Additionally, they demonstrate

that if the uncertainty set is a singleton (i.e., if there is actually no uncertainty in the

data), then highly and flimsily robust efficient solutions coincide. On the other hand,

highly robust efficiency does not imply (either set-based or point-based) min-max ro-

bustness. Similarly, if a solution is ε-lightly robust for all nonnegative (but nonzero)

epsilon, then it is not necessarily also highly robust efficient; and vice versa, if a

solution is highly robust efficient, then it is not guaranteed to be ε-lightly robust for

some nonnegative (but nonzero) epsilon. Ide and Schöbel [82] also show relationships

between highly robust efficient solutions and two other set-based concepts.

If the uncertainty set is assumed to be objective-wise, then new relationships

emerge as shown by Ide [79], Ide and Schöbel [82], and Kuhn et al. [94, 95] (for a
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special case). Under this assumption, it is now the case that highly robust efficiency

does imply min-max robustness (both set-based and point-based, which are equiva-

lent under this assumption), as well as ε-lightly robustness for all nonnegative (but

nonzero) epsilon. Also, Ide and Schöbel [82] show that if a solution is highly robust

efficient, then it is robust with respect to three other set-based concepts. However, it

is still the case that if a solution is ε-lightly robust for all nonnegative (but nonzero)

epsilon, then it is not necessarily also highly robust efficient. A final relationship is

given by Kuhn et al. [94]. If a solution is highly robust efficient, then it is efficient

with respect to the (deterministic) MOP whose objective functions are the single de-

terministic objective along with every instance of the objective functions, which we

later refer to as the all-in-one problem.

Finally, again under the assumption of objective-wise uncertainty, a reduction

of the uncertainty set is shown by Ide [79], Ide and Schöbel [82], and Kuhn et al. [94,

95] (for a special case). If the uncertainty set is also the convex hull of a finite set of

points, i.e., a bounded polyhedron or polytope, and the objective functions are affine

with respect to the uncertainty, then a solution is highly robust efficient with respect

to the entire uncertainty set if and only if it is highly robust efficient with respect to

the finite set of points. In other words, rather than having to solve the UMOP with

respect to the infinite number of scenarios of the (polytopal) uncertainty set, we only

have to solve it with respect to the finite number of points from which the convex hull

is formed. The importance of this result is, as in the case of robust single-objective

optimization, that the reduction indicates that the UMOP is tractable.

In addition to the aforementioned, highly robust efficient solutions are also

examined in the more general setting of uncertainty in the coefficients of both the

objectives and the constraints, but less general case of UMOLPs. Under the assump-

tion of objective-wise uncertainty and constraint-wise uncertainty (similarly defined),
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three results are identified by Goberna et al. [58]: a relationship, the radius of highly

robust efficiency, i.e., the greatest value of a particular parameter associated with

two families of the objective coefficient uncertainty sets such that the corresponding

UMOLPs have highly robust weakly efficient solutions, and necessary and sufficient

conditions for several types of constraint uncertainty sets. First, as in both of the

above situations, it is still true that highly robust efficiency implies min-max robust-

ness. Second, the radius of highly robust efficiency is bounded under both affine

and radial objective data perturbations. Finally, necessary and sufficient conditions

are provided for the case of radial objective coefficient uncertainty under general (no

additional structure), convex, box, norm, and ellipsoidal constraint uncertainty sets.

A special case of UMOPs is also studied in the literature by Kuhn et al. [94, 95].

The UMOP is taken to be an uncertain biobjective problem (UBOP) in which the

coefficients of one objective are deterministic, the other uncertain. In the context of

this model, it is clear that the uncertainty set is necessarily objective-wise. Under the

additional assumption that the uncertainty set is finite, the authors propose a solution

method, which is applied to problems within the study of aircraft route guidance

and hazardous materials transportation, to compute refined subsets of highly robust

efficient solutions in a two-step procedure. First, the deterministic MOP associated

with each scenario is solved. Then, a filtering step is applied to reduce the obtained

sets to the desired highly robust efficient solutions. Based on the algorithm, the

authors also provide a complexity result.

1.2 Completed Research Objectives

As evidenced by the above discussion, the current literature on highly robust

efficient solutions to UMOPs with objective-wise uncertainty in the criteria coefficient
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data is lacking several key aspects. In order to address these incomplete aspects, as

well as to provide meaningful theoretical and methodological tools for decision makers

and practitioners, the research goals of this dissertation are to:

(i) develop properties of the highly robust efficient set including those regarding

closedness, convexity, and connectedness;

(ii) provide a characterization of the highly robust efficient set;

(iii) verify the highly robust efficiency (or lack thereof) of a given feasible solution;

(iv) compute highly robust efficient solutions.

Properties of the highly robust efficient set, similar to any solution set, are

important to study from both a theoretical and methodological perspective because

different characteristics may provide revealing insights. For example, in the case of

UMOLPs, the connectedness of the highly robust efficient set is an important feature

to determine. If the highly robust efficient set is always connected, then a simplex

algorithm approach to computing highly robust efficient points is advantageous to

pursue. Otherwise, if the highly robust efficient set may be disconnected, then the

task of obtaining highly robust efficient solutions is reserved for global optimization

methods.

Likewise, characterizing the highly robust efficient set is valuable to pursue

because a more complete understanding of the solution set is realized. In working

toward a characterization, we provide not only necessary and/or sufficient conditions

for the highly robust efficiency of feasible solutions, but also bound sets on the highly

robust efficient set, an RC for a class of problems, and related existence conditions.

Methodologically, verifying the highly robust efficiency of a given feasible solu-

tion also serves as a meaningful tool for decision makers for several reasons. Primarily,
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it allows them to test a point deemed desirable a priori without having to actually

solve the UMOP or compute a representation of the highly robust efficient set. Ad-

ditionally, in the case of UMOLPs, the ability to check whether or not a feasible

point is highly robust efficient allows decision makers to determine the highly robust

efficiency of points in the relative interior of a face, which in turn may indicate that

the entire face itself is highly robust efficient.

Finally, the importance of computing highly robust efficient solutions is obvi-

ous. Currently, the only existing solution method is a brute-force attack that involves

solving every instance of a given UMOP and has only been applied to a special class

of biobjective problems. As such, it is necessary to develop other approaches that do

not require a collection of problems to be solved but rather allow for an individual

problem to be solved.

With regard to the four stated research objectives, further focus throughout

the dissertation is given to UMOLPs, however, more general UMOPs are also consid-

ered.

1.3 Overview

In view of the aforementioned research goals, the remainder of the dissertation

is organized as follows. We provide the notation used herein and relevant mathemat-

ical preliminary results in Chapter 2. In Chapter 3, the theory of cones is explored.

Existing definitions and results on cones, namely (polyhedral) convex, dual, polar,

and strict polar cones, are given in Section 3.1, while new results are derived in Section

3.2. The new results mainly concern the polar and strict polar cones of three interre-

lated convex cones, include computational approaches to determine the acuteness of

a cone, and provide the means with which to subsequently offer characterizations of
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the efficient and highly robust efficient sets in Chapters 4 and 6, respectively.

An overview of deterministic multiobjective programming is given in Chap-

ter 4, with a brief look at MOPs in Section 4.1 and a more thorough examination

of MOLPs in Section 4.2. Within Section 4.1, scalarization methods (such as the

weighted-sum method) to compute efficient solutions are reviewed in Section 4.1.1,

while methods with which to verify the efficiency (or lack thereof) of a given feasi-

ble point and to generate efficient points distinct from a given feasible solution are

summarized in Section 4.1.2. Moreover, within Section 4.2, properties of the efficient

set are reviewed in Section 4.2.1, characterizing the efficient set is studied in Section

4.2.2, and the computation of efficient solutions is covered in Section 4.2.3. Aside

from the known results regarding deterministic MOLPs studied therein, a new re-

sult is derived in Section 4.2.4 that provides a different and useful perspective on an

existing characterization of the efficient set, which is found in Section 4.2.2.3.

The main contributions of the dissertation begin in Chapter 5 (and continue

in Chapter 6) in which highly robust efficient solutions to UMOPs are explored. In

Section 5.1, the formulation of the UMOP under consideration is introduced, while

a theoretical robust counterpart is developed in Section 5.2. Additionally, a naive

approach to compute highly robust efficient solutions to the UMOP in question is

given in Section 5.3, and several methods with which to determine whether or not

a given feasible point is highly robust efficient or otherwise possibly generate a new

highly robust efficient solution are established in Section 5.4.

Similarly, in Chapter 6, highly robust efficient solutions to UMOLPs are in-

vestigated. In Section 6.1, the formulation of the UMOLP under consideration is

presented. An uncertainty set reduction for a class of UMOLPs is then given in Sec-

tion 6.2, which allows for highly robust efficient solutions to be studied with respect to

only UMOLPs whose uncertainty sets are finite. Within Section 6.3, properties (such
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as those regarding closedness, convexity, and connectedness) and characterizations of

the highly robust efficient set are presented in Sections 6.3.1 and 6.3.2, respectively.

Moreover, bound sets on the highly robust efficient set (i.e., sets that contain or are

contained in the highly robust efficient set) are derived in Section 6.3.3, while a the-

oretical RC, as well as a classical RC that may be used to obtain the highly robust

efficient set for a special class of UMOLPs, is determined in Section 6.3.4. Since the

acuteness of various cones is necessary to know for results in Section 6.3.2, this prop-

erty is discussed in more detail in Section 6.3.5 and methods with which to identify

it are revisited. Finally, in Section 6.4, the computation of highly robust efficient

solutions to UMOLPs is addressed. Within this section, approaches to computation-

ally identify whether or not a given feasible solution is indeed highly robust efficient,

possibly generate a different highly robust efficient point, or determine that the highly

robust efficient set is empty are developed in Sections 6.4.1 and 6.4.2. Additionally,

in Sections 6.4.3 and 6.4.4, solution methods to compute highly robust efficient points

are obtained. In the former section a straightforward approach is given, while in the

latter section a more sophisticated method is provided. An application in the area of

bank balance-sheet management is also included in Section 6.4.5, and highly robust

efficient solutions to the resulting UMOLP are computed. Concluding remarks are

given in Chapter 7.
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Chapter 2

Mathematical Preliminaries

Throughout the dissertation, a variety of mathematical concepts and results

from different fields of study are necessary in later discussions. We provide many of

these definitions and results here for convenience. The general notation employed is

introduced in Section 2.1, and mathematical background results from several fields of

mathematics including linear algebra and real analysis are presented in Sections 2.2,

2.3, and 2.4. Finally, two fundamental single-objective linear programming results are

given in Section 2.5, while several relevant theorems of the alternative are provided

in Section 2.6.

2.1 Notation

We use the following notation throughout the dissertation. Lower case letters

in bold are used to denote vectors, and other lower case letters describe indices or

scalars. Matrices are denoted by upper case bold letters, and sets are denoted by

upper case letters. Subscripts differentiate matrices, vectors, and scalars, as well

as indicate the components of a vector. Superscripts are used when necessary to
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differentiate vectors, but are otherwise treated as exponents. Euclidean vector spaces

of a given dimension are denoted using R. Note that vectors are written using typical

vector notation as well as ordered pair notation.

Moreover, the n × n identity matrix is given by In, the vector of all ones is

denoted by 1, the vector of all zeros is denoted by 0, and the origin is written as {0}.

For all y1,y2 ∈ Rp, we write

y1 5 y2 if y1k ≤ y2k for all k = 1, . . . , p;

y1 ≤ y2 if y1k ≤ y2k for all k = 1, . . . , p, and y1 6= y2;

y1 < y2 if y1k < y2k for all k = 1, . . . , p.

When p = 1, the symbols 5 and ≤ coincide. The inequalities =,≥, > are used

similarly. Additionally, the nonnegative orthant of dimension p is denoted by Rp
= :=

{y ∈ Rp : y = 0}. The semipositive, positive, nonpositive, seminegative, and negative

orthants, denoted Rp
≥,R

p
>,R

p
5,R

p
≤, and Rp

<, respectively, are defined similarly.

2.2 Linear and Convex Functions

Linear, bilinear, and convex functions are widely studied (see, e.g., Rockafellar

[121] and Lang [97]) in mathematics and are used throughout optimization. For

example, entire branches of mathematics such as linear algebra rely on properties of

linear functions, and whole fields of optimization such as linear programming depend

on the objectives and constraints being either linear or convex. As a result, linear and

convex functions are often considered fundamental functions in mathematics. Due to

their wider significance and use in our current work, we provide the definition of each

function, as well as a short discussion.
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Definition 2.2.1. A function ϕ : Rn → R is said to be a linear function if for any

two vectors z1, z2 ∈ Rn, the function ϕ satisfies ϕ(µ1z1 + µ2z2) = µ1ϕ(z1) + µ2ϕ(z2)

for every µ1, µ2 ∈ R.

In other words, a linear function is one that preserves addition and scalar

multiplication. As such, it is possible to show (see Theorem 2.1, Lang [97]) that

every linear function ϕ : Rn → R such that z 7→ ϕ(z) may be written as ϕ(z) = Mz

for some matrix M ∈ Rm×n. When the function (or mapping) is of two variables, the

concept of a linear function is extended to that of a bilinear function (refer to Section

5.4, Lang [97]). Note that the definition below is presented in terms of a vector-valued

function (even though this is not necessary in general) due to our specific needs in

this dissertation.

Definition 2.2.2. A function ϕ : Rn×Rn → Rp of two variables, z and z̄, is bilinear

if it is linear with respect to each of its variables. That is, ϕ is bilinear if it satisfies

ϕ(µ1z1 + µ2z2, z̄) = µ1ϕ(z1, z̄) + µ2ϕ(z2, z̄) (2.1)

for every µ1, µ2 ∈ R and z1, z2, z̄ ∈ Rn, and

ϕ(z, µ1z̄1 + µ2z̄2) = µ1ϕ(z, z̄1) + µ2ϕ(z, z̄2) (2.2)

for every µ1, µ2 ∈ R and z, z̄1, z̄2 ∈ Rn.

That is, a function of two variables is bilinear if when either the first variable or

the second is fixed, the function is linear. Hence, for ϕ, a function of two variables,

it suffices to show that ϕ(µ1z1 + z2, µ2z̄1 + z̄2) = µ1µ2ϕ(z1, z̄1) + µ1ϕ(z1, z̄2) +

µ2ϕ(z2, z̄1)+ϕ(z2, z̄2) for all z1, z2, z̄1, z̄2 ∈ Rn, and all scalars µ1, µ2 in order to show

bilinearity, which is equivalent to showing ϕ satisfies (2.1) and (2.2). In addition to
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linear and bilinear functions, we study another fundamental type of function known

as a convex function.

Definition 2.2.3. A function ϕ : Rn → R is said to be a convex function if for any

two vectors z1, z2 ∈ Rn, the inequality

ϕ(αz1 + (1− α)z2) ≤ αϕ(z1) + (1− α)ϕ(z2)

holds for all α ∈ [0, 1].

Geometrically, the convexity of a function may be interpreted similarly to that

of a set (see Section 2.4). For every pair of vectors z1, z2 ∈ Rn and α ∈ [0, 1], the

chord or secant line joining (z1, f(z1)) and (z2, f(z2)) at the point αz1 + (1 − α)z2

must lie at or above the function. As a result, it is clear that linear functions are also

convex.

2.3 Linear Algebra

In linear programming, the relevance of solving systems of equations is appar-

ent. When solving a system of linear equations, the notion of the rank of a matrix is

necessary. We define linear independence, as well as the rank of a matrix, and give

a set of related basic results. Throughout, we use the superscript T to denote the

transpose of a vector or matrix.

Definition 2.3.1. The vectors z` ∈ Rn, ` = 1, . . . , t, are said to be linearly indepen-

dent if
∑t

`=1 µ`z` = 0 implies µ` = 0 for all ` = 1, . . . , t.

Definition 2.3.2. The rank of a matrix M ∈ Rm×n, denoted rank(M), is the maxi-

mum number of linearly independent rows or columns of M.
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Proposition 2.3.3. [134, p. 8] Let M ∈ Rm×n. Then

(i) rank(M) ≤ min{m,n} and rank(M) = rank(MT );

(ii) when m = n, we have M−1 (and (MT )−1) exists if and only if rank(M) = n.

The existence of solutions to systems of linear equations depends on the rank

of the defining matrix. In particular, when the system is homogeneous (i.e., every

equation in the system is equal to 0), we have the following result.

Theorem 2.3.4. [22, Theorem 2.3] Let A ∈ Rm×n. The homogeneous linear system

Ax = 0 has a nontrivial solution x 6= 0 if and only if rank(A) 6= n. When m = n,

the system Ax = 0 has a solution x 6= 0 if and only if rank(A) < n.

In other words, if rank(A) = n, then the only solution to the homogeneous

linear system Ax = 0 is the trivial solution x = 0.

2.4 Set Theory

Set theory is one of the most fundamental fields within mathematics and is

used extensively in our present work. We first define several basic set operations.

Throughout, we use ⊆ to denote set containment or inclusion and ⊂ to denote proper

containment.

Definition 2.4.1. Let S, S1, S2 ⊆ Rn be sets.

(i) The negative of S is defined to be −S = {−z ∈ Rn : z ∈ S}.

(ii) The union of S1 and S2 is defined to be S1 ∪ S2 := {z ∈ Rn : z ∈ S1 or z ∈ S2}.

(iii) The intersection of S1 and S2 is defined to be S1 ∩ S2 := {z ∈ Rn : z ∈ S1 and

z ∈ S2}.
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(iv) The relative complement of S1 and S2 is defined to be S1\S2 := {z ∈ Rn : z ∈ S1

and z /∈ S2}.

(v) The complement of S is defined to be S{ := Rn \ S.

(vi) The Minkowski sum of S1 and S2 is defined to be S1 ⊕ S2 := {z1 + z2 ∈ Rn :

z1 ∈ S1, z2 ∈ S2}.

(vii) The Cartesian product of S1 and S2 is defined to be S1×S2 := {(z1, z2) ∈ R2n :

z1 ∈ S1, z2 ∈ S2}.

In the above definition, the relative complement S1 \ S2 may be understood

as the removal of the elements from S1 that are also in S2, and is thus sometimes

considered to be set subtraction or the difference of sets. Similarly, the Cartesian

product may be considered to be set multiplication. With this in mind, we may write

the Cartesian product of a set S ⊆ Rn with itself as S × S = S2. (This is precisely

why the Euclidean vector space of dimension n is denoted Rn.)

Remark 2.4.2. Based on Definition 2.4.1, numerous identities for each set operation

may be given. Of those, the following regarding the Minkowski sum are needed. For

the set S ⊆ Rn and the vector z ∈ Rn, it is apparent that S ⊕ ∅ = ∅ (which implies

that ∅ ⊕ {z} = ∅) and S ⊕ {0} = S (see p. 16, Matheron [110]).

The different set operations in the previous definition may be combined in a

wide variety of ways. In particular, the following result describes several distributive

laws for set intersection, set union, and the Minkowski sum.

Theorem 2.4.3 (Distributive Laws). Let S1, S2, S3 ⊆ Rn be sets. Then

(i) [129, Theorem 5.1(3 ′)] S1 ∩ (S2 ∪ S3) = (S1 ∩ S2) ∪ (S1 ∩ S3);

(ii) [129, Theorem 5.1(3)] S1 ∪ (S2 ∩ S3) = (S1 ∪ S2) ∩ (S1 ∪ S3);
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(iii) [110, Formula 1-5-5] S1 ⊕ (S2 ∪ S3) = (S1 ⊕ S2) ∪ (S1 ⊕ S3);

(iv) [110, Formula 1-5-5] S1 ⊕ (S2 ∩ S3) ⊆ (S1 ⊕ S2) ∩ (S1 ⊕ S3).

In addition to these set operations that define how sets may be combined or

changed by other sets, it is important to classify sets by the properties that they

exhibit. Important classifications that we consider include boundedness, openness,

closedness, connectedness, and convexity.

The first classification we introduce is that of boundedness. Intuitively, sets

may either “extend to” infinity or may be “restricted” to finite regions.

Definition 2.4.4. A set S ⊆ Rn is said to be bounded if there exists a constant κ

such that the absolute value of every component of every element of S is less than or

equal to κ. Otherwise, S is said to be unbounded.

Open and closed sets are widely studied in real analysis and topology, and

may be considered as generalizations of open and closed intervals on the real line,

respectively. Before defining these sets, we need the notion of an open ball. Recall

that the Euclidean distance between any two points z1, z2 ∈ Rn is defined to be

|z1 − z2| :=

√√√√ n∑
i=1

(z1i − z2i).

Using the Euclidean distance, we define an open ball, which we shall see is appropri-

ately termed even though we have yet to define an open set.

Definition 2.4.5. Given z̄ ∈ Rn and ε > 0, the open ball about z̄ of radius ε is

defined to be Bε(z̄) := {z ∈ Rn : |z̄− z| < ε}.

With the notion of an open ball in mind, we now define both open and closed

sets.
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Definition 2.4.6. The set S ⊆ Rn is said to be

(i) an open set if for every z ∈ S, there is some ε > 0 such that Bε(z) ⊆ S;

(ii) a closed set if its complement S{ is open.

Remark 2.4.7. Note that the empty set, as well as the whole space Rn, is both open

(see Example 4.1(a), Carothers [24]) and closed (see Example 4.8(a), Carothers [24]).

Moreover, note that a set may be neither open nor closed. For example, the interval

[5, 6) is neither open nor closed.

An important question regarding open and closed sets is whether or not unions

and intersections of open (respectively, closed) sets remain open (or closed).

Theorem 2.4.8. (i) [24, Theorem 4.3] An arbitrary union of open sets is open.

(ii) [24, Theorem 4.4] A finite intersection of open sets is open.

(iii) [24, Example 4.8(b)] An arbitrary intersection of closed sets is closed.

(iv) [24, Example 4.8(b)] A finite union of closed sets is closed.

Even though sets may be neither open nor closed, we may describe the so-called

open and closed portions of a set, as well as the portion in between.

Definition 2.4.9. Let S ⊆ Rn be a set. The

(i) interior of S, denoted int(S), is defined to be the largest open set contained in

S;

(ii) closure of S, denoted cl(S), is defined to be the smallest closed set containing

S;

(iii) boundary of S is defined to be bd(S) := cl(S) \ int(S).
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Remark 2.4.10. It is obvious by definition that the interior of a set is open and the

closure of a set is closed (see p. 56, Carothers [24]). Hence, the interior of an open

set, as well as the closure of a closed set, is the set itself. Similarly, it is clear by

definition that any set contains its interior and is contained in its closure (see p. 6,

Steen and Seebach, Jr. [126]).

As with open and closed sets, it is important to know the behavior of the

interior of an intersection of sets.

Proposition 2.4.11. [126, p. 6] The interior of a finite intersection of sets is the

finite intersection of the interiors.

Although it may not be obvious based on the definition of the interior of a

set, it is quite often the case that the interior of a set is empty. For example, a line

segment in R2 has an empty interior, while a square in R3 has an empty interior also.

Since the interior of a set may likely be empty, the concept of the relative interior is

widely used (refer to Section 6 in Rockafellar [121] for a thorough discussion). Before

defining the relative interior, we discuss affine sets and the related affine hull.

Definition 2.4.12. The set A ⊆ Rn is said to be an affine set if µz1 + (1−µ)z2 ∈ A

for every z1, z2 ∈ A and µ ∈ Rn.

The empty set, any singleton set, and the whole space Rn are considered

extreme examples of affine sets. Intuitively, with the exception of the empty set or

a singleton set, an affine set must contain the entire line through any pair of points.

As a result, the basic visual notion is that an affine set is an endless uncurved object

such as a plane.

Definition 2.4.13. The affine hull of a set S ⊆ Rn, denoted aff(S), is defined to be

the smallest affine set containing S.
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Remark 2.4.14. Based on the intuitive notion of an affine set, it is clear and can be

shown (Theorem 1.4, Rockafellar [121]) that every affine set A ⊆ Rn may be written

in the form

A = {x ∈ Rn : Ax = b}, (2.3)

where A ∈ Rm×n and b ∈ Rm. Moreover, it is easy to show that the affine hull of

S consists of every vector of the form
∑m

j=1 µjaj such that aj ∈ S and
∑m

j=1 µj = 1

(see p. 6, Rockafellar [121]).

We are now ready to define the relative interior of a set.

Definition 2.4.15. The relative interior of a set S ⊆ Rn, denoted rel int(S), is

defined to be the interior that results when S is considered as a subset of its affine

hull. That is,

rel int(S) := {x ∈ aff(S) : ∃ε > 0, Bε(x) ∩ aff(S) ⊆ S}.

Using the affine hull of a set, we may also define that set’s dimension. The

dimension of a set, especially a convex set, is regarded as an important feature (e.g.,

Eckhardt [43]).

Definition 2.4.16. The (affine) dimension of a set S ⊆ Rn, denoted dim(S), is

defined to be dim(S) := dim(aff(S)), where the dimension of aff(S) is the dimension

of the subspace S ⊕ (−S).

Remark 2.4.17. The dimension of the emptyset is considered to be −1 by convention,

and sets of dimension 0 are naturally referred to as points (see p. 4, Rockafellar [121]).

Moreover, when the dimension of a set S ⊆ Rn is equal to n, the set is said to be

full-dimensional.
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The next type of set we discuss is a connected set. The definition of a connected

set has a wide variety of meanings throughout the literature. We focus on the following

definition that may be found on p. 78, Carothers [24].

Definition 2.4.18. A set S ⊆ Rn is said to be disconnected if S can be written

as S = S1 ∪ S2, where S1, S2 ⊆ Rn are nontrivial open sets such that S1 ∩ S2 = ∅.

Otherwise, the set S is said to be connected.

Remark 2.4.19. [24, Example 6.2(c)] The empty set, as well as any singleton set, is

vacuously connected.

Another important type of set is a convex set.

Definition 2.4.20. The set C ⊆ Rn is said to be a convex set if given any two points

z1, z2 ∈ C, then αz1 + (1− α)z2 ∈ C for all α ∈ [0, 1].

Geometrically, the convexity of a set may be interpreted as follows: For every

pair of points z1, z2 ∈ C, the line segment joining them (i.e., αz1+(1−α)z2, α ∈ [0, 1])

must be contained in C as well.

Remark 2.4.21. The whole space Rn is clearly convex by definition, while the empty

set is vacuously convex.

Since the interior of a set may be empty while its relative interior is nonempty,

it is of interest to know when the concepts of interior and relative interior coincide,

i.e., when the the interior and relative interior of a set are equal. For convex sets, we

refer to the following proposition.

Proposition 2.4.22. Let C ⊆ Rn be a convex set. If

(i) [121, p. 44] dim(C) = n, then int(C) = rel int(C);

(ii) [30, Formula (14)] int(C) 6= ∅, then int(C) = rel int(C).
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In addition, with respect to their relative interior, convex sets exhibit a special

property.

Theorem 2.4.23. [121, Theorem 6.2] Let C ⊆ Rn be a nonempty convex set. Then

rel int(C) 6= ∅.

A specific type of convex set is known as a polyhedral (convex) set or polyhe-

dron, which may be defined constructively in terms of half-spaces.

Definition 2.4.24. Let a ∈ Rn and b ∈ R. The set

(i) {x ∈ Rn : aTx ≤ b} is said to be a (closed) half-space;

(ii) {x ∈ Rn : aTx = b} is said to be a hyperplane.

We often refer to the (closed) half-space defined above simply as a half-space

since it is clearly a closed set, and we choose the half-space to be defined by aTx ≤ b

instead of the alternative aTx ≥ b for consistency later in the dissertation. Moreover,

the boundary of a half-space is its corresponding hyperplane, and the vector a in

the definition of a hyperplane is perpendicular to that hyperplane. In referencing

half-spaces and their related hyperplanes, the hyperplane is usually said to generate

the half-space. In view of Definition 2.4.24, we define a polyhedron as follows.

Definition 2.4.25. A set P̃ ⊂ Rn is said to be a polyhedral set or polyhedron if it

is the intersection of a finite number of half-spaces. When the polyhedron is also

bounded, it is referred to as a polytope.

In other words, a polyhedral set may be written algebraically as

P̃ := {x ∈ Rn : aT1 x ≤ b1, . . . , a
T
mx ≤ bm},
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where aj ∈ Rn, j = 1, . . . ,m, are the normals to the generating hyperplanes passing

through bj whose associated closed half-spaces form P̃ . Taking the vectors aj ∈ Rn

to be the rows of the matrix A ∈ Rm×n and the scalars bj ∈ R to be the elements of

the vector b ∈ Rm, we may write

P̃ := {x ∈ Rn : Ax 5 b}. (2.4)

Two fundamental components of polyhedral sets, which we define below, are

extreme points and extreme directions. Although both may be defined more generally

for convex sets, we only consider each with respect to polyhedral sets due to our

specific needs.

Definition 2.4.26. A vector x ∈ P̃ is said to be an extreme point of P̃ if x =

αx1 + (1− α)x2, with α ∈ (0, 1) and x1,x2 ∈ P̃ , implies that x = x1 = x2.

An extreme point is sometimes referred to as a corner point or vertex, and

derives its name from the fact that it occurs at the intersection of the extreme or

outer edges of the set. In other words, x ∈ P̃ is an extreme point if there are n

constraints from {aT1 x ≤ b1, . . . , a
T
mx ≤ bm} satisfied at equality, i.e., that are active

or binding, whose corresponding vectors aj are linearly independent. Additionally,

in linear programming, the terms basic feasible solution and extreme point are often

used interchangeably. In this context, if a linear program has an optimal solution then

there exists an extreme point (alternate) optimal solution to the problem (cf. Theorem

2.8, Bertsimas and Tsitsiklis [15]).

The existence of extreme points, as it turns out, depends on whether or not

the polyhedron P̃ contains a(n) (infinite) line, where P̃ contains a line if there exists

an x ∈ P̃ and a nonzero vector d ∈ Rn such that x + µd ∈ P̃ for all µ ∈ R.
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Theorem 2.4.27. [15, Theorem 2.6] Suppose that P̃ 6= ∅. Then P̃ has at least one

extreme point if and only if P̃ does not contain a line.

Remark 2.4.28. In view of Theorem 2.4.27, a nonempty polytope (which is bounded

and thus does not contain a line) immediately has at least one extreme point.

Similar to extreme points, polyhedral sets (and more generally, convex sets)

may also contain extreme directions, where a nonzero vector d ∈ Rn is said to be a

(recession) direction of P̃ (or any convex set) if for each x ∈ P̃ , the ray {x + βd :

β ≥ 0} is also in P̃ . In other words, d ∈ Rn is a direction if for any step length

β ≥ 0, one can travel along d from x and remain feasible. It is clear that any positive

multiple of a direction of P̃ is likewise a direction. As a result, the idea of distinct

directions becomes important, where two directions d1 and d2 are said to be distinct

provided that d1 cannot be represented as a positive multiple of d2. Certainly, if P̃

is bounded (i.e., a polytope), then it has no directions. Otherwise, any unbounded

polyhedron has at least one direction. With the definition of a direction in mind, an

extreme direction is defined as follows.

Definition 2.4.29. A direction d of the polyhedral set P̃ is said to be an extreme

direction provided there do not exist distinct directions d1 and d2 of P̃ , where d1,d2 6=

d, and scalars µ1, µ2 > 0 such that d = µ1d1 + µ2d2.

Intuitively, extreme directions are directions associated with the extreme or

outer edges of the polyhedron that “extend to” infinity. That being said, it is evident

that extreme directions need not be elements of the polyhedron (as is the case when

the polyhedron is in the (strictly) positive orthant) and that a positive multiple of an

extreme direction is also an extreme direction, which leads to so-called equivalence

classes. In particular, two extreme directions are said to be equivalent if one is a

positive multiple of the other. Due to possible confusion resulting from equivalent
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extreme directions, we refer to a finite collection of extreme directions as complete if it

contains only one member from each equivalence class. Throughout the dissertation,

the set of extreme directions of a polyhedron is assumed to be a complete set of

extreme directions.

Remark 2.4.30. As P̃ is formed by the intersection of finitely many closed half-spaces,

it is evident that its sets of extreme points and extreme directions are both finite

(cf. Corollary 2.1 and p. 176, Bertsimas and Tsitsiklis [15], respectively).

In addition to these fundamental building blocks of a polyhedral set, we may

also represent a polyhedron via its faces.

Definition 2.4.31. A polyhedral subset P of P̃ is said to be a face of P̃ if every

closed line segment in P̃ with a relative interior point in P has both endpoints in P .

Remark 2.4.32. The empty set and P̃ are trivially considered faces of P̃ , while the

extreme points of P̃ may be regarded as zero-dimensional faces.

An important feature of a polyhedral set is that its extreme points and extreme

directions may provide an internal characterization of the set (as opposed to the

external characterization given by the definition as an intersection of a finite number

of closed half-spaces). In particular, any point in a polyhedral set that has at least one

extreme point can be represented by a convex combination of the set’s extreme points

and a conical combination of the set’s extreme directions. If the set is a polytope,

then any point can be represented as only a convex combination of the extreme points

of the polytope. This characterization is known as the Representation (Resolution,

or Caratheodory Characterization) Theorem (for polyhedral sets).

Theorem 2.4.33. [15, Representation Theorem, Theorem 4.15] Let P̃ 6= ∅ with at

least one extreme point. A vector x is in P̃ if and only if it can be represented as
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a convex combination of the extreme points of P̃ plus a nonnegative linear (conical)

combination of the extreme directions of P̃ . That is, x is in P̃ if and only if it can

be represented as

x =

η∑
k=1

αkxk +

η+τ∑
`=η+1

β`x`,

where {x1, . . . ,xη} and {xη+1, . . . ,xη+τ} are the sets of extreme points and extreme

directions of P̃ , respectively, and α1 + · · · + αη = 1, αk ≥ 0 for all k = 1, . . . , η, and

β` ≥ 0 for all ` = η + 1, . . . , η + τ .

What if P̃ does not contain any extreme points? For example, consider the

polyhedron that is a line given by {x ∈ R2 : x2 = 2}. By Theorem 2.4.27, the

polyhedron does not contain any extreme points (which is also clear graphically). In

this case, the Representation Theorem is not applicable, so it is worthwhile to have

another, more general, way of expressing elements of a polyhedron.

Theorem 2.4.34. [124, Corollary 7.1b, Decomposition Theorem] The set P̃ is a

polyhedron if and only if

P̃ =

{
x ∈ Rn :

π∑
k=1

αkxk +
π+σ∑
`=π+1

β`x`

}

for some sets of vectors {x1, . . . ,xπ} and {xπ+1, . . . ,xπ+σ}, where α1 + · · · + απ =

1, αk ≥ 0 for all k = 1, . . . , π, and β` ≥ 0 for all ` = π + 1, . . . , π + σ.

A direct consequence of the Decomposition Theorem is that any element of P̃

may be represented as a convex combination of the points x1, . . . ,xπ plus a conical

combination of the vectors xπ+1, . . . ,xπ+σ. However, a key difference between the

Representation Theorem and the Decomposition Theorem is that the sets of extreme

points and directions needed in the former are known in general, whereas the sets

{x1, . . . ,xπ} and {xπ+1, . . . ,xπ+σ} needed in the latter may not be. In particular,
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the extreme points and directions of P̃ may be computed algorithmically, e.g., by the

Double Description Method (refer to Motzkin et al. [113], Matheiss and Rubin [109],

and Dandurand [29]), as well as by software including SageMath [132]. Accordingly,

when available, the preferred representation of elements of P̃ is with respect to the

Representation Theorem. When not available, for examples similar to the line {x ∈

R2 : x2 = 2}, the Decomposition Theorem may be used. In fact, one possible

representation of the aforementioned line is given by

{x ∈ R2 : x2 = 2} =

{
x ∈ R2 :

[
0
2

]
+ β2

[
1
0

]
+ β3

[
−1
0

]}
,

where β2, β3 ≥ 0. In addition, the Representation Theorem takes on added signif-

icance in terms of linear programming (especially within the scope of the Simplex

Method) since the feasible set of a linear program is polyhedral.

2.5 Linear Programming

Two fundamental aspects of (deterministic) single-objective linear program-

ming are duality and the Karush-Kuhn-Tucker (KKT) conditions. First, associated

with each linear program, there is another linear program called the dual. In this

context, the original linear program is known as the primal. The dual linear program

possesses many important properties relative to the primal problem, which result from

the idea that when we are solving the original linear program, we are simultaneously

solving the dual (refer to Chapter 6, Bazaraa et al. [3]).

45



Suppose that the primal linear program (LP) is given in the canonical form:

min
x

cTx

s.t. Ax 5 b

x = 0,

(2.5)

where c ∈ Rn is the cost vector, x ∈ Rn is the decision vector, A ∈ Rm×n is the

constraint matrix, and b ∈ Rm is the vector of right-hand side (RHS) values. The

feasible set of LP (2.5) is a polyhedron denoted by

P := {x ∈ Rn : Ax 5 b,x = 0}, (2.6)

which may be equivalently written in the form of (2.4) by letting the constraint

matrix be
[
A −In

]T
and the RHS be

[
b 0

]T
. Since P lies in the nonnegative

orthant, which clearly does not contain a line, the feasible set P has at least one

extreme point by Theorem 2.4.27, a fact helps motivate why an optimal solution (if

it exists) to LP (2.5) occurs at an extreme point.

The dual linear program (DP) associated with LP (2.5) is then given by

max
w

bTw

s.t. ATw 5 c

w 5 0,

(2.7)

where w ∈ Rm is the vector of dual variables. Note that there is exactly one dual

variable wj for each constraint in the primal problem, and there is exactly one con-

straint in the dual for each primal variable xi. Relating the primal LP and its dual,

we have the following result.
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Theorem 2.5.1. [3, Fundamental Theorem of Duality, Theorem 6.1] Consider LP

(2.5) and its associated dual DP (2.7). Exactly one of the following statements is

true:

(i) Both possess optimal solutions x̂ and v̂ with cT x̂ = bT v̂;

(ii) One problem has an unbounded optimal objective value, in which case the other

problem must be infeasible; or

(iii) Both problems are infeasible.

Statement (i) in the Fundamental Theorem of Duality is often referred to as

Strong Duality. Along with Strong Duality, it clear in the Fundamental Theorem of

Duality that solving the primal problem is equivalent to solving the dual problem.

Alternatively, it is apparent that while solving one (either the primal or dual), we are

simultaneously solving the other.

Second, in addition to duality, the KKT conditions form the foundation of

(continuous) optimization including both linear and nonlinear programming. In the

context of LP (2.5), the KKT conditions are both necessary and sufficient optimality

conditions as we see in the following result.

Theorem 2.5.2. [3, KKT Conditions, pp. 238–239] The vector x̂ ∈ Rn is an optimal

solution to LP (2.5) if and only if there exists a ŵ ∈ Rm such that (x̂, ŵ) satisfy

Ax 5 b x = 0 (2.8)

ATw 5 c w 5 0 (2.9)

wT (Ax− b) = 0 xT (c−ATw) = 0. (2.10)
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The first condition (2.8) is typically called primal feasibility since it simply

requires that x̂ be a feasible solution to LP (2.5). Similarly, the second condition

(2.9) is usually referred to as dual feasibility since it forces ŵ to be a feasible solution

to DP (2.7). Finally, the third condition (2.10) is typically called complementary

slackness. The reason for this terminology is because wT (Ax − b) = 0 if and only

if for every j = 1, . . . ,m, either wj is 0 or the j-th slack variable associated with

Ax 5 b is 0. Likewise, xT (c−ATw) = 0 if and only if for every i = 1, . . . , n, either

xi is 0 or the i-th slack variable associated with ATw 5 c is 0.

As mentioned, the KKT conditions form the foundation of optimization in-

cluding linear programming. With this in mind, the Simplex Method to solve LP

(2.5) may be viewed as a systematic approach to finding the optimal extreme point

solution that satisfies the KKT conditions. At each iteration, primal feasibility and

complementary slackness are satisfied, while dual feasibility is partially violated until

an optimal solution is reached. In addition to the clear fundamental nature of the

KKT conditions in linear programming, we later use these optimality conditions to

also solve optimization problems with uncertainty in Chapter 6.

2.6 Theorems of the Alternative

Theorems of the alternative, such as the classical Farkas’ Lemma (refer to

Lemma 5.1, Bazaraa et al. [3]), relate the occurrence of two mutually exclusive events

represented as systems of linear inequalities and/or equations. Numerous versions

of such theorems can be found in the literature, and several relevant theorems are

quoted below.

Theorem 2.6.1 (Gale’s Theorem). Let A ∈ Rm×n be a matrix, and b ∈ Rm a vector.
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(i) [56, Theorem 2.7] Either

Ax 5 b

has a solution x ∈ Rn, or

ATw = 0,bTw = −1,w = 0

has a solution w ∈ Rm, but never both.

(ii) [56, Theorem 2.8] Either

Ax 5 b,x = 0

has a solution x ∈ Rn, or

ATw = 0,bTw < 0,w = 0

has a solution w ∈ Rm, but never both.

Theorem 2.6.2. [107, Gordan’s Theorem, Theorem 5] Let A ∈ Rm×n be a matrix.

Either

Ax > 0

has a solution x ∈ Rn, or

ATw = 0,w ≥ 0

has a solution w ∈ Rm, but never both.

Theorem 2.6.3. [105, Stiemke’s Theorem, p. 19] Let A ∈ Rm×n be a matrix. Either

Ax = 0,x > 0
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has a solution x ∈ Rn, or

ATw ≥ 0

has a solution w ∈ Rm, but never both.

Theorem 2.6.4. [107, Theorem 11, p. 35] Let A ∈ Rm×n be a matrix, and b ∈ Rm

a vector. Either

Ax ≤ b

has a solution x ∈ Rn, or


ATw = 0,bTw = −1,w = 0

or

ATw = 0,bTw 5 0,w > 0


has a solution w ∈ Rm, but never both.

One of the main uses of theorems of the alternative (in the literature, as well as

our work) is to provide additional existence results for linear systems. In particular,

if we have some result occur when a specific linear system has a solution, then a

theorem of the alternative may allow us to equivalently state that the result occurs

when the alternative system has no solution. Likewise, if the result occurs when the

linear system has no solution, then we may equivalently state that the result occurs

when the alternative system does have a solution.
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Chapter 3

Cones

Within convex analysis, convex cones have been well-studied (e.g., Rockafel-

lar [121], Panik [118], and Borwein and Lewis [20]). Convex cones have particular

importance in multiobjective (linear) optimization in terms of defining domination

structures and ordering relationships (see Yu [145], Hartley [65], and Sawaragi et

al. [122]), as well as with respect to defining the structure of the set of improving di-

rections associated with a multiobjective linear program (refer to Thoai [133]) which

is our main interest in studying them here.

We first quote from the literature definitions and existing results regarding

(convex) cones relevant to the topic of multiobjective linear programming in Section

3.1. Then in Section 3.2, we present results that have not (to our knowledge) been

given before in the literature regarding three interrelated convex cones of interest:

polyhedral convex cones and the related convex cones obtained by removing either

part or all of the boundary. In particular, we present properties and develop algebraic

representations of the polar cones (respectively, strict polar cones) of these three

convex cones, as well as of the unions of cones in collections associated with each of

the three cones, in Sections 3.2.2 and 3.2.3. As the acuteness of the three convex
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cones and their associated unions emerges as an important characteristic, we also

propose two methods to verify this property in Section 3.2.4.

3.1 Existing Results

We begin with the definition of a cone and definitions of several types (or

characteristics) of cones.

Definition 3.1.1. A set K ⊆ Rn is said to be a cone if z ∈ K implies that λz ∈ K

for all λ > 0.

For our purposes, cones do not necessarily have to contain the origin, which

is reflected in the above definition. Cones may exhibit various properties such as

pointedness, acuteness, and convexity.

Definition 3.1.2. A cone K ⊆ Rn is said to be

(i) pointed if z ∈ K and z 6= 0 implies that −z /∈ K;

(ii) acute if cl(K) ⊆ H ∪ {0}, where H is an open half-space whose generating

hyperplane passes through the origin;

(iii) convex if for any two points z1, z2 ∈ K, then z1 + z2 ∈ K.

It is important to note that not every cone is convex and that pointedness and

acuteness are not equivalent (even in two-dimensions) which is clearly illustrated in

Figure 3.1. That being said, if the convex cone K is closed, then pointedness and

acuteness are equivalent as in the following.

Proposition 3.1.3. [122, Proposition 2.1.4] Let K ⊆ Rn be a convex cone. Then K

is acute if and only if cl(K) is pointed.
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(a) Nonconvex,
acute, and pointed

(b) Nonconvex, not
acute, and pointed

(c) Nonconvex,
not acute, and not
pointed

(d) Convex, not
acute, and not
pointed

Figure 3.1: Nonconvex and convex cones in two-dimensions

Two specific and relevant convex cones to our study are the normal cone (the

set of all normal directions) and the recession cone (the set of all recession directions),

which we associate with the polyhedral feasible set P (2.6). The normal cone may

more generally be associated with the polyhedral set P̃ (2.4), while the recession cone

may be associated with a convex set.

Definition 3.1.4. The normal cone to the polyhedron P at x̄ ∈ P is a convex cone

defined to be NP (x̄) := {p ∈ Rn : pT (x− x̄) ≤ 0 for all x ∈ P}.

The normal cone NP (x) contains 0 for all x ∈ P , and is thus always nonempty.

When x is an interior point of P , the normal cone is necessarily {0}. Otherwise, when

x is a boundary point, we compute the normal cone as in Theorem 2.3.24, Luc [105].

See Figure 3.2a for an example of a bounded polyhedron and its corresponding normal

cones for various points around the boundary.

Definition 3.1.5. The recession cone of the polyhedron P is a convex cone defined

to be RP := {d ∈ Rn : Ad 5 0,d ≥ 0}.

A recession direction (an element of the recession cone) is thus a direction

along which feasibility to P is always maintained. Hence, if P is bounded, then RP

is necessarily empty. Refer to Figures 3.2b and 3.2c for an example of an unbounded

polyhedron and its associated recession cone.
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(a) The polyhedron P1

(4.10) (blue) with normal
cones (green)

(b) An unbounded polyhe-
dron

(c) The recession cone of
the unbounded polyhedron

Figure 3.2: An example illustrating normal cones and the recession cone

Two other fundamental types of convex cones (that turn out to be equivalent)

are finite and polyhedral convex cones.

Definition 3.1.6. A nonempty convex cone K ⊆ Rn is said to be

(i) finite if it consists of the set of all nonnegative linear combinations of a finite

set of vectors {γ1, . . . ,γρ}; K is said to be spanned or generated by the finite

set of generators {γ1, . . . ,γρ}, where γ` ∈ Rn, ` = 1, . . . , ρ;

(ii) polyhedral convex if it is the intersection of a finite number of closed half-spaces

whose generating hyperplanes pass through the origin.

Equivalently, K is finite if K := {x ∈ Rn : x =
∑ρ

`=1 λ`γ`, λ` ≥ 0, ` = 1, . . . , ρ},

where {γ1, . . . ,γρ} is a finite set of generators of K and γ` ∈ Rn, ` = 1, . . . , ρ. Unless

K is the trivial cone {0}, it is assumed that 0 is not a generator (an assumption

that is maintained throughout the dissertation). Similarly, K is polyhedral convex

if K := {x ∈ Rn : µT1 x ≤ 0, . . . ,µTmx ≤ 0}, where µj ∈ Rn, j = 1, . . . ,m, are the

normals to the generating hyperplanes passing through the origin whose associated

closed half-spaces form K. Here, we have intentionally chosen to define a polyhedral

convex cone using nonpositive (instead of nonnegative) half-spaces for consistency.

54



The well-known Minkowski-Weyl Theorem relates finite cones and polyhedral

convex cones.

Theorem 3.1.7. [118, Theorem 4.7.2] A nonempty cone K ⊆ Rn is polyhedral convex

if and only if it is finite.

In view of the Minkowski-Weyl Theorem, every polyhedral convex cone has

two representations: (i) generator form K(GT ) = {x ∈ Rn : x = GTλ,λ = 0}, where

GT =
[
γ1 · · · γρ

]
∈ Rn×ρ and {γ1, . . . ,γρ} is a finite set of generators of the cone

(namely, nonzero generators unless the cone is the origin), and (ii) inequality form

K5(M) = {x ∈ Rn : Mx 5 0}, where M ∈ Rm×n and the rows of M are the normals

to the generating hyperplanes whose half-spaces form the cone. We may convert

between each form using various algorithms; see, e.g., Dobler [33] for theoretical

work, and SageMath’s [132] polyhedron base class for a software implementation.

As is clear in the inequality form representation of a polyhedral convex cone, K5(M)

(equivalently, K(GT )) is always nonempty since it contains (at least) 0 for all M.

Additionally, K5(M) is always closed since it is the intersection of a finite number

of closed half-spaces whose generating hyperplanes pass through the origin (recalling

that an arbitrary intersection of closed sets is closed as in Theorem 2.4.8(iii)).

Example 3.1.8. Consider the finite (polyhedral convex) cone, which is illustrated in

Figure 3.3, generated by the vectors γ1 =
[
2 3

]T
and γ2 =

[
−1 2

]T
. The generator

form of the cone is {
x ∈ R2 : x =

[
2 −1
3 2

]
λ,λ = 0

}
,

while the inequality form of the cone is

{
x ∈ R2 :

[
3 −2
−2 −1

]
x 5 0

}
.
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Another characterization of a polyhedral convex cone is as a cone that is also

a polyhedron. Since extreme points and extreme directions are important pieces of

any polyhedron, we discuss these features with respect to polyhedral convex cones

here.

Theorem 3.1.9. [15, Theorem 4.12] The zero vector is an extreme point of the

polyhedral convex cone K ⊆ Rn if and only if K does not contain a line, i.e., is

pointed.

In fact, since a polyhedral convex cone is formed by half-spaces whose gen-

erating hyperplanes pass through the origin, the origin is the only possible extreme

point. As a result, if a polyhedral convex cone is not pointed, then it has no extreme

points. On the other hand, from the definition of a cone, it is clear that a nontrivial

polyhedral convex cone has at least one extreme direction (which is an element of the

cone unlike with a general polyhedron).

Theorem 3.1.10. [15, Definition 4.2(a)] A nonzero element x of the polyhedral con-

vex cone K ⊆ Rn is an extreme direction of K if and only if there are n−1 constraints

from {µT1 x ≤ 0, . . . ,µTmx ≤ 0} active at x whose corresponding vectors µj are linearly

independent.

In view of Theorems 3.1.9 and 3.1.10, the Representation Theorem 2.4.33 for a

polyhedral convex cone (when applicable) reduces to only a conic combination of the

cone’s extreme directions. Meanwhile, in view of the generator form of a polyhedral

convex cone, the Decomposition Theorem 2.4.34 reduces to only a conic combination

of the vectors xπ+1, . . . ,xπ+σ.

Although the polyhedrality of convex cones is not necessarily preserved under

their union as convexity may be lost, it is in fact preserved under their intersection.
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Proposition 3.1.11. [118, p. 84] Let M1,M2 ∈ Rm×n. Then K5(M1)∩K5(M2) is

a polyhedral convex cone.

For a polyhedral convex cone, pointedness is determined by the matrix M.

Theorem 3.1.12. [74, Theorem 3.1] Let M ∈ Rm×n. Then K5(M) is pointed if and

only if rank(M) = n.

The interior of a polyhedral convex cone in inequality form (with no rows of M

all zero) is clear (as 5 becomes <), but it is not as clear when the cone is in generator

form. One might expect that λ = 0 would become λ > 0, yet this is not the case

in part because the interior may be empty. (In particular, since the product GTλ

always produces a result, it is impossible for the set {x ∈ Rn : x = −GTλ,λ > 0}

to be empty even though the interior might be.) Instead, this expected result of the

interior of the cone in generator form is given by the relative interior.

Theorem 3.1.13. [62, Theorem 2.3.37] The relative interior of the finite cone K(GT )

is given by rel int(K(GT )) = {x ∈ Rn : x = GTλ,λ > 0}.

An important question (as we see in Sections 3.2) is whether or not this relative

interior contains the origin. The answer is directly related to Stiemke’s Theorem 2.6.3,

as well as pointedness, and is stated in the following.

Theorem 3.1.14. [62, Theorem 2.3.38] Consider the finite cone K(GT ). The fol-

lowing statements are equivalent:

(i) K(GT ) = Lin(K(GT ));

(ii) 0 ∈ rel int(K(GT ));

(iii) there does not exist an x ∈ Rn such that Gx ≥ 0.
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Here, Lin(K(GT )) denotes the lineality space (see Definition 2.1.28, Greer

[62]) of K(GT ). Since K(GT ) is convex, we have that Lin(K(GT )) = K(GT ) ∩

(−K(GT )) by Theorem 2.1.32, Greer [62]. With this in mind, (i) and (ii) reveal that

if 0 ∈ rel int(K(GT )) and K(GT ) 6= {0}, then K(GT ) is not pointed. (Note that an

equivalent definition to ours of pointedness provided on p. 213 in Hartley [65] is that

a pointed cone K satisfies the property that K ∩ (−K) = {0}.) In addition, since

rel int(K(GT ) = {x ∈ Rn : x = GTλ,λ > 0} by Theorem 3.1.13, (ii) and (iii) may

be obtained directly by Stiemke’s Theorem 2.6.3.

Example 3.1.15. As an example of a finite cone whose relative interior contains the

origin, let γ1 =
[
1 1

]T
and γ2 =

[
−1 −1

]T
be the columns of GT . The resulting

finite cone K(GT ) is then the line with slope 1 passing through the origin. In this

case, we intuitively consider the relative interior of K(GT ) as its interior in R. Hence,

rel int(K(GT )) = K(GT ) so that 0 is clearly in the relative interior.

Note that similar examples can be constructed in higher dimensions by ensur-

ing that the cone is of a lower dimension than the space and that the cone passes

through the origin.

In order to relate the relative interior of a polyhedral convex (finite) cone to its

interior, it is necessary to compute the cone’s dimension (cf. Proposition 2.4.22(i)).

The dimension (refer to Definition 2.4.16) of a convex cone may be regarded as the

maximum number of linearly independent vectors contained in the cone (see p. 79,

Panik [118]). As a result, the dimension of a finite cone (i.e., a polyhedral convex

cone in generator form) is clearly related to the rank of the defining matrix.

Proposition 3.1.16. [118, p. 86] The equality dim(K(GT )) = rank(G) holds.

If the polyhedral convex cone is instead given in inequality (rather than gen-

erator) form, then various software, including SageMath’s polyhedron base class,
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can readily provide the dimension.

Two of the fundamental operations on (convex) cones, and ones that we ex-

ploit, are those of duality and polarity. Although Definition 3.1.17 (as well as subse-

quent results, e.g., Proposition 3.1.19) is presented in the context of cones, it may be

given for general sets.

Definition 3.1.17. Let K ⊆ Rn be a cone. Then

(i) its dual cone (or negative polar) is the set K∗ := {z̄ ∈ Rn : zT z̄ ≤ 0 for all z ∈

K};

(ii) its polar cone (or positive polar) is the set K+ := {z̄ ∈ Rn : zT z̄ ≥ 0 for all z ∈

K};

(iii) its strict polar cone (or strict positive polar) is the set Ks+ := {z̄ ∈ Rn : zT z̄ > 0

for all z ∈ K \ {0}}.

The dual cone K∗ of a cone K consists of all vectors making a non-acute angle

(≥ π/2 or ≤ −π/2) with every vector of K. Similarly, the polar cone K+ of a cone

K consists of all vectors making a non-obtuse angle (≤ π/2 or ≥ −π/2) with every

vector of K, while the strict polar consists of all vectors making an acute angle with

every vector of K. Observe that the polar cone is the negative of the dual cone (or

vice versa), which gives rise to the use of the alternative terminology positive and

negative polar. The definitions, as well as Figure 3.3, make this fact clear.

Several pertinent results regarding the dual, polar, and strict polar cones are

given in the following collection of results.

Theorem 3.1.18. [63, Dubovitskii-Milyutin Theorem, Theorem 6.23] Let K1, . . . ,

Kζ−1 ⊆ Rn be open convex cones and Kζ ⊆ Rn be a convex cone. Then
⋂ζ
`=1K` = ∅
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if and only if there exists a z` ∈ K∗` for each ` = 1, . . . , ζ, z1, . . . , zζ not all zero, such

that z1 + · · ·+ zζ = 0.

Proposition 3.1.19. [122, Proposition 2.1.5] Let K,K1, K2 ⊆ Rn be cones. Then

(i) K+ = [cl(K)]+;

(ii) K+ is a closed convex cone and Ks+ is a convex cone;

(iii) if K is open, Ks+ ∪ {0} = K+;

(iv) K1 ⊆ K2 implies K+
2 ⊆ K+

1 and Ks+
2 ⊆ Ks+

1 .

Proposition 3.1.20. [122, Proposition 2.1.6(i)] Let K1, K2 ⊆ Rn be nonempty cones.

Then (K1 ∪K2)+ = K+
1 ∩K+

2 .

Theorem 3.1.21. [145, Theorem 2.1] Let K ⊆ Rn be a nonempty cone. Then

(i) int(K+) 6= ∅ if and only if K is acute;

(ii) if K is acute, int(K+) = [cl(K)]s+.

It is worth noting that the results of Propositions 3.1.19(i), (ii), (iv), and

3.1.20, as well as Theorem 3.1.21(i), apply similarly to the dual since it is simply

the negative of the polar cone. When the given cone is polyhedral, we obtain more

specific results on duality and polarity as in the following two propositions.

Proposition 3.1.22. [118, p. 88] The dual of the finite cone K(GT ) is [K(GT )]∗ =

K5(G).

Proposition 3.1.23. [122, Proposition 2.1.13] The polar of the polyhedral convex

cone K5(M) is [K5(M)]+ = K(−MT ).
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In particular, this means that the dual and polar of a polyhedral convex cone

are also polyhedral convex cones. Note also that even though we state Proposition

3.1.22 (similarly for Proposition 3.1.23) beginning with the cone in generator form and

obtain the dual in inequality form, we may present it conversely as in the following.

Proposition 3.1.24. (i) [118, p. 89] The dual of the polyhedral convex cone

K5(M) is [K5(M)]∗ = K(MT ).

(ii) [118, p. 90] The polar of the finite cone K(GT ) is [K(GT )]+ = K5(−G).

Proposition 3.1.24 is clear based on the Duality Theorem for Finite Cones (refer

to Theorem 4.2.1, Panik [118]), which states that the dual of the dual (equivalently,

the polar of the polar) of a polyhedral convex (finite) cone is the original cone. For

example, [K(GT )]∗ = K5(G) gives [K(GT )]∗∗ = [K5(G)]∗, i.e., K(GT ) = [K5(G)]∗

as desired.

Example 3.1.25. Consider the polyhedral convex cone of Example 3.1.8. Its dual and

polar cones are given by

{
x ∈ R2 :

[
2 3
−1 2

]
x 5 0

}
and

{
x ∈ R2 : x = −

[
3 −2
−2 −1

]
λ,λ = 0

}
,

respectively. The dual and polar cones are shown in Figure 3.3, along with the strict

polar cone (whose closed form representation we derive in Section 3.2).

Another operation on (convex) cones that we study is that of translation, which

is denoted with the Minkowski sum. Although the following definition is presented

in the context of cones, it may be given for general sets as well.

Definition 3.1.26. For z0 ∈ Rn and K ⊆ Rn a nonempty cone, K⊕{z0} := {z+z0 :

z ∈ K} is the translate of K by the translation z0.
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(a) The original cone
(blue)

(b) The dual cone
(green)

(c) The polar cone
(red)

(d) The strict polar
cone (purple)

Figure 3.3: The polyhedral convex cone of Example 3.1.8, as well as its dual, polar,
and strict polar cones

In the following section, we study the polar, strict polar, and translation op-

erations on polyhedral convex cones and unions of polyhedral convex cones, as well

as on two related convex cones and their associated unions, in more detail.

3.2 New Results

Although convex cones are well studied in convex analysis, the properties of

three specific types of convex cones (polyhedral convex cones and two related convex

cones) of interest and significance to multiobjective optimization have not been fully

developed. In particular, the literature lacks descriptions of the polars, strict polars,

and translations of these cones and of their respective unions, as well as the conditions

under which the aforementioned polar and strict polar cones are expected to be

nonempty. Here, the importance of studying unions of cones in collections associated

with each of these convex cones rather than intersections is two-fold: (i) the union

is not guaranteed to be convex while the intersection is, and (ii) the unions appear

in our later research on multiobjective optimization problems with uncertainty (as in

Chapter 6). Hence, the conditions that allow us to still demonstrate certain properties

are attractive.

In Section 3.2.1, algebraic formulas for the translations of the three convex
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cones of interest and of their associated unions are presented and discussed. Properties

and closed form representations of the polar and strict polar cones corresponding to

the three convex cones and to their respective unions are then proposed in Sections

3.2.2 and 3.2.3. Since the acuteness of the cones examined in these two sections is

often assumed, methods with which to verify this property are developed in Section

3.2.4.

Let M,M1, . . . ,Mr be real m× n matrices. We study the polyhedral convex

cone K5(M) and two related cones given in inequality form:

K≤(M) := {x ∈ Rn : Mx ≤ 0}, and K<(M) := {x ∈ Rn : Mx < 0},

as well as the unions of cones in collections associated with each of these three cones

that are constructed using the matrices M1, . . . ,Mr.

Observe that K≤(M) and K<(M) are convex cones. It is clear (see Theorem

2.4.8(ii)) that K<(M) is open as K<(M) is the intersection of open half-spaces whose

generating hyperplanes pass through the origin. On the other hand, K≤(M) may

be open, closed, or neither. When m = 1, we have that K≤(M) = K5(M) so that

K≤(M) is closed since ≤ and 5 coincide. When m ≥ 2 and rank(M) = 1, we have

that K≤(M) = K<(M), and K≤(M) is thus open. When m ≥ 2 and rank(M) = n,

the only vector x excluded by Mx ≤ 0 versus Mx 5 0 is x = 0 (by Theorem 2.3,

Bronson [22]). Hence, K≤(M) = K5(M) \ {0}, i.e., K≤(M) is the intersection of

closed half-spaces whose generating hyperplanes pass through the origin, with the

origin then removed, and is thus neither open nor closed (unless K5(M) = {0}, in

which case K≤(M) = ∅ and is thus both open and closed). Otherwise, when m ≥ 2

and 1 < rank(M) < n, it may be that K≤(M) is neither open nor closed.

Example 3.2.1. To illustrate the differences between the three cases when p ≥ 2,

63



consider the following examples.

(i) Let M =

[
1 2
−1 −2

]
. Hence, rank(M) = 1, and

K5(M) = {x ∈ R2 : x1 + 2x2 = 0}, K≤(M) = K<(M) = ∅.

(ii) Let M =

[
1 2
3 6

]
. Hence, rank(M) = 1, and

K5(M) = {x ∈ R2 : x1+2x2 ≤ 0}, K≤(M) = K<(M) = {x ∈ R2 : x1+2x2 < 0}.

(iii) Let M =

 5 2
−1 3
1 1

. Hence, rank(M) = 2 = n, and

K5(M) = {x ∈ R2 : 5x1 + 2x2 ≤ 0,−x1 + 3x2 ≤ 0, x1 + x2 ≤ 0},

K≤(M) = {x ∈ R2 : 5x1 + 2x2 ≤ 0,−x1 + 3x2 ≤ 0, x1 + x2 ≤ 0,

at least one strict},

K<(M) = {x ∈ R2 : 5x1 + 2x2 < 0,−x1 + 3x2 < 0, x1 + x2 < 0}.

Notice that K≤(M) is K5(M) with the origin removed, and is thus neither open

nor closed.

(iv) Let M =

[
−1 0 0
0 −1 0

]
. Hence, 1 < rank(M) = 2 < n, and

K5(M) = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0},

K≤(M) = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, at least one strict},

K<(M) = {x ∈ R3 : x1 > 0, x2 > 0}.

Notice that K≤(M) is K5(M) with the x3-axis (not just the origin) removed,

and is thus neither open nor closed.
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Moreover, note that unlike the polyhedral convex cone K5(M) that may be

represented in either inequality form or generator form, a generator form represen-

tation of the convex cones K<(M) and K≤(M) may not be available. One obvious

reason for this is that a cone represented in generator form is always nonempty, but

both K<(M) and K≤(M) may be empty, as in Example 3.2.1(i).

A second example illustrates this for the case when m = 3 and also shows that

the polyhedral convex cone K5(M) is always nonempty as it is at least the origin.

Example 3.2.2. Let M =

 1 2
−5 −2
1 −1

. Hence, rank(M) = 2 = n, and

K5(M) = {0}, K≤(M) = K<(M) = ∅.

As it is important to know the relationship between acuteness and pointedness

in a general setting (cf. Proposition 3.1.3) in many of the proceeding results, we have

the following proposition (which is based on a remark on p. 8, Sawaragi et al. [122]).

Proposition 3.2.3. Let K ⊆ Rn be a cone. If K is acute, then it is also pointed.

Proof. Let K be acute. By Definition 3.1.2(ii), there is an open half-space H gen-

erated by the hyperplane passing through the origin, {x ∈ Rn : aTx = 0}, where

a ∈ Rn and a 6= 0, such that cl(K) ⊆ H ∪ {0}. Without loss of generality, we have

H = {x ∈ Rn : aTx > 0}, and cl(K) ⊆ {x ∈ Rn : aTx > 0} ∪ {0}.

Now, assume for the sake of contradiction that K is not pointed. By Definition

3.1.2(i), there exists a z ∈ K, z 6= 0, such that −z ∈ K. Since z ∈ K ⊆ cl(K) and

z 6= 0, we know that aTz > 0. Similarly, since −z ∈ K ⊆ cl(K) and −z 6= 0, we

know that aT (−z) > 0, which gives aTz < 0, a contradiction. Hence, it must be that

K is pointed as desired.

Thus, it is apparent that acuteness is a stronger concept than pointedness.
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3.2.1 Translations

We derive the algebraic representations of the translations of the convex cones

K5(M), K≤(M), and K<(M). In the case of polyhedral convex cones in either

generator or inequality form, we have the following result.

Proposition 3.2.4. Let x0 ∈ Rn be given.

(i) The finite cone K(GT ) translated by the translate x0 is given by K(GT )⊕{x0} =

{x ∈ Rn : x = GTλ+ x0,λ = 0}.

(ii) The polyhedral convex cone K5(M) translated by the translate x0 is given by

K5(M)⊕ {x0} = {x ∈ Rn : Mx 5 Mx0}.

Proof. (i) Since K(GT ) = {x ∈ Rn : x = GTλ,λ = 0}, the result follows from

Definition 3.1.26.

(ii) Let x̄ ∈ K5(M) ⊕ {x0}. Equivalently, x̄ − x0 ∈ K5(M), i.e., M(x̄ − x0) 5 0.

Therefore, Mx̄ 5 Mx0, which gives the result.

Proposition 3.2.5. Let x0 ∈ Rn be given.

(i) The convex cone K≤(M) translated by the translate x0 is given by K≤(M) ⊕

{x0} = {x ∈ Rn : Mx ≤Mx0}.

(ii) The convex cone K<(M) translated by the translate x0 is given by K<(M) ⊕

{x0} = {x ∈ Rn : Mx < Mx0}.

Proof. (i)-(ii) Follows similarly to the proof of Proposition 3.2.4(ii).

Using the above propositions, we may also obtain clear formulas for trans-

lations of the unions of the three convex cones obtained by means of the matrices
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Figure 3.4: The translated cone (blue) by the translate x0 (red)

M`, ` = 1, . . . , r. For example, we have that

⋃r
`=1K5(M`)⊕ {x0} = (K5(M1)⊕ {x0}) ∪ · · · ∪ (K5(Mr)⊕ {x0})

by Theorem 2.4.3(iii).

Example 3.2.6. Consider the following polyhedral convex cone given in generator and

inequality form:

{
x ∈ R2 : x =

[
3 −2
1 1

]
λ,λ = 0

}
=

{
x ∈ R2 :

[
1 −3
−1 −2

]
x 5 0

}

and take the vector x0 = (−2, 1). The translated cone by the translate x0, which is

shown in Figure 3.4, may be written as

{
x ∈ R2 : x =

[
3 −2
1 1

]
λ+

[
−2
1

]
,λ = 0

}

if the cone is given in generator form, and

{
x ∈ R2 :

[
1 −3
−1 −2

]
x 5

[
1 −3
−1 −2

] [
−1
2

]}

if the cone is given in inequality form.
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Conceptually, Propositions 3.2.4 and 3.2.5 allow us to represent the action of

translating the cones K5(M), K≤(M), and K<(M) around a region. In other words,

the translated cone is the cone “attached” at the vector x0 (see Figure 3.4).

3.2.2 Polar Cones

Given the cones K5(M), K≤(M), and K<(M), we denote their polars (refer to

Definition 3.1.17(ii)) by K+
5 (M), K+

≤(M), and K+
<(M), respectively. We first derive

the algebraic representation of the polars of the three convex cones of interest, and

subsequently address their nonemptiness.

Proposition 3.2.7. (i) The equality K+
5 (M) = {x ∈ Rn : x = −MTλ,λ = 0}

holds.

(ii) Let cl(K≤(M)) = K5(M). Then K+
≤(M) = K+

5 (M).

(iii) Let cl(K<(M)) = K5(M). Then K+
<(M) = K+

5 (M).

Proof. (i) Given by Proposition 3.1.23.

(ii)-(iii) Follow directly from Proposition 3.1.19(i).

In view of the preceding proposition, several observations regarding the non-

emptiness of the polars K+
<(M), K+

≤(M), and K+
5 (M) are pertinent. First, it is

clear that the polars are in fact nonempty since K+
<(M) = K+

≤(M) = K+
5 (M) =

K(−MT ) is a polyhedral convex cone (in generator form) and is therefore nonempty

(as discussed previously). Second, since K5(M) 6= ∅ (as it always contains 0) and the

empty set is closed, the assumptions that cl(K≤(M)) = K5(M) and cl(K<(M)) =

K5(M) imply that K≤(M) and K<(M) are nonempty as well. As a result, the

above polars are thus nonempty since the polar of any nonempty set is at least the
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origin. Finally, the interior of each polar is nonempty (and thereby the polar itself is

nonempty as well) when the cone is acute (cf. Theorem 3.1.21(i)).

We now consider collections associated with each of the three types of cones

obtained by means of the matrices M`, ` = 1, . . . , r, and derive algebraic formulas for

the polars of the unions of cones in each collection. Interestingly, the three polars

have the same algebraic representation.

Proposition 3.2.8. (i) The equality
[⋃r

`=1K5(M`)
]+

=
⋂r
`=1K

+
5 (M`) holds.

(ii) Let cl(K≤(M`)) = K5(M`) for all ` = 1, . . . , r. Then [
⋃r
`=1 K≤(M`)]

+
=[⋃r

`=1K5(M`)
]+

.

(iii) Let cl(K<(M`)) = K5(M`) for all ` = 1, . . . , r. Then [
⋃r
`=1 K<(M`)]

+
=[⋃r

`=1K5(M`)
]+

.

Proof. (i) Follows directly from Proposition 3.1.20.

(ii)-(iii) Since cl(K≤(M`)) = K5(M`) and cl(K<(M`)) = K5(M`) imply that

K≤(M`) 6= ∅ and K<(M`) 6= ∅ for all ` = 1, . . . , r, the result follows from

Proposition 3.1.20, Propositions 3.2.7(ii) and (iii), and part (i), respectively.

As in the previous discussion, these polars are always nonempty since the polar

of any nonempty set is at least the origin, and the polars have nonempty interiors

when the unions are acute (cf. Theorem 3.1.21(i)). Moreover, since each polar is

the intersection of polyhedral convex cones (in generator form), existing algorithms

may be used to compute the intersection and provide an algebraic representation of it

(e.g., Hertel et al. [67] and SageMath’s [132] polyhedron base class). In particular,

since the intersection of polyhedral convex cones is still a polyhedral convex cone, each

polar may be represented as in the following result.
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Proposition 3.2.9. (i) The polar
[⋃r

`=1K5(M`)
]+

is a polyhedral convex cone

given by {x ∈ Rn : x = −M̃Tλ,λ = 0} for some suitable matrix M̃T ∈ Rn×m̃.

(ii) Let cl(K≤(M`)) = K5(M`) for all ` = 1, . . . , r. Then [
⋃r
`=1K≤(M`)]

+
is a

polyhedral convex cone given by {x ∈ Rn : x = −M̃Tλ,λ = 0} for some suitable

matrix M̃T ∈ Rn×m̃.

(iii) Let cl(K<(M`)) = K5(M`) for all ` = 1, . . . , r. Then [
⋃r
`=1 K<(M`)]

+
is a

polyhedral convex cone given by {x ∈ Rn : x = −M̃Tλ,λ = 0} for some suitable

matrix M̃T ∈ Rn×m̃.

Proof. (i) Since
[⋃r

`=1K5(M`)
]+

=
⋂r
`=1K

+
5 (M`) by Proposition 3.2.8(i), and

K+
5 (M`) is a polyhedral convex cone for each ` = 1, . . . , r, by Proposition

3.2.7(i), we conclude
[⋃r

`=1K5(M`)
]+

is also a polyhedral convex cone by Propo-

sition 3.1.11. Therefore, by definition, we may express it in generator form for

some suitable matrix M̃T ∈ Rn×m̃.

(ii)-(iii) Follow from part (i) and Propositions 3.2.8(ii) and(iii), respectively.

Remark 3.2.10. In each instance above, the phrase “for some suitable matrix M̃T ∈

Rn×m̃” means “where the columns of −M̃T are a finite set of generators of[⋃r
`=1 K5(M`)

]+
”, a notion that is maintained throughout the remainder of the dis-

sertation. Moreover, since the polar of any nonempty cone is always nonempty (as

it is at least the origin), this matrix is guaranteed to exist. In order to compute

−M̃T , the intersection specified in Proposition 3.2.8 must be determined, which may

be done (as previously mentioned) by using available software such as SageMath’s

polyhedron base class. The proceeding example demonstrates how to use Sage-

Math along with Propositions 3.2.7 and 3.2.8 in a systematic procedure to generate

−M̃T . The corresponding SageMath code is also provided in Appendix B.
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Example 3.2.11. Consider the two polyhedral convex (finite) cones K5(M1) and

K5(M2) (in inequality form) given by

{
x ∈ R2 :

[
−2 1
1 −3

]
x 5 0

}
and

{
x ∈ R2 :

[
4 1
−1 −2

]
x 5 0

}
,

respectively. By Proposition 3.2.7(i), the polars K+
5 (M1) and K+

5 (M2) are

{
x ∈ R2 : x =

[
2 −1
−1 3

]
λ,λ = 0

}
and

{
x ∈ R2 : x =

[
−4 1
−1 2

]
λ,λ = 0

}
,

respectively. Applying Proposition 3.2.8(i) and utilizing SageMath’s polyhedron

base class functions polyhedron.intersection() to compute the intersection and

polyhedron.Vrepresentation() to produce the generator form representation of

the resulting polyhedral convex cone, the polar
[
K5(M1) ∪K5(M2)

]+
= K+

5 (M1) ∩

K+
5 (M2) is given by

{
x ∈ R2 : x = −M̃Tλ,λ = 0

}
=

{
x ∈ R2 : x =

[
1 −1
2 3

]
λ,λ = 0

}
. (3.1)

Inspecting Figures 3.5b and 3.5c, the intersection of the two polar cones is clearly

given by (3.1) since the generators of the resulting polyhedral convex cone,
[
1 2

]T
and

[
−1 3

]T
, are in fact the columns of −M̃T as expected.

3.2.3 Strict Polar Cones

Given the cones K5(M), K≤(M), and K<(M), we denote their strict polars

by Ks+
5 (M), Ks+

≤ (M), and Ks+
< (M), respectively. We explore the strict polars of the

three convex cones of interest. In particular, we examine their nonemptiness and

structure, as well as derive their algebraic representations, which interestingly do
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(a) K5(M1) (purple) and
K5(M2) (teal)

(b) K+
5 (M1) (purple) (c) K+

5 (M2) (teal)

Figure 3.5: The polyhedral convex cones and their polars for Example 3.2.11

not follow the same pattern as for their polar cones (cf. Proposition 3.2.7). We first

address the nonemptiness of the strict polar cones.

Proposition 3.2.12. (i) Let K5(M) be acute. Then Ks+
5 (M) 6= ∅.

(ii) Let K≤(M) be nonempty and acute. Then Ks+
≤ (M) 6= ∅.

(iii) Let K<(M) be nonempty and acute. Then Ks+
< (M) 6= ∅.

Proof. (i) Since K5(M) is nonempty, acute, and closed, Theorems 3.1.21(i) and (ii)

yield ∅ 6= int(K+
5 (M)) = Ks+

5 (M).

(ii) As K≤(M) is nonempty and acute, Theorems 3.1.21(i) and (ii) yield ∅ 6=

int(K+
≤(M)) = [cl(K≤(M))]s+. Also, since K≤(M) ⊆ cl(K≤(M)), Proposition

3.1.19(iv) yields [cl(K≤(M))]s+ ⊆ Ks+
≤ (M). As [cl(K≤(M))]s+ is nonempty, this

containment implies that Ks+
≤ (M) is nonempty.

(iii) Follows similarly to the proof of part (ii).

Having established nonemptiness, we now derive the algebraic formulas for the

three convex cones of interest.

Theorem 3.2.13. (i) Let K5(M) be acute. Then Ks+
5 (M) = {x ∈ Rn : x =

−MTλ,λ > 0}.
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(ii) Let K5(M) be acute. Then Ks+
≤ (M) = Ks+

5 (M).

(iii) Let cl(K<(M)) = K5(M). Then Ks+
< (M) = {x ∈ Rn : x = −MTλ,λ ≥ 0}.

Proof. (i) Since K5(M) is closed, nonempty, and acute, we have Ks+
5 (M) =

int(K+
5 (M)) 6= ∅ by Theorems 3.1.21(i) and (ii). As a result, the interior and

relative interior coincide by Proposition 2.4.22(ii). Hence, Proposition 3.2.7(i)

and Theorem 3.1.13 give the result.

(ii) Note that for m = 1 we have K≤(M) = K5(M) since 5 and ≤ coincide, so the

result is immediate. Otherwise, m ≥ 2. By assumption, K5(M) is acute, which

implies that K5(M) is pointed by Proposition 3.2.3. As a result, rank(M) = n

by Theorem 3.1.12, which implies that x = 0 is the only solution to Mx = 0 by

Theorem 2.3.4. Hence, the only vector x excluded by Mx ≤ 0 versus Mx 5 0

is x = 0, i.e., K≤(M) = K5(M) \ {0}. Thus, by definition, we have that

Ks+
5 (M) = {z ∈ Rn : xTz > 0 for all x ∈ K5(M) \ {0}}, which is equal

to {z ∈ Rn : xTz > 0 for all x ∈ K≤(M)}. Since 0 /∈ K≤(M), we obtain

Ks+
≤ (M) = Ks+

5 (M).

(iii) Since K<(M) is open, we know by Proposition 3.1.19(iii) that Ks+
< (M)∪{0} =

K+
<(M), which implies that Ks+

< (M) = K+
<(M) \ {0}. As K+

<(M) = K+
5 (M) =

{x ∈ Rn : x = −MTλ,λ = 0} by Propositions 3.2.7(iii) and (i), respectively,

and λ = 0 forces x = 0, we obtain Ks+
< (M) = {x ∈ Rn,x 6= 0 : x = −MTλ,λ ≥

0}. Since K<(M) 6= ∅ (which is implied by the assumption that cl(K<(M)) =

K5(M)), we that Mx < 0 has a solution. Equivalently, by Gordan’s Theorem

2.6.2, the system −MTλ = 0,λ ≥ 0 has no solution, which gives the result.

Remark 3.2.14. Observe that the strict polars ofK5(M), K≤(M), andK<(M) derived

in Theorem 3.2.13 are all clearly nonempty. As a result, we obtain that Ks+
≤ (M)
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and Ks+
< (M) are both nonempty under less restrictive assumptions than those of

Propositions 3.2.12(ii) and (iii) since, for example, we only need to assume that

K≤(M) is acute instead of both acute and nonempty.

The strict polar cones are always convex (see Proposition 3.1.19(ii)), but may

be open or neither open nor closed.

Proposition 3.2.15. (i) Let K5(M) be acute. Then Ks+
5 (M) is an open convex

cone.

(ii) Let K5(M) be acute. Then Ks+
≤ (M) is an open convex cone.

(iii) Let K<(M) be acute and cl(K<(M)) = K5(M). Then Ks+
< (M) is a convex cone

that is neither open nor closed.

Proof. (i) Since the strict polar of a cone is convex by Proposition 3.1.19(ii),

Ks+
5 (M) = int(K+

5 (M)) by Theorem 3.1.21(ii), and the interior of a set is open,

the result follows.

(ii) Part (i) and Theorem 3.2.13(ii) yield the result.

(iii) Convexity holds as in part (i). Since cl(K<(M)) = K5(M), Proposition 3.2.7(iii)

and Proposition 3.1.19(iii) yield Ks+
< (M) = K+

5 (M) \ {0}. Moreover, since

Ks+
< (M) 6= ∅ by Proposition 3.2.12 (where K<(M) 6= ∅ by the closure as-

sumption and K<(M) is assumed to be acute) and K+
5 (M) is closed (as it is a

polyhedral convex cone), it is clear that Ks+
< (M) is neither open nor closed.

In the last part of this section, we characterize the strict polars of the unions

obtained from the same three collections as in Section 3.2.2. We first address their

nonemptiness.

Theorem 3.2.16. (i) Let
⋃r
`=1K5(M`) be acute. Then

[⋃r
`=1K5(M`)

]s+ 6= ∅.
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(ii) Let
⋃r
`=1K≤(M`) be nonempty and acute. Then [

⋃r
`=1K≤(M`)]

s+ 6= ∅.

(iii) Let
⋃r
`=1K<(M`) be nonempty and acute. Then [

⋃r
`=1K<(M`)]

s+ 6= ∅.

Proof. (i) Since
⋃r
`=1K5(M`) is nonempty and acute, we have

∅ 6= int
([⋃r

`=1 K5(M`)
]+)

=
[
cl
(⋃r

`=1K5(M`)
)]s+

by Theorems 3.1.21(i) and (ii), respectively. Hence, as K5(M`) is closed for

each ` = 1, . . . , r, and the union of closed sets is closed, the result follows.

(ii) Since
⋃r
`=1K≤(M`) is nonempty and acute, we have

∅ 6= int
(
[
⋃r
`=1K≤(M`)]

+)
= [cl (

⋃r
`=1 K≤(M`))]

s+
(3.2)

by Theorems 3.1.21(i) and (ii), respectively. Also, since
⋃r
`=1 K≤(M`) ⊆

cl (
⋃r
`=1 K≤(M`)), Proposition 3.1.19(iv) yields

[cl (
⋃r
`=1 K≤(M`))]

s+ ⊆ [
⋃r
`=1K≤(M`)]

s+
.

Hence, the result follows from (3.2).

(iii) Follows similarly to the proof of part (ii).

Note in Theorem 3.2.16 that it is not enough to assume that each cone

K5(M`), ` = 1, . . . , r, (respectively, K≤(M`) or K<(M`)) is acute in order to guaran-

tee that the union is also acute. For example, let K5(M1) = R2
= (the first quadrant)

and K5(M2) = R2
5 (the third quadrant). Clearly, the union of these two cones is not

acute. As a result, it is necessary to make the stronger assumption that the union

is acute explicitly. On the other hand, the assumption that the union is nonempty
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may be relaxed since we only need K5(M`) (respectively, K≤(M`) or K<(M`)) to be

nonempty for one ` ∈ {1, . . . , r} in order to guarantee that the union is nonempty.

The following lemma relates the intersection of the strict polars of two cones

to the strict polar of the union of the two cones (cf. Proposition 3.1.20) and is needed

in determining the behavior of the strict polars of the unions of cones in collections

associated with each of the three convex cones of interest (cf. Proposition 3.2.8).

Lemma 3.2.17. Let K1, K2 ⊆ Rn be nonempty cones. Then (K1 ∪K2)s+ = Ks+
1 ∩

Ks+
2 .

Proof. Let z̄ ∈ Ks+
1 ∩ Ks+

2 , or equivalently, z̄ ∈ Ks+
1 and z̄ ∈ Ks+

2 . By definition,

zT z̄ > 0 for any z ∈ K1\{0} and zT z̄ > 0 for any z ∈ K2\{0}. Equivalently, zT z̄ > 0

for any z ∈ (K1 ∪K2) \ {0}, i.e., z̄ ∈ (K1 ∪K2)s+ as desired.

Using Lemma 3.2.17, and under different assumptions than Proposition 3.2.8,

we identify the behavior of the strict polars of the aforementioned unions.

Proposition 3.2.18. (i) The equality
[⋃r

`=1 K5(M`)
]s+

=
⋂r
`=1 K

s+
5 (M`) holds.

(ii) Let K≤(M`) 6= ∅ for all ` = 1, . . . , r. Then [
⋃r
`=1K≤(M`)]

s+
=
⋂r
`=1K

s+
≤ (M`).

(iii) Let K<(M`) 6= ∅ for all ` = 1, . . . , r. Then [
⋃r
`=1K<(M`)]

s+
=
⋂r
`=1K

s+
< (M`).

Proof. (i)-(iii) Follow immediately from Lemma 3.2.17.

Observe that if we make the additional assumption in part (ii) that K≤(M`) is acute

for all ` = 1, . . . , r, then we may use Theorem 3.2.13(ii) to obtain [
⋃r
`=1K≤(M`)]

s+
=[⋃r

`=1 K5(M`)
]s+

.

With the previous result and Theorem 3.1.18 in mind, we may give a second

condition for the nonemptiness of the strict polars of
⋃r
`=1 K5(M`) and

⋃r
`=1K≤(M`).
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We may only provide this condition for two of the unions since only Ks+
5 (M`) and

Ks+
≤ (M`) are guaranteed to be open (see Proposition 3.2.15).

Proposition 3.2.19. (i) Let K5(M`) be acute for all ` = 1, . . . , r. Then[⋃r
`=1K5(M`)

]s+
= ∅ if and only if there exists a z` ∈

[
Ks+

5 (M`)
]∗

for each

` = 1, . . . , r, z1, . . . , zr not all zero, such that z1 + · · ·+ zr = 0;

(ii) Let K≤(M`) be nonempty and acute for all ` = 1, . . . , r. Then

[
⋃r
`=1K≤(M`)]

s+
= ∅ if and only if there exists a z` ∈

[
Ks+
≤ (M`)

]∗
for each

` = 1, . . . , r, z1, . . . , zr not all zero, such that z1 + · · ·+ zr = 0.

Proof. (i) By Proposition 3.2.18(i), we have
[⋃r

`=1K5(M`)
]s+

=
⋂r
`=1K

s+
5 (M`).

Moreover, we know that Ks+
5 (M`) is an open convex cone for each ` = 1, . . . , r,

by Proposition 3.2.15(i). Hence, Theorem 3.1.18 yields the result.

(ii) Follows similarly to the proof of (i).

Similarly to Propositions 3.2.8 and 3.2.9, we may extend Proposition 3.2.18 to

an explicit formula as in the following result.

Proposition 3.2.20. (i) Let
⋃r
`=1K5(M`) be acute. Then

[⋃r
`=1K5(M`)

]s+
=

{x ∈ Rn : x = −M̃Tλ,λ > 0} for some suitable matrix M̃T ∈ Rn×m̃.

(ii) Let
⋃r
`=1 K5(M`) be acute. Then [

⋃r
`=1K≤(M`)]

s+
= {x ∈ Rn : x = −M̃Tλ,λ >

0} for some suitable matrix M̃T ∈ Rn×m̃.

(iii) Let cl(K<(M`)) = K5(M`) for all ` = 1, . . . , r. Then [
⋃r
`=1 K<(M`)]

s+
=

{x ∈ Rn,x 6= 0 : x = −M̃Tλ,λ ≥ 0} for some suitable matrix M̃T ∈ Rn×m̃.

Moreover, if K<(M̃) 6= ∅, then [
⋃r
`=1 K<(M`)]

s+
= {x ∈ Rn : x = −M̃Tλ,λ ≥

0}.
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Proof. (i) Since
⋃r
`=1 K5(M`) is nonempty, acute, and closed (as a finite union of

closed sets is closed), Theorem 3.1.21 and Proposition 3.2.9(i) yield

[⋃r
`=1K5(M`)

]s+
= int

(
{x ∈ Rn : x = −M̃Tλ,λ = 0}

)
6= ∅ (3.3)

for some suitable matrix M̃T ∈ Rn×m̃. Thus, (3.3) and Theorem 3.1.13 yield

the result.

(ii) Since
⋃r
`=1K5(M`) is acute, we have that K5(M`) is acute as well for all ` =

1, . . . , r. Hence, we obtain
⋃r
`=1K≤(M`) =

[⋃r
`=1 K5(M`)

]
\{0} and the desired

result as in Theorem 3.2.13(ii).

(iii) Since K<(M`) is open for each ` = 1, . . . , r, and an arbitrary union of open sets

is open, we know by Proposition 3.1.19(iii) that

[
⋃r
`=1K<(M`)]

s+
= [
⋃r
`=1K<(M`)]

+ \ {0}.

Hence, Proposition 3.2.9(iii) yields

[
⋃r
`=1K<(M`)]

s+
= {x ∈ Rn : x = −M̃Tλ,λ = 0} \ {0}

for some matrix M̃T ∈ Rn×m̃. Since λ = 0 forces x = 0, the first part of the

result follows.

Now, for the second part of the result, let K<(M̃) 6= ∅. Thus, Gordan’s

Theorem 2.6.2 yields the result.

As in Remark 3.2.10 and Example 3.2.11, the suitable matrix M̃T may be

computed using existing software such as SageMath’s polyhedron base class. In
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fact, as evidenced in each of the above proofs, the matrix M̃T in Proposition 3.2.20 is

simply the matrix obtained in computing the corresponding polar in Proposition 3.2.8

and may thus be determined in the same manner as previously shown. For instance,

since the the union K5(M1)∪K5(M2) in Example 3.2.11 is acute, the suitable matrix

M̃T in {x ∈ R2 : x = −M̃Tλ,λ > 0} =
[
K5(M1) ∪K5(M2)

]s+
from Proposition

3.2.20(ii) is as given by (3.1).

In addition, Proposition 3.2.20 reveals two important observations regard-

ing the nonemptiness of the strict polars
[⋃r

`=1 K5(M`)
]s+

, [
⋃r
`=1K≤(M`)]

s+
, and

[
⋃r
`=1K<(M`)]

s+
. First, as with Theorem 3.2.13 and discussed in Remark 3.2.14,

these strict polars are clearly nonempty (excluding the representation obtained in the

first part of (iii)). Second, as a result, the assumptions of Proposition 3.2.20 provide

different (and possibly less restrictive) conditions in comparison to the earlier results

of Theorem 3.2.16 and Proposition 3.2.19 under which the strict polars are nonempty.

For example, the assumptions of Proposition 3.2.20(ii) are certainly less restrictive

than those of Theorem 3.2.16(ii).

The final result of this section shows that the strict polar cones of these unions

follow the behavior (under certain assumptions) of the strict polar cones of the three

individual cones (see Proposition 3.2.15) in terms of convexity and openness.

Proposition 3.2.21. (i) Let
⋃r
`=1 K5(M`) be acute. Then

[⋃r
`=1 K5(M`)

]s+
is an

open convex cone.

(ii) Let
⋃r
`=1K5(M`) be acute. Then [

⋃r
`=1 K≤(M`)]

s+
is an open convex cone.

(iii) Let cl(K<(M`)) = K5(M`) for all ` = 1, . . . , r, and
⋃r
`=1 K<(M`) be acute.

Then [
⋃r
`=1K<(M`)]

s+
is a convex cone that is neither open nor closed.

Proof. (i) Since the strict polar is convex by Proposition 3.1.19(ii), K5(M`) is
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closed for all ` = 1, . . . , r, and the interior of a set is open, Theorem 3.1.21(ii)

yields the result.

(ii) Follows from part (i) and Proposition 3.2.20(ii).

(iii) Convexity holds as in part (i). Since [
⋃r
`=1K<(M`)]

+
=
[⋃r

`=1 K5(M`)
]+

by

Proposition 3.2.8(iii), we have that [
⋃r
`=1 K<(M`)]

s+
=
[⋃r

`=1 K5(M`)
]+ \ {0}

by Proposition 3.1.19(iii). Moreover, since [
⋃r
`=1K<(M`)]

s+ 6= ∅ by Theorem

3.2.16(iii) and
[⋃r

`=1 K5(M`)
]+

is closed by Proposition 3.1.19(ii), the result

follows.

In the result directly above, the assumption of acuteness is key (at least in

parts (i) and (ii)). Moreover, several results throughout this section have also relied

on the assumption that the given cone is acute including Proposition 3.2.12, Theorem

3.2.13, and Proposition 3.2.20. Hence, it is clearly important to be able to identify

this property, specifically for the (closed) polyhedral convex cone K5(M), as well as

for
⋃r
`=1K5(M`).

3.2.4 Acuteness Recognition

Although algorithms are available to recognize polyhedrality (see Bemporad

et al. [4]), such methods have not been presented in the literature for recognizing the

acuteness of a cone. It is worth noting that an acute cone need not be polyhedral

(as it may not even be convex), and a polyhedral convex cone need not be acute.

Refer to Figures 3.1a and 3.1d, respectively, for an example of each situation. Hence,

recognizing acuteness is a much different task than recognizing polyhedrality, which

we address in this section. We specifically examine an acuteness recognition method

for the (closed) polyhedral convex cone K5(M), as well as for
⋃r
`=1K5(M`), that
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relies upon the polar cone.

The polyhedral convex cone K5(M) may be written in either of two forms,

inequality or generator. When K5(M) is given in inequality form, the algebraic

formula of K+
5 (M) is explicitly given by Proposition 3.2.7(i). On the other hand,

when K5(M) is given in generator form, say K(GT ), where GT is an n × ρ matrix

whose columns are a finite set of generators and are nonzero unless K5(M) = {0}

(refer to pp. 54–55), we obtain a different algebraic representation as in Proposition

3.1.24(ii). Specifically, the polar of the polyhedral convex cone in generator form is

given by

[K(GT )]+ = K5(−G) = {x ∈ Rn : −Gx 5 0}. (3.4)

With this in mind, we have the following method for recognizing the acuteness of

(nontrivial) K5(M). (Note that we do not need to consider the acuteness of K5(M) =

{0} as it is obviously acute and that it is explicitly known if K5(M) = {0} based on

whether or not 0 is a generator.)

Theorem 3.2.22. Let K5(M) 6= {0} be given in generator form. Then K5(M) is

acute if and only if the system

−Gx < 0 (3.5)

is consistent.

Proof. Since K5(M) is nonempty, we know that K5(M) is acute if and only if

int(K+
5 (M)) 6= ∅ by Theorem 3.1.21(i). As G has no rows that are all zero, the

interior of {x ∈ Rn : −Gx 5 0} is {x ∈ Rn : −Gx < 0} so that the result follows

from (3.4).

As a recognition method for acuteness, Theorem 3.2.22 allows one to equiv-

alently verify that (3.5) has a feasible solution computationally, which may be done
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using a variety of software. A natural question to ask now is: Do we have a similar

system if K5(M) is given in inequality form? The answer is no since we do not,

in general, have an algebraic formula for the interior of a polyhedral convex (finite)

cone in generator form. That being said, we do have an explicit representation of

the relative interior as in Theorem 3.1.13. Nevertheless, we have the following (more

general) theorem.

Theorem 3.2.23. If dim(K+
5 (M)) = n, then K5(M) is acute.

Proof. Let dim(K+
5 (M)) = n. Hence,

int(K+
5 (M)) = rel int(K+

5 (M)) (3.6)

by Proposition 2.4.22(i). Moreover, since K+
5 (M) is nonempty (as discussed earlier)

and convex (by Proposition 3.1.19(ii)), we obtain that

rel int(K+
5 (M)) 6= ∅ (3.7)

by Theorem 2.4.23. Thus, (3.6) and (3.7) yield that K5(M) 6= ∅ is acute by Theorem

3.1.21(i).

Observe that Theorem 3.2.23 does not depend on the form, inequality or

generator, of K5(M) despite our motivation. Even though we do not have a sys-

tem to solve as in Theorem 3.2.22, we do have a condition to verify, namely that

dim(K+
5 (M)) = n, which may be done computationally in several ways. In particu-

lar, if K+
5 (M)) is in generator form (as it is when K5(M) is in inequality form), then

dim(K+
5 (M)) = rank(M) by Proposition 3.1.16. Otherwise, various software, includ-

ing SageMath’s [132] polyhedron base class, can readily provide the dimension.

Moreover, it is worth noting that Theorem 3.2.23 is applicable for any nonempty
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cone K ⊆ Rn, while Theorem 3.2.22 is not because we do not generally have an

explicit algebraic formula for the resulting polar cone. In particular, since Theorem

3.2.23 may be applied for any nonempty cone, the theorem may be used in the context

of, e.g., Propositions 3.2.12(i) and (ii).

Using Theorems 3.2.22 and 3.2.23, we may similarly verify the acuteness of

(nontrivial)
⋃r
`=1K5(M`).

Corollary 3.2.24. Let K5(M`) 6= {0} be given in generator form for each ` =

1, . . . , r. Then
⋃r
`=1K5(M`) is acute if and only if the system

−G`x < 0 for all ` = 1, . . . , r (3.8)

is consistent.

Proof. Follows from Theorem 3.2.22, Proposition 3.2.8(i), and Proposition 2.4.11.

Likewise, we have the following extension of Theorem 3.2.23.

Proposition 3.2.25. If dim([
⋃r
`=1 K5(M`)]

+) = n, then
⋃r
`=1K5(M`) is acute.

Proof. Follows similarly to the proof of Theorem 3.2.23.

With respect to, e.g., Proposition 3.2.12, Theorem 3.2.13, and Proposition

3.2.20, we now have systematic approaches to verify the acuteness required to apply

each result. As an illustration of two of the recognition methods, specifically Corollary

3.2.24 and Proposition 3.2.25, consider the following example.

Example 3.2.26. Consider the two polyhedral convex (finite) cones K5(M1) and

K5(M2) given in generator form

{
x ∈ R2 : x =

[
−3 −9
−1 −1

]
λ,λ = 0

}
and

{
x ∈ R2 : x =

[
3 −1
1 2

]
λ,λ = 0

}
, (3.9)
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(a) K5(M1) (purple) and K5(M2) (teal) (b) K+
5 (M1) (purple) and K+

5 (M2) (teal)

Figure 3.6: The polyhedral convex cones and their polars for Example 3.2.26

respectively. Hence, the polars K+
5 (M1) and K+

5 (M2) are

{
x ∈ R2 :

[
3 1
9 1

]
x 5 0

}
and

{
x ∈ R2 :

[
−3 −1
1 −2

]
x 5 0

}
, (3.10)

respectively. Therefore, by Corollary 3.2.24, K5(M1) ∪K5(M2) is acute if and only

if the system

3x1 + x2 < 0

9x1 + x2 < 0

−3x1 − x2 < 0

x1 − 2x2 < 0

(3.11)

is consistent. Here, it is clear that the system is inconsistent as the first and third

inequalities are inconsistent. Hence, as confirmed in Figure 3.6a, K5(M1)∪K5(M2)

is not acute.

Moreover, note that with respect to Proposition 3.2.25, [K5(M1)∪K5(M2)]+

is the ray in the second quadrant emanating from the origin with slope −3 (see

Figure 3.6b). Hence, [K5(M1) ∪ K5(M2)]+ is one-dimensional (and therefore not

full-dimensional), and int([K5(M1) ∪ K5(M2)]+) = ∅. With Proposition 3.2.25 in

mind, this means that we should not expect K5(M1) ∪K5(M2) to be acute.
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The results of this section are worthwhile in their own right, but take on added

significance in the context of (highly robust) efficiency and (robust) multiobjective

linear programming, which we address in Section 4.2 and Chapter 6.
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Chapter 4

Deterministic Multiobjective

Optimization

We turn our attention to an overview of deterministic multiobjective program-

ming, which addresses optimization problems involving multiple conflicting criteria.

Problems in which the decision-making process includes opposing goals are not easily

handled by deterministic single-objective optimization since a unique optimal solution

to the problem generally does not exist in the presence of these competing interests.

Instead, deterministic multiobjective optimization exploits the optimization paradigm

to resolve conflict by achieving and revealing a compromise in the form of an associ-

ated solution set of alternatives. Here, the use of the word deterministic refers to the

notion that all of the data in the model/program is determined or known. Note that

throughout the dissertation we oftentimes drop the use of ‘deterministic’ for the ease

of exposition.

In Section 4.1, deterministic multiobjective programs (MOPs) are discussed.

We introduce the model formulation, which is referenced throughout, as well as the

natural solution concept attributed to Pareto [119]. The classical scalarizing approach
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of the weighted-sum method for computing efficient solutions is then reviewed in Sec-

tion 4.1.1, while Benson’s method for efficiency recognition and solution generation is

studied in Section 4.1.2. In Section 4.2, multiobjective linear programs (MOLPs) are

examined in more detail. The model formulation and solution concept are restated. In

Section 4.2.1, several well-known properties of the set of efficient solutions (including

those regarding closedness, convexity, and connectedness) are presented. A charac-

terization of the efficient set by means of the cones of improving directions, normal

cone, and recession cone is also provided in Section 4.2.2. Computational methods

to obtain efficient solutions, determine the efficiency of a given feasible point, and

identify whether or not efficient solutions exist, meanwhile, are presented in Section

4.2.3. Finally, in Section 4.2.4, a new result is proposed that provides a valuable

perspective on one of the aforementioned characterizations.

4.1 Multiobjective Programs

In the interest of discussing (deterministic) MOPs, the basic formulation and

commonly used solution concept are provided. A (deterministic) MOP is a problem

of the form:

min
x

f(x) =
[
f1(x) · · · fp(x)

]T
s.t. x ∈ X,

(4.1)

where f : X → Rp, p ≥ 2, is the vector-valued objective function, x ∈ Rn, n ≥ 1, is

the decision vector, and X ⊂ Rn is the feasible region (set). An outcome or criterion

(objective) vector f(x) ∈ Rp is associated with every feasible decision x ∈ X. The

set of all outcomes for all feasible decisions is referred to as the attainable set or set

of criterion Yf ,X := f(X) = {y ∈ Rp : y = f(x) for some x ∈ X}. The spaces Rn

and Rp are referred to as the decision (solution) space and the objective (criterion,
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outcome) space, respectively. The feasible region X of MOP (4.1) is generally defined

as

X := {x ∈ Rn : g(x) 5 0}, (4.2)

where g : Rn → Rm is the vector-valued constraint function representing inequal-

ity constraints including upper and lower bounds on the decision variables. Since

equality constraints may be represented by a pair of related inequalities, g(x) 5 0 is

understood to include equality constraints as well.

The solution concept for MOP (4.1) is typically based on the component-wise

comparison of two outcomes y1 and y2 in Rp for which the three ordering relations

given by 5,≤, < are used. These relations determine (partial) orders on Rp and

are used to define Pareto dominance in Yf ,X . For two outcomes y1 and y2 in Yf ,X ,

outcome y1 is said to (strictly) dominate outcome y2 if y1 (<) ≤ y2. The solution set

of MOP (4.1) contains the feasible decisions x ∈ X whose objective vectors cannot

be (strictly) Pareto dominated or improved by other objective vectors.

Definition 4.1.1. A feasible solution x̂ ∈ X to MOP (4.1) is said to be (weakly)

Pareto-efficient provided there does not exist an x ∈ X such that f(x) (<) ≤ f(x̂).

The set of all (weakly) efficient solutions x̂ ∈ X is denoted by (wE(X, f)) E(X, f) and

is called the (weakly) Pareto-efficient set.

Note that throughout the dissertation, Pareto efficiency is simply referred to

as efficiency since other more general concepts are not discussed. Moreover, it is

important to recognize the practical interpretation of efficiency: An efficient solution

is a decision that cannot be improved in at least one objective without negatively

affecting the other objective(s). That is, if x̂ ∈ X is an efficient solution, then there

does not exist an x ∈ X that is at least as good as x̂ in every objective and better

in at least one. In order to guarantee the existence of (weakly) efficient solutions to
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MOP (4.1), the standard conditions involving compactness and semicontinuity may

be assumed (see Corollary 2.26 and Theorem 2.19, Ehrgott [44], respectively).

Remark 4.1.2. [44, Formula (2.17)] From the definition of (weak) efficiency, it is clear

that E(X, f) ⊆ wE(X, f) since weak efficiency is more permissive than efficiency.

In many contexts, the efficient set E(X, f) is taken to be the solution set of

MOP (4.1) and efficiency is thus the multiobjective analogue to optimality in single-

objective optimization. However, since weakly efficient solutions may be easier to

find, the set wE(X, f) is sometimes taken to be the solution set of MOP (4.1) instead.

That being said, we are mainly concerned with efficient solutions in this work, but

still discuss weakly efficient solutions when convenient. This decision is revisited in

Chapter 6 in the context of problems with uncertainty.

The above definition of efficiency describes solutions exclusively in the deci-

sion space. However, in multiobjective programming, as opposed to single-objective

programming, we are able to study solutions in the objective space Rp as well. In

particular, points in the attainable set Yf ,X are of interest.

Definition 4.1.3. The image ŷ := f(x̂) ∈ Yf ,X is said to be (weakly) Pareto non-

dominated if the feasible solution x̂ ∈ X is (weakly) efficient. The set of all (weakly)

Pareto-nondominated solutions ŷ ∈ Yf ,X is denoted by (wP(X, f)) P(X, f) and is

called the (weakly) Pareto-nondominated set.

The Pareto-nondominated set is the image of the efficient set, and similarly,

wP(X, f) is the image of wE(X, f). As a result, the Pareto-nondominated set and the

efficient set are often used interchangeably when discussing solutions to MOP (4.1).

The efficient points in the solution space and their images in the objective space

reveal the available options and their performances, while the associated tradeoffs

carry additional information to support the decision-making process. Whereas the
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single-objective paradigm rigorously exercises optimization, the multiobjective strat-

egy, while having the same rigor but requiring more computational power, offers a

broader perspective by providing these tradeoffs. The latter provides the user or de-

cision maker with various alternatives, a compelling quality when making operations

research methodologies attractive for customers (see Greco et al. [61]).

Remark 4.1.4. [44, Formula (2.16)] As in Remark 4.1.2, it is clear that P(X, f) ⊆

wP(X, f) by definition.

When studied in a more rigorous mathematical framework (see Tammer and

Göpfert [130]), the solution concept of Pareto nondominance (and thereby efficiency)

is implied by general binary relations, which, yielding partial orders on Rp, determine

preference relations between the outcomes in Yf ,X . Under some conditions, a binary

relation on Rp may be associated with a pointed and convex cone in Rp (see Yu [145]).

For example, the binary relation defining the Pareto preference in the minimization

case considered in (4.1) is associated with the cone −Rp
≥ (or Rp

≤). When more general

cones K in Rp are used, the term “Pareto nondominated” is replaced with “K-

nondominated.” Since only Pareto nondominated solutions are considered throughout

this dissertation, the terminology is shortened by simply referring to such solutions

as either Pareto or nondominated.

Example 4.1.5. [44, Example 1.3] Consider the following MOP:

min
x

f(x) =
[
f1(x) =

√
1 + x f2(x) = x2 − 4x+ 5

]T
s.t. x ≥ 0.

(4.3)

In this particular problem, examining the feasible region in the decision space is

relatively uninteresting as it is simply the nonnegative halfline in R. Instead, we

investigate the attainable set in the objective space. To obtain the set of criterion,
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Figure 4.1: Attainable set (solid line) and Pareto set (red) of MOP (4.3)

we first let f1(x) = y1 and f2(x) = y2, which yields

y1 =
√

1 + x and y2 = x2 − 4x+ 5.

Solving for x in the first equation then gives

y2
1 = 1 + x =⇒ x = y2

1 − 1.

Now, substituting x into the second equation yields

y2 = (y2
1 − 1)2 − 4(y2

1 − 1) + 5 = y4
1 − 6y2

1 + 10.

The graph of this function would be the image of the feasible set if x were free.

However, since x is constrained as x ≥ 0, it follows that y1 ≥ 1 must also be taken

into account. Therefore, the image of the feasible region is given by

Yf ,X = {y ∈ R2 : y2 = y4
1 − 6y2

1 + 10, y1 ≥ 1}

and is shown in Figure 4.1 as the solid line.
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Even though we have not yet discussed how to compute the Pareto set, it

(or equivalently the weakly Pareto set since the two solutions sets are equal in this

example) is shown in Figure 4.1 as the red highlighted portion of the attainable set.

4.1.1 Weighted-Sum Method

A natural question to ask now is: How are such Pareto optimal or efficient solu-

tions computed? Various techniques exist in the literature, e.g., weighted-sum meth-

ods, epsilon-constraint methods, weighted-norm methods, the weighted t-th power

approach, etc. For a discussion of these methods and others, the reader is directed to

Ehgrott [44] and Wiecek et al. [141]. We study one of these methods, the weighted-

sum or weighted-sum scalarization method, in more detail since we apply this tech-

nique later to MOPs involving uncertainty.

Given MOP (4.1) and a vector of scalars λ ∈ Rp, the weighted-sum method

combines the elements of the objective function f in a weighted sum:

p∑
k=1

λkfk(x),

and then replaces the objective with this sum. The resulting problem is a determin-

istic single-objective problem, denoted WSP(λ):

min
x

p∑
k=1

λkfk(x)

s.t. x ∈ X,
(4.4)

called the weighted-sum problem. The intent is that solving this single-objective

problem gives efficient solutions to MOP (4.1). However, two questions arise:

(i) Does the weighted-sum method always yield (weakly) efficient solutions?
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(ii) Can all (weakly) efficient solutions be found in this way?

Both questions are answered by the following two propositions.

Proposition 4.1.6. [44, Proposition 3.9] Suppose that x̂ is an optimal solution to

WSP(λ) with λ ∈ Rp.

(i) If λ ∈ Rp
>, then x̂ ∈ E(X, f).

(ii) If λ ∈ Rp
≥, then x̂ ∈ wE(X, f).

Proof. (i) Let λ ∈ Rp
>, and let x̂ ∈ X be an optimal solution to WSP(λ). Assume

for the sake of contradiction that x̂ /∈ E(X, f). By Definition 4.1.1, there exists

an x ∈ X such that f(x) ≤ f(x̂), i.e., such that fk(x) ≤ fk(x̂) for all k = 1, . . . , p

with at least one strict. Equivalently, since λk > 0 for all k = 1, . . . , p, it follows

that λkfk(x) ≤ λkfk(x̂) for all k = 1, . . . , p with at least one strict, which implies

p∑
k=1

λkfk(x) <

p∑
k=1

λkfk(x̂).

By definition, x̂ is not an optimal solution to WSP(λ), which is a contradiction.

Thus, it must be that x̂ ∈ E(X, f) as desired.

(ii) Let λ ∈ Rp
≥, and let x̂ ∈ X be an optimal solution to WSP(λ). Assume for the

sake of contradiction that x̂ /∈ wE(X, f). By Definition 4.1.1, there exists an

x ∈ X such that f(x) < f(x̂). Equivalently, fk(x) < fk(x̂) for all k = 1, . . . , p,

which implies
p∑

k=1

λkfk(x) <

p∑
k=1

λkfk(x̂).

By definition, x̂ is not an optimal solution to WSP(λ), which is a contradiction.

Thus, it must be that x̂ ∈ wE(X, f) as desired.
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Proposition 4.1.7. [44, Proposition 3.10] Let the feasible set X be convex, and let

fk, k = 1, . . . , p, be convex functions. If x̂ ∈ wE(X, f), then there is some λ ∈ Rp
≥

such that x̂ is an optimal solution to WSP(λ).

Based on these two propositions, we see that the answer to our two questions

is yes, under certain conditions. In particular, for all positive vectors λ ∈ Rp, we

identify efficient (or equivalently, weakly efficient) solutions. Further, under convexity

assumptions, all weakly efficient solutions, and therefore all efficient solutions by

Remark 4.1.2, may be found as optimal solutions to WSP(λ) for some λ ∈ Rp
≥.

Example 4.1.8. Consider MOP (4.3). The associated weighted-sum problem is

min
x

λ1

√
1 + x+ λ2(x2 − 4x+ 5)

s.t. x ≥ 0.

If we take λ = (0, 1) ∈ R2
≥, then the optimal solution to WSP((0, 1)) is x̂ = 2, which

corresponds to the right endpoint, (y1, y2) = (
√

3, 1), of the Pareto set shown in

Figure 4.1. As stated in Proposition 4.1.6(ii), since λ = (0, 1) ∈ R2
≥, x̂ = 2 is weakly

efficient. But, as noted earlier, the Pareto and weakly Pareto sets are in fact equal

here, so x̂ = 2 is also efficient.

Similarly, if we take λ = (1, 1) ∈ R2
>, then the optimal solution to WSP((1, 1))

is x̂ ≈ 1.852, which corresponds to the point (y1, y2) ≈ (1.689, 1.185). Since λ =

(1, 1) ∈ R2
>, it is guaranteed that x̂ ≈ 1.852 is efficient (as shown in Figure 4.1) by

Proposition 4.1.6(i).

4.1.2 Benson’s Method

In addition to computing efficient points with the weighted-sum method, one

may also check whether or not a given feasible solution x0 ∈ X is efficient or generate
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one that is if x0 is not efficient. The importance of doing this is that checking a given

solution x0 ∈ X for efficiency allows for added input and control from the decision

maker. In order to accomplish this task of efficient solution recognition or generation,

an auxiliary single-objective problem called Benson’s problem is solved. For a given

feasible decision x0 ∈ X, Benson’s problem, denoted BP(x0), is given by

max
x,l

p∑
k=1

lk

s.t. f(x) + Ipl = f(x0)

l = 0

x ∈ X,

(4.5)

where l ∈ Rp is a so-called deviation variable. The following set of results first

addresses the feasibility of BP(x0) and then the recognition and generation of efficient

solutions to MOP (4.1).

Proposition 4.1.9. Let x0 ∈ X be given. Then BP(x0) is feasible.

Proof. It is clear that BP(x0) is feasible since l = 0 and x = x0 satisfy the constraints.

Theorem 4.1.10. [44, Theorem 4.14] Let x0 ∈ X be given. Then x0 is an efficient

solution to MOP (4.1) if and only if BP(x0) has an optimal solution (x̂, l̂) with l̂ = 0.

Proof. (=⇒) Assume x0 ∈ E(X, f). By Definition 4.1.1, there does not exist an x ∈ X

such that f(x) ≤ f(x0). Accordingly, there does not exist an x ∈ X such that

f(x0)− f(x) ≥ 0, (4.6)

which is obtained by subtracting f(x) from both sides of the former inequality.
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Now, let (x̂, l̂) be an optimal solution to BP(x0). Hence,

x̂ ∈ X and Ipl̂ = f(x0)− f(x̂) = 0. (4.7)

Combining (4.6) and (4.7), it must be that l̂ = 0. Thus, BP(x0) has an optimal

solution (x̂, l̂) with l̂ = 0.

(⇐=) Let (x̂, l̂) with l̂ = 0 be an optimal solution to BP(x0), and assume for the sake

of contradiction that x0 is not an efficient solution to MOP (4.1). By Definition 4.1.1,

there exists an x̄ ∈ X such that f(x̄) ≤ f(x0). Subtracting f(x̄) from both sides of

the inequality and letting l̄ = f(x0)− f(x̄) ∈ Rp, we have that there exists an l̄ ∈ Rp

such that l̄ ≥ 0.

Now, observe that
∑p

k=1 l̄k > 0 and that (x̄, l̄) is a feasible solution to BP(x0).

Since l̂ = 0 by assumption, we have constructed a solution that has an objective

value greater than the optimal solution, which is a contradiction. Hence, it must be

that x0 is an efficient solution to MOP (4.1).

Proposition 4.1.11. [44, Proposition 4.15] Let x0 ∈ X be given. If (x̂, l̂) is an

optimal solution to BP(x0) (such that the optimal objective value is finite), then x̂ is

an efficient solution to MOP (4.1).

Proof. Suppose (x̂, l̂) is an optimal solution to BP(x0), and assume for the sake of

contradiction that x̂ /∈ E(X, f). By Definition 4.1.1, there is some x̄ ∈ X such that

f(x̄) ≤ f(x̂). Define l̄ = f(x0) − f(x̄). Hence, (x̄, l̄) is a feasible solution to BP(x0)

since l̄ = f(x0)− f(x̄) ≥ f(x0)− f(x̂) = l̂ ≥ 0 and x̄ ∈ X. Moreover, since l̄ ≥ l̂, we

have that
p∑

k=1

l̄k >

p∑
k=1

l̂k.
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Figure 4.2: Illustration of Benson’s problem with the attainable set shaded (blue)
and the Pareto set highlighted (red)

Therefore, we have constructed a feasible solution that is better than the optimal

solution (x̂, l̂), which is a contradiction. Thus, it must be that x̂ is an efficient

solution to MOP (4.1).

The idea of Benson’s method (or in solving Benson’s problem) begins with

choosing some initial feasible solution x0 ∈ X. If x0 is not itself efficient, then a

solution that is efficient is produced by maximizing the sum of nonnegative deviation

variables lk = fk(x0)− fk(x). As a result, not only can Benson’s method provide an

approach to verify the efficiency of x0 ∈ X, but it can also generate efficient solutions.

An illustration is provided in Figure 4.2.

Example 4.1.12. Consider MOP (4.3) of Example 4.1.5. For x0 ∈ X, we have BP(x0)

is given by

max
x,l

l1 + l2

s.t.
√

1 + x + l1 =
√

1 + x0

x2 − 4x+ 5 + l2 = x2
0 − 4x0 + 5

x , l1 , l2 ≥ 0.
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In particular, if we take x0 = 2, which we know is efficient due to Example 4.1.8, then

BP(2) is given by

max
x,l

l1 + l2

s.t.
√

1 + x + l1 =
√

3

x2 − 4x+ 5 + l2 = 1

x , l1 , l2 ≥ 0.

Solving BP(2), we are guaranteed that the optimal values of l1 and l2 are both zero

since x0 is efficient. On the other hand, if we started with an inefficient x0, then we

know that the resulting optimal x-solution would be efficient.

4.2 Multiobjective Linear Programs

As its own field within (deterministic) multiobjective programming, we now

present an overview of relevant concepts and results on (deterministic) multiobjective

linear programming, i.e., on MOPs where each component of the vector-valued ob-

jective function is linear and each constraint is also linear. That is, in the context of

MOP (4.1), the p-dimensional objective function f is linear, and the feasible region is

polyhedral. Certain results from the previous section are restated in the linear case,

and different results unique to the linear case are also presented.

Directly below, we restate the model under consideration and its solution

concept. In Section 4.2.1, we present several well-known properties of the set of

efficient solutions. The properties are not necessarily true only for MOLPs, but we do

not cover this is more detail. In Section 4.2.2, we then review several characterizations

of the efficient set by means of the cones of improving directions, normal cone, and

recession cone. Computational approaches to obtain efficient solutions, verify the

efficiency of a given feasible decision, and determine whether or not the efficient set
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is empty are provided in Section 4.2.3. Within this part, the weighted-sum method

is discussed in Section 4.2.3.1, Ecker and Kouada’s method is considered in Section

4.2.3.2, Benson’s method is presented in Section 4.2.3.3, and Isermann’s Theorem is

examined in Section 4.2.3.4. Finally, in Section 4.2.4, a new result that provides a

useful point of view on one of the aforementioned characterizations is proposed.

A (deterministic) MOLP is a problem of the form:

min
x

Cx =
[
c1x · · · cpx

]T
s.t. x ∈ P,

(4.8)

where ck, k = 1, . . . , p, is the k-th row of the p × n cost (objective) matrix C, p ≥

2, n ≥ 1, x ∈ Rn is the decision vector, and P ⊂ Rn is the polyhedral feasible region

given by (2.6), i.e.,

P := {x ∈ Rn : Ax 5 b,x = 0},

where A ∈ Rm×n and b ∈ Rm. An outcome or criterion (objective) vector Cx ∈ Rp is

associated with every feasible decision x ∈ P . The set of all outcomes for all feasible

decisions is referred to as the attainable set or set of criterion YC,P := C(P ) = {y ∈

Rp : y = Cx for some x ∈ P}.

At this point, we restate the basic definitions from the previous section in the

linear context.

Definition 4.2.1. A feasible solution x̂ ∈ P to MOLP (4.8) is said to be (weakly)

efficient provided there does not exist an x ∈ P such that Cx (<) ≤ Cx̂. The set of

all (weakly) efficient solutions x̂ ∈ P is denoted by (wE(P,C)) E(P,C) and is called

the (weakly) efficient set.

As in Section 4.1, this definition of efficiency describes solutions exclusively in

the decision space. However, it is convenient for several reasons involving character-
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izing the efficient set and computing points in the efficient set to consider solutions in

the criterion or objective space as well. Practically, it is only possible to graphically

represent the objective space when p = 2 or p = 3. In any case, it is relatively easy to

find the image of P under the objective C. If the feasible region P is bounded, then

the set YC,P is also a bounded polyhedral set in the criterion space. The extreme

points of P are mapped to YC,P by C, and are the extreme points of YC,P . In the

unbounded instance, YC,P is also unbounded, but remains a polyhedral subset of Rp.

As with the extreme points of P , the extreme directions of P are mapped to extreme

directions of YC,P by C. In this context, efficient solutions to MOLP (4.8) in the

objective space are defined as follows.

Definition 4.2.2. The outcome ŷ := Cx̂ ∈ YC,P is said to be (weakly) Pareto if the

feasible solution x̂ ∈ P is (weakly) efficient. The set of all (weakly) Pareto solutions

ŷ ∈ YC,P is denoted by (wP(P,C)) P(P,C) and is called the (weakly) Pareto set.

Remark 4.2.3. As mentioned in Section 4.1, the (weakly) Pareto set is simply the

image of the (weakly) efficient set. Similarly, as mentioned in Remarks 4.1.2 and

4.1.4, the containments E(P,C) ⊆ wE(P,C) and P(P,C) ⊆ wP(P,C) clearly hold.

Example 4.2.4. Consider the following MOLP given by

min
x

[
2 −3
5 1

]
x

s.t. x ∈ P1,

(4.9)

where

P1 = {x ∈ R2 : x1 + x2 ≤ 6,−x1 + 2x2 ≤ 6, x1 ≥ 0, x2 ≥ 0}. (4.10)

The efficient set of MOLP (4.9) is the (closed) line segment joining the extreme

points x1 = (0, 0) and x4 = (0, 3), which is shown in Figure 4.3a. In this example, the
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(a) The feasible region shaded (blue) and
the efficient set (red) of MOLP (4.9)

(b) The attainable set shaded (blue) and the
Pareto set (red) of MOLP (4.9)

Figure 4.3: The feasible and attainable sets of MOLP (4.9)

efficient and weakly efficient sets are equivalent. Similarly, the Pareto set of MOLP

(4.9) is the (closed) line segment joining the extreme points y1 and y4 in the objective

space (shown in Figure 4.3b), which are mapped to from the extreme points x1 and

x4. As in the decision space, the Pareto and weakly Pareto sets are equivalent in this

example.

Generally, the standard condition guaranteeing that (weakly) efficient solu-

tions to MOLP (4.8) exist (cf. Corollary 2.26 and Theorem 2.19, Ehrgott [44], respec-

tively) is that P is bounded. However, in the interest of providing a variety of other

relevant existence results with natural extensions in Chapter 6, the assumption that

P is bounded is not made in general.

4.2.1 Properties of the Efficient Set

Various properties of the efficient set of MOLP (4.8) are known in the literature

including those regarding closedness, convexity, and connectedness. These properties

offer insight into solving MOLPs and provide a better understanding of the overall

structure of the efficient set.
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Proposition 4.2.5. (i) [105, Theorem 4.1.20] E(P,C) is closed.

(ii) [44, Example 7.24] E(P,C) is not necessarily convex.

(iii) [44, Lemma 7.17] If E(P,C) 6= ∅, then it is either the entire set P or is on the

boundary of P .

(iv) [44, Theorem 7.20] If E(P,C) 6= ∅ and a point on the relative interior of a face

of P is efficient, then so is the entire face.

(v) [44, Lemma 7.1] If E(P,C) 6= ∅, then there exists an efficient extreme point.

(vi) [44, Theorem 7.23] E(P,C) is connected.

Each property sheds some light on how to approach solving MOLPs for efficient

solutions. In particular, property (iii) may be exploited in graphical approaches to

solve small (two- or three-dimensional) problems, while property (iv) suggests that

it is enough to enumerate the efficient extreme points because if a relative interior

point is efficient, then so is the entire face. The connectedness of the efficient set is

also significant. Since the efficient set is connected, it is possible to begin with an

efficient extreme point and explore only other efficient extreme points, which suggests

that a simplex method approach to solving MOLP (4.8) is viable (refer to Chapter

7, Ehrgott [44]).

4.2.2 Characterizing the Efficient Set

In addition to providing properties of the efficient set, we give its characteriza-

tion by means of various cones (refer to Chapter 3 for the relevant theory on cones).

Using so-called Pareto cones (which for minimization problems are the nonpositive,

nonpositive without the origin, and negative orthants), a characterization of efficient
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solutions in the objective space (i.e., Pareto solutions) is given in Section 4.2.2.1.

Otherwise, in the decision space, the efficient set is characterized using the cone of

improving directions in Section 4.2.2.2, normal cone in Section 4.2.2.3, and recession

cone in Section 4.2.2.4. Each characterization offers a graphical approach to identify-

ing the efficient set in two- or three-dimensions, which is shown in various examples.

The first approach principally identifies the Pareto set in the criterion space, while

the other three directly operate on the efficient set in the decision space.

4.2.2.1 Objective Space

Characterizing the Pareto set (equivalently, the efficient set) in the objective

space is oftentimes the basic definition of efficiency (see p. 24, Ehrgott [44]). As such,

the following characterization using Pareto cones (i.e., the orthants Rp
5,R

p
≤, and Rp

<)

is stated as a definition.

Definition 4.2.6. A feasible solution x̂ ∈ P is said to be

(i) efficient provided C(P ) ∩ ({Cx̂} ⊕Rp
5) = {Cx̂};

(ii) efficient provided C(P ) ∩ ({Cx̂} ⊕Rp
≤) = ∅;

(iii) weakly efficient provided C(P ) ∩ ({Cx̂} ⊕Rp
<) = ∅.

Remark 4.2.7. Note that the above description is also true in the context of the

previous section. However, it is only presented here because the set of criterion

of MOP (4.1) may be difficult or impossible to find explicitly, while the attainable

set is much easier to describe in the case of MOLPs. Moreover, since Definition

4.2.6 is in the context of the criterion space, Pareto solutions are directly identified.

Nevertheless, efficient solutions are simultaneously obtained since an efficient solution

is simply the preimage (using the inverse of C if it exists) of a Pareto solution.
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Figure 4.4: The region {Cx̂} ⊕ R2
5 (green) for several x̂ ∈ P1, as well as the Pareto

set (red)

Intuitively, we see in Definition 4.2.6(i) that if the intersection C(P )∩({Cx̂}⊕

R
p
5) is more than the singleton {Cx̂}, then there exists an outcome that is better than

the outcome Cx̂ in every objective. In this case, x̂ is clearly not efficient. Similarly,

if the intersection C(P ) ∩ ({Cx̂} ⊕Rp
5) = {Cx̂}, then there is no outcome that is at

least as good in every objective and better in at least one compared to Cx̂, which

indicates that x̂ is efficient. An illustration of this intuition and of Definition 4.2.6(i)

in general applied to MOLP (4.9) of Example 4.2.4 is provided in Figure 4.4.

As demonstrated in this figure, not only does Definition 4.2.6(i) provide a

characterization of efficient solutions, but it may also be used as a graphical method

in the criterion space in two-dimensions. In particular, the graphical approach (in

two- or three-dimensions) involves translating the nonpositive orthant attached at the

image of x̂, e.g., {Cx̂} ⊕R2
5, around the boundary of C(P ) (equivalently, YC,P ) and

examining the intersection C(P ) ∩ ({Cx̂} ⊕ Rp
5) for various x̂ ∈ P . By performing

this action, it is possible to identify the entire Pareto set. Although Definition 4.2.6(i)

is true for general p, as a graphical method, it is only applicable when p = 2 or p = 3,

i.e., when MOLP (4.8) has two or three criteria (since the criterion space cannot be

depicted otherwise). In addition, we observe that Definition 4.2.6(i) reveals that only

104



the boundary of C(P ) needs to be considered when searching for Pareto (efficient)

solutions since C(P ) ∩ ({Cx̂} ⊕ Rp
5) 6= {Cx̂} necessarily for any Cx̂ ∈ int(C(P )).

This supports the fact that the efficient set is either on the boundary of or is the

entire feasible set (in which case int(C(P )) = ∅) as in Proposition 4.2.5(iii).

In view of the preceding discussion, we now have a characterization in the

criterion space that, in lower dimensions, allows efficient solutions to be identified

graphically. Nonetheless, it is still pertinent to develop a characterization of efficient

solutions directly in the decision space.

4.2.2.2 Cone of Improving Directions

The first characterization of efficient solutions directly in the decision space

relies on the cone of improving directions. Before we define this cone, we give the

definition of an improving direction.

Definition 4.2.8. The vector d ∈ Rn is said to be an improving direction of MOLP

(4.8) provided that Cd ≤ 0.

An improving direction may be understood as a direction along which we im-

prove (i.e., decrease in the case of a minimization problem) in at least one component

of the objective and do not deteriorate in the other components.

Definition 4.2.9. (i) The open cone of improving directions of MOLP (4.8) is

defined to be D<(C) := {d ∈ Rn : Cd < 0}.

(ii) The cone of improving directions of MOLP (4.8) is defined to be D≤(C) :=

{d ∈ Rn : Cd ≤ 0}.

(iii) The closed cone of improving directions of MOLP (4.8) is defined to beD5(C) :=

{d ∈ Rn : Cd 5 0}.
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Note that the cones of improving directions are equivalent to the cones K<(C),

K≤(C), and K5(C), respectively. As such, D<(C) is an open convex cone that may

be empty, D≤(C) is a possibly empty convex cone that may be open, closed, or

neither, and D5(C) is a (closed) polyhedral convex cone, which is always nonempty

since it contains 0.

Based on the definitions of efficiency and improving directions, we want to

travel along these directions as far as possible within the feasible region in order to

identify efficient solutions. This thought process leads to the following result, which

is analogous to Proposition 1, Thoai [133]. We include the proofs for completeness.

Proposition 4.2.10. Let x̂ ∈ P . Then

(i) x̂ ∈ E(P,C) if and only if (D≤(C)⊕ {x̂}) ∩ P = ∅;

(ii) x̂ ∈ E(P,C) if (D5(C)⊕ {x̂}) ∩ P = {x̂};

(iii) x̂ ∈ wE(P,C) if and only if (D<(C)⊕ {x̂}) ∩ P = ∅.

Proof. (i) (=⇒) Let x̂ ∈ E(P,C), and assume for the sake of contradiction that

(D≤(C)⊕ {x̂}) ∩ P 6= ∅. Equivalently, there exists an x ∈ (D≤(C)⊕ {x̂}) ∩ P .

Accordingly, x ∈ D≤(C) ⊕ {x̂} and x ∈ P . Hence, x − x̂ ∈ D≤(C), which

implies C(x − x̂) ≤ 0 by Definition 4.2.9(ii). As a result, Cx ≤ Cx̂ so that

E(P,C) by Definition 4.2.1. However, this is a contradiction, so it must be that

(D≤(C)⊕ {x̂}) ∩ P = ∅.

(⇐=) Let (D≤(C) ⊕ {x̂}) ∩ P = ∅, and assume for the sake of contradiction

that x̂ /∈ E(P,C). Equivalently, there exists an x ∈ P such that Cx ≤ Cx̂ by

Definition 4.2.1, which implies Cx − Cx̂ ≤ 0. Hence, C(x − x̂) ≤ 0 so that

x − x̂ ∈ D≤(C) by Definition 4.2.9(ii). As a result, x ∈ D≤(C) ⊕ {x̂}. Since
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x ∈ D≤(C) ⊕ {x̂} and x ∈ P , it follows that x ∈ (D≤(C) ⊕ {x̂}) ∩ P also.

However, this implies that (D≤(C) ⊕ {x̂}) ∩ P 6= ∅, which is a contradiction.

Thus, it must be that x̂ ∈ E(P,C).

(ii) Follows the same as the backward direction of the proof of part (i).

(iii) Follows similarly to the proof of part (i).

Intuitively, the intersection in Proposition 4.2.10(i) being empty indicates that

there is no other x ∈ P that improves upon x̂ in at least one objective without

deteriorating the other objectives. More simply, this means that there is no feasible

direction that is also improving. The proceeding example provides an illustration.

Example 4.2.11. Consider Example 4.2.4. We have

D≤(C) =

{
d ∈ R2 :

[
2 −3
5 1

]
d ≤ 0

}
.

Referring to Figure 4.5, it is clear by Proposition 4.2.10(i) that x1 = 0 is efficient,

while x3 = (2, 4) is not. Likewise, we see that only the line segment joining x1 and

x4 (including) is efficient.

Similarly to Definition 4.2.6(i), provided D≤(C) 6= ∅, Proposition 4.2.10(i)

implies that only points x̂ on the boundary of P need to be considered for efficiency

since the intersection (D≤(C)⊕ {x̂}) ∩ P is necessarily nonempty otherwise. Hence,

the graphical method in the decision space in two- or three-dimensions (where the

number of decision variables is n = 2 or 3) would have us translate the cone of

improving directions around the boundary of P and examine the intersection. Unlike

the characterization of efficient solutions in the objective space given by Definition

4.2.6(i), however, the above characterization in the decision space applies only when
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Figure 4.5: The region D≤(C) ⊕ {x̂} (green) for two feasible solutions x̂ ∈ P1 to
MOLP (4.9)

the objective functions are linear (since the cone of improving directions is not easily

representable otherwise).

Remark 4.2.12. It is worth noting that if D≤(C) = ∅, then E(P,C) = P since

∅ ⊕ {x̂} = ∅ (see Remark 2.4.2) so that the intersection in Proposition 4.2.10(i)

holds trivially for all x̂ ∈ P . Similarly, if D<(C) = ∅, then wE(P,C) = P . These

observations along with the above discussion about the boundary lead to a potential

proof of Proposition 4.2.5(iii). Moreover, it is clear that if P is unbounded, then

(D≤(C) ⊕ {x̂}) ∩ P = ∅ may not hold for any x̂ ∈ P . Otherwise, if P is bounded,

then the intersection must be empty for at least one x̂ ∈ P so that E(P,C) 6= ∅ (as

we know is already guaranteed).

As mentioned above, the cone of improving directions, not the closed cone of

improving directions, is used in terms of a (graphical) method to identify efficient

solutions. This is because Proposition 4.2.10(ii) is not both necessary and sufficient.

In particular, Proposition 4.2.10(ii) is only a sufficient condition for efficiency; the

converse of the statement is not necessarily true. The final step from the proof of

Proposition 4.2.10(i) does not yield a contradiction in all cases under the antecedent
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posed in (ii). Indeed, specific results depend on the characteristics of the objective

matrix C. For example, consider the trivial biobjective problem with cost matrix

C = 02×2, where 02×2 is the 2 × 2 matrix of all zeros. Given the feasible region

P1, we obtain E(P1,0p×n) = P1, yet (D5(02×2) ⊕ {x̂}) ∩ P1 6= {x̂} for all x̂ ∈ P1

since D5(02×2) = R2. Alternatively, consider the nontrivial biobjective problem with

c1 =
[
1 0

]
and c2 =

[
2 0

]
. We have that D≤(C) = {d ∈ R2 : d1 < 0} (where

D≤(C) = D<(C) since rank(C) = 1 as in the general discussion of K≤(M) and

K<(M) in Section 3.2), while D5(C) = {d ∈ R2 : d1 ≤ 0}. Hence, given the feasible

region P1 we find that the efficient set is the whole line segment joining (0, 0) and

(0, 3), yet (D5(C)⊕ {x̂}) ∩ P1 6= {x̂} for all x̂ ∈ E(P1,C).

Proposition 4.2.10 may also be expressed algebraically, which allows compu-

tational methods to be used and gives the characterization added utility beyond the

graphical approach in two- or three-dimensions.

Proposition 4.2.13. Let x̂ ∈ P be a feasible solution to MOLP (4.8). Then

(i) x̂ ∈ E(P,C) if and only if the system

Cx ≤ Cx̂

Ax 5 b (4.11)

x = 0

has no solution;

(ii) x̂ ∈ E(P,C) if the system

Cx 5 Cx̂

Ax 5 b (4.12)
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x = 0

has x̂ as its unique solution;

(iii) x̂ ∈ wE(P,C) if and only if the system

Cx < Cx̂

Ax 5 b (4.13)

x = 0

has no solution.

Proof. (i) Suppose (4.11) has no solution. Equivalently, there does not exist an

x ∈ P such that Cx ≤ Cx̂. That is, x̂ ∈ E(P,C) by Definition 4.2.1.

(ii) Suppose x̂ ∈ P is the unique solution to (4.12). Equivalently, x̂ is the only

x ∈ P such that Cx 5 Cx̂. That is, (D5(C)⊕ {x̂}) ∩ P = {x̂} by Proposition

3.2.4(ii). Hence, x̂ ∈ E(P,C) by Proposition 4.2.10(ii).

(iii) Suppose (4.13) has no solution. Equivalently, there does not exist an x ∈ P

such that Cx < Cx̂. That is, x̂ ∈ wE(P,C) by Definition 4.2.1.

Even though each of these three systems gives an algebraic description of

(weakly) efficient solutions, (4.11) does not have a simple implementation compu-

tationally as Cx ≤ Cx̂ means that ckx ≤ ckx̂ for all k = 1, . . . , p, with at least

one strict. As a result, either (4.12) or (4.13) should be used to determine (weak)

efficiency. In addition, Gale’s Theorem 2.6.1 and Theorem 2.6.4 may be used to

give alternative systems whose solutions indicate the existence of (weakly) efficient

solutions.
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Further characterizing the efficient set of MOLP (4.8), the cone of improving

directions may be used to provide a bound set on the efficient set of one MOLP with

respect to the efficient set of another. Intuitively, the following lemma utilizes the

idea that fewer improving directions should lead to a larger efficient set.

Lemma 4.2.14. Let the (deterministic) MOLPs:

min
x

C1x
and

min
x

C2x

s.t. x ∈ P , s.t. x ∈ P

be given. If D≤(C1) ⊆ D≤(C2), then E(P,C2) ⊆ E(P,C1).

Proof. Suppose D≤(C1) ⊆ D≤(C2), and assume for the sake of contradiction that

E(P,C2 6⊆ E(P,C1), i.e., there exists an x̂ ∈ E(P,C2) such that x̂ /∈ E(P,C1). The

former implies that D≤(C1) ⊕ {x} ⊆ D≤(C2) ⊕ {x} for all x ∈ P , while the latter

yields [D≤(C2)⊕{x̂}]∩P = ∅, but [D≤(C1)⊕{x̂}]∩P 6= ∅ by Proposition 4.2.10(i).

Hence,

∅ 6= [D≤(C1)⊕ {x̂}] ∩ P ⊆ [D≤(C2)⊕ {x̂}] ∩ P = ∅,

which is a contradiction. Thus, it must be that E(P,C2) ⊆ E(P,C1) as desired.

4.2.2.3 Normal Cones

Another important cone in characterizing the efficient set of MOLP (4.8) is the

normal cone (see Definition 3.1.4). Using the normal cone, Luc [105] gives a necessary

and sufficient condition for the efficiency of solutions to MOLP (4.8).

Theorem 4.2.15. [105, Theorem 4.2.6] Let x̂ ∈ P . Then

(i) x̂ ∈ E(P,C) if and only if NP (x̂) contains some vector −CTλ,λ ∈ Rp
>;
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(ii) x̂ ∈ wE(P,C) if and only if NP (x̂) contains some vector −CTλ,λ ∈ Rp
≥.

A different perspective on Theorem 4.2.15, involving the strict polars of the

cones of improving directions, is also offered in Section 4.2.4. The new outlook pro-

vides not only another graphical approach to determine efficient solutions in two- or

three-dimensions, but also additional insight with respect to highly robust efficient

solutions to uncertain MOLPs in Chapter 6.

4.2.2.4 Recession Cones

A third cone that is used in characterizing the efficient set of MOLP (4.8) is

the recession cone (see Definition 3.1.5). Using the recession cone of P , the following

proposition relies on the intuition that if a direction along which feasibility is retained

is also an improving direction, then no efficient solutions should exist.

Proposition 4.2.16. If D≤(C) ∩RP 6= ∅, then E(P,C) = ∅.

Proof. Suppose D≤(C)∩RP 6= ∅, which implies that (D≤(C)∩RP )⊕{x} 6= ∅ for all

x ∈ P . Hence,

(D≤(C)⊕ {x}) ∩ (RP ⊕ {x}) 6= ∅ (4.14)

by Theorem 2.4.3(iv). Additionally, by definition, it is clear that

RP ⊕ {x} ⊆ P (4.15)

for all x ∈ P . Together, (4.14) and (4.15) yield (D≤(C) ⊕ {x}) ∩ P 6= ∅. Since this

is true for all x ∈ P , it must be that E(P,C) = ∅ by Proposition 4.2.10(i).

Remark 4.2.17. Observe that this proposition is only relevant if P is unbounded since

RP = ∅, which forces D≤(C) ∩ RP = ∅, if P is instead bounded (see the comment

after Definition 3.1.5).
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As a graphical approach in two- or three-dimensions, the recession cone al-

lows for the existence of efficient solutions to be identified simply by looking at the

intersection of the cone of improving directions and the recession cone of P , which is

illustrated in the ensuing example.

Example 4.2.18. Consider the following two MOLPs:

min
x

[
2 −3
5 1

]
x

s.t. −x1 + 2x2 ≤ 6

x1 , x2 ≥ 0,

(4.16)

min
x

[
3 −9
−2 −1

]
x

s.t. −x1 + 2x2 ≤ 6

x1 , x2 ≥ 0.

(4.17)

Since both MOLPs have the same feasible region (shown previously in Figure 3.2b),

the two MOLPs share the same recession cone, which is shown in Figure 4.6c (and

previously in Figure 3.2c) and whose closed-form representation is given by Definition

3.1.5. In addition, the cones of improving directions of MOLPs (4.16) and (4.17) are

shown in Figures 4.6a and 4.6b, respectively.

As illustrated in Figure 4.6, it is clear that the antecedent of Proposition 4.2.16

is not satisfied for MOLP (4.16) and so no conclusion may be made. On the other

hand, the antecedent is satisfied for MOLP (4.17), which implies that its efficient set

is therefore empty.

4.2.3 Computing Efficient Solutions

The natural task now is the computation of efficient solutions to MOLP (4.8).

The classical scalarization approach of the weighted-sum method to compute efficient

solutions is examined again in Section 4.2.3.1 and revisited with Isermann’s Theorem

in Section 4.2.3.4. In addition, a method due to Ecker and Kouada using an auxiliary

problem that determines whether a given feasible solution of interest is efficient,
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(a) The cone of improving
directions of MOLP (4.16)
(purple)

(b) The cone of improving
directions of MOLP (4.17)
(teal)

(c) The recession cone
(green)

Figure 4.6: The cones of improving directions of MOLPs (4.16) and (4.17), as well as
their recession cone

generates an efficient point if the given feasible solution is not itself efficient, or

identifies that no efficient solutions exist is reviewed in Section 4.2.3.2. Finally, a

method using a second auxiliary problem due to Benson that identifies whether or

not the efficient set is empty and generates an efficient extreme point if the efficient

set is in fact nonempty is given in Section 4.2.3.3.

4.2.3.1 Weighted-Sum Method

As in the more general case of MOP (4.1), numerous computational approaches

for determining the efficient set of MOLP (4.8) rely on scalarizing the multiple objec-

tive functions in order to obtain a single-objective linear program (LP). The weighted-

sum method is an example of one of these scalarization methods. In particular, given

MOLP (4.8) and a vector of scalars λ ∈ Rp, the weighted-sum method combines

elements of the cost matrix C in a weighted sum:

p∑
k=1

λkckx,

and then replaces the objective with this sum. The resulting problem is known as

the weighted-sum LP, denoted WSLP(λ), which is a (deterministic) single-objective
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LP given by

min
x

λTCx

s.t. x ∈ P.
(4.18)

The intent is that solving the weighted-sum LP gives efficient solutions to MOLP

(4.8). In fact, we know from Propositions 4.1.6 and 4.1.7 that we are indeed able

to obtain (weakly) efficient solutions to MOLP (4.8). Formally, we restate both

propositions as the following corollary.

Corollary 4.2.19. Suppose that x̂ ∈ P .

(i) [44, Theorem 6.6] If x̂ is an optimal solution to WSLP(λ) with λ ∈ Rp
>, then

x̂ ∈ E(P,C).

(ii) [44, Theorem 6.6] If x̂ is an optimal solution to WSLP(λ) with λ ∈ Rp
≥, then

x̂ ∈ wE(P,C).

(iii) [44, Proposition 3.10] If x̂ ∈ wE(P,C), then there is some λ ∈ Rp
≥ such that x̂

is an optimal solution to WSLP(λ).

Proof. Statements (i) and (ii) are given by Proposition 4.1.6, while (iii) follows directly

from Proposition 4.1.7 as P is convex (since it is polyhedral) and the component

functions ckx, k = 1, . . . , p, are convex (since they are linear).

As a result, we are guaranteed by conditions (ii) and (iii) to find all weakly

efficient, and thereby all efficient, solutions to MOLP (4.8) by solving WSLP(λ)

with λ ∈ Rp
≥. However, this is not to say that we explicitly know the efficient

solutions from the solutions that are weakly efficient but not also efficient, which is a

potential downside for decision makers since we may be providing an overabundance

of solutions as well as giving potentially worse solutions. We see in Section 4.2.3.4,
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though, that this may be avoided as all efficient solutions may be obtained directly

via the weighted-sum LP with λ ∈ Rp
>.

4.2.3.2 Ecker and Kouada’s Method

As in the more general case of MOPs, we may use Benson’s method/problem

in the context of MOLPs in order to check the efficiency of a given solution x0 ∈ P

of interest or generate an efficient point if x0 is not itself efficient. Additionally,

in the context of MOLPs, this method allows for the determiniation of whether or

not efficient solutions exist. However, in the current setting, we refer to Benson’s

problem (or Benson’s method) as Ecker and Kouada’s problem (or method), owing

to the fact that Ecker and Kouada [42] presented the same results for MOLPs in 1975

that Benson [10] would present in 1978 for MOPs.

Our motivation here in studying Ecker and Kouada’s problem, in addition to

the reasons already stated for MOPs, is that the auxiliary problem is an LP so we can

consider its dual and obtain further results. We restate the results regarding Benson’s

problem, which is associated with MOP (4.1), for Ecker and Kouada’s problem and

the linear case that we are considering, as well as provide new results based on the

corresponding dual problem.

Given x0 ∈ P , Ecker and Kouada’s problem, denoted EKLP(x0), is given by

max
x,l

p∑
k=1

lk

s.t. Cx + Ipl = Cx0

Ax 5 b

x = 0

l = 0,

(4.19)
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where l ∈ Rp is a deviation variable. The dual of EKLP(x0), denoted EKDP(x0), is

thus given by

min
v,w

(Cx0)Tv + bTw

s.t. CTv + ATw = 0

Ipv = 1

w = 0,

(4.20)

where v ∈ Rp,w ∈ Rm are dual variables.

We first address the feasibility of EKLP(x0), which is needed when proving

results regarding the dual EKDP(x0).

Proposition 4.2.20. Let x0 ∈ P be given. Then EKLP(x0) is feasible.

Proof. It is clear that EKLP(x0) is feasible since l = 0 and x = x0 satisfy the

constraints.

Using both EKLP(x0) and EKDP(x0), we may recognize the efficiency of a

given feasible solution x0 ∈ P as in the following.

Proposition 4.2.21. Let x0 ∈ P be given.

(i) [44, Lemma 6.9] The point x0 ∈ E(P,C) if and only if EKLP(x0) has an optimal

solution (x̂, l̂) with l̂ = 0.

(ii) [44, Lemma 6.10] The point x0 ∈ E(P,C) if and only if EKDP(x0) has an

optimal solution (v̂, ŵ) with (Cx0)T v̂ + bT ŵ = 0

Proof. (i) Follows the same as the proof of Theorem 4.1.10.

(ii) Since EKDP(x0) is the dual of EKLP(x0), it follows by Strong Duality 2.5.1(i)

that (x̂, l̂) is an optimal solution to EKLP(x0) if and only if EKDP(x0) has an
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optimal solution (v̂, ŵ) with

1T l̂ = (Cx0)T v̂ + bT ŵ.

Therefore, since x0 ∈ P is efficient if and only if EKLP(x0) has an optimal

solution (x̂, l̂) with l̂ = 0 by part (i), we obtain the result

0 = 1T l̂ = (Cx0)T v̂ + bT ŵ

as desired.

Not only can Ecker and Kouada’s problem EKLP(x0) be used as a method for

checking whether or not a given x0 ∈ P is efficient, but it can also generate efficient

solutions.

Proposition 4.2.22. [44, Proposition 6.12(1)] Let x0 ∈ P be given. If (x̂, l̂) is an

optimal solution to EKLP(x0) (such that the optimal objective value is finite), then x̂

is an efficient solution to MOLP (4.8).

Proof. Follows the same as the proof of Proposition 4.1.11.

As already mentioned, using both EKLP(x0) and its dual EKDP(x0), we may

also obtain results regarding the emptiness of the efficient set. Since the efficient set

is guaranteed to be nonempty if P is bounded (as previously discussed), the following

proposition is of more practical importance when the feasible set is unbounded, which

is apparent in part (i).

Proposition 4.2.23. Let x0 ∈ P be given.

(i) [44, Proposition 6.12] If EKLP(x0) is unbounded, then E(P,C) = ∅.
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(ii) If EKDP(x0) is infeasible, then E(P,C) = ∅.

Proof. (i) Suppose EKLP(x0) is unbounded, and assume for the sake of contradic-

tion that E(P,C) 6= ∅. Since EKLP(x0) is unbounded, we know that its dual

EKDP(x0) must be infeasible by the Fundamental Theorem of Duality 2.5.1.

Further, since E(P,C) 6= ∅, there exists an efficient (and therefore weakly effi-

cient) solution, say x̄ ∈ P . Hence, by Corollary 4.2.19(iii), there exists a λ̄ ∈ Rp
≥

such that x̄ is an optimal solution to WSLP(λ̄), which is given by

min
x

(λ̄)TCx max
w

bTw

s.t. Ax 5 b
dual⇐⇒ s.t. ATw 5 CT λ̄

x = 0 w 5 0.

Since WSLP(λ̄) is feasible, its dual must also be feasible. In other words, there

exists a w ∈ Rm such that ATw 5 CT λ̄, or equivalently, such that

−ATw + CT λ̄ = 0. (4.21)

In order to obtain the necessary contradiction, we construct a solution

to EKDP(x0) from w and λ̄. Let θ > 0 be the smallest component in λ̄ and

set λ = λ̄/θ = 1. Accordingly, (4.21) gives AT (−w/θ) + CTλ = 0. Letting

v̄ = λ = 1 and w̄ = −w/θ = 0, we obtain a feasible solution (v̄, w̄) to

EKDP(x0), which is a contradiction. Thus, it must be that E(P,C) = ∅.

(ii) Suppose EKDP(x0) is infeasible. Hence, EKLP(x0) must be unbounded by

the Fundamental Theorem of Duality 2.5.1 and Proposition 4.2.20. Therefore,

E(P,C) = ∅ by part (i).
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The proceeding example provides an illustration of Propositions 4.2.21, 4.2.22,

and 4.2.23, which comprise Ecker and Kouada’s method.

Example 4.2.24. Consider MOLP (4.9) of Example 4.2.4. The corresponding auxiliary

problem or Ecker and Kouada’s problem for any given x0 ∈ P1 is

max
x,l

l1 + l2

s.t. 2x1 − 3x2 + l1 = 2x01 − 3x02

5x1 + x2 + l2 = 5x01 + x02

l1 , l2 ≥ 0

(x1 , x2) ∈ P1.

In particular, if we take x0 = (0, 3), which we know is efficient, then EKLP((0, 3) is

given by

max
x,l

l1 + l2

s.t. 2x1 − 3x2 + l1 = −9

5x1 + x2 + l2 = 3

l1 , l2 ≥ 0

(x1 , x2) ∈ P1.

and the optimal solution is guaranteed to be l = 0 by Proposition 4.2.21(i). Al-

ternatively, if we take x0 = (2, 4), for example, which is not efficient, then solving

EKLP((2, 4)) yields some other solution x̂ ∈ P1 that is efficient due to Proposition

4.2.22.

With Propositions 4.2.21, 4.2.22, and 4.2.23, as well as Example 4.2.24, in

mind, the impact of Ecker and Kouada’s method is two-fold: the decision maker may

(i) determine whether or not the efficient set of MOLP (4.8) is empty prior to at-

tempting to solve the full problem, and (ii) check if a specific feasible solution deemed
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desirable is also efficient a priori. Importantly, similar results may be developed re-

garding solutions to MOLPs with uncertain objective coefficient data in Chapter 6

that still provide decision makers with these same two tools.

4.2.3.3 Benson’s Method for MOLPs

The downside of Ecker and Kouada’s method is that when it generates an

efficient point, there is no guarantee that the point will be an extreme point of the

feasible set (see Steur [128]). In particular, this is a negative characteristic when

trying to implement a simplex algorithm to solve an MOLP since the algorithm

moves from one extreme point to the next. If we do not have one from which to begin

the algorithm, then we cannot apply the method at all. As an attempt to correct this

flaw, Benson [11] demonstrates a second class of auxiliary problems that can be used

to provide not only efficiency results, but also guarantee an extreme point.

For any given x0 ∈ P , this second class of auxiliary problems, referred to as

Benson’s LP and denoted BLP(x0), is given by

min
x

1TCx

s.t. Cx 5 Cx0

Ax 5 b

x = 0,

(4.22)

where 1 ∈ Rp is the p-dimensional vector of all ones. The dual of BLP(x0), denoted
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BDP(x0), is thus given by

min
v,w

(Cx0)Tv + bTw

s.t. CTv + ATw 5 CT1

v 5 0

w 5 0,

or equivalently,

min
v,w

(Cx0)Tv + bTw

s.t. CTv + ATw = −CT1

v = 0

w = 0,

(4.23)

where v ∈ Rp and w ∈ Rm are dual variables. The second representation of the dual

is the primary form we utilize.

Theorem 4.2.25. Let x0 ∈ P be given.

(i) [11, Proof of Theorem 3] BLP(x0) has an optimal solution if and only if MOLP

(4.8) has an efficient solution.

(ii) [11, Theorem 3] BDP(x0) has an optimal solution if and only if MOLP (4.8)

has an efficient solution.

Proof. (i) (=⇒) Assume that x̂ ∈ P is an efficient solution to MOLP (4.8). By

Definition 4.2.1, there does not exist an x ∈ P such that Cx ≤ Cx̂, i.e., such

that ckx ≤ ckx̂ for all k = 1, . . . , p with at least one strict. Hence,

p∑
k=1

ckx <

p∑
k=1

ckx̂,
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or equivalently,

1TCx < 1TCx̂.

Therefore, in terms of the objective function of BLP(x0), there does not exist an

x ∈ P that is better than x̂. Since the feasible region of BLP(x0) is a restriction

of P , it is clear that x̂ is also an optimal solution to BLP(x0).

(⇐=) Suppose x̂ is an optimal solution to BLP(x0), and assume for the sake of

contradiction that x̂ is not an efficient solution to MOLP (4.8). As a result,

Cx̂ 5 Cx0, (4.24)

and there exists an x̄ ∈ P by Definition 4.2.1 such that

Cx̄ ≤ Cx̂, (4.25)

respectively. Hence, (4.24) and (4.25) yield Cx̄ ≤ Cx0, i.e., Cx̄ 5 Cx0. Since

x̄ ∈ P , it follows that x̄ is a feasible solution to BLP(x0). In addition, as in

the converse direction, (4.25) implies that 1TCx̄ < 1TCx̂. Thus, we have a

feasible solution x̄ to BLP(x0) that is better in terms of the objective function

of BLP(x0) than the optimal solution x̂, which is a contradiction. Therefore, it

must be that x̂ is an efficient solution to MOLP (4.8).

(ii) Since BDP(x0) is the dual of BLP(x0), Strong Duality 2.5.1(i) yields BDP(x0)

has an optimal solution if and only if BLP(x0) has an optimal solution. There-

fore, since BLP(x0) has an optimal solution if and only if MOLP (4.8) has an

efficient solution by part (i), we obtain the desired result.
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Theorem 4.2.26. [11, Theorem 2] Let x0 ∈ P be given. If BDP(x0) has an optimal

solution (v̂, ŵ), then WSLP(λ) with λ = v̂+1 has an extreme point optimal solution.

Proof. Let (v̂, ŵ) be an optimal solution to BDP(x0). With λ = v̂ + 1, the dual of

WSLP(λ) is given by

max
w

bTw min
w

bTw

s.t. ATw 5 CT (v̂ + 1) ⇐⇒ s.t. ATw = −CT (v̂ + 1)

w 5 0 w = 0.

(4.26)

Now, since (v̂, ŵ) is an optimal (and hence feasible) solution to BDP(x0), ŵ is also

clearly a solution to LP (4.26), that is, LP (4.26) is feasible.

Moreover, since P is nonempty, WSLP(λ) with λ = v̂ + 1 is feasible. Because

both the primal and dual problems are feasible, the Fundamental Theorem of Duality

2.5.1 guarantees that WSLP(λ) has a finite optimal solution. In particular, WSLP(λ)

with λ = v̂ + 1 has an optimal extreme point solution (by Theorem 2.8, Bertsimas

and Tsitsiklis [15]) as desired.

Corollary 4.2.27. [11, p. 497] Let x0 ∈ P be given. If BDP(x0) has an optimal

solution (v̂, ŵ), then MOLP (4.8) has an efficient extreme point efficient solution.

Proof. Let (v̂, ŵ) be an optimal solution to BDP(x0). By Theorem 4.2.26, WSLP(λ)

with λ = v̂ + 1 has an optimal extreme point solution, say x̂ ∈ P . Since λ = v̂ + 1 ∈

R
p
>, Corollary 4.2.19(i) yields x̂ ∈ E(P,C). Therefore, we have obtained an efficient

extreme point solution to MOLP (4.8) as desired.

Considering Corollary 4.2.27, in order to obtain an (initial) efficient extreme

point solution to MOLP (4.8), we simply need to solve BDP(x0), which yields the

optimal solution (v̂, ŵ), and then solve WSLP(λ) with λ = v̂ + 1. The optimal

solution to WSLP(λ) is the desired efficient extreme point solution.
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4.2.3.4 Isermann’s Theorem

Using the efficiency results for both EKLP(x0) and EKDP(x0), we now prove

that all efficient solutions to MOLP (4.8) may be obtained by solving a weighted-sum

LP (cf. Corollary 4.2.19). In other words, we are ready to prove that each efficient

solution to an MOLP may be obtained as the optimal solution to a weighted-sum LP.

Theorem 4.2.28. [44, Isermann’s Theorem, Theorem 6.11] Let x0 ∈ P be given.

Then x0 is an efficient solution to MOLP (4.8) if and only if there exists a λ ∈ Rp
>

such that

λTCx0 ≤ λTCx

for all x ∈ P .

Proof. (⇐=) Suppose there exists a λ ∈ Rp
> such that λTCx0 ≤ λTCx for all x ∈ P ,

and assume for the sake of contradiction that x0 /∈ E(P,C). By Definition 4.2.1, there

exists an x ∈ P such that Cx ≤ Cx0, i.e., such that ckx ≤ ckx0 for all k = 1, . . . , p

with at least one strict. Equivalently, since λk > 0 for all k = 1, . . . , p, it follows that

λkckx ≤ λkckx0 for all k = 1, . . . , p with at least one strict, which implies

p∑
k=1

λkckx <

p∑
k=1

λkckx0.

By definition,

λTCx < λTCx0,

which is a contradiction. Thus, it must be that x0 ∈ E(P,C).

(=⇒) Suppose x0 ∈ P is an efficient solution to MOLP (4.8). By Proposition

4.2.21(ii), we equivalently know that EKDP(x0) has an optimal solution (v̂, ŵ) with

125



(Cx0)T v̂ + bT ŵ = 0, i.e., bT ŵ = −v̂TCx0. Taking v = v̂ in EKDP(x0), we obtain

min
v,w

(Cx0)T v̂ + bTw min
w

bTw

s.t. CT v̂ + ATw = 0 =⇒ s.t. ATw = −CT v̂

Ipv̂ = 1 w = 0.

w = 0

(4.27)

Observe that ŵ is an optimal solution to LP (4.27), and consider the dual of LP

(4.27) given by

max
x
−v̂TCx min

x
v̂TCx

s.t. Ax 5 b ⇐⇒ s.t. Ax 5 b

x = 0 x = 0.

(4.28)

Hence, for an optimal solution x̂ to LP (4.28), we obtain

bT ŵ = −v̂TCx̂ (4.29)

by Strong Duality 2.5.1(i). Since (4.29) is also satisfied by x0, it follows that x0 is an

optimal solution to LP (4.28), i.e.,

v̂TCx0 ≤ v̂TCx for all x ∈ P.

Letting λ = v̂ = 1 > 0, we obtain the result.

Recognizing λTCx as the objective function of WSLP(λ), it is thus possible

based on Isermann’s Theorem to obtain all efficient solutions to MOLP (4.8) by

solving a weighted-sum LP. The only remaining challenge is finding the appropriate
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weights to obtain each efficient solution (see Wiecek et al. [141]).

4.2.4 New Result

As previously mentioned, in order to provide a different point of view on

Theorem 4.2.15, the polars and strict polars of the cones of improving directions

are needed. Given the cones of improving directions D5(C), D≤(C), and D<(C),

we denote their polars by D+
5(C), D+

≤(C), and D+
<(C), and their strict polars by

Ds+
5 (C), Ds+

≤ (C), and Ds+
< (C), respectively. Under certain assumptions such as the

acuteness or closure of the cones of improving directions, their polars and strict polars

are given by Proposition 3.2.7 and Theorem 3.2.13, respectively.

The main motivation for reframing Theorem 4.2.15, which is given by Theorem

4.2.6, Luc [105], through a connection between the strict polar of the closed (or open)

cone of improving directions and the set of all vectors −CTλ such that λ > 0 (or

λ ≥ 0) is that added insight in Chapter 6 is available.

Theorem 4.2.29. Let x̂ ∈ P .

(i) Assume D5(C) is acute. Then x̂ ∈ E(P,C) if and only if NP (x̂)∩Ds+
5 (C) 6= ∅.

(ii) Assume cl(D<(C)) = D5(C). Then x̂ ∈ wE(P,C) if and only if NP (x̂) ∩

Ds+
< (C) 6= ∅.

Proof. (i) SinceD5(C) is acute, we know thatDs+
5 (C) = {x ∈ Rn : x = −CTλ,λ >

0} by Theorem 3.2.13(i). As Ds+
5 (C) is the set of all vectors −CTλ,λ > 0, the

result follows from Theorem 4.2.15(i).

(ii) Since cl(D<(C)) = D5(C), we know that Ds+
< (C) = {x ∈ Rn : x = −CTλ,λ ≥

0} by Theorem 3.2.13(iii). As Ds+
< (C) is the set of all vectors −CTλ,λ ≥ 0, the

result follows from Theorem 4.2.15(ii).
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(a) D5(C) (purple) (b) Ds+
5 (C) (teal) (c) The efficient set (red)

and normal cones (green)

Figure 4.7: Normal cones to P1, as well as the closed cone of improving directions
and its strict polar for MOLP (4.30)

The proceeding example is given as an illustration of Theorem 4.2.29.

Example 4.2.30. Consider the following MOLP:

min
x

[
3 −9
−1 9

]
x

s.t. x ∈ P1.

(4.30)

The closed cone of improving directions is shown in Figure 4.7a. Since D5(C) is

clearly acute, we know that its strict polar is given by Theorem 3.2.13(i), which is

shown in Figure 4.7b. As illustrated in Figure 4.7, the only points x̂ ∈ P1 at which the

intersection NP1(x̂) ∩Ds+
5 (C) in Theorem 4.2.29(i) hold are those that we know are

efficient (by using, e.g., D≤(C) and the graphical approach of Proposition 4.2.10(i)).

We note several important observations regarding Theorem 4.2.29 and Exam-

ple 4.2.30. First, although Theorem 4.2.29 is weaker than Theorem 4.2.15 as a result

of the additional assumptions about the cones of improving directions, the advantage,

as already mentioned, is added insight. Second, Theorem 4.2.29(i) may be equiva-

lently stated with Ds+
≤ (C) instead of Ds+

5 (C) since Ds+
≤ (C) = Ds+

5 (C) when D5(C) is

acute by Theorem 3.2.13(ii). In either case, the acuteness of D5(C) may be verified

as in Section 3.2.4. Next, observe that if −CTλ = 0 for some λ > 0, then the entire
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feasible set is efficient since NP (x̂) necessarily contains 0. The same line of thought

may be followed for λ ≥ 0 and the weakly efficient set. Additionally, as we want the

intersection NP (x̂) ∩ Ds+
5 (C) to be nonempty, it is important to know if and when

Ds+
5 (C) is nonempty since if it is not, then the result never holds. (We are only

concerned with the nonemptiness of Ds+
5 (C) since NP (x̂) is always nonempty as it

always contains the origin.) To this end, since we assume that D5(C) is acute, we

know that Ds+
5 (C) is nonempty by Proposition 3.2.12(i).

It is also worth addressing the impact of the assumption that D5(C) is acute.

Since D5(C) is closed, being acute is equivalent to D5(C) being pointed by Propo-

sition 3.1.3. Hence, we implicitly assume that rank(C) = n by Theorem 3.1.12.

Moreover, since rank(C) ≤ min{p, n}, we obtain that p ≥ n. The consequence of

this is that the number of criteria is greater than or equal to the number of decision

variables. As a result, models that incorporate the numerous preferences of multi-

ple decision makers explicitly through many criteria may be used. In the literature,

many-objective problems that incorporate 4 or more criteria (see, e.g., Ishibuchi et

al. [87]) may be relevant to this situation.
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Chapter 5

Uncertain Multiobjective

Programs

Assuming uncertainty in the objective coefficient data of a multiobjective pro-

gram (MOP), we obtain an uncertain MOP (UMOP). We give consideration only to

uncertainty in the objective function coefficients, as in, e.g., Ehrgott et al. [45], Ide

[79], Ide and Schöbel [82], and Kuhn et al. [94]. This is for two reasons. First, the im-

portance of multiobjective optimization is the inclusion of multiple criteria. Second,

as in classical robust (single-objective) optimization, a solution is only considered

feasible to the uncertain problem if it is feasible for every realization of the uncertain

data. To this end, Ide and Schöbel [82] note that if the feasible region is considered

to be uncertain as well, then a different feasible set results for each uncertainty so

that any robust solution must be in their intersection. Redefining the original feasible

region to be this intersection, it is possible to restrict uncertainty to only the objective

function coefficients.

We introduce the formulation of the UMOP that we consider, as well as define

and discuss the solution concept of interest, highly robust efficiency, with respect
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to general uncertainty sets in Section 5.1. In the remaining sections, we examine

various results, namely computational methods, with respect to finite uncertainty

sets. We first present an atypical or theoretical robust counterpart (RC) for highly

robust efficient solutions to the UMOP under consideration and examine another

possible counterpart problem in Section 5.2. Second, in Section 5.3, we propose a

naive extension of the deterministic weighted-sum method (refer to Section 4.1.1)

that may be used to compute highly robust efficient solutions. Finally, in Section

5.4, we extend the results due to Benson (see Section 4.1.2) from the deterministic

setting to the uncertain one in order to develop recognition and generation results for

highly robust efficient solutions. As a result of our problem formulation and solution

concept, this extension results in (at least) three separate Benson-type problems of

concern.

Some results in the following sections may include two proofs as they are

extensions of results from deterministic multiobjective optimization. The first proof

typically follows a similar format to that from the deterministic case, but is done to

illustrate that the proof may be done independently of the original result. The second

proof, on the other hand, typically utilizes the definition of highly robust efficiency

along with the corresponding result from deterministic multiobjective optimization.

5.1 Problem Formulation and Solution Concept

Considering uncertain input data in the objective function coefficients of MOP

(4.1), we obtain a UMOP, denoted MOP(U). The UMOP is a collection or family of

MOPs, with each member denoted MOP(u), indexed by the (uncertain) parameter
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u. In particular, MOP(U) is given by

 min
x

f(x,u)

s.t. x ∈ X


u∈U,

(5.1)

where U ⊂ Rq is a nonempty set modeling the uncertainty referred to as the uncer-

tainty set or set of scenarios, X ⊂ Rn is the (deterministic) feasible region given by

(4.2), and f : X × U → Rp is the vector-valued objective function carrying uncertain

coefficients. Every problem MOP(u) in the collection, which is called an instance

of MOP(U), is associated with a particular value of u ∈ U that is referred to as an

uncertainty, realization, or scenario.

While the solution concept for MOP(U) is not obvious, the concept for each

instance is clear since MOP(u) is a deterministic MOP given the scenario u ∈ U . Ac-

cordingly, (wE(X, f(·,u))) E(X, f(·,u)) denotes the (weakly) efficient set of MOP(u)

for some realization u ∈ U , and the uncertain problem (5.1) reduces to the deter-

ministic problem (4.1) if the set of scenarios U is a singleton. As with MOP (4.1), in

order to guarantee the existence of (weakly) efficient solutions to MOP(u) for each

u ∈ U , the standard conditions involving compactness and semicontinuity may be

assumed (see Corollary 2.26 and Theorem 2.19, Ehrgott [44], respectively).

In practical problems, conflicting objective functions are unlikely to depend

on the same uncertainties or scenarios. To accommodate this reality, we assume that

the uncertainties of the objective functions f1, . . . , fp are independent of each other,

which is a concept first introduced by Ehrgott et al. [45] known as objective-wise

uncertainty. In particular, MOP(U) is said to be of objective-wise uncertainty if

U = U1×· · ·×Up, where Uk ⊂ Rqk , k = 1, . . . , p, is referred to as a partial uncertainty
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set, such that

f(x,u) =
[
f1(x,u1) · · · fp(x,up)

]T
(5.2)

with u =
[
u1 · · · up

]T ∈ U , and uk ∈ Uk, k = 1, . . . , p.

To solve UMOPs with objective-wise uncertainty in the objective function co-

efficients, a variety of possible solution concepts may be chosen. For a comprehensive

survey of ten different concepts of robust efficiency for this type of problem and their

numerous relationships, refer to Ide and Schöbel [82]. We choose to adopt the con-

servative concept of necessary efficiency (see Inuiguchi and Kume [83]) that is first

mentioned in 1980 by Bitran [18] in the context of solutions to interval multiobjective

linear programs. Such solutions are efficient with respect to every realization of the

uncertain data. However, in keeping with the recent literature on robust multiobjec-

tive optimization, we refer to these solutions as highly robust efficient.

Definition 5.1.1. A solution x∗ ∈ X to MOP(U) is said to be highly robust (weakly)

efficient solution provided for every u ∈ U there does not exist an x ∈ X such that

f(x,u) (<) ≤ f(x∗,u). The highly robust (weakly) efficient set of MOP(U) is denoted

by (wE(X, f(·,u), U)) E(X, f(·,u), U).

Based on the definition of highly robust (weak) efficiency, we have an imme-

diate result.

Proposition 5.1.2. [82, p. 242] A solution x∗ ∈ X to MOP(U) is highly robust

(weakly) efficient if and only if (x∗ ∈
⋂

u∈U wE(X, f(·,u))) x∗ ∈
⋂

u∈U E(X, f(·,u)).

Proof. Suppose x∗ ∈ X is a highly robust efficient solution to MOP(U). By definition,

for every u ∈ U there does not exist an x ∈ X (for that particular realization of u ∈ U)

such that f(x,u) ≤ f(x∗,u). Equivalently, x∗ ∈ E(X, f(·,u)) for every u ∈ U . That

133



is, x∗ ∈
⋂

u∈U E(X, f(·,u)). Therefore, x∗ ∈ X is highly robust efficient if and only if

x∗ ∈
⋂

u∈U E(X, f(·,u)).

The proof follows similarly for weak solutions.

With Proposition 5.1.2 in mind, we recognize that highly robust efficient so-

lutions are those decisions x ∈ X that are efficient with respect to every instance

MOP(u). As a result, although we generally assume that the (weakly) efficient set

associated with MOP(u) is nonempty, it is apparent that highly robust efficient so-

lutions may not exist. We do not provide existence results for highly robust efficient

solutions to MOP(U) here, but do so in the next chapter for UMOLPs.

Remark 5.1.3. From Proposition 5.1.2 and Remark 4.1.2 (applied to the efficient and

weakly efficient sets of MOP(u) for each u ∈ U), it is clear that E(X, f(·,u), U) ⊆

wE(X, f(·,u), U).

In general, when the uncertainty set contains infinitely many elements, Propo-

sition 5.1.2 also indicates that finding highly robust (weakly) efficient solutions to

MOP(U) is impractical. That is, if we wanted to find all highly robust (weakly)

efficient points, then we would need to find the (weakly) efficient set of an infinite

number of instances, which is unrealistic. Due to this nature, we need to explore other

avenues. In particular, we restrict our attention to finite uncertainty sets or infinite

uncertainty sets that may be considered as finite due to special properties. The latter

situation is often referred to as an uncertainty set reduction or the two UMOPs, one

with respect to the original uncertainty set and the other with respect to the finite

set of scenarios, are said to be equivalent since the highly robust efficient set of the

UMOP with respect to the original uncertainty set is equivalent to the highly robust

efficient set of the UMOP with respect to the (reduced) finite set of scenarios. One

such reduction or equivalence is provided by Theorem 46, Ide and Schöbel [82]).
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Since Proposition 5.1.2 reveals that solving MOP(U) for highly robust efficient

solutions is unrealistic unless the uncertainty set is finite or may be considered as

such due to its special structure, we restrict our attention to finite uncertainty sets

for the remainder of this chapter. Although some results may also be true for infinite

uncertainty sets, we do not address this in more detail. Throughout, the finite set of

scenarios is defined to be

U := {u1,u2, . . . ,us} ⊂ Rq, (5.3)

where we assume WLOG that each scenario is distinct.

Under the assumption of a finite set of scenarios, we present a theoretical RC,

develop a naive weighted-sum method, and extend the deterministic multiobjective

programming results due to Benson to the current setting of MOP(U) and highly

robust efficiency.

5.2 A Theoretical Robust Counterpart

In robust (single-objective) optimization, the formulation of an RC, which is

a deterministic (scalar or vector) optimization problem associated with the original

uncertain problem, is integral to providing a solution concept for and facilitating solu-

tion methods to the uncertain problem. As a result, we explore what the formulation

of an RC of MOP(U) that generates highly robust efficient solutions might be, and

what insight this counterpart provides. Intuitively, any RC of MOP(U) asks for a

solution (optimal or efficient) that is a highly robust efficient solution to MOP(U)

(see p. 420, Kuhn et al. [95]). We present two counterpart problems: an atypical (or

theoretical) RC, and a classical counterpart (but not RC) whose solution set contains
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the highly robust efficient set and is thus only a bound set.

Due to the multiobjective nature of our problem, our solution concept, and the

fact that the uncertainty is only considered to be in the objective function coefficients,

the theoretical RC of MOP(U), which we present here, takes on a different form than

possibly expected based upon classical robust optimization. In fact, the RC is a so-

called conjunctive multiobjective program (CMOP). Before we can consider the RC,

however, we must develop the idea of a CMOP.

Definition 5.2.1. A conjunctive multiobjective program is a problem of the form:

min
x

s∧
i=1

fi(x)

s.t. x ∈ X,
(5.4)

where “
∧

” denotes conjunction, fi : X → Rp, i = 1, . . . , s, is a vector-valued objective

function, and X ⊂ Rn is the feasible region given by (4.2).

This problem is an MOP where the objective is given as the conjunction of

vector-valued objective functions fi, i = 1, . . . , s. The conjunction here forces the

consideration of all objectives simultaneously over a common feasible region. What

does this suggest about the solution concept for a CMOP? An intuitive solution

concept for CMOP (5.4) states that a feasible decision is preferred if there is no index

such that the associated objective can be improved (or at least equaled) in every

component. Formally, we state this in the following definition. Let S := {1, . . . , s}

be the index set associated with the finite set of scenarios given by (5.3).

Definition 5.2.2. A feasible solution x̂ ∈ X to CMOP (5.4) is said to be conjunctive

(weakly) efficient provided there does not exist an x ∈ X such that for at least one

index i ∈ S, fi(x) (<) ≤ fi(x̂). The set of all conjunctive (weakly) efficient solutions
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x̂ ∈ X is denoted by (cwE(X, fi,S)) cE(X, fi,S) and is called the conjunctive (weakly)

efficient set.

Since the objective function f(x,u) becomes deterministic given the scenario

u ∈ U , the theoretical RC of MOP(U) that generates highly robust efficient solutions

may immediately be written in the form of a CMOP. In particular, this RC is the

CMOP given by

min
x

∧
u∈U

f(x,u)

s.t. x ∈ X.
(5.5)

Accordingly, the conjunctive (weakly) efficient set of RC (5.5) is denoted (cwE(X,

f(·,u), U)) cE(X, f(·,u), U). Using predicate logic, we are able to show that conjunc-

tive (weakly) efficient solutions to RC (5.5) are in fact highly robust (weakly) efficient

solutions to MOP(U).

Theorem 5.2.3. A feasible solution x∗ ∈ X to MOP(U) is highly robust (weakly)

efficient if and only if it is a conjunctive (weakly) efficient solution to RC (5.5).

Proof. In the context of the proof, we adopt the logic notation “¬” to denote “not”

or negation. Consider that

x∗ ∈ E(X, f(·,u), U)
5.1.1⇐⇒ ∀u ∈ U, @x ∈ X such that f(x,u) ≤ f(x∗,u)

⇐⇒ ∀u ∈ U, ¬
[
∃x ∈ X such that f(x,u) ≤ f(x∗,u)

]
⇐⇒ ∀u ∈ U and ∀x ∈ X, ¬

[
f(x,u) ≤ f(x∗,u)

]
⇐⇒ ∀x ∈ X and ∀u ∈ U, ¬

[
f(x,u) ≤ f(x∗,u)

]
⇐⇒ ∀x ∈ X,

[
∀u ∈ U, ¬

[
f(x,u) ≤ f(x∗,u)

]]
⇐⇒ ∀x ∈ X, ¬

[
∃u ∈ U such that f(x,u) ≤ f(x∗,u)

]
⇐⇒ ¬

[
∃x ∈ X such that ∃u ∈ U for which f(x,u) ≤ f(x∗,u)

]
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⇐⇒ @x ∈ X such that ∃u ∈ U for which f(x,u) ≤ f(x∗,u)

5.2.2⇐⇒ x∗ ∈ cE(X, f(·,u), U),

which gives the result.

The proof follows similarly for highly robust and conjunctive weak efficiency.

Corollary 5.2.4. The highly robust (weakly) efficient set of MOP(U) and the con-

junctive (weakly) efficient set of RC (5.5) are equal.

Proof. The result follows immediately from Theorem 5.2.3.

A natural question is: Are there any other RCs, specifically ones that assume

the form of a classical optimization problem? One possible alternative RC is the

so-called all-in-one problem, which is denoted AIOMOP(U) and given by

min
x

f(x, U) :=
[
f(x,u1) · · · f(x,us)

]T
s.t. x ∈ X,

(5.6)

where f : X×U → Rps is a vector-valued function. Given the uncertainty set U , it is

clear that AIOMOP(U) is a deterministic problem. Accordingly, its (weakly) efficient

set is denoted (wE(X, f(·, U))) E(X, f(·, U)).

Although it is reasonable to expect that the all-in-one problem is an RC of

MOP(U), we demonstrate that it is not. First, since AIOMOP(U) is a deterministic

MOP given U whose efficient solutions are determined by ps criteria, we immedi-

ately obtain that highly robust efficient solutions to MOP(U) are at least weakly

efficient solutions to AIOMOP(U) based on Proposition 1, Engau and Wiecek [50].

Moreover, in the following proposition, we are able to show that highly robust ef-

ficient solutions to MOP(U) are in fact efficient solutions to AIOMOP(U), but not
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vice versa. (In Example 6.3.20, it is explicitly shown that the opposite containment,

i.e., E(X, f(·, U)) ⊆ E(X, f(·,u), U), does not hold.) The result is an extension of

Lemma 17, Kuhn et al. [94], in which p = 2 and one (component) objective function

is deterministic (while the other component is uncertain).

Proposition 5.2.5. [140, Proposition 8] The containment E(X, f(·,u), U) ⊆

E(X, f(·, U)) holds.

Proof. We prove the result via the contrapositive. Suppose x∗ /∈ E(X, f(·, U)). By

Definition 4.1.1, there exists an x ∈ X such that

[
f(x,u1) · · · f(x,us)

]T ≤ [f(x∗,u1) · · · f(x∗,us)
]T
,

which implies that there exists an i ∈ {1, . . . , s} such that f(x,ui) ≤ f(x∗,ui). Equiv-

alently, by Definition 4.1.1, x∗ /∈ E(X, f(·,ui)). Thus, x∗ /∈ E(X, f(·,u), U) by Propo-

sition 5.1.2.

Although we have presented a formulation of an RC for MOP(U), its usefulness

is somewhat restricted since it is not classical or well-known. Despite this downside,

the formulation reiterates the nature of highly robust efficient solutions indicating that

any proposed solution methods must consider all of the objectives simultaneously over

the common feasible set, yet not as a single vector-valued function.

5.3 Extension of the Weighted-Sum Method

In order to solve deterministic MOPs, scalarization methods are commonly

used. As mentioned in Section 4.1.1, one such approach is the weighted-sum method.

For the case of MOP(U) and highly robust efficiency, we may extend this deterministic

approach to the uncertain setting by considering a family of weighted-sum problems.
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For each i = 1, . . . , s, the weighted-sum problem with respect to scenario

ui ∈ U and weight λi ∈ Rp, denoted WSP(λi,u
i), is given by

min
x

p∑
k=1

λikfk(x,u
i)

s.t. x ∈ X.
(5.7)

Given an arbitrary scenario ui ∈ U , it is clear that WSP(λi,u
i) is deterministic and

is in fact the weighted-sum problem (4.4) associated with the instance MOP(ui). For

the purposes of the following result and proof, a feasible solution to WSP(λi,u
i) for

any i ∈ {1, . . . , s} is given by the point x(ui), where x(ui) explicitly indicates the

dependence of the variable x on the scenario ui.

Proposition 5.3.1. Let x(ui) be an optimal solution to WSP(λi,u
i) for each i =

1, . . . , s, and let x̂ := x̂(u1) = · · · = x̂(us).

(i) If λi ∈ Rp
> for all i = 1, . . . , p, then x̂ ∈ E(X, f(·,u), U).

(ii) If λi ∈ Rp
≥ for all i = 1, . . . , p, then x̂ ∈ wE(X, f(·,u), U).

Proof. (i) Let λi ∈ Rp
> for all i = 1, . . . , s. Hence, x̂ ∈ E(X, f(·,ui)) for each

i = 1, . . . , s by Proposition 4.1.6(i). Applying Proposition 5.1.2, we obtain the

result.

(ii) The proof follows similarly to the proof of part (i).

Although Proposition 5.3.1 is very similar to Proposition 4.1.6 in that we may

obtain preferred solutions by using positive or semipositve weights, there is one no-

ticeable difference: the extra assumption that x̂(u1) = · · · = x̂(us). This assumption

is clearly required, however, since the weighted-sum problems in the family act inde-

pendently of one another. That is, when solving the weighted-sum problems, there is
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no guarantee that the particular set of weights chosen produce the same x-solution

in each individual problem. When considering the weighted-sum approach as a solu-

tion method for highly robust (weakly) efficient solutions to MOP(U), this discussion

indicates a notable downside. That being said, parametric optimization may provide

a means to identify the appropriate set of weights to produce a common x-solution,

which we explore in more detail in the following chapter.

In addition, it is still necessary to address whether or not all highly robust

(weakly) efficient solutions may be computed.

Proposition 5.3.2. Let the feasible set X be convex, and let fk(·,ui), k = 1, . . . , p, be

convex functions (in x) for each i = 1, . . . , s. If x̂ ∈ wE(X, f(·,u), U), then there is

some λi ∈ Rp
≥ such that x̂ is an optimal solution to WSP(λi,u

i) for all i = 1, . . . , s.

Proof. Let x̂ ∈ wE(X, f(·,u), U), or equivalently, x̂ ∈ wE(X, f(·,ui)) for all i =

1, . . . , s. Applying Proposition 4.1.7, we obtain the result.

Based on Proposition 5.3.2, all highly robust weakly efficient solutions may

be obtained (under some convexity assumptions) with a collection of weights λi ∈

R
p
≥, i = 1, . . . , s. Equivalently, since highly robust efficient solutions are also weak

by Remark 5.1.3, all highly robust efficient solutions to MOP(U) may be computed.

Nevertheless, with Proposition 5.3.1 and the corresponding discussion in mind, we

know that not every set of weights λi ∈ Rp
≥, i = 1, . . . , s, produces a highly robust

(weakly) efficient solution.

5.4 Extension of Benson’s Method

In the deterministic setting, it is well-known that an auxiliary single-objective

problem, i.e., Benson’s problem, may be used to give the decision maker an oppor-
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tunity to check whether or not a given solution x0 ∈ X to an MOP is efficient or

generate a solution that is. We may extend the existing results from the determin-

istic case (refer to Section 4.1.2) to the case of uncertainty as well. Based on the

formulation of MOP(U) and the definition of highly robust efficiency, the extension

allows for (at least) three different Benson-type auxiliary problems. One is a family

of problems, while the other two are single/individual problems. Regardless of the

auxiliary problem, recognition and generation results are obtained, although some are

not guaranteed to be necessary and sufficient.

We first examine the family of Benson-type auxiliary problems. For a given

feasible solution x0 ∈ X and an arbitrary u ∈ U , the following problem, denoted

BP(x0,u), is a representative member of the family of auxiliary problems and is

given by

max
x,l

p∑
k=1

lk

s.t. f(x,u) + Ipl = f(x0,u)

l = 0

x ∈ X,

(5.8)

where l ∈ Rp is a so-called deviation variable. Given u ∈ U , it is apparent that

BP(x0,u) is deterministic and is simply Benson’s problem (4.5) associated with the

instance MOLP(u). For the purposes of the following results and proofs, a feasi-

ble solution to BP(x0,u) for an arbitrary u ∈ {u1, . . . ,us} is given by the point

(x(u), l(u)), where x(u) and l(u) explicitly indicate the dependence of the variables

x and l on the scenario u.

The idea of BP(x0,u), like in the deterministic setting, is that we first choose

some initial feasible solution x0 ∈ X. If x0 is not itself highly robust efficient, then

we try to produce a solution that is, which is accomplished by maximizing the sum
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(a) The attainable set un-
der f(·,u1) shaded (blue)
and the Pareto set (red)

(b) The attainable set un-
der f(·,u2) shaded (blue)
and the Pareto set (red)

(c) The attainable set un-
der f(·,u3) shaded (blue)
and the Pareto set (red)

Figure 5.1: Illustration of Benson’s method for MOP(U)

of nonnegative deviation variables lk(u) = fk(x0,u) − fk(x(u),u), k = 1, . . . , p, for

each u ∈ U . A key difference between this framework and the deterministic setting,

however, is that we are not guaranteed to obtain a highly robust efficient solution like

we are guaranteed to produce an efficient solution because the individual auxiliary

problems, similarly to the members of the family of weighted-sum problems, act

independently of one another. As a result, we only obtain a highly robust efficient

solution if BP(x0,u) has the same optimal x-solution for each u ∈ U . That being

said, not only can the family of Benson’s problems provide us with a method for

checking whether or not a given x0 ∈ X is highly robust efficient, but it can also

generate highly robust efficient solutions. An illustration is provided in Figure 5.1.

In order to recognize whether or not a given feasible decision is highly robust efficient,

the following result is used.

Proposition 5.4.1. Let x0 ∈ X be given. Then x0 ∈ E(X, f(·,u), U) if and only if

BP(x0,u) has an optimal solution (x̂(u), l̂(u)) with l̂(u) = 0 for every u ∈ U .

Proof 1. (=⇒) Assume x0 ∈ E(X, f(·,u), U), or equivalently, x0 ∈ E(X, f(·,u)) for

all u ∈ U . By Definition 4.1.1, for each u ∈ U , there does not exist an x(u) ∈ X
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such that f(x(u),u) ≤ f(x0,u). Accordingly, for each u ∈ U , there does not exist an

x(u) ∈ X such that

f(x0,u)− f(x(u),u) ≥ 0, (5.9)

which is obtained by subtracting f(x(u),u) from both sides of the former inequality.

Now, for each u ∈ U , let (x̂(u), l̂(u)) be an optimal solution to BP(x0,u). As a

result,

x̂(u) ∈ X and Ipl̂(u) = f(x0,u)− f(x̂(u),u) = 0 (5.10)

for each u ∈ U . Combining (5.9) and (5.10), it must be that l̂(u) = f(x0,u) −

f(x̂(u),u) = 0 for every u ∈ U . Therefore, BP(x0,u) has an optimal solution

(x̂(u), l̂(u)) with l̂(u) = 0 for every u ∈ U .

(⇐=) For each u ∈ U , let (x̂(u), l̂(u)) be an optimal solution to BP(x0,u) with l̂(u) =

0. Assume for the sake of contradiction that x0 /∈ E(X, f(·,u), U), or equivalently,

there exists a ū ∈ U such that x0 /∈ E(X, f(·, ū)). Hence, by Definition 4.1.1, there

exists an x(ū) ∈ X such that f(x(ū), ū) ≤ f(x0, ū). Subtracting f(x(ū), ū) from both

sides of the inequality and letting l(ū) = f(x0, ū) − f(x(ū), ū) ∈ Rp, we have that

there exists an l(ū) ∈ Rp such that l(ū) ≥ 0.

Now, observe that
∑p

k=1 lk(ū) > 0 and that (x(ū), l(ū)) is a feasible solution to

BP(x0, ū). Since l̂(ū) = 0 by assumption (as ū ∈ U), we have constructed a solution

that has an objective value greater than the optimal solution, which is a contradiction.

Thus, it must be that x0 is a highly robust efficient solution to MOP(U).

Proof 2. An alternative proof utilizes the fact that BP(x0,u) is the deterministic

Benson’s problem associated with the instance MOLP(u) for each u ∈ U .

Let an arbitrary u ∈ U be given. By Theorem 4.1.10, x0 ∈ E(X, f(·,u))
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if and only if BP(x0,u) has an optimal solution (x̂(u), l̂(u)) with l̂(u) = 0. Since

u ∈ U is arbitrary and x0 ∈ E(X, f(·,u), U) if and only if x0 ∈
⋂

u∈U E(X, f(·,u)) by

Proposition 5.1.2, the result follows.

In the deterministic setting, it is expected that if x0 is not efficient, then

another x̂ ∈ X that is efficient is generated by Benson’s problem. Even though

Proposition 5.4.1 mirrors the existing result on deterministic efficiency, as mentioned,

this is not the case in the uncertain setting and an additional condition is required

as the next proposition reveals.

Proposition 5.4.2. Let x0 ∈ X be given, and suppose (x̂(ui), l̂(ui)) is an optimal

solution to BP(x0,u
i) for each i = 1, . . . , s. If x̂ := x̂(u1) = · · · = x̂(us) 6= x0 and

l̂(ui) is finite for all i = 1, . . . , s, then x̂ ∈ E(X, f(·,u), U).

Proof. Let x̂ := x̂(u1) = · · · = x̂(us) 6= x0, and let l̂(ui) be finite for all i = 1, . . . , s.

Hence, x̂ ∈ E(X, f(·,ui)) for each i = 1, . . . , s by Proposition 4.1.11. Applying

Proposition 5.1.2 gives the result.

Instead of considering a possibly large (but finite) number of single-objective

problems as in Propositions 5.4.1 and 5.4.2, it is of interest to have a single auxil-

iary problem. One such problem, denoted BP1(x0, U), is a block-style problem (see

problem (15), Wiecek and Dranichak [140]) given by

max
x1,...,xs,l1,...,ls

s∑
i=1

p∑
k=1

lik

s.t. f(xi,u
i) + Ipli = f(x0,u

i) for all i = 1, . . . , s

li = 0 for all i = 1, . . . , s

xi ∈ X for all i = 1, . . . , s,

(5.11)
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where li ∈ Rp for all i = 1, . . . , s. Based on the block-style structure of problem (5.11),

it is clear that BP1(x0, U) is equivalent to the family of auxiliary problems given by

{BP(x0,u)}u∈U . That being said, we may similarly propose solution recognition and

generation methods.

Proposition 5.4.3. [140, Proposition 7] Let x0 ∈ X be given. Then x0 is a highly

robust efficient solution to MOP(U) if and only if BP1(x0, U) has an optimal solution

(x̂1, . . . , x̂s, l̂1, . . . , l̂s) with l̂i = 0 for all i = 1, . . . , s.

Proof. (=⇒) Assume x0 ∈ E(X, f(·,u), U), or equivalently, x0 ∈ E(X, f(·,ui)) for

all i = 1, . . . , s. By Definition 4.1.1, for each i = 1, . . . , s, there does not exist an

x(ui) ∈ X such that f(x(ui),ui) ≤ f(x0,u
i). Accordingly, for each i = 1, . . . , s, there

does not exist an x(ui) ∈ X such that

f(x0,u
i)− f(x(ui),ui) ≥ 0, (5.12)

which is obtained by subtracting f(x(ui),ui) from both sides of the former inequality.

Now, let (x̂1, . . . , x̂s, l̂1, . . . , l̂s) be an optimal solution to BP1(x0, U). As a result,

x̂i ∈ X and Ipl̂i = f(x0,u
i)− f(x̂i,u

i) = 0 (5.13)

for all i = 1, . . . , s. Combining (5.12) and (5.13), it must be that l̂i = f(x0,u
i) −

f(x̂i,u
i) = 0 for all i = 1, . . . , s. Therefore, BP1(x0, U) has an optimal solution

(x̂1, . . . , x̂s, l̂1, . . . , l̂s) with l̂i = 0 for all i = 1, . . . , s.

(⇐=) Let (x̂1, . . . , x̂s, l̂1, . . . , l̂s) be an optimal solution to BP1(x0, U) with l̂i = 0 for

all i = 1, . . . , s. Assume for the sake of contradiction that x0 /∈ E(X, f(·,u), U), or

equivalently, there exists an i ∈ {1, . . . , s} such that x0 /∈ E(X, f(·,ui)). Hence, by
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Definition 4.1.1, there exists an x(ui) ∈ X such that f(x(ui),ui) ≤ f(x0,u
i). Sub-

tracting f(x(ui),ui) from both sides of the inequality and letting l(ui) = f(x0,u
i)−

f(x(ui),ui), we have that there exists an l(ui) ∈ Rp such that l(ui) ≥ 0.

Now, observe that
∑p

k=1 lk(u
i) > 0 and that (x̂1, . . . ,x(ui), . . . , x̂s, l̂1, . . . , l(u

i),

. . . , l̂s) is a feasible solution to BP1(x0, U). Since l̂i = 0 for all i = 1, . . . , s by as-

sumption, we have constructed a solution with an objective value greater than the

optimal solution, which is a contradiction. Thus, it must be that x0 is a highly robust

efficient solution to MOP(U).

Proposition 5.4.4. Let x0 ∈ X be given, and suppose (x̂1, . . . , x̂s, l̂1, . . . , l̂s) is an

optimal solution to BP1(x0, U). If x̂ := x̂1 = · · · = x̂s 6= x0 and l̂i is finite for all

i = 1, . . . , s, then x̂ ∈ E(X, f(·,u), U).

Proof. Let x̂ = x̂1 = · · · = x̂s 6= x0, and let l̂i be finite for all i = 1, . . . , s. Assume for

the sake of contradiction that x̂ /∈ E(X, f(·,u), U). Hence, there is some ı̄ ∈ {1, . . . , s}

such that x̂ /∈ E(X, f(·,uı̄)). By definition, there exists an x̄ ∈ X such that f(x̄,uı̄) ≤

f(x̂,uı̄). Define l̄ = f(x0,u
ı̄) − f(x̄,uı̄). Hence, (x̂1, . . . , x̂ı̄−1, x̄, x̂ı̄+1, . . . , x̂s, l̂1, . . . ,

l̂ı̄−1, l̄, l̂ı̄+1, . . . , l̂s) is a feasible solution to BP1(x0, U) since l̄ = f(x0,u
ı̄)− f(x̄,uı̄) ≥

f(x0,u
ı̄)− f(x̂,uı̄) = l̂ı̄ = 0 and x̄ ∈ X. Moreover, since l̄ ≥ l̂ı̄, we have that

p∑
k=1

(l̂1k + · · ·+ l̂ı̄−1,k + l̄k + l̂ı̄+1,k + · · ·+ l̂sk) >
s∑
i=1

p∑
k=1

l̂ik.

Therefore, we have constructed a feasible solution to BP1(x0, U) with an objective

value greater than the optimal solution, which is a contradiction. Thus, it must be

that x̂ ∈ E(X, f(·,u), U).

A third Benson-type problem is associated with AIOMOP (5.6). The corre-
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sponding Benson’s problem, denoted BP2(x0, U), is given by

max
x,l1,...,ls

s∑
i=1

p∑
k=1

lik

s.t. f(x,ui) + Ipli = f(x0,u
i) for all i = 1, . . . , s

li = 0 for all i = 1, . . . , s

x ∈ X,

(5.14)

where li ∈ Rp for all i = 1, . . . , s. Given the set of scenarios U , it is clear that

BP2(x0, U) is the deterministic Benson’s problem associated with AIOMOP(U). Since

we know that E(X, f(·,u), U) ⊆ E(X, f(·, U)) (see Proposition 5.2.5), the Benson-type

method utilizing BP2(x0, U) does not provide necessary and sufficient conditions for

highly robust efficiency recognition even though BP1(x0, U) does. That being said,

the advantage of BP2(x0, U) is due to its reduced number of variables.

Proposition 5.4.5. Let x0 ∈ X be given. If x0 ∈ E(X, f(·,u), U), then BP2(x0, U)

has an optimal solution (x̂, l̂1, . . . , l̂s) with l̂i = 0 for all i = 1, . . . , s.

Proof 1. Assume x0 ∈ E(X, f(·,u), U), or equivalently, x0 ∈ E(X, f(·,ui)) for all

i = 1, . . . , s. By Definition 4.1.1, for each i = 1, . . . , s, there does not exist an

x(ui) ∈ X such that f(x(ui),ui) ≤ f(x0,u
i). Accordingly, for each i = 1, . . . , s, there

does not exist an x(ui) ∈ X such that

f(x0,u
i)− f(x(ui),ui) ≥ 0, (5.15)

which is obtained by subtracting f(x(ui),ui) from both sides of the former inequality.

Now, let (x̂, l̂1, . . . , l̂s) be an optimal solution to BP2(x0, U). As a result,

Ipl̂
i = f(x0,u

i)− f(x̂,ui) = 0 for all i = 1, . . . , s and x̂ ∈ X. (5.16)
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Combining (5.15) and (5.16), it must be that l̂i = f(x0,u
i) − f(x̂,ui) = 0 for all

i = 1, . . . , s. Therefore, BP2(x0, U) has an optimal solution (x̂, l̂1, . . . , l̂s) with l̂i = 0

for all i = 1, . . . , s.

Proof 2. Assume x0 ∈ E(X, f(·,u), U). Hence, x0 ∈ E(X, f(·, U)) also by Proposi-

tion 5.2.5. Since BP2(x0, U) is the deterministic Benson’s problem associated with

AIOMOP(U), the result follows immediately from Theorem 4.1.10.

Remark 5.4.6. We can easily observe why the above recognition condition is not also

sufficient. When we try to construct a feasible solution that has a better objective

value as in the proof involving BP1(x0, U), we are not able to do so. In particular,

consider the following:

If we take (x̂, l̂1, . . . , l̂s) to be an optimal solution to BP2(x0, U) with l̂i =

0 for all i = 1, . . . , s, and assume for the sake of contradiction that x0 /∈

E(X, f(·,u), U), then we obtain that there exists an ı̄ ∈ {1, . . . , s} such that

x0 /∈ E(X, f(·,uı̄)). Hence, by Definition 4.1.1, there exists an x(uı̄) ∈ X such

that f(x(uı̄),uı̄) ≤ f(x0,u
ı̄). Subtracting f(x(uı̄),uı̄) from both sides of the

inequality and letting l(uı̄) = f(x0,u
ı̄)− f(x(uı̄),uı̄), we have that there exists

an l(uı̄) ∈ Rp such that l(uı̄) ≥ 0. Thus, we have a point (x(uı̄), l̂1, . . . , l(u
ı̄),

. . . , l̂s) such that

f(x(uı̄),uı̄) + Ipl(u
ı̄) = f(x0,u

ı̄).

However, we cannot claim that the point (x(uı̄), l̂1, . . . , l(u
ı̄), . . . , l̂s) is

feasible to BP2(x0, U) because it is unknown whether or not

f(x(ui),ui) + Ipl̂i
?
= f(x0,u

i) for all i = 1, . . . , s, i 6= ı̄.

As a result, we are not able to construct a feasible solution that has an objective
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value greater than the optimal solution, which is needed in order to obtain the

required contradiction.

In addition, it is clear that Proposition 5.4.5 is not both necessary and sufficient

since BP2(x0, U) is the deterministic Benson’s problem associated with AIOMOP(U)

and the efficient set of AIOMOP(U) contains the highly robust efficient set (as already

mentioned).

A natural question now is, do optimal solutions to BP2(x0, U) lead to highly

robust efficient solutions as is the case for BP1(x0, U)? That is, if the given solution

x0 is not highly robust efficient, then does solving BP2(x0, U) generate a solution

that is? The obvious answer is no since our initial result, Proposition 5.4.5, is not

necessary and sufficient. In particular, it is important to realize here that conditions

similar to those stated in Proposition 5.4.4 for BP1(x0, U) are not readily available for

BP2(x0, U) since an optimal solution to BP2(x0, U) is foremost an efficient solution

to the all-in-one problem. As a result, it need not also be a highly robust efficient

solution to MOP(U).

In any case, the Benson-type results give an important tool to decision makers

by providing methods with which any solution that is deemed desirable a priori may

be verified as highly robust efficient without having to solve the entire UMOP.
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Chapter 6

Uncertain Multiobjective Linear

Programs

Assuming uncertainty in the cost matrix coefficient data of a multiobjective

linear program (MOLP), i.e., MOLP (4.8), or equivalently assuming that the feasible

set X of an uncertain multiobjective program (UMOP), i.e., UMOP (5.1), is poly-

hedral and the objective functions f(·,u) are linear with respect to x, we obtain an

uncertain MOLP (UMOLP). Since UMOPs are a generalization of this case, all of

the results of the previous chapter still hold but some may be restated for complete-

ness. That being said, the interest in studying UMOLPs is developing additional

meaningful results.

We present the problem formulation and restate the solution concept of in-

terest, highly robust efficiency, in Section 6.1. In Section 6.2, an uncertainty set

reduction for a class of UMOLPs is then given, which along with an existing reduc-

tion result allows for highly robust efficient solutions to be studied with respect to

only UMOLPs whose uncertainty sets are finite. Under the assumption that the un-

certainty set is finite, the highly robust efficient set is examined in Section 6.3 and
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methods with which to compute highly robust efficient solutions are proposed in Sec-

tion 6.4. Within Section 6.3, properties and characterizations of the highly robust

efficient set are presented in Sections 6.3.1 and 6.3.2, respectively, bound sets on the

highly robust efficient set are derived in Section 6.3.3, and a theoretical robust coun-

terpart (RC) of the same form as in Section 5.2, as well as a classical RC, is proposed

in Section 6.3.4. Moreover, as the acuteness of various cones emerges as an important

property during the course of Section 6.3.2, this feature is discussed in more detail

and methods with which to identify it are revisited in Section 6.3.5. Within Section

6.4, approaches to identify whether or not a given feasible solution of interest is also

highly robust efficient, possibly generate a different highly robust efficient point, or

determine that no highly robust efficient solutions exist are developed in Sections

6.4.1 and 6.4.2, while solution methods to compute highly robust efficient points are

proposed in Sections 6.4.3 and 6.4.4. Using the approach prescribed in Section 6.4.4,

an application problem in the area of bank balance-sheet management is solved for

its highly robust efficient solutions.

As in the previous part, results throughout this section may include two proofs

as they are extensions of results from deterministic multiobjective linear program-

ming. The first proof typically follows a similar format to that from the deterministic

case, but is done to illustrate that the proof may be done independently of the original

result. The second proof, on the other hand, typically utilizes the definition of highly

robust efficiency along with the corresponding result from deterministic multiobjec-

tive linear programming. Generally speaking, some results are more straightforward

extensions of existing results from deterministic multiobjective linear programming,

such as properties of the highly robust efficient set, while others are more sophisti-

cated and significant, including the bilevel approach to compute highly robust efficient

solutions.
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6.1 Problem Formulation and Solution Concept

Considering uncertain input data in the cost matrix coefficients of MOLP

(4.8), we obtain a UMOLP, denoted MOLP(U), which is defined to be a collection or

family of MOLPs indexed by the (uncertain) parameter u. In particular, MOLP(U)

is given by  min
x

C(u)x

s.t. x ∈ P


u∈U,

(6.1)

where U ⊂ Rq is a nonempty set modeling the uncertainty, P ⊂ Rn is the (deter-

ministic) polyhedral feasible region given by (2.6), and C(u) is the p× n cost matrix

under uncertainty u ∈ U . As previously mentioned, U is the uncertainty set or set of

scenarios, u is referred to as an uncertainty, realization, or scenario, and MOLP(u)

is an instance of MOLP(U). Since each instance MOLP(u) is a deterministic MOLP

given the realization u ∈ U , we let (wE(P,C(u))) E(P,C(u)) denote the (weakly)

efficient set of MOLP(u) for some realization u ∈ U , and note that the uncertain

problem (6.1) reduces to the deterministic problem (4.8) if U is a singleton. As with

MOLP (4.8), in order to guarantee (weakly) efficient solutions to MOLP(u) exist

for each u ∈ U , the standard condition that P is bounded (cf. Corollary 2.26 and

Theorem 2.19, Ehrgott [44], respectively) may be assumed. However, in the interest

of providing various pertinent existence results, the assumption that P is bounded is

not made in general.

In any multiobjective optimization problem, the multiple criteria are assumed

to be in conflict. Hence, it is reasonable to expect that the conflicting objective

functions are unlikely to depend on the same uncertainties. To accommodate this

situation, as previously mentioned, we assume that the UMOLP is of objective-wise

uncertainty. In particular, UMOLP (6.1) is said to be of objective-wise uncertainty if
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U = U1×· · ·×Up, where Uk ⊂ Rqk , k = 1, . . . , p, is referred to as a partial uncertainty

set, such that C(u) =
[
c1(u1) · · · cp(up)

]T
with u =

[
u1 · · · up

]T ∈ U and

uk ∈ Uk, k = 1, . . . , p. For our purposes, we only consider the UMOLP of objective-

wise uncertainty with U = U1 × · · ·Up such that Uk ⊆ Rn, k = 1, . . . , p, and

C(u) =

c1(u1)
...

cp(up)

 =

c11u11 · · · c1nu1n
...

. . .
...

cp1up1 · · · cpnupn

 , (6.2)

where u =
[
u1 · · · up

]T ∈ U and uk ∈ Uk, k = 1, . . . , p. Based on (6.2), it is easy to

see that C(u)x is bilinear with respect to x ∈ P and u ∈ U , a fact that is important

in later results.

Perhaps the first objective-wise UMOLPs with only uncertain objective co-

efficients encountered in the literature are from the field of interval multiobjective

programming (see Bitran [18]) in which every cost matrix coefficients fall within a

closed interval that is assumed to be known. Bitran [18] defines an interval MOLP

(IMOLP) to be the collection of MOLPs indexed by the cost matrix C given by

 min
x

Cx

s.t. x ∈ P


C∈Φ,

(6.3)

where Φ ⊆ Rp×n is the nonempty set of p×n matrices with elements cki ∈ [cL
ki, c

U
ki], k =

1, . . . , p, i = 1, . . . , n. The lower bounds cL
ki and upper bounds cU

ki are assumed to be

known. Although IMOLP (6.3) and UMOLP (6.1) with cost matrix (6.2) appear to

be nearly identical, we show that the latter is in fact more general than the former.

It is clear that all IMOLPs can be reformulated as objective-wise UMOLPs

by taking ckj = 1 in (6.2) for all k = 1, . . . , p, j = 1, . . . , n, and Uk = {uk ∈ Rn :

cL
k1 ≤ uk1 ≤ cU

k1, . . . , c
L
kn ≤ ukn ≤ cU

kn}, k = 1, . . . , p, which is often referred to as a
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box uncertainty set. On the other hand, it is equally clear that not all objective-wise

UMOLPs can be reformulated as IMOLPs, which is the case, for instance, when U is

finite. As an example, consider


min
x

[
u11 u12

u21 u22

]
x

s.t. x ∈ P


u1∈U1,u2∈U2,

(6.4)

where U1 = {(1, 1), (2, 3)}, and U2 = {(1, 2)}. Here, we have that U = {(1, 1, 1, 2),

(2, 3, 1, 2)}. As UMOLP (6.4) is a collection of two MOLPs, it cannot possibly be

reformulated as an IMOLP that is necessarily an infinite collection of MOLPs or

a singleton (if cL
ki = cU

ki for all k and i). Since all IMOLPs can be reformulated

as objective-wise UMOLPs with box uncertainty sets, which is only one of many

possible types of uncertainty sets, and UMOLPs with finite uncertainty sets cannot

be reformulated as IMOLPs, it is evident that UMOLP (6.1) is more general than

IMOLP (6.3) and permits a wider variety of problems to study. Therefore, we instead

investigate UMOLP (6.1) with cost matrix (6.2) and do not study IMOLP (6.3) any

further.

As already mentioned, the desired solution to objective-wise UMOLPs with

uncertain objective function coefficients is not immediately obvious. Although a wide

variety of possible solution concepts have been proposed, we choose to adopt the

conservative concept of highly robust efficiency, as it is referred to in the more recent

robust multiobjective optimization literature, in which solutions are efficient with

respect to every realization of the uncertain data.

Definition 6.1.1. A solution x∗ ∈ P to MOLP(U) is said to be highly robust

(weakly) efficient provided for every u ∈ U there does not exist an x ∈ P such

that C(u)x (<) ≤ C(u)x∗. The highly robust (weakly) efficient set of MOLP(U) is
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denoted by (E(P,C(u), U)) E(P,C(u), U).

Based on the definition of highly robust (weak) efficiency, we have – as in the

previous chapter – an immediate result.

Proposition 6.1.2. [82, p. 242] A point x∗ ∈ P is a highly robust (weakly) efficient

solution to MOLP(U) if and only if (x∗ ∈
⋂

u∈U wE(P,C(u))) x∗ ∈
⋂

u∈U E(P,C(u)).

Proof. The proof follows the same as the proof of Proposition 5.1.2.

More simply, Proposition 6.1.2 indicates that highly robust efficient solutions

are those decisions x ∈ P that are efficient with respect to every instance MOLP(u).

As a result, although we generally assume that the (weakly) efficient set associated

with MOLP(u) is nonempty, it is apparent that highly robust efficient solutions may

not exist. We provide several existence results for highly robust efficient solutions to

MOLP(U) in this chapter, and discuss the ramifications of these results.

Remark 6.1.3. From Proposition 6.1.2 and Remark 4.2.3 (applied to the efficient and

weakly efficient sets of MOLP(u) for each u ∈ U), it is clear that E(P,C(u), U) ⊆

wE(P,C(u), U). That being said, it is important to recognize a key difference be-

tween the solutions to deterministic and uncertain MOLPs. In the deterministic case,

provided that P is bounded, the weakly efficient and efficient sets of MOLP (4.8) are

nonempty (cf. Corollary 2.26 and Theorem 2.19, Ehrgott [44]). On the other hand,

in the uncertain case, the highly robust weakly efficient set of UMOLP (6.1) may be

nonempty while the highly robust efficient set is empty even if P is bounded. For

example, consider the UMOLP given by


min
x

[
u11 u12

u21 u22

]
x

s.t. x ∈ P1


u1∈U1,u2∈U2,

(6.5)
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(a) The weakly efficient
(purple) and efficient (teal)
sets under u1 = (1, 0, 0, 1)

(b) The weakly efficient
(grey) and efficient (green)
sets under u2 = (−1, 0, 0, 1)

(c) The highly robust
weakly efficient set (red)

Figure 6.1: Weakly efficient, efficient, and highly robust weakly efficient points of
UMOLP (6.5), and feasible set P1

where U1 = {(1, 0), (−1, 0)}, U2 = {(0, 1)}, and P1 is given by (4.10). We have, as

shown in Figure 6.1c, that the highly robust weakly efficient set is nonempty while

the highly robust efficient set is empty. With this in mind, we only address highly

robust weakly efficient solutions in certain cases and focus our attention on highly

robust efficient solutions.

As previously mentioned in the context of Proposition 5.1.2, when the uncer-

tainty set U contains infinitely many elements, Proposition 6.1.2 also indicates that

finding highly robust (weakly) efficient solutions to MOLP(U) is impractical since

we would need to find the (weakly) efficient set of an infinite number of instances,

which is unrealistic. Due to this inefficacy, we need to explore other avenues, namely

restricting our attention to finite uncertainty sets as a consequence of infinite un-

certainty sets that may be considered as finite due to special properties. A more

thorough discussion is provided in the following section.
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6.2 Uncertainty Set Reductions

Since Proposition 6.1.2 reveals that solving MOLP(U) for highly robust effi-

cient solutions is unrealistic unless the uncertainty set is finite, we explore infinite

uncertainty sets that may be considered as or reduced to finite sets of scenarios with

respect to MOLP(U) due to their special geometry or structure. In other words, we

consider UMOLPs that are infinite collections of MOLPs, which results when the as-

sociated uncertainty set is infinite, but may be reduced to equivalent UMOLPs that

are only finite collections.

The first result, which is special case of Theorem 46, Ide and Schöbel [82],

reduces a polytopal uncertainty set to the finite set of its extreme points.

Theorem 6.2.1. Let U be a nonempty polytope, and let Upts := {u1, . . . ,uη}, where

uk =
[
uk1 · · · ukp

]
for all k = 1, . . . , η, be the set of extreme points of U . Then

E(P,C(u), U) = E(P,C(u), Upts).

Proof. Follows immediately from Theorem 46, Ide and Schöbel [82], since MOLP(U)

is assumed to be of objective-wise uncertainty and C(u) is clearly linear (and therefore

affine) with respect to u ∈ U .

A second result, which is true for a special class of UMOLPs, allows for the

reduction of an unbounded infinite uncertainty set. In particular, a reduction similar

to Theorem 6.2.1 is possible even when the polyhedron is allowed to be unbounded for

a generalization of the model used by Kuhn et al. [95]. While this result pertains to a

very specific class of problems, it is unique since in the robust optimization literature

the uncertainty set is typically assumed to be bounded.

Consider the UMOLP obtained by accounting for uncertainty only in the input

data of the cost vector c1 of MOLP (4.8), i.e., the UMOLP in which one objective is
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uncertain and the other p − 1 objectives are certain or deterministic. This modified

UMOLP is given by

 min
x

Ĉ(u)x :=
[
c1(u) c2 · · · cp

]T
x

s.t. x ∈ P


u∈Û ,

(6.6)

where Û ⊆ Rn is the nonempty set modeling the uncertainty. Equivalently, UMOLP

(6.6) may be obtained from UMOLP (6.1) by letting Û = U1 and U2 = · · · = Up =

{1}. As such, UMOLP (6.6) is trivially objective-wise, and the terminology and

notation that we have already introduced transfers to the current context.

Theorem 6.2.2. Let Û be a nonempty polyhedron with at least one extreme point,

and let Û ext := {u1, . . . ,uη} ∪ {uη+1, . . . ,uη+τ}, where uk =
[
uk1 · · · ukn

]
for all

k = 1, . . . , η+τ , be the union of the finite sets of extreme points and extreme directions

of Û , respectively, such that Û ext ⊆ Û . Then E(P, Ĉ(u), Û) = E(P, Ĉ(u), Û ext).

Proof. (=⇒) Since Û ext ⊆ Û , it follows that

E(P, Ĉ(u), Û) =
⋂

u∈Û E(P, Ĉ(u)) ⊆
⋂

u∈Ûext E(P, Ĉ(u)) = E(P, Ĉ(u), Û ext).

(⇐=) Let x∗ ∈ E(P, Ĉ(u), Û ext), but x∗ /∈ E(P, Ĉ(u), Û). That is, there exists a

ū ∈ Û \ Û ext such that x∗ /∈ E(P, Ĉ(ū)). Hence, there exists an x̄ ∈ P such that

Ĉ(ū)x̄ ≤ Ĉ(ū)x∗ (6.7)

by definition, and we may write

ū =

η∑
j=1

αjuj +

η+τ∑
k=η+1

βkuk, (6.8)
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where αj ≥ 0 for all j = 1, . . . , η,
∑η

j=1 αj = 1, and βk ≥ 0 for all k = η+ 1, . . . , η+ τ ,

by the Representation Theorem 2.4.33. Since Ĉ(u) is (clearly) linear with respect to

u, (6.7) and (6.8) yield

η∑
j=1

αjc1(uj)x̄ +

η+τ∑
k=η+1

βkc1(uk)x̄ ≤
η∑
j=1

αjc1(uj)x
∗ +

η+τ∑
k=η+1

βkc1(uk)x
∗

c2x̄ ≤ c2x
∗

...

cpx̄ ≤ cpx
∗

(6.9)

with at least one inequality strict.

Note that αj > 0 for at least one j, and that if αj > 0 for one j and βk = 0 for

all k, then (6.8) gives ū = uj, which is a contradiction since ū ∈ Û \ Û ext. Regardless,

we obtain

η∑
j=1

αj[c1(uj)x̄− c1(uj)x
∗] +

η+τ∑
k=η+1

βk[c1(uk)x̄− c1(uk)x
∗] ≤ 0

c2x̄ ≤ c2x
∗

...

cpx̄ ≤ cpx
∗

(6.10)

with at least one inequality strict from (6.9). Since αj ≥ 0 for all j and βk ≥ 0 for all

k, there exists a ς ∈ {1, . . . , η+ τ} such that c1(uς)x̄− c1(uς)x
∗ ≤ 0, or equivalently,
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c1(uς)x̄ ≤ c1(uς)x
∗. Hence, we obtain that there exists a ς ∈ {1, . . . , η+ τ} such that

c1(uς)x̄ ≤ c1(uς)x
∗

c2x̄ ≤ c2x
∗

...

cpx̄ ≤ cpx
∗

with at least one inequality strict from (6.10), which implies that x∗ /∈ E(P, Ĉ(uς)).

Since uς ∈ Û ext and x∗ ∈ ∩u∈Ûext E(P, Ĉ(u)), we obtain a contradiction and therefore

the result.

The following example provides an illustration of Theorem 6.2.2.

Example 6.2.3. Consider the biobjective UMOLP with the first objective uncertain

and the second deterministic given by


min
x

[
u1 u2

1 1

]
x

s.t. x ∈ P1


u∈Û ,

(6.11)

where Û = {u ∈ R2 : −2u1−u2 ≤ 0, u1−3u2 ≤ 0} is a polyhedral convex cone, and P1

is given by (4.10). Note that Û has one extreme point, namely (0, 0), the set of extreme

points and directions of Û is given by Û ext = {u1 = (0, 0),u2 = (−1, 2),u3 = (3, 1)},

and Û ext ⊆ Û clearly holds. As such, Theorem 6.2.2 is applicable.

With this in mind, we first examine E(P1, Ĉ(u), Û ext). Observe that the cones

of improving directions associated with the extreme point/direction scenarios u1,u2,
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(a) D≤(Ĉ(u1)) (green) and E(P1, Ĉ(u1))
(purple)

(b) D≤(Ĉ(u2)) (green) and E(P1, Ĉ(u2))
(grey)

(c) D≤(Ĉ(u3)) (green) and E(P1, Ĉ(u3))
(teal)

(d) E(P1, Ĉ(u), Û ext) (red)

Figure 6.2: Cones of improving directions and efficient points associated with the
scenarios u1,u2, and u3, as well as the highly robust efficient set E(P1, Ĉ(u), Û ext)

and u3 are given by

D≤(Ĉ(u1)) = {d ∈ R2 : d1 + d2 < 0},

D≤(Ĉ(u2)) = {d ∈ R2 : −d1 + 2d2 ≤ 0, d1 + d2 ≤ 0, at least one strict},

D≤(Ĉ(u3)) = {d ∈ R2 : 3d1 + d2 ≤ 0, d1 + d2 ≤ 0, at least one strict}.

Solving each instance using the corresponding cone of improving directions as in

Section 4.2.2.2, we obtain the efficient sets as shown in Figures 6.2a–6.2c. Applying

Proposition 6.1.2, the intersection then yields that E(P1, Ĉ(u), Û ext) = {(0, 0)}, which

is shown in Figure 6.2d.
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We now examine E(P1, Ĉ(u), Û) in a similar manner. Observe that each u ∈ Û

may be expressed as

u =

[
0
0

]
+ β1

[
−1
2

]
+ β2

[
3
1

]
,

where β1, β2 ≥ 0 by the Representation Theorem 2.4.33. Hence, the cone of improving

directions of UMOLP (6.11) is given by

D≤(Ĉ(u)) =

{
d ∈ R2 :

[
(−β1 + 3β2)d1 + (2β1 + β2)d2

d1 + d2

]
≤ 0

}
.

In order to show that E(P1, Ĉ(u), Û) = E(P1, Ĉ(u), Û ext) holds, we analyze D≤(Ĉ(u))

for various values of β1 and β2. For example, if β1 = β2 = 0, then D≤(Ĉ(u)) =

D≤(Ĉ(u1)). Similarly, if β1 = 0, then D≤(Ĉ(u)) = D≤(Ĉ(u2)) for all β2 > 0,

while if β2 = 0, then D≤(Ĉ(u)) = D≤(Ĉ(u3)) for all β1 > 0. Otherwise, D≤(Ĉ(u))

ranges between the extreme directions
[
1 −1

]T
and

[
−1 1

]T
of D≤(Ĉ(u2)) and

D≤(Ĉ(u3)), respectively, i.e., within the halfspace D≤(Ĉ(u1)), as shown in Figures

6.3a–6.3i. Regardless, for any values of β1, β2 ≥ 0, it is thus clear that the efficient set

of each instance is either the singleton {(0, 0)} or the line segment joining (0, 0) and

(6, 0), which yields that E(P1, Ĉ(u), Û) =
⋂

u∈Û E(P1, Ĉ(u)) = {(0, 0)} as expected.

In view of Theorems 6.2.1 and 6.2.2, we restrict our attention to finite uncer-

tainty sets throughout the remainder of this chapter. The finite set of scenarios is

given by (5.3), i.e.,

U := {u1,u2, . . . ,us} ⊂ Rq,

where we assume WLOG that each scenario is distinct. As mentioned, under the

assumption that the uncertainty set is finite, the highly robust efficient set of UMOLP

(6.1) with cost matrix (6.2) is studied in Section 6.3 and the computation of highly

robust efficient solutions is addressed in Section 6.4. Although certain results may
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(a) D≤(Ĉ(u)) (green) with
β1 = β2 = 1

(b) D≤(Ĉ(u)) (green) with
β1 = 1, β2 = 2

(c) D≤(Ĉ(u)) (green) with
β1 = 1, β2 = 5

(d) D≤(Ĉ(u)) (green) with
β1 = 1, β2 = 10

(e) D≤(Ĉ(u)) (green) with
β1 = 1, β2 = 100

(f) D≤(Ĉ(u)) (green) with
β1 = 2, β2 = 1

(g) D≤(Ĉ(u)) (green) with
β1 = 5, β2 = 1

(h) D≤(Ĉ(u)) (green) with
β1 = 10, β2 = 1

(i) D≤(Ĉ(u)) (green) with
β1 = 100, β2 = 1

Figure 6.3: Cones of improving directions associated with varying values of β1 and β2

also be true for infinite uncertainty sets, as in the previous chapter, we do not address

this in more detail.

6.3 Regarding the Highly Robust Efficient Set

In this section, we explore properties of the highly robust efficient set such

as those that we extend from deterministic efficiency, as well as those specific to

UMOLPs and the definition of highly robust efficiency. The former are examined
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directly below, while the latter, including a characterization of the highly robust

efficient set and bound sets on the highly robust efficient set, are presented in the

subsequent subsections. As acuteness emerges as an important element in the course

of this analysis, we address this property in more detail as well.

6.3.1 Properties

Various properties of the efficient set of MOLP (4.8) are known in the literature

including those regarding closedness, convexity, and connectedness. We examine how

some of these properties extend from efficient solutions in the deterministic case to

highly robust efficient solutions in the uncertain case. In particular, we provide five

properties of the efficient set of MOLP (4.8) that directly extend to the highly robust

efficient set of MOLP(U), as well as one property that does not.

Proposition 6.3.1. (i) E(P,C(u), U) is closed.

(ii) E(P,C(u), U) is not necessarily convex.

(iii) If E(P,C(u), U) 6= ∅, then it is either the entire set P or on the boundary of P .

(iv) If E(P,C(u), U) 6= ∅ and a point in the relative interior of a face of P is highly

robust efficient, then so is the entire face.

(v) If E(P,C(u), U) 6= ∅, then there exists a highly robust efficient extreme point.

(vi) E(P,C(u), U) is not necessarily connected.

Proof. (i) Since MOLP(u) is a deterministic MOLP for each u ∈ U , it follows

that E(P,C(u)) is closed for each u ∈ U by Proposition 4.2.5(i). Hence, as an

arbitrary intersection of closed sets is closed by Theorem 2.4.8(iii), the result

follows from Proposition 6.1.2.
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(ii)–(iv) Similarly, (ii)–(iv) follow from Proposition 6.1.2 combined with Propositions

4.2.5(ii), (iii), and (iv), respectively.

(v) Follows from parts (iii) and (iv).

(vi) As E(P,C(u), U) is the intersection of possibly nonconvex sets, it may be dis-

connected. Refer to Example 6.3.2.

Although the first five properties immediately extend from the deterministic

to uncertain setting, the same cannot be said of connectedness. Since the efficient set

of MOLP (4.8) is connected as in Proposition 4.2.5(vi), it might be expected that the

highly robust efficient set of MOLP(U) is also connected but this is not the case. As

an illustration, consider the following example.

Example 6.3.2. Consider the UMOLP given by


min
x

[
3u11 −9u12

−u21 9u22

]
x

s.t. x ∈ P1


u1∈U1,u2∈U2,

(6.12)

where U1 = {(1, 1)}, U2 = {(1, 1), (2,−1/9)}, and P1 is given by (4.10). Solving each

of the two instances and taking the intersection of their efficient sets, we observe that

the highly robust efficient set is disconnected, as shown in Figure 6.4c.

Remark 6.3.3. The fact that the highly robust efficient set is not necessarily connected

suggests that an algorithm to obtain highly robust efficient solutions to MOLP(U)

similar to the multiobjective simplex method is not advantageous to pursue since the

effectiveness of this simplex algorithm relies on the connectedness of efficient bases

associated with extreme points, which we do not have in general for highly robust

efficient solutions. Nevertheless, Bitran [18] and Benson [12] both implement an

extension of the multiobjective simplex method in order to compute all necessarily
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(a) The efficient set under
scenario (1, 1, 1, 1) (purple)

(b) The efficient set un-
der scenario (1, 1, 2,−1/9)
(grey)

(c) The highly robust effi-
cient set of UMOLP (6.12)
(red)

Figure 6.4: Efficient and highly robust efficient points for Example 6.3.2

efficient extreme point solutions of interval multiobjective linear programs. Each

method works by solving a nominal problem for its extreme points and then reducing

the obtained set of extreme points to the desired set by solving a subproblem for each

extreme point.

6.3.2 Characterization

Similarly to properties of the highly robust efficient set, we extend known

results about the efficient set of MOLP (4.8) that use convex cones (such as the cone

of improving directions and the normal cone) to those regarding the highly robust

efficient set of MOLP(U).

We first examine the objective space. As each instance of MOLP(U) is a

deterministic MOLP, we may define the attainable set or set of criterion of MOLP(u)

for each scenario u ∈ U as in the deterministic setting (see Section 4.2), where C is

replaced by C(u). Namely, the attainable set of MOLP(u) is given by YC(u),P = {y ∈

Rp : y = C(u)x for some x ∈ P}. With this in mind, we provide a definition for

highly robust (weak) efficiency in the objective space that is equivalent to Definition

6.1.1
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Definition 6.3.4. A feasible solution x∗ ∈ P is said to be

(i) highly robust efficient provided YC(u),P ∩ ({C(u)x∗} ⊕ Rp
5) = {C(u)x∗} for all

u ∈ U ;

(ii) highly robust efficient provided YC(u),P ∩ ({C(u)x∗} ⊕Rp
≤) = ∅ for all u ∈ U ;

(iii) highly robust weakly efficient provided YC(u),P ∩ ({C(u)x∗} ⊕ Rp
<) = ∅ for all

u ∈ U .

As should be clear based on Definition 4.2.6, the above definition simply states

that x∗ is highly robust (weakly) efficient provided that it is efficient with respect to

every scenario, and is thus equivalent to the original Definition 6.1.1. Moreover, as in

the deterministic setting, Definitions 6.3.4(i) and (ii) clearly imply that, for each u ∈

U , only outcomes on the boundary of YC(u),P need to be considered when searching

for highly robust efficient solutions since the intersections are necessarily more than

the singleton {C(u)x∗} or the empty set, respectively, for any C(u)x∗ ∈ int(YC(u),P ).

This interpretation supports the fact that the highly robust efficient set is either on

the boundary of or is the entire feasible set, cf. Proposition 6.3.1(iii).

We next consider various characterizations in the decision space, the first of

which involves the cone of improving directions. As above, since each instance of

MOLP(U) is a deterministic MOLP, we may denote the cones of improving directions

of MOLP(u) for each scenario u ∈ U as in the deterministic setting, where C in

Definition 4.2.9 is replaced by C(u). In addition, we may define the cones of improving

directions of MOLP(U) by accounting for the improving directions associated with

every scenario u ∈ U .

Definition 6.3.5. (i) The open cone of improving directions of MOLP(U) is de-

fined to be D<(C(u), U) :=
⋃

u∈U D<(C(u)).
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(ii) The cone of improving directions of MOLP(U) is defined to be D≤(C(u), U) :=⋃
u∈U D≤(C(u)).

(iii) The closed cone of improving directions of MOLP(U) is defined to be D5(C(u),

U) :=
⋃
u∈U

D5(C(u)).

In the deterministic setting, the cones of improving directions of MOLP (4.8)

may be used to characterize the (weak) efficiency of solutions as in Proposition 4.2.10.

Analogously to the deterministic case, we may characterize the highly robust (weak)

efficiency of solutions to MOLP(U) using the cones of improving directions given in

the above definition.

Theorem 6.3.6. Let x∗ ∈ P . Then

(i) x∗ ∈ E(P,C(u), U) if and only if (D≤(C(u), U)⊕ {x∗}) ∩ P = ∅;

(ii) x∗ ∈ E(P,C(u), U) if
(
D5(C(u), U)⊕ {x∗}

)
∩ P = {x∗};

(iii) x∗ ∈ wE(P,C(u), U) if and only if (D<(C(u), U)⊕ {x∗}) ∩ P = ∅.

Proof. (i) Since x∗ ∈ E(P,C(u)) if and only if (D≤(C(u)) ⊕ {x∗}) ∩ P = ∅ by

Proposition 4.2.10(i), it likewise follows that x∗ ∈ E(P,C(u), U) if and only if

(D≤(C(ui))⊕{x∗})∩P = ∅ for all i = 1, . . . , s. Equivalently, the latter becomes

[(D≤(C(u1))⊕ {x∗}) ∩ P ] ∪ · · · ∪ [(D≤(C(us))⊕ {x∗}) ∩ P ] = ∅, i.e.,

[
(D≤(C(u1))⊕ {x∗}) ∪ · · · ∪ (D≤(C(us))⊕ {x∗})

]
∩ P = ∅ (6.13)

by the Distributive Law of Intersections 2.4.3(i). Hence, (6.13) equivalently

becomes [(⋃
u∈U D≤(C(u))

)
⊕ {x∗}

]
∩ P = ∅

by Theorem 2.4.3(iii). Applying Definition 6.3.5(i), the result follows.
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(ii) Let (D5(C(u), U)⊕ {x∗}) ∩ P = {x∗}, i.e.,

[
(D5(C(u1)) ∪ · · · ∪D5(C(us)))⊕ {x∗}

]
∩ P = {x∗}

by Definition 6.3.5(iii). Equivalently,

[
(D5(C(u1))⊕ {x∗}) ∩ P

]
∪ · · · ∪

[
(D5(C(us))⊕ {x∗}) ∩ P

]
= {x∗}

by Theorem 2.4.3(iii) and the Distributive Law of Intersections 2.4.3(i), respec-

tively. That is, either (D5(C(ui))⊕{x∗})∩P = {x∗} or (D5(C(ui))⊕{x∗})∩

P = ∅ for each i = 1, . . . , s, with at least one equal to {x∗}. However, it is clear

that (D5(C(ui))⊕{x∗})∩P 6= ∅ for each i ∈ {1, . . . , s} since D5(C(ui))⊕{x∗}

must contain at least x∗ ∈ P . Hence, (D5(C(ui)) ⊕ {x∗}) ∩ P = {x∗} for all

i = 1, . . . , s, which implies that x∗ ∈ E(P,C(ui)) by Proposition 4.2.10(ii) for

all i = 1, . . . , s. Thus, x∗ is highly robust efficient by definition.

(iii) The proof follows similarly to the proof of part (i).

Intuitively, the above result states that a point is highly robust efficient if

and only if there does not exist a feasible direction that is also improving in any

scenario at that point, which is indicated by the intersection being empty. Moreover,

as with Definition 6.3.4, the first part of the above theorem implies that, provided

D≤(C(u), U) 6= ∅, only points x∗ on the boundary of P need to be considered for

highly robust efficiency since the intersection (D≤(C(u), U)⊕{x∗})∩P is necessarily

nonempty otherwise. This observation, as in the objective space, supports the fact

that the highly robust efficient set is either on the boundary or is the entire feasible

set, cf. Proposition 6.3.1(iii).
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Remark 6.3.7. It is worth noting that if D≤(C(u), U) = ∅, then E(P,C(u), U) = P

since ∅⊕{x∗} = ∅ (refer to Remark 2.4.2) so that the intersection in Theorem 6.3.6(i)

holds trivially for all x∗ ∈ P . Similarly, if D<(C(u), U) = ∅, then wE(P,C(u), U) =

P . In view of the previous discussion, the former observation reveals that the cone of

improving directions of MOLP(U) may be used to prove Proposition 6.3.1(iii) directly

without using the corresponding result regarding deterministic efficiency.

In addition to the more geometric interpretation of highly robust (weak) effi-

ciency offered by Theorem 6.3.6, an algebraic perspective may also be derived as in

the following.

Corollary 6.3.8. Let x∗ ∈ P be a feasible solution to MOLP(U). Then

(i) x∗ ∈ E(P,C(u), U) if and only if the system

C(u)x ≤ C(u)x∗

Ax 5 b

x = 0

(6.14)

has no solution for each u ∈ U ;

(ii) x∗ ∈ E(P,C(u), U) if x∗ is the unique solution to the system

C(u)x 5 C(u)x∗

Ax 5 b

x = 0

(6.15)

for each u ∈ U ;
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(iii) x∗ ∈ wE(P,C(u), U) if and only if the system

C(u)x < C(u)x∗

Ax 5 b

x = 0

(6.16)

has no solution for each u ∈ U .

Proof. Applying Proposition 4.2.13 for each scenario u ∈ U yields the result.

Similar to the deterministic setting, each of the three systems above provides

an algebraic description of highly robust (weak) efficiency. That being said, it is not

simple computationally to determine whether or not (6.14) has a solution since the

vector inequality C(u)x ≤ C(u)x∗ requires that at least one component is strict but

it is unknown precisely which component(s) or how many. As a result, (6.15) may be

used to determine the highly robust efficiency of a solution x∗ ∈ P , while (6.16) may

be employed to identify its highly robust weak efficiency.

In addition to Corollary 6.3.8, several similar results may be obtained by apply-

ing different theorems of the alternative, such as Gale’s Theorem 2.6.1 and Theorem

2.6.4, to systems (6.14) and (6.16). (Note that system (6.15) is not used since the

available theorems of the alternative do not account for the requirement that x∗ must

be the unique solution.) To keep the notation compact in the following corollaries,

for each u ∈ U and some x∗ ∈ P , let

A1(u) :=

C(u)
A
−In

 ∈ R(p+m+n)×n,b1(u,x∗) :=

C(u)x∗

b
0

 ∈ Rp+m+n

and

A2(u) :=

[
C(u)

A

]
∈ R(p+m)×n,b2(u,x∗) :=

[
C(u)x∗

b

]
∈ Rp+m.
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We first consider system (6.14) and Theorem 2.6.4.

Corollary 6.3.9. If x∗ ∈ E(P,C(u), U), then


A1(u)Tv = 0,b1(u,x∗)Tv = −1,v = 0

or

A1(u)Tv = 0,b1(u,x∗)Tv 5 0,v > 0

 (6.17)

has a solution v ∈ Rp+m+n for each u ∈ U .

Proof. If x∗ ∈ E(P,C(u), U), then (6.14) has no solution for each u ∈ U by Corollary

6.3.8(i), which implies that A1(u)x ≤ b1(u,x∗) has no solution for each u ∈ U . By

Theorem 2.6.4, it must be that (6.17) has a solution v ∈ Rp+m+n for each u ∈ U as

claimed.

Considering Corollary 6.3.9 follows from Corollary 6.3.8(i), which is both a

necessary and sufficient condition for highly robust efficiency, it is natural to ask

why the former is only a necessary condition. The reason, as it turns out, lies in

the fact that systems (6.14) and A1(u)x ≤ b1(u,x∗) are not equivalent. Although

this may not be immediately obvious, consider for example that
[
5 6 7 8

]T ≤[
5 6 7 9

]T
, yet

[
5 6

]T � [5 6
]T

.

Next, we obtain a sufficient condition for highly robust (weak) efficiency by

way of systems (6.14) and (6.16), respectively, combined with Gale’s Theorem 2.6.1(i).

Similarly to the preceding discussion, the following corollary does not provide nec-

essary and sufficient conditions since the vector inequalities do not permit direct

equivalences between the associated systems.

Corollary 6.3.10. Let x∗ ∈ P be given, and assume that

A1(u)Tv = 0,b1(u,x∗)Tv = −1,v = 0 (6.18)
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has a solution v ∈ Rp+m+n for each u ∈ U .

(i) The point x∗ is highly robust efficient.

(ii) The point x∗ is highly robust weakly efficient.

Proof. (i) Assume that (6.18) has a solution v ∈ Rp+m+n for each u ∈ U . Equiva-

lently, by Gale’s Theorem 2.6.1(i), A1(u)x 5 b1(u,x∗) has no solution for each

u ∈ U . Since the previous system is a relaxation of (6.14), the result follows

from Corollary 6.3.8(i).

(ii) The proof follows similarly to the proof of part (i).

Finally, a second sufficient condition is derived using systems (6.14) and (6.16),

respectively, combined with Gale’s Theorem 2.6.1(ii).

Corollary 6.3.11. Let x∗ ∈ P be given, and assume that

A2(u)Tv = 0,b2(u,x∗)Tv < 0,v = 0 (6.19)

has a solution v ∈ Rp+m for each u ∈ U .

(i) The point x∗ is highly robust efficient.

(ii) The point x∗ is highly robust weakly efficient.

Proof. (i) Assume that (6.19) has a solution v ∈ Rp+m for each u ∈ U . Equiva-

lently, by Gale’s Theorem 2.6.1(ii), A2(u)x 5 b2(u,x∗),x = 0 has no solution

for each u ∈ U . Since the previous system is a relaxation of (6.14), applying

Corollary 6.3.8(i) yields the result.

(ii) The proof follows similarly to the proof of part (i).
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The second characterization of the highly robust efficient set in the decision

space we examine concerns the normal cone (refer to Definition 3.1.4). In particular,

Theorems 4.2.15 and 4.2.29, which involve the normal cone, may be extended from

the deterministic to uncertain setting (in a manner similar to results regarding the

cone of improving directions). As mentioned before Theorem 4.2.29, by reframing

the theorem due to Luc in the context of the strict polars of the cones of improving

directions, we achieve a different perpective that leads to further insight in the form

of conditions on highly robust (weak) efficiency. Recasting this theorem also allows us

to exploit properties of cones. To this end, as each instance of MOLP(U) is a deter-

ministic MOLP, the strict polars of the cones of improving directions of MOLP(u) for

each scenario u ∈ U are given by (under the specified assumptions) Theorem 3.2.13,

where M is replaced by C(u).

Remark 6.3.12. (i) We extend Theorem 4.2.15 as follows. For a solution x∗ ∈ P ,

it is highly robust (weakly) efficient if and only if NP (x∗) contains some vector

−C(u)Tλ,λ (≥) > 0, for all u ∈ U . It is worth noting that if −C(u)Tλ = 0

for some u ∈ U and some λ > 0, then the entire feasible set is efficient in that

scenario since NP (x∗) necessarily contains 0. Similarly, if for all u ∈ U there

exists a λ > 0 such that −C(u)Tλ = 0, then the entire feasible set is in fact

highly robust efficient. (The same line of thought may be followed for λ ≥ 0

and the highly robust weakly efficient set.)

(ii) Similarly, we extend Theorem 4.2.29 (under the same assumptions, but for all

u ∈ U) by saying that x∗ ∈ P is highly robust (weakly) efficient if and only

if (NP (x∗) ∩ Ds+
< (C(u)) 6= ∅) NP (x∗) ∩ Ds+

5 (C(u)) 6= ∅ for all u ∈ U . As

in Theorem 4.2.29, we may equivalently use Ds+
≤ (C(u)) since Ds+

≤ (C(u)) =

Ds+
5 (C(u)) when D5(C(u)) is acute by Theorem 3.2.13(ii). Moreover, as we
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need NP (x∗) ∩ Ds+
5 (C(u)) 6= ∅, it is important to know when Ds+

5 (C(u)) 6= ∅

since if it is not, the result never holds. (We are only concerned with the

nonemptiness of Ds+
5 (C(u)) since NP (x∗) 6= ∅.) To this end, it is clear that

Ds+
5 (C(u)) 6= ∅ for all u ∈ U by Theorem 3.2.13(i).

In order to obtain a result that, unlike the extensions in Remark 6.3.12, does

not require checking the necessary and sufficient conditions of Theorems 4.2.15 and

4.2.29 for every scenario u ∈ U , we use the strict polars of the cones of improv-

ing directions of MOLP(U) (cf. Proposition 3.2.18, where M` is replaced by C(u)).

Given the cones of improving directionsD5(C(u), U), D≤(C(u), U), andD<(C(u), U)

of MOLP(U), we denote their strict polars by Ds+
5 (C(u), U), Ds+

≤ (C(u), U), and

Ds+
< (C(u), U), respectively.

Theorem 6.3.13. Let x∗ ∈ P .

(i) Let D5(C(u)) be acute for all u ∈ U . If NP (x∗) ∩ Ds+
5 (C(u), U) 6= ∅, then

x∗ ∈ E(P,C(u), U).

(ii) Let cl(D<(C(u))) = D5(C(u)) for all u ∈ U . If NP (x∗) ∩ Ds+
< (C(u), U) 6= ∅,

then x∗ ∈ wE(P,C(u), U).

Proof. (i) Let NP (x∗) ∩Ds+
5 (C(u), U) 6= ∅. Equivalently, by Proposition 3.2.18(i),

NP (x∗)∩
⋂

u∈U D
s+
5 (C(u)) 6= ∅. That is,

[
NP (x∗) ∩Ds+

5 (C(u1))
]
∩Ds+

5 (C(u2))∩

· · · ∩Ds+
5 (C(us)) 6= ∅ by the Associative Law of Intersections. Accordingly, the

associative law yields NP (x∗) ∩ Ds+
5 (C(ui)) 6= ∅ for all i = 1, . . . , s. Thus, the

result follows from Theorem 4.2.29(i).

(ii) Follows similarly to the proof of part (i), where cl(D<(C(u))) = D5(C(u))

implies that D<(C(u)) 6= ∅ for all u ∈ U so that we may use Proposition

3.2.18(iii).
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Remark 6.3.14. As in Remark 6.3.12(ii), it is of interest to know whenDs+
5 (C(u), U) 6=

∅ since if it is not, then NP (x∗) ∩Ds+
5 (C(u), U) 6= ∅ never holds. To this end, since

D5(C(u), U) is a closed cone, we know that Ds+
5 (C(u), U) 6= ∅ when D5(C(u), U)

is acute due to Theorem 3.2.16(i). Moreover, with the additional assumption that

D≤(C(u)) 6= ∅ for all u ∈ U (which is needed for Proposition 3.2.18(ii)), we may

rewrite Theorem 6.3.13(i) using Ds+
≤ (C(u), U).

For an illustration of Theorem 6.3.13(i), as well as the extension of Theorem

4.2.29(i) described in Remark 6.3.12(ii), consider the following example.

Example 6.3.15. Consider UMOLP (6.12) in Example 6.3.2. We have two scenarios

u1 = (1, 1, 1, 1) and u2 = (1, 1, 2,−1/9). The closed cones of improving directions

D(C(u1)) and D(C(u2)) are shown in Figure 6.5a, while their strict polars are shown

in Figure 6.5b. Since D5(C(ui)) is acute for i = 1, 2, the assumptions of Theorems

4.2.29(i) (for each u ∈ U) and 6.3.13(i) hold. As illustrated in Figure 6.5, the only

points at which Theorem 4.2.29(i) holds for each u ∈ U are the two highly robust

efficient points (2, 4) and (6, 0). However, as Ds+
5 (C(u1)) ∩Ds+

5 (C(u2)) = ∅ (clearly

shown in Figure 6.5b), the sufficient condition of Theorem 6.3.13(i) does not hold

(trivially) at either highly robust efficient point, so we are unable to identify either

point via this theorem.

Similarly, using the union of strict polars rather than the intersection, we

obtain a necessary condition for highly robust (weak) efficiency.

Theorem 6.3.16. Let x∗ ∈ X.

(i) Assume D5(C(u)) is acute for all u ∈ U . If x∗ ∈ E(P,C(u), U), then

NP (x∗) ∩
⋃

u∈U D
s+
5 (C(u)) 6= ∅.

(ii) Assume cl(D<(C(u))) = D5(C(u)) for all u ∈ U . If x∗ ∈ wE(P,C(u), U), then

NP (x∗) ∩
⋃

u∈U D
s+
< (C(u)) 6= ∅.
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(a) D5(C(u1)) (purple) and
D5(C(u2)) (teal)

(b) Ds+
5 (C(u1)) (purple)

and Ds+
5 (C(u2)) (teal)

(c) The highly robust effi-
cient set (red) and normal
cones (green)

Figure 6.5: Normal cones to P1, and the closed cones of improving directions and
their strict polars for Example 6.3.15

Proof. (i) Let x∗ ∈ E(P,C(u), U). Equivalently, NP (x∗) ∩ Ds+
5 (C(u)) 6= ∅ for all

u ∈ U by Theorem 4.2.29(i). Since

NP (x∗) ∩
⋃

u∈U D
s+
5 (C(u)) =

⋃
u∈U

[
NP (x∗) ∩Ds+

5 (C(u))
]

by the Distributive Law of Intersections 2.4.3(i), the result follows.

(ii) The proof follows similarly to the proof of part (i).

It is important to note that since Theorem 4.2.29, which is both necessary

and sufficient, is split into two separate theorems, Theorems 6.3.13 and 6.3.16, one

that is sufficient and the other that is necessary, respectively, we lose the strength

of the original theorem. This is supported by Example 6.3.15 in which applying

Theorem 4.2.29(i) for each scenario yields the entire highly robust efficient set, while

applying Theorem 6.3.13(i) does not yield any highly robust efficient solutions and

the entire boundary satisfies the consequent of Theorem 6.3.16(i) even though the

entire boundary is not highly robust efficient.

The final characterization in the decision space we investigate involves the
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recession cone (refer to Definition 3.1.5) and is an extension of a result mentioned on

p. 698, Bitran [18].

Proposition 6.3.17. If D≤(C(u))∩RP 6= ∅ for some u ∈ U , then E(P,C(u), U) = ∅.

Proof 1. SupposeD≤(C(u))∩RP 6= ∅ for some u ∈ U , which implies that (D≤(C(u))∩

RP )⊕ {x} 6= ∅ for all x ∈ P . Hence,

(D≤(C(u))⊕ {x}) ∩ (RP ⊕ {x}) 6= ∅ (6.20)

by Theorem 2.4.3(iv). Additionally, by definition, it is clear that

RP ⊕ {x} ⊆ P (6.21)

for all x ∈ P . Together, (6.20) and (6.21) yield (D≤(C(u))⊕{x})∩P 6= ∅. Since this

is true for all x ∈ P , it must be that E(P,C(u)) = ∅ by Proposition 4.2.10(i). Since

E(P,C(u), U) =
⋂

u∈U E(P,C(u)), we conclude that E(P,C(u), U) = ∅ also.

Proof 2. Suppose D≤(C(u))∩RP 6= ∅ for some u ∈ U . As the corresponding instance

MOLP(u) is deterministic given u ∈ U , Proposition 4.2.16 yields E(P,C(u)) = ∅.

Since E(P,C(u), U) =
⋂

u∈U E(P,C(u)), the result follows.

As in the deterministic setting, the above proposition relies on the intuition

that if a recession direction along which feasibility is retained is also an improving

direction, then no highly robust efficient solutions exist since there is always a “bet-

ter” solution. Since recession directions necessarily do not exist when P is bounded,

i.e., RP = ∅ so that D5(C(u)) ∩ RP = ∅ for all u ∈ U , Proposition 6.3.17 is only

relevant in the case that P is unbounded. Accordingly, further note that this propo-

sition indicates that the highly robust efficient set is empty because the efficient set
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associated with at least one instance MOLP(u) is empty, which is only possible when

P is unbounded. However, as should be clear, the highly robust efficient set may be

empty even when P is bounded (refer to Remark 6.1.3 and UMOLP (6.5)). A more

general method to identify whether or not the highly robust efficient set is empty is

addressed in Section 6.4.4.

6.3.3 Bound Sets

In robust optimization, an RC, which is a deterministic (scalar or vector)

optimization problem associated with the original uncertain optimization problem

whose solutions are the desired robust solutions, is commonly used. The solution set

of an RC may be interpreted as both an upper and lower bound set on the set of

robust solutions to the original uncertain problem. Working toward an RC to obtain

highly robust efficient solutions to MOLP(U), in this section, we develop several

bound sets on the highly robust efficient set, and then present an RC for a special

class of UMOLPs in Section 6.3.4.

First, we know that, in general, the efficient set of any instance MOLP(u) is

an upper bound set on the highly robust efficient set of MOLP(U).

Proposition 6.3.18. The containment E(P,C(u), U) ⊆ E(P,C(u)) holds for every

u ∈ U .

Proof. Immediate since E(P,C(u), U) =
⋂

u∈U E(P,C(u)).

Another upper bound set on the highly robust efficient set is given by the

efficient set of the so-called all-in-one problem (refer to Section 5.2 and Proposition
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5.2.5). The all-in-one MOLP, denoted AIOMOLP(U), is given by

min
x

C(U)x :=
[
C(u1) · · · C(us)

]T
x

s.t. x ∈ P,
(6.22)

where C(U) ∈ Rps×n is a deterministic cost matrix given U . Immediately, since

AIOMOLP(U) is a deterministic MOLP whose efficient solutions are determined by

ps criteria, we know that highly robust efficient solutions to MOLP(U) are at least

weakly efficient solutions to AIOMOLP(U) based on Proposition 1, Engau and Wiecek

[50]. Even more, as shown in Proposition 5.2.5, the highly robust efficient set is

contained in the efficient set of AIOMOLP(U), which is denoted E(P,C(U)).

Proposition 6.3.19. The containment E(P,C(u), U) ⊆ E(P,C(U)) holds.

Proof. The proof follows the same as the proof of Proposition 5.2.5.

In general, however, the opposite containment does not hold as demonstrated

in the proceeding example.

Example 6.3.20. Consider the UMOLP given by


min
x

[
2u11 −3u12

5u21 u22

]
x

s.t. x ∈ P1


u1∈U1,u2∈U2,

(6.23)

where U1 = {(−1, 2)} and U2 = {(−1, 2), (2, 3)}, yielding two scenarios u1 = (−1, 2,

−1, 2) and u2 = (−1, 2, 2, 3). The associated all-in-one problem is given by

min
x


−2 −6
−5 2
−2 −6
10 3

x

s.t. x ∈ P1

(6.24)
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Solving each instance separately, we obtain that E(P1,C(u1)) is the line segment

joining the extreme points (2, 4) and (6, 0), while E(P1,C(u2)) is the portion of the

boundary joining the extreme points (0, 0), (0, 3), and (2, 4) (cf. Figure 4.5). Hence,

E(P1,C(u), U) = {(2, 4)} by Proposition 6.1.2. On the other hand, E(P1,C(U)) = P1

since the cone of improving directions of AIOMOP (6.24) is empty (cf. Remark 4.2.12).

As a result, it is clear that the opposite containment E(P,C(U)) 6⊆ E(P,C(u), U) in

Proposition 6.3.19 does not hold.

Third, for two related special classes of UMOLPs, we may obtain additional

upper bound sets with the use of Lemma 4.2.14. The following proposition is an

extension of Proposition 3.1, Bitran [18].

Proposition 6.3.21. Suppose each column of C(u) is nonnegative for all u ∈ U with

no column all 0. For the (deterministic) MOLP given by

min
x

Inx

s.t. x ∈ P,
(6.25)

the containment E(P,C(u), U) ⊆ E(P, In) holds.

Proof. The cones of improving directions associated with MOLP (6.25) and an in-

stance MOLP(u) are given by

D≤(In) = {d ∈ Rn : Ind ≤ 0}

= {d ∈ Rn : d1 ≤ 0, d2 ≤ 0, . . . , dn ≤ 0, at least one strict},
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and

D≤(C(u)) = {d ∈ Rn : C(u)d ≤ 0}

= {d ∈ Rn : c11u11d1 + · · ·+ c1nu1ndn ≤ 0,

...

cp1up1d1 + · · ·+ cpnupndn ≤ 0, at least one strict},

respectively, where ckiuki ≥ 0 for all k = 1, . . . , p, i = 1, . . . , n, by assumption. If

d ∈ D≤(In), then di ≤ 0, i = 1, . . . , n, with at least one strict. Since ckiuki ≥ 0 for

all i = 1, . . . , n, clearly d ∈ D≤(C(u)) also (which is not true, however, without the

assumption that no column is entirely 0). Hence, D≤(In) ⊆ D≤(C(u)) for all u ∈ U ,

which implies that E(P,C(u)) ⊆ E(P, In) for all u ∈ U by Lemma 4.2.14. Thus,

E(P,C(u), U) = ∩u∈U E(P,C(u)) ⊆ E(P, In) as desired.

Two observations regarding the previous proposition are worth considering.

First, the assumption that no column is all zero is needed. For instance, if a column of

C(u) is all 0, say the first column, then the direction d =
[
−1 0 · · · 0

]T ∈ D≤(In)

is not also an element of D≤(C(u)) since C(u)d = 0 � 0, i.e., none of the inequalities

are strict.

Second, it is important to note that the opposite containment does not hold.

For example, consider the case when p = n = 2, U1 = U2 = {(1, 1), (2, 4)}, and the

cost matrix under uncertainty is given by

C(u) =

[
u11 u12

u21 2u22

]

for u ∈ U . Here,

D≤(I2) = {d ∈ R2 : I2d ≤ 0},
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and

D≤(C((1, 1, 1, 1))) =

{
d ∈ R2 :

[
1 1
1 2

]
d ≤ 0

}
.

The direction d =
[
1 −2

]T ∈ D≤(C((1, 1, 1, 1))) since C((1, 1, 1, 1))d =[
−1 −3

]T ≤ 0T , but d /∈ D≤(I2) since d1 = 1 � 0. Hence, in general, we con-

clude that D≤(In) * D≤(C(u)) for u ∈ U .

A more general upper bound set may be given by accounting for both nonneg-

ative and nonpositive columns, as in the following theorem.

Theorem 6.3.22. Suppose each column of C(u) is either nonnegative for all u ∈ U

or nonpositive for all u ∈ U with no column all 0. Let I be the diagonal matrix with

a 1 corresponding to the nonnegative columns of C(u) and a −1 for the nonpositive

columns. For the (deterministic) MOLP given by

min
x

Ix

s.t. x ∈ P,
(6.26)

the containment E(P,C(u), U) ⊆ E(P, I) holds.

Proof. Let I and J be the subsets of the index set {1, . . . , n} for which the columns

of C(u) are nonnegative for all u ∈ U and nonpositive for all u ∈ U , respectively.

The cones of improving directions associated with MOLP (6.26) and an instance

MOLP(u) are given by

D≤(I) = {d ∈ Rn : Id ≤ 0}

= {d ∈ Rn : di ≤ 0, i ∈ I, dj ≥ 0, j ∈ J, at least one strict},
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and

D≤(C(u)) = {d ∈ Rn : C(u)d ≤ 0}

= {d ∈ Rn : c11u11d1 + · · ·+ c1nu1ndn ≤ 0,

...

cp1up1d1 + · · ·+ cpnupndn ≤ 0, at least one strict},

respectively, where ckiuki ≥ 0 for all k = 1, . . . , p, i ∈ I, and ckjukj ≤ 0 for all

k = 1, . . . , p, j ∈ J , by assumption. If d ∈ D≤(I), then di ≤ 0, i ∈ I, and dj ≥

0, j ∈ J , with at least one strict. Since ckiuki ≥ 0 for all i ∈ I and ckjukj ≤ 0 for

all j ∈ J , clearly d ∈ D≤(C(u)) also. Hence, D≤(I) ⊆ D≤(C(u)) for all u ∈ U ,

which implies that E(P,C(u)) ⊆ E(P, I) for all u ∈ U by Lemma 4.2.14. Thus,

E(P,C(u), U) =
⋂

u∈U E(P,C(u)) ⊆ E(P, I) as desired.

As with the previous proposition, we note that this theorem is not true without

the assumption that no column is entirely 0, and the opposite containment does

not necessarily hold. In addition, we recognize that the assumptions regarding the

columns of C(u) in Proposition 6.3.21 and Theorem 6.3.22, although conspicuous,

are realistic in practice. For example, problems in bank balance sheet management,

portfolio management, and knapsack packing generally satisfy these assumptions.

Fourth, for MOLP(U) in general, we may obtain another bound set (either up-

per or lower) with a proposition similar to Lemma 4.2.14. As the proposition involves

two different uncertainty sets, it can also be used to provide additional information

to decision makers by presenting the effects of adding or removing scenarios from a

given uncertainty set.
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Proposition 6.3.23. Let the following UMOLPs:

 min
x

C(u)x

s.t. x ∈ P


u∈U ′,

and

 min
x

C(u)x

s.t. x ∈ P


u∈U ′′.

be given. If D≤(C(u), U ′) ⊆ D≤(C(u), U ′′), then E(P,C(u), U ′′) ⊆ E(P,C(u), U ′).

Proof. Suppose D≤(C(u), U ′) ⊆ D≤(C(u), U ′′), and assume for the sake of contradic-

tion that E(P,C(u), U ′′) * E(P,C(u), U ′), i.e., there exists an x∗ ∈ E(P,C(u), U ′′)

such that x∗ /∈ E(P,C(u), U ′). The former implies that D≤(C(u), U ′) ⊕ {x} ⊆

D≤(C(u), U ′′)⊕{x} for all x ∈ P , while the latter yields [D≤(C(u), U ′′)⊕{x∗}]∩P =

∅, but [D≤(C(u), U ′)⊕ {x∗} ∩ P 6= ∅ by Theorem 6.3.6(i). Hence,

∅ 6= [D≤(C(u), U ′)⊕ {x∗}] ∩ P ⊆ [D≤(C(u), U ′′)⊕ {x∗}] ∩ P = ∅,

which is a contradiction. Thus, it must be that E(P,C(u), U ′′) ⊆ E(P,C(u), U ′) as

desired.

The intuition, similar to that of Lemma 4.2.14, is that fewer improving direc-

tions leads to a larger highly robust efficient set. However, unlike Proposition 6.3.21

and Theorem 6.3.22, no special assumption about the structure of the cost matrix is

necessary.

Finally, in order to obtain a lower bound set on the highly robust efficient set,

we utilize the sufficient condition of Theorem 6.3.13.

Theorem 6.3.24. Assume D5(C(u), U) is acute. Then E(P, C̃) ⊆ E(P,C(u), U)

for some suitable matrix C̃T ∈ Rn×p̃.

Proof. We have that Ds+
5 (C(u), U) = {x ∈ Rn : x = −C̃Tλ,λ > 0} for some suitable

matrix C̃T ∈ Rn×p̃ by Proposition 3.2.20(i). Hence, we may write Ds+
5 (C(u), U) =
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Ds+
5 (C̃), where D5(C̃) is an acute cone as in Theorem 3.2.13(i) and is the cone of

improving directions of the deterministic MOLP given by minx∈P C̃x. Equivalently,

for x∗ ∈ E(P, C̃), we have that

NP (x∗) ∩Ds+
5 (C(u), U) 6= ∅

by Theorem 4.2.29(i). Consequently, since D5(C(u), U) being acute implies that

D5(C(u)) is acute for all u ∈ U , we have that x∗ ∈ E(P,C(u), U) also by Theorem

6.3.13(i). Therefore, E(P, C̃) ⊆ E(P,C(u), U) as desired.

The suitable matrix C̃T ∈ Rn×p̃ mentioned in the statement of Theorem

6.3.24, as revealed in the above proof, is guaranteed to exist by Proposition 3.2.20(i).

Moreover, as detailed previously in Remark 3.2.10 and shown in Example 3.2.11,

the matrix may be computed using readily available software such as SageMath’s

polyhedron base class.

Regardless, since the above theorem provides a lower bound set on the highly

robust efficient set, it follows that E(P, C̃) may be used to provide conditions under

which the highly robust efficient set is nonempty.

Corollary 6.3.25. Let D5(C(u), U) be acute and P be bounded. Then the highly

robust efficient set is nonempty.

Proof. Since P is bounded, the efficient set of any deterministic MOLP (with P as

its feasible set) is nonempty by Theorem 2.19, Ehrgott [44]. Using Theorem 6.3.24,

we obtain E(P,C(u), U) 6= ∅ as desired.

Even though the above corollary utilizes Theorem 6.3.24, note that C̃ does not

need to be constructed. Instead, only the acuteness of D5(C(u), U) and the bounded-

ness of P need to be verified. The former is addressed in Section 6.3.5, while the lat-
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ter may be accomplished using software such as SageMath’s [132] polyhedron base

class.

6.3.4 Robust Counterpart

Having discussed various bound sets on the highly robust efficient set, we now

address a theoretical RC of MOLP(U), as well as an RC for a special class of UMOLPs

that may be used to obtain highly robust efficient solutions to MOLP(U). First, as in

Section 5.2, the theoretical RC of MOLP(U) is the conjunctive multiobjective linear

program (CMOLP) given by

min
x

s∧
i=1

C(ui)x

s.t. x ∈ P.
(6.27)

As is the case with MOP(U) and its theoretical RC, the solutions to CMOLP (6.27),

referred to as conjunctive (weakly) efficient (see Definition 5.2.2), are in fact highly

robust (weakly) efficient solutions to MOLP(U).

Corollary 6.3.26. (i) A feasible solution x∗ ∈ P to MOLP(U) is highly robust

(weakly) efficient if and only if it is a conjunctive (weakly) efficient solution to

RC (6.27).

(ii) The highly robust (weakly) efficient set of MOLP(U) and the conjunctive (weakly)

efficient set of RC (6.27) are equal.

Proof. The proofs follow the same as the proofs of Theorem 5.2.3 and Corollary 5.2.4,

respectively.

In the form of a CMOLP, we have already discussed that the RC has limited
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use. However, it does reiterate that we must consider all instances of the objectives

over a common feasible set yielding one solution.

Second, with regard to obtaining a classical RC, e.g., an MOLP whose efficient

set is equal to the highly robust efficient set rather than a bound set as in the results

of Section 6.3.3, we consider a special class of UMOLPs. The advantage of having

an RC that is a (deterministic) MOLP is that MOLPs are well-known problems with

numerous solution methods (refer to Wiecek et al. [141]) that may be exploited.

Theorem 6.3.27. Assume D5(C(u), U) is a polyhedral convex cone. Then E(P,C) =

E(P,C(u), U) for some suitable matrix C ∈ Rp̄×n.

Proof. By assumption, we may write D5(C(u), U) = {d ∈ Rn : Cd 5 0} for some

suitable matrix C ∈ Rp̄×n. Here, the suitability of C means that the rows of C

are the normals to the generating hyperplanes whose half-spaces form D5(C(u), U).

Hence, D≤(C(u), U) = {d ∈ Rn : Cd ≤ 0} = D≤(C), which is the cone of improv-

ing directions of the deterministic MOLP given by minx∈P Cx. Since D≤(C(u), U)

is the cone of improving directions of both MOLP(U) and minx∈P Cx, we obtain

E(P,C(u), U) = E(P,C) by Proposition 4.2.10(i) and Theorem 6.3.6(i).

The deterministic MOLP implied by Theorem 6.3.27, which is given by

min
x

Cx

s.t. x ∈ P,
(6.28)

is an RC of MOLP(U) since a solution to MOLP(U) is highly robust efficient if and

only if it is an efficient solution to MOLP (6.28). As a direct consequence of this,

MOLP (6.28) and Theorem 6.3.27 may be used to show conditions under which the

highly robust efficient set is nonempty.
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(a) E(P1,C(u1)) (purple)
and D5(C(u1)) ⊕ {x∗}
(green)

(b) E(P1,C(u2)) (grey) and
D5(C(u2))⊕ {x∗} (green)

(c) The highly robust effi-
cient set of UMOLP (6.29)
(red)

Figure 6.6: Efficient and highly robust efficient points for Example 6.3.29

Corollary 6.3.28. Let D5(C(u), U) be a polyhedral convex cone, and let P be bounded.

Then E(P,C(u), U) is nonempty and connected.

Proof. Since P is bounded, the efficient set of any deterministic MOLP (with P

as its feasible set) is nonempty and connected by Theorem 2.19, Ehrgott [44], and

Proposition 4.2.5(vi), respectively. Using Theorem 6.3.27, we obtain E(P,C(u), U) is

nonempty and connected as desired.

As an illustration of both Theorem 6.3.27 and Corollary 6.3.28, including

computing the associated RC, we present the following example.

Example 6.3.29. Consider the following UMOLP given by


min
x

[
u11 −3u12

u21 u22

]
x

s.t. x ∈ P1


u1∈U1,u2∈U2,

(6.29)

where U1 = {(1, 1)} and U2 = {(1,−1), (1, 1)}. For scenarios u1 = (1, 1, 1,−1) and

u2 = (1, 1, 1, 1), it is clear that D5(C(u1)) ∪D5(C(u2)) is a polyhedral convex cone

(as the union is simply D5(C(u1))), which is shown in Figure 6.6. Hence, we have
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that the cost matrix of the RC is

C =

[
1 −3
1 −1

]
,

where the rows are the normals to the generating hyperplanes whose half-spaces form

D5(C(u), U) as previously mentioned. Moreover, since P1 is bounded, Corollary

6.3.28 guarantees that the highly robust efficient set is nonempty and connected,

which is confirmed in Figure 6.6c.

While Theorem 6.3.27 and Corollary 6.3.28 address the special case that

D5(C(u), U) is polyhedral convex, in general, this cone is nonconvex since it is a

union (rather than an intersection). Hence, we may not always be able to formulate

an RC that is a deterministic MOLP as in Theorem 6.3.27. In particular, when the

highly robust efficient set is disconnected, any RC would have at least one nonconvex

objective (cf. Theorem 3.40, Ehrgott [44]). Despite these facts, as shown in Theorem

6.3.27, there exists a class of UMOLPs, those that have D5(C(u), U) being polyhe-

dral convex, whose RC is a deterministic MOLP. Since MOLPs are readily solvable

and their solution sets have desirable properties such as connectedness, it is of in-

terest to identify UMOLPs that have this characteristic. Consequently, recognizing

the polyhedrality of D5(C(u), U) and computing its representation in order to obtain

the cost matrix C of RC (6.28) become important tasks. An algorithm to accomplish

these two tasks is available in, e.g., Bemporad et al. [4].

6.3.5 Acuteness Recognition and Discussion

Since the assumption of acuteness is key to several of the results we have

already presented in Sections 6.3.2 and 6.3.3, it is important to examine this property

in more detail. A similar discussion and set of results is given in Section 3.2.4, as well
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as following Theorem 4.2.29, but are reiterated here for completeness.

We first discuss the algebraic implication of the assumption that D5(C(u)) is

acute for at least one u ∈ U . (Note that this analysis also encompasses the situation

that D5(C(u), U) is acute since D5(C(u)) is acute for each u ∈ U if D5(C(u), U)

is acute.) Since D5(C(u)) is closed, being acute is equivalent to D5(C(u)) be-

ing pointed by Proposition 3.1.3. Hence, by assuming that D5(C(u)) is acute,

we implicitly assume that rank(C(u)) = n by Theorem 3.1.12. Moreover, since

rank(C(u)) ≤ min{p, n}, we obtain that the number of criteria p is greater than or

equal to the number of decision variables n. The consequence of this is that mod-

els that incorporate the numerous preferences of multiple decision makers explicitly

through many criteria may be used.

We next investigate the recognition of the acuteness of a cone. Given the cone

D5(C(u)) for some u ∈ U , we know that it may be expressed in both inequality form

{d ∈ Rn : C(u)d 5 0} (which is the form immediately available) and generator form

{d ∈ Rn : d = G(u)Tλ,λ = 0}, where G(u)T is an n × φ matrix whose columns

are a finite set of generators of D5(C(u)) and are nonzero unless D5(C(u)) = {0}

(see pp. 54–55). If D5(C(u)) is given in inequality form, then its polar is explicitly

given in generator form as in Proposition 3.2.7(i). Similarly, if D5(C(u)) is given in

generator form, then its polar is given in inequality form as in Proposition 3.1.24(ii).

Namely,

{d ∈ Rn : d = G(u)Tλ,λ = 0}+ = {d ∈ Rn : −G(u)d 5 0}. (6.30)

With this in mind, we have the following method for recognizing the acuteness of

(nontrivial) D5(C(u)) for some u ∈ U .

Theorem 6.3.30. Let u ∈ U be given, and let D5(C(u)) 6= {0} be given in generator
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form. Then D5(C(u)) is acute if and only if the system −G(u)d < 0 is consistent.

Proof. Since D5(C(u)) 6= ∅, we know that D5(C(u)) is acute if and only if

int(D+
5(C(u))) 6= ∅ by Theorem 3.1.21(i). As G(u) has no rows that are all zero,

int({d ∈ Rn : −G(u)d 5 0}) = {d ∈ Rn : −G(u)d < 0} so that the result follows

from (6.30).

More generally, we have a second recognition method given by the following

theorem.

Theorem 6.3.31. Let u ∈ U be given. If dim(D+
5(C(u))) = n, then D5(C(u)) is

acute.

Proof. Let dim(D+
5(C(u))) = n. Hence,

int(D+
5(C(u))) = rel int(D+

5(C(u))) (6.31)

by Proposition 2.4.22(i). Moreover, since D+
5(C(u)) 6= ∅ (refer to the discussion

following Proposition 3.2.7) and convex (by Proposition 3.1.19(ii)), we obtain that

rel int(D+
5(C(u))) 6= ∅ (6.32)

by Theorem 2.4.23. Thus, (6.31) and (6.32) yield that D5(C(u)) 6= ∅ is acute by

Theorem 3.1.21(i).

Observe that Theorem 6.3.31 does not depend on the form, inequality or gen-

erator, of D5(C(u)), but instead relies on dim(D+
5(C(u))). Even though we do not

have a system to solve as in Theorem 6.3.30, we do have a condition to verify, namely

that dim(D+
5(C(u))) = n. In particular, if D+

5(C(u)) is in generator form (as it is
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when D5(C(u)) is in inequality form), then dim(D+
5(C(u))) = rank(C(u)) by Propo-

sition 3.1.16. Otherwise, software such as SageMath’s polyhedron base class can

readily provide the dimension. We also note that Theorem 6.3.31 is applicable to any

nonempty cone, which is relevant if the acuteness of D≤(C(u)) 6= ∅ is needed as is

the case in Remark 6.3.14 for example, while Theorem 6.3.30 is not. Using Theorems

6.3.30 and 6.3.31, we may similarly verify the acuteness of (nontrivial) D5(C(u), U).

Corollary 6.3.32. Let D5(C(u)) 6= {0} be given in generator form for each u ∈ U .

Then D5(C(u), U) is acute if and only if the system −G(ui)d < 0, i = 1, . . . , s, is

consistent.

Proof. Follows from Theorem 6.3.30, Proposition 3.2.8(i), where M` is replaced by

C(ui), and Proposition 2.4.11.

Likewise, we have the following extension of Theorem 6.3.31.

Proposition 6.3.33. If dim(D+
5(C(u), U)) = n, then D5(C(u), U) is acute.

Proof. Follows similarly to the proof of Theorem 6.3.31.

With respect to, e.g., Theorems 6.3.13, 6.3.16, and 6.3.24, we now have sys-

tematic approaches to verify the acuteness required to apply each result. That being

said, it is important to note that when the proposed methods are used to verify the

acuteness of D5(C(u), U) in Theorem 6.3.24, for example, they do not necessarily

compute the cost matrix C̃.

6.4 Computing Highly Robust Efficient Solutions

In this section, we address the computation of highly robust efficient solutions

to MOLP(U). First, in Section 6.4.1, Ecker and Kouada’s problem/method (refer
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to Section 4.2.3.2) is extended from the deterministic setting to the uncertain one,

providing methods to determine whether or not a given feasible solution of inter-

est is highly robust efficient, possibly generate a new highly robust efficient point if

the given feasible decision is not itself highly robust efficient, and possibly identify

whether the highly robust efficient set is empty. Similarly, in Section 6.4.2, Benson’s

problem/method (see Section 4.2.3.3) is extended from the deterministic to uncertain

context. Although Benson’s method identifies an efficient extreme point in the de-

terministic case (cf. Corollary 4.2.27), the derived extensions do not provide a highly

robust efficient extreme point but instead give several avenues to identify that the

highly robust efficient set is empty. Again similarly to the aforementioned results, in

Section 6.4.3, a naive extension of the weighted-sum method and Isermann’s Theorem

(refer to Section 4.2.3.4) is given. Finally, a novel two-step bilevel procedure is derived

in Section 6.4.4, and an application problem from bank balance-sheet management is

solved in Section 6.4.5.

6.4.1 Extension of Ecker and Kouada’s Method

In the deterministic setting, it is well-known that the auxiliary single-objective

linear program (LP) referred to as Ecker and Kouada’s problem and its associated

dual may be used to give the decision maker the opportunity to verify whether or

not a given solution x0 ∈ P to an MOLP is efficient, generate a solution that is, or

determine that no efficient solutions exist. Ecker and Kouada’s problem/method may

be extended to (at least) four different Ecker-and-Kouada-type auxiliary problems in

the uncertain setting. One is a family of problems, while the other three are single/in-

dividual problems. Regardless of the auxiliary problem, results on the recognition,

generation, and/or existence of highly robust efficient solutions are obtained through
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the primal and dual formulations. Note that since MOLP(U) is a special case of the

more general problem MOP(U), many of the results here follow directly from the

results of Section 5.4. For the sake of completeness, the results are explicitly given

here as well.

We first examine the family of Ecker-and-Kouada-type auxiliary LPs. For a

given feasible solution x0 ∈ P and an arbitrary u ∈ U , the following problem, denoted

EKLP(x0,u), is a representative member of the family of auxiliary problems and is

given by

max
x,l

p∑
k=1

lk

s.t. C(u)x + Ipl = C(u)x0

Ax 5 b

x = 0

l = 0,

(6.33)

where l ∈ Rp is a deviation variable. The corresponding dual of EKLP(x0,u), denoted

EKDP(x0,u), is thus given by

min
v,w

[C(u)x0]T v + bTw

s.t. C(u)Tv + ATw = 0

v = 1

w = 0,

(6.34)

where 1 ∈ Rp is the p-dimensional vector of ones, and v ∈ Rp and w ∈ Rm are dual

variables.

Given u ∈ U , it is apparent that EKLP(x0,u) and EKDP(x0,u) are deter-

ministic and are simply Ecker and Kouada’s LP (4.19) and DP (4.20), respectively,

associated with the instance MOLP(u). For the purposes of the following results and
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proofs, a feasible solution to EKLP(x0,u) for an arbitrary u ∈ {u1, . . . ,us} is given

by the point (x(u), l(u)), where x(u) and l(u) explicitly indicate the dependence of

the variables x and l on the scenario u. Similarly, a feasible solution to EKDP(x0,u)

for an arbitrary u ∈ {u1, . . . ,us} is given by the point (v(u),w(u)).

The idea of EKLP(x0,u), like in the deterministic context, is that we first

choose some initial feasible solution x0 ∈ P . If x0 is not itself highly robust efficient,

then we try to produce a solution that is or identify that the highly robust efficient

set is empty, which is accomplished by maximizing the sum of nonnegative deviation

variables lk(u) = ck(u)x0−ck(u)x, k = 1, . . . , p, for each u ∈ U . We first demonstrate

that EKLP(x0,u) is feasible for all u ∈ U .

Lemma 6.4.1. Let x0 ∈ P and u ∈ U be given. Then EKLP(x0,u) is feasible.

Proof. It is clear that EKLP(x0,u) is feasible since l(u) = 0 and x(u) = x0 satisfy

the constraints.

Given a feasible decision x0 ∈ P , whether or not it is highly robust efficient

may be verified using either the family of LPs given by EKLP(x0,u) or of DPs given

by EKDP(x0,u).

Proposition 6.4.2. Let x0 ∈ P be given.

(i) The point x0 ∈ E(P,C(u), U) if and only if EKLP(x0,u) has an optimal solution

(x̂(u), l̂(u)) with l̂(u) = 0 for every u ∈ U .

(ii) The point x0 ∈ E(P,C(u), U) if and only if EKDP(x0,u) has an optimal solu-

tion (v̂(u), ŵ(u)) with [C(u)x0]T v̂(u) + bT ŵ(u) = 0 for every u ∈ U .

Proof. (i) The proof follows the same as the proof of Proposition 5.4.1.
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(ii) Since EKDP(x0,u) is the dual of EKLP(x0,u) for each u ∈ U , it follows by

Strong Duality 2.5.1(i) that (x̂(u), l̂(u)) is an optimal solution to EKLP(x0,u)

if and only if (v̂(u), ŵ(u)) is an optimal solution to EKDP(x0,u) with

p∑
k=1

lk(u) = [C(u)x0]T v̂(u) + bT ŵ(u)

for each u ∈ U . Therefore, part (i) yields the result.

Note that Proposition 6.4.2(ii) may be proven alternatively by utilizing the

fact that EKDP(x0,u) is the deterministic Ecker and Kouada dual associated with

the instance MOLP(u) for each u ∈ U along with Proposition 4.2.21(ii) regarding

deterministic efficiency. Further note that in solving the family of LPs given by

EKLP(x0,u) with x0 ∈ P , it is expected that (provided the highly robust efficient set

is nonempty) if x0 is not highly robust efficient itself, then another feasible decision

that is highly robust efficient is generated. While this property is guaranteed in the

deterministic setting with efficiency (cf. Proposition 4.2.22), this is not the case in

the uncertain context and an additional condition is required as the next proposition

reveals.

Proposition 6.4.3. Let x0 ∈ P be given, and suppose (x̂(ui), l̂(ui)) is an optimal

solution to EKLP(x0,u
i) for each i = 1, . . . , s. If x̂ := x̂(u1) = · · · = x̂(us) 6= x0 and

l̂(ui) is finite for all i = 1, . . . , s, then x̂ ∈ E(P,C(u), U).

Proof. Let x̂ := x̂(u1) = · · · = x̂(us) 6= x0, and let l̂(ui) is finite for all i = 1, . . . , s.

Hence, x̂ ∈ E(P,C(ui)) for each i = 1, . . . , s by Proposition 4.2.22. Applying Propo-

sition 6.1.2 yields the result.

In addition to using the family of LPs given by EKLP(x0,u) and of DPs given

by EKDP(x0,u) to obtain solution recognition and generation methods, we may also
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propose conditions under which the highly robust efficient set is empty.

Proposition 6.4.4. Let x0 ∈ P be given.

(i) If EKLP(x0,u) has an unbounded optimal objective value for at least one u ∈ U ,

then E(P,C(u), U) = ∅.

(ii) IF EKDP(x0,u) is infeasible for at least one u ∈ U , then E(P,C(u), U) = ∅.

Proof. (i) Suppose the optimal objective value of EKLP(x0,u) is unbounded for

at least one u ∈ U , say u1. Hence, E(P,C(u1)) = ∅ by Proposition 4.2.23(i).

Applying Proposition 6.1.2 gives the result.

(ii) The proof follows similarly to the proof of part (i).

Note that Proposition 6.4.4(ii) may be proven alternatively and more directly

by utilizing part (i) along with Lemma 6.4.1 in a fashion similar to the deterministic

proof of Proposition 4.2.23(ii). It is also important to note that Proposition 6.4.4

indicates that the highly robust efficient set is empty because the efficient set associ-

ated with at least one instance MOLP(u) is empty, which is only possible when P is

unbounded. However, as should be clear, the highly robust efficient set may be empty

even when P is bounded (cf. UMOLP (6.5) and Figure 6.1). That being said, the

identification of whether or not the highly robust efficient set is empty is addressed

in general in Section 6.4.4.

Second, we consider the individual Ecker-and-Kouada-type auxiliary LP, de-
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noted EKLP1(x0, U), which is a block-style problem given by

max
x1,...,xs,l1,...,ls

s∑
i=1

p∑
k=1

lik

s.t. C(ui)xi + Ipli = C(ui)x0 for all i = 1, . . . , s

Axi 5 b for all i = 1, . . . , s

xi = 0 for all i = 1, . . . , s

li = 0 for all i = 1, . . . , s,

(6.35)

where li ∈ Rp for all i = 1, . . . , s. The corresponding dual of EKLP1(x0, U), denoted

EKDP1(x0, U), is similarly given by

min
v1,...,vs,w1,...,ws

s∑
i=1

[
C(ui)x0

]T
vi +

s∑
i=1

bTwi

s.t. C(ui)Tvi + ATwi = 0 for all i = 1, . . . , s

vi = 1 for all i = 1, . . . , s

wi = 0 for all i = 1, . . . , s,

(6.36)

where vi ∈ Rp and wi ∈ Rm are dual variables for all i = 1, . . . , s.

As with the family of auxiliary LPs, the idea is that we choose some initial

feasible solution x0 ∈ P . If x0 is not itself highly robust efficient, then we try to

produce a solution that is or identify that the highly robust efficient set is empty,

which is accomplished by maximizing the sum of nonnegative deviation variables

li = C(ui)x0 − C(u)x for each scenario ui ∈ U, i = 1, . . . , s. We first show that

EKLP1(x0, U) is feasible.

Lemma 6.4.5. Let x0 ∈ P be given. Then EKLP1(x0, U) is feasible.

Proof. It is clear that EKLP1(x0, U) is feasible since li = 0 and xi = x0 for all

i = 1, . . . , s, satisfy the constraints.
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Given a feasible solution x0 ∈ P , its highly robust efficiency may be verified

by using either EKLP1(x0, U) or EDKP1(x0, U) as in the following proposition.

Proposition 6.4.6. Let x0 ∈ P be given.

(i) The point x0 ∈ E(P,C(u), U) if and only if EKLP1(x0, U) has an optimal so-

lution (x̂1, . . . , x̂s, l̂1, . . . , l̂s) with l̂i = 0 for all i = 1, . . . , s

(ii) The point x0 ∈ E(P,C(u), U) if and only if EKDP1(x0, U) has an optimal

solution (v̂1, . . . , v̂s, ŵ1, . . . , ŵs) with
∑s

i=1

(
[C(ui)x0]

T
v̂i + bT ŵi

)
= 0.

Proof. (i) The proof follows the same as the proof of Proposition 5.4.3.

(ii) Since EKDP1(x0, U) is the dual of EKLP1(x0, U), it follows by Strong Duality

2.5.1(i) that (x̂1, . . . , x̂s, l̂1, . . . , l̂s) is an optimal solution to EKLP1(x0, U) if and

only if (v̂1, . . . , v̂s, ŵ1, . . . , ŵs) is an optimal solution to EKDP1(x0, U) with

s∑
i=1

p∑
k=1

l̂ik =
s∑
i=1

[
C(ui)x0

]T
v̂i +

s∑
i=1

bT ŵi.

Therefore, part (i) yields the result.

In solving EKLP1(x0, U) with x0 ∈ P , it is expected (as with the family of

auxiliary LPs) that if x0 is not highly robust efficient, then another feasible solution

that is highly robust efficient is generated provided the highly robust efficient is

nonempty. Although this property is guaranteed in the deterministic setting, this

is not the case in the uncertain context with highly robust efficiency as the next

proposition reveals.

Proposition 6.4.7. Let x0 ∈ P be given, and suppose (x̂1, . . . , x̂s, l̂1, . . . , l̂s) is an

optimal solution to EKLP1(x0, U). If x̂ := x̂1 = · · · = x̂s 6= x0 and l̂i is finite for all

i = 1, . . . , s, then x̂ ∈ E(P,C(u), U).
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Proof. The proof follows the same as the proof of Proposition 5.4.4.

If x0 is not found to be highly robust efficient and another feasible solution

that is itself highly robust efficient is not generated, then the highly robust efficient

set may be identified as empty as in the proceeding proposition.

Proposition 6.4.8. Let x0 ∈ P be given.

(i) If EKLP1(x0, U) has an unbounded optimal objective value, then E(P,C(u), U) =

∅.

(ii) If EKDP1(x0, U) is infeasible, then E(P,C(u), U) = ∅.

Proof. (i) Suppose the optimal objective value of EKLP1(x0, U) is unbounded.

Hence, there exists an ı̄ ∈ {1, . . . , s} such that at least one component of l̂ı̄

is unbounded. Due to the block structure of EKLP1(x0, U), this implies that

the optimal objective value of the deterministic Ecker and Kouada LP asso-

ciated with MOLP(uı̄) is unbounded. Thus, E(P,C(uı̄)) = ∅ by Proposition

4.2.23(i), which implies that E(P,C(u), U) by Proposition 6.1.2.

(ii) Suppose EKDP1(x0, U) is infeasible. Hence, EKLP1(x0, U) must be unbounded

by the Fundamental Theorem of Duality 2.5.1 and Lemma 6.4.5. Therefore,

E(P,C(u), U) = ∅ by part (i).

Comparing the family of Ecker and Kouada problems with the individual

Ecker-and-Kouada-type problem given by EKLP1(x0, U), we observe that the same

set of the three results regarding recognition, generation, and existence is available.

However, the former requires solving a finite number of problems, which may be done

in parallel, while the latter only requires solving a single problem.
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Third, another individual Ecker-and-Kouada-type auxiliary LP, denoted

EKLP2(x0, U), is the deterministic Ecker and Kouada LP associated with AIOMOLP

(6.22) given by

max
x,l1,...,ls

s∑
i=1

p∑
k=1

lik

s.t. C(ui)x + Ipli = C(ui)x0 for all i = 1, . . . , s

Ax 5 b

x = 0

li = 0 for all i = 1, . . . , s,

(6.37)

where li ∈ Rp for all i = 1, . . . , s. Moreover, the corresponding dual of EKLP2(x0, U),

denoted EKDP2(x0, U), is given by

min
v1,...,vs,w

s∑
i=1

[
C(ui)x0

]T
vi + bTw

s.t.
s∑
i=1

C(ui)Tvi + ATw = 0

vi = 1 for all i = 1, . . . , s

w = 0,

(6.38)

where vi ∈ Rp, i = 1, . . . , s, and w ∈ Rm are dual variables.

By Proposition 6.3.19, we know that the highly robust efficient set is a subset

of the efficient set of AIOMOLP (6.22). As a result of this relationship, the Ecker-

and-Kouada-type method utilizing EKLP2(x0, U) does not provide necessary and

sufficient conditions for highly robust efficiency recognition whereas EKLP1(x0, U)

and the family of EKLPs do. Nevertheless, the advantage of EKLP2(x0, U) (and its

dual) is due to its reduced number of variables. We first establish that EKLP2(x0, U)

is feasible.
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Lemma 6.4.9. Let x0 ∈ P be given. Then EKLP2(x0, U) is feasible.

Proof. It is clear that EKLP2(x0, U) is feasible since x = x0 and li = 0 for all

i = 1, . . . , s satisfy the constraints.

As discussed directly above, we obtain in the following proposition necessary

(not necessary and sufficient) conditions for the highly robust efficiency of a feasible

decision x0 by examining both EKLP2(x0, U) and its dual.

Proposition 6.4.10. Let x0 ∈ P be given. If x0 ∈ E(P,C(u), U), then

(i) EKLP2(x0, U) has an optimal solution (x̂, l̂1, . . . , l̂s) with l̂i = 0 for all i =

1, . . . , s;

(ii) EKDP2(x0, U) has an optimal solution (v̂1, . . . , v̂s, ŵ) with
∑s

i=1 [C(ui)x0]
T

v̂i+

bT ŵ = 0.

Proof. (i) The proof follows the same as the proof of Proposition 5.4.5.

(ii) Assume x0 ∈ E(P,C(u), U). By part (i), EKLP2(x0, U) has an optimal solution

(x̂, l̂1, . . . , l̂s) with l̂i = 0 for all i = 1, . . . , s. Hence, it follows by Strong Duality

2.5.1(i) that EKDP2(x0, U) must have an optimal solution (v̂1, . . . , v̂s, ŵ) with

s∑
i=1

[
C(ui)x0

]T
v̂i + bT ŵ =

s∑
i=1

p∑
k=1

l̂ik = 0

as desired.

Since the efficient set of AIOMOLP (6.22) only contains the highly robust ef-

ficient set, it is clear that Proposition 6.4.10 cannot be both necessary and sufficient.

Similarly, a result comparable to Proposition 6.4.7 to generate a highly robust effi-

ciet point is not available because although the optimal solution to EKLP2(x0, U) is
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guaranteed to be efficient to AIMOLP (6.22), it may lie outside of the highly robust

efficient set. Nonetheless, sufficient conditions for the emptiness of the highly robust

efficient set may still be presented as in the proceeding proposition.

Proposition 6.4.11. Let x0 ∈ P be given.

(i) If EKLP2(x0, U) has an unbounded optimal objective value, then E(P,C(u), U) =

∅.

(ii) If EKDP2(x0, U) is infeasible, then E(P,C(u), U) = ∅.

Proof. (i) Suppose the objective value of EKLP2(x0, U) is unbounded. Hence,

E(P,C(U)) = ∅ by Proposition 4.2.23(i), where EKLP2(x0, U) is the Ecker

and Kouada LP associated with the deterministic problem AIOMOLP (6.22).

Since E(P,C(u), U) ⊆ E(P,C(U)) by Proposition 6.3.19, the result follows.

(ii) Suppose EKDP2(x0, U) is infeasible. Hence, EKLP2(x0, U) must be unbounded

by the Fundamental Theorem of Duality 2.5.1 and Lemma 6.4.9. Therefore,

E(P,C(u), U) = ∅ by part (i).

Note that Proposition 6.4.11 indicates that the highly robust efficient set is

empty because the efficient set of the all-in-one problem is empty and, as mentioned

in the preceding discussion, the efficient set of AIOMOLP (6.22) contains the highly

robust efficient set. However, as with Proposition 6.4.8, this result is not both neces-

sary and sufficient, and so it is possible that the highly robust efficient set is empty

even when the efficient set of AIOMOLP (6.22) is nonempty.

Fourth, the final individual Ecker-and-Kouada-type auxiliary LP we present,

denoted EKLP3(x0, U), is the deterministic Ecker and Kouada LP associated with

MOLP (6.26). As such, in the following setup and results, suppose each column of
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C(u) is either nonnegative for all u ∈ U or nonpositive for all u ∈ U with no column

all 0, and define I to be the diagonal matrix with a 1 corresponding to the nonnegative

columns of C(u) and a −1 for the nonpositive columns. Hence, EKLP3(x0, U) is given

by

max
x,l

p∑
k=1

lk

s.t. Ix + Ipl = Ix0

Ax 5 b

x = 0

l = 0,

(6.39)

where l ∈ Rp. Moreover, the dual of EKLP3(x0, U), denoted EKDP3(x0, U), is given

by

min
v,w

(Ix0)T v + bTw

s.t. ITv + ATw = 0

v = 1

w = 0,

(6.40)

where v ∈ Rn and w ∈ Rm are dual variables.

By Theorem 6.3.22, we know that E(P,C(u), U) ⊆ E(P, I). As a result of this

relationship, the Ecker-and-Kouada-type method utilizing EKLP3(x0, U), similarly to

with EKLP2(x0, U), does not provide necessary and sufficient conditions for highly

robust efficiency recognition. That being said, the benefit of EKLP3(x0, U) (and its

dual) is that, even compared to EKLP2(x0, U), the number of variables is significantly

reduced. We first establish that EKLP3(x0, U) is feasible.

Lemma 6.4.12. Let x0 ∈ P be given. Then EKLP3(x0, U) is feasible.

Proof. It is clear that EKLP3(x0, U) is feasible since x = x0 and l = 0 satisfy the

constraints.
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As mentioned directly above, necessary conditions (not necessary and suffi-

cient) for identifying the highly robust efficiency of a given solution x0 are available

for EKLP3(x0, U) and its dual.

Proposition 6.4.13. Let x0 ∈ P be given. If x0 ∈ E(P,C(u), U), then

(i) EKLP3(x0, U) has an optimal solution (x̂, l̂) with l̂ = 0;

(ii) EKDP3(x0, U) has an optimal solution (v̂, ŵ) with (Ix0)T v̂ + bT ŵ = 0.

Proof. (i) Suppose x0 ∈ E(P,C(u), U). Hence, x0 ∈ E(P, I) also by Theorem

6.3.22. Since EKLP3(x0, U) is the Ecker and Kouada problem associated with

the deterministic problem MOLP (6.26), the result follows immediately from

Proposition 4.2.21(i).

(ii) Assume x0 ∈ E(P,C(u), U). By part (i), EKLP3(x0, U) has an optimal solution

(x̂, l̂) with l̂ = 0. Hence, it follows by Strong Duality 2.5.1(i) that EKDP3(x0, U)

must have an optimal solution (v̂, ŵ) with

(Ix0)T v̂ + bT ŵ =

p∑
k=1

l̂k = 0

as desired.

Similarly to EKLP2(x0, U) and Proposition 6.4.10, since the efficient set of

MOLP (6.26) only contains the highly robust efficient set, it is clear that Proposi-

tion 6.4.13 cannot be both necessary and sufficient. Moreover, as mentioned with

EKLP2(x0, U), a result comparable to Proposition 6.4.7 to generate a highly ro-

bust efficient point is not available because even though the optimal solution to

EKLP3(x0, U) is guaranteed to be efficient to MOLP (6.26), it may lie outside of
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the highly robust efficient set. Nevertheless, sufficient conditions for the emptiness of

the highly robust efficient set may still be given as in the following proposition.

Proposition 6.4.14. Let x0 ∈ P be given.

(i) If EKLP3(x0, U) has an unbounded optimal objective value, then E(P,C(u), U) =

∅.

(ii) IF EKDP3(x0, U) is infeasible, then E(P,C(u), U) = ∅.

Proof. (i) Suppose the objective value of EKLP3(x0, U) is unbounded. Since

E(P,C(u), U) ⊆ E(P, I) by Theorem 6.3.22 and EKLP3(x0, U) is the Ecker

and Kouada problem associated with the deterministic problem MOLP (6.26),

the result follows immediately from Proposition 4.2.23(i).

(ii) Suppose EKDP3(x0, U) is infeasible. Hence, EKLP3(x0, U) must be unbounded

by the Fundamental Theorem of Duality 2.5.1 and Lemma 6.4.12. Therefore,

E(P,C(u), U) = ∅ by part (i).

Regardless of whether the family of Ecker and Kouada problems or one of the

individual Ecker-and-Kouada-type problems is utilized, the decision maker is able to

verify whether a given feasible solution of interest is also highly robust efficient or

possibly determine that the highly robust efficient set is empty. If the family of Ecker

and Kouada problems or the individual Ecker-and-Kouada-type problem given by

EKLP1(x0, U) is used, then the decision maker may also be able to generate another

feasible solution that is in fact highly robust efficient. In any case, these extensions

of Ecker and Kouada’s method provide useful tools regarding highly robust efficient

solutions to MOLP(U) to decision makers.
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6.4.2 Extension of Benson’s Method

As demonstrated in Section 4.2.3.3 with respect to efficient solutions to MOLP

(4.8), a second class of auxiliary problems introduced by Benson [11] could be utilized

(in much the same way as Ecker and Kouada’s problem) to verify whether efficient so-

lutions exist and more importantly (for the multiobjective simplex method) generate

an initial efficient extreme point. Similarly, in the uncertain setting, Benson’s problem

may be extended to provide a second class of auxiliary problems to identify whether

or not the highly robust efficient set is empty aside from the Ecker-and-Kouada-type

problems derived in the previous section. In particular, Benson’s problem/method

may be extended to (at least) four different Benson-type auxiliary problems. One is

a family of problems, while the other three are individual problems (including one

that is an MOLP). Regardless of the formulation, necessary or sufficient conditions

for the existence of highly robust efficient solutions are given. However, since none

of the conditions are both necessary and sufficient, the ability to generate a highly

robust efficient extreme point solution is not available.

We first examine the family of Benson-type auxiliary LPs. For a given feasible

solution x0 ∈ P and an arbitrary u ∈ U , the following problem, denoted BLP(x0,u),

is a representative member of the family of auxiliary problems and is given by

min
x

1TC(u)x

s.t. C(u)x 5 C(u)x0

Ax 5 b

x = 0.

(6.41)

Given u ∈ U , it is clear that BLP(x0,u) is deterministic and is simply Benson’s

LP (4.22) associated with the instance MOLP(u). A feasible solution to BLP(x0,u)
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for an arbitrary u ∈ {u1, . . . ,us} is given by the point x(u), where x(u) explicitly

indicates the dependence of the variable x on the scenario u. Using the family of

LPs, the existence of highly robust efficient solutions may be verified, and a highly

robust efficient decision generated, as in the following proposition.

Proposition 6.4.15. Let x0 ∈ P be given. For each i = 1, . . . , s, suppose x̂(ui)

is an optimal solution to BLP(x0,u
i). If x̂ := x̂(u1) = · · · = x̂(us), then x̂ ∈

E(P,C(u), U).

Proof. Let x̂ = x̂(u1) = · · · = x̂(us). Hence, x̂ ∈ E(P,C(ui)) for each i = 1, . . . , s by

Theorem 4.2.25(i). Applying Proposition 6.1.2 yields the desired result.

Second, in addition to the family of LPs given by BLP(x0,u), we present the

following individual Benson-type auxiliary MOLP. Due to the structure of Benson’s

problem with the decision variable x remaining in the objective, it is not possible to

formulate a block-structured problem in the same way as done with EKLP1(x0, U).

Instead, an MOLP is constructed such that each row of the cost matrix corresponds

to the Benson-type objective associated with each instance of UMOLP (6.1). In order

to keep the notation compact, this cost matrix is defined to be

CB(U) :=

1TC(u1)
...

1TC(us)

 ∈ Rs×n.

The Benson-type MOLP, denoted BMOLP(x0, U) is thus given by

min
x

CB(U)x

s.t. C(ui)x 5 C(ui)x0 for all i = 1, . . . , s

Ax 5 b

x = 0.

(6.42)
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Rather than a sufficient condition for the existence of highly robust efficient so-

lutions obtained with the family of Benson-type LPs above, BMOLP(x0, U) provides

a necessary condition as in the proceeding proposition.

Proposition 6.4.16. Let x0 ∈ P be given. If MOLP(U) has a highly robust efficient

solution, then BMOLP(x0, U) has a weakly efficient solution.

Proof. Assume x̂ ∈ E(P,C(u), U). By Definition 6.1.1, for each i = 1, . . . , s, there

does not exist an x ∈ P such that C(ui)x ≤ C(ui)x̂, i.e., such that ck(u
i)x ≤ ck(u

i)

for all k = 1, . . . , p with at least one strict. As a result,

p∑
k=1

ck(u
i)x <

p∑
k=1

ck(u
i)x̂

for all i = 1, . . . , s. Accordingly, 1TC(ui)x < 1TC(ui)x̂ for all i = 1, . . . , s, which

equivalently yields

CBx < CBx̂.

Therefore, in terms of the vector-valued objective function of BMOLP(x0, U), there

does not exist an x ∈ P that strictly dominates x̂. Since the feasible region of

BMOLP(x0, U) is a restriction of P , it follows that x̂ is a weakly efficient solution to

BMOLP(x0, U).

In addition, as a direct consequence of Proposition 6.4.16, BMOLP(x0, U) may

be used to provide a sufficient condition for the emptiness of the highly robust efficient

set as in the following corollary.

Corollary 6.4.17. Let x0 ∈ P be given. If the weakly efficient set of BMOLP(x0, U)

is empty, then E(P,C(u), U) = ∅.

Proof. The result follows immediately from Proposition 6.4.16.
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Third, Benson’s method may be extended by using AIOMOLP (6.22) in much

the same way as done with Ecker and Kouada’s method in the previous section. The

Benson-type auxiliary LP associated with the all-in-one MOLP, denoted BLP1(x0, U),

is the deterministic Benson LP given by

min
x

1TC(U)x

s.t. C(U)x 5 C(U)x0

Ax 5 b

x = 0.

(6.43)

The corresponding dual of BLP1(x0, U), denoted BDP1(x0, U), is thus given by

min
v,w

[C(U)x0]T v + bTw

s.t. C(U)Tv + ATw = −C(U)T1

v = 0

w = 0,

(6.44)

where v ∈ Rps and w ∈ Rm are dual variables.

Similarly to EKLP2(x0, U) in the previous subsection, BLP1(x0, U) and its

dual may be used in order to provide additional sufficient conditions for the emptiness

of the highly robust efficient set.

Proposition 6.4.18. Let x0 ∈ P be given.

(i) If BLP1(x0, U) has no optimal solution, then E(P,C(u), U) = ∅.

(ii) If BDP1(x0, U) has no optimal solution, then E(P,C(u), U) = ∅.

Proof. (i) Suppose BLP1(x0, U) has no optimal solution. Hence, E(P,C(U)) = ∅,

i.e., the efficient set associated with AIOMOLP (6.22) is empty, by Theorem
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4.2.25. Since E(P,C(u), U) ⊆ E(P,C(U)) by Proposition 6.3.19, it follows that

E(P,C(u), U) = ∅ as well.

(ii) Suppose BDP1(x0, U) has no optimal solution. Since BDP1(x0, U) is the dual

of BLP1(x0, U), the result follows from part (i) and Strong Duality 2.5.1(i).

Finally, the fourth Benson-type auxiliary problem considered is the determin-

istic Benson LP, denoted BLP2(x0, U), associated with MOLP (6.26). As a result, in

the following setup and proposition, suppose each column of C(u) is either nonnega-

tive for all u ∈ U or nonpositive for all u ∈ U with no column all 0, and define I to

be the diagonal matrix with a 1 corresponding to the nonnegative columns of C(u)

and a −1 for the nonpositive columns. Hence, BLP2(x0, U) is given by

min
x

1T Ix

s.t. Ix 5 Ix0

Ax 5 b

x = 0.

(6.45)

The corresponding dual of BLP2(x0, U), denoted BDP2(x0, U), is thus given by

min
v,w

(Ix0)T v + bTw

s.t. ITv + ATw = −IT1

v = 0

w = 0,

(6.46)

where v ∈ Rps and w ∈ Rm are dual variables.

As with BLP1(x0, U) above, BLP2(x0, U) and its dual may also be utilized in

order to provide further sufficient conditions for the emptiness of the highly robust
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efficient set.

Proposition 6.4.19. Let x0 ∈ P be given.

(i) If BLP2(x0, U) has no optimal solution, then E(P,C(u), U) = ∅.

(ii) If BDP2(x0, U) has no optimal solution, then E(P,C(u), U) = ∅.

Proof. (i) Suppose BLP2(x0, U) has no optimal solution. Hence, E(P, I) = ∅, i.e.,

the efficient set associated with MOLP (6.26) is empty, by Theorem 4.2.25. Since

E(P,C(u), U) ⊆ E(P, I) by Theorem 6.3.22, it follows that E(P,C(u), U) = ∅

as well.

(ii) Suppose BDP2(x0, U) has no optimal solution. Since BDP2(x0, U) is the dual

of BLP2(x0, U), the result follows from part (i) and Strong Duality 2.5.1(i).

Although none of the above Benson-type conditions is necessary and sufficient,

each provides an additional avenue for determining the existence of highly robust

efficient solutions.

6.4.3 Extension of the Weighted-Sum Method

As in Section 5.3 and the more general case of MOP(U), the weighted-sum

scalarization method may be extended in order to solve for highly robust efficient

solutions to MOLP(U) by considering a family of weighted-sum LPs. In fact, similarly

to the deterministic setting, it is possible to compute every highly robust efficient

point, which is shown by extending Isermann’s Theorem 4.2.28.

For each i = 1, . . . , s, the weighted-sum LP with respect to scenario ui ∈ U
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and weight λi ∈ Rp, denoted WSLP(λi,u
i), is given by

min
x

λTi C(ui)x

s.t. x ∈ P.
(6.47)

Given an arbitrary scenario ui ∈ U , it is clear that WSLP(λi,u
i) is deterministic and

is indeed the weighted-sum LP (4.18) associated with the instance MOLP(ui). For

the purposes of the following results and proofs, a feasible solution to WSLP(λi,u
i)

for any i ∈ {1, . . . , s} is given by the point x(ui), where x(ui) explicitly indicates the

dependence of the variable x on the scenario ui.

As in the following proposition, a highly robust efficient solution may be ob-

tained from the family of weighted-sum LPs provided that solving each member yields

the same optimal solution.

Proposition 6.4.20. Suppose x̂(ui) is an optimal solution to WSLP(λi,u
i) with

λi ∈ Rp for every i = 1, . . . , s such that x̂ := x̂(u1) = · · · = x̂(us).

(i) If λi ∈ Rp
> for all i = 1, . . . , s, then x̂ ∈ E(P,C(u), U).

(ii) If λi ∈ Rp
≥ for all i = 1, . . . , s, then x̂ ∈ wE(P,C(u), U).

Proof. (i) Let λi ∈ Rp
> for all i = 1, . . . , s. Hence, x̂ ∈ E(P,C(ui)) for each

i = 1, . . . , s by Corollary 4.2.19(i). Applying Proposition 6.1.2 yields the desired

result.

(ii) The proof follows similarly to the proof of part (i).

In order to show that every highly robust efficient solution may be obtained

by solving the family of weighted-sum LPs in this manner with λi ∈ Rp
>, Isermann’s

Theorem 4.2.28 is extended as in the proceeding theorem.
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Theorem 6.4.21. Let x0 ∈ P be given. Then x0 is a highly robust efficient solution

to MOLP(U) if and only if there exists a λi ∈ Rp
>, i = 1, . . . , s, such that

λTi C(ui)x0 ≤ λTi C(ui)x

for all i = 1, . . . , s and for all x ∈ P .

Proof 1. (⇐=) Suppose there exists a λi ∈ Rp
> such that λTi C(ui)x0 ≤ λTi C(ui)x

for all i = 1, . . . , s and for all x ∈ P , and assume for the sake of contradiction that

x0 /∈ E(P,C(u), U). By Proposition 6.1.2, x0 /∈
⋂s
i=1 E(P,C(ui)), i.e., there exists

an ı̄ ∈ {1, . . . , s} such that x0 /∈ E(P,C(uı̄)). By Definition 4.2.1, there exists an

x(uı̄) ∈ P such that C(uı̄)x(uı̄) ≤ C(uı̄)x0, or equivalently, ck(u
ı̄)x(uı̄) ≤ ck(u

ı̄)x0

for all k = 1, . . . , p with at least one strict. Since λı̄k > 0 for all k = 1, . . . , p, it

equivalently follows that λı̄kck(u
ı̄)x(uı̄) ≤ λı̄kck(u

ı̄)x0 for all k = 1, . . . , p with at

least one strict, which implies

p∑
k=1

λı̄kck(u
ı̄)x(ui) <

p∑
k=1

λı̄kck(u
ı̄)x0.

By definition,

λTı̄ C(uı̄)x(uı̄) < λTi C(uı̄)x0

which is a contradiction. Thus, it must be that x0 ∈ E(P,C(u), U).

(=⇒) Suppose x0 ∈ P is a highly robust efficient solution to MOLP(U). By Propo-

sition 6.4.2(ii), for each i = 1, . . . , s, we equivalently know that EKDP(x0,u
i) has an

optimal solution (v̂(ui), ŵ(ui)) with [C(ui)x0]
T

v̂(ui)+bT ŵ(ui) = 0, i.e., bT ŵ(ui) =
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− [C(ui)x0]
T

v̂(ui). For every i = 1, . . . , s, taking v = v̂(ui) in EKDP(x0,u
i) yields

min
v,w

[C(ui)x0]
T

v̂(ui) + bTw min
w

bTw

s.t. C(ui)T v̂(ui) + ATw = 0 =⇒ s.t. ATw = −C(ui)T v̂(ui)

v̂(ui) = 1 w = 0.

w = 0

(6.48)

For each i ∈ {1, . . . , s}, observe that ŵ(ui) is an optimal solution to LP (6.48), and

consider the corresponding dual given by

max
x

−v̂(ui)TC(ui)x min
x

v̂(ui)TC(ui)x

s.t. Ax 5 b ⇐⇒ s.t. Ax 5 b

x = 0 x = 0.

(6.49)

Hence, for each i = 1, . . . , s and x̂(ui) an optimal solution to LP (6.49), we obtain

bT ŵ(ui) = −v̂(ui)TC(uj)x̂(ui) (6.50)

by Strong Duality 2.5.1(i). Since (6.50) is also satisfied by x0 for each i = 1, . . . , s, it

follows that x0 is an optimal solution to LP (6.49) as well, i.e.,

v̂(ui)TC(ui)x0 ≤ v̂(ui)TC(ui)x(ui)

for all x(ui) ∈ P, i = 1, . . . , s. Letting λi = v̂(ui) = 1 > 0 for each i = 1, . . . , s, we

obtain the result.

Proof 2. Suppose x0 ∈ P is a highly robust efficient solution MOLP(U). Equivalently,

x0 ∈ E(P,C(u)) for all u ∈ U by Proposition 6.1.2. Thus, the result follows from
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Isermann’s Theorem 4.2.28.

Similarly to the deterministic case, the above theorem indicates that it is thus

possible to compute all highly robust efficient solutions to MOLP(U) by solving a

family of weighted-sum LPs. The main issue, however, is that the same optimal

solution must be obtained from each weighted-sum LP in the family, which is not

guaranteed for every set of weights λi ∈ Rp
>, i = 1, . . . , s.

6.4.4 Two-Step Bilevel Approach

In the previous subsections, e.g., Sections 6.3.4, 6.4.1, 6.4.2, and 6.4.3, we have

provided various results that indicate methods with which highly robust efficient so-

lutions to MOLP(U) may be obtained. However, in each situation, some assumption

is first required so that highly robust efficient solutions may not be generated in gen-

eral. To address this issue and compute highly robust efficient solutions to MOLP(U)

in general, we propose a two-step procedure. The first step is to determine whether

or not the highly robsut efficient set is empty, and if it is nonempty, then the sec-

ond step is to find other highly robust efficient points (if they exist). This second

phase is accomplished using a bilevel approach in which a function is optimized over

the highly robust efficient set, which is a natural extension of optimization over the

deterministic efficient set (refer to Horst et al. [71]).

For the purposes of this subsection, we include slack variables in the polyhedral

feasible set P . Hence, P is redefined to be

P := {x ∈ Rn : Ax = b,x = 0} (6.51)

for the remainder of this part.
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The bilevel problem is, in general, given by

min
x

F (x,u)

s.t. x ∈ E(P,C(ui)) for all i = 1, . . . , s,
(6.52)

where F : P × U → R, and the constraints enforce that a solution is highly robust

efficient. Although any objective function F clearly produces highly robust efficient

solutions, the choice of F is of practical significance. For example, if F is a utility

function, a highly robust efficient solution with some desirable characteristic(s) may

be obtained. Meanwhile, if F is a scalarizing function, such as a weighted sum, defined

by means of scalarizing parameters, then the bilevel problem yields a highly robust

efficient solution associated with a particular value of the parameters or a subset

of the highly robust efficient set corresponding to a collection of selected parameter

values.

Within the scope of this dissertation, we choose F to be a scalarizing function.

In particular, we select the weighted-sum scalarization, where the weighted-sum LP

with respect to weight vector λ ∈ Rp and scenario u ∈ U is denoted WSLP(λ,u) and

given by LP (6.47). When the weight λ ∈ Rp is positive, solutions to WSLP(λ,u) are

guaranteed to be efficient solutions to MOLP(u) by Isermann’s Theorem 4.2.28 as

discussed in the previous section. That being said, the bilevel problem (6.52) becomes

min
x

λTı̄ C(uı̄)x

s.t. x ∈ E(P,C(ui)) for all i = 1, . . . , s,
(6.53)

where ı̄ ∈ {1, . . . , s} is the index corresponding to a nominal scenario that may be

arbitrarily chosen, and λı̄ ∈ Rp is a positive weight.

Since the highly robust efficient set is unknown a priori, it is necessary to
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reformulate the constraint x ∈ E(P,C(ui)) for all i = 1, . . . , s. To that end, the

constraint may be written equivalently as x in the set of minimizers of a weighted-

sum problem yielding

min
x,λi,i=1,...,s,i 6=ı̄

λTı̄ C(uı̄)x

s.t. x ∈


argmin

z
λTi C(ui)z

s.t. z ∈ P

 for all i = 1, . . . , s,
(6.54)

where λi > 0, i = 1, . . . , s. The upper-level problem is a weighted-sum scalarization

associated with some nominal scenario, while the lower-level consists of a collection of

weighted-sum problems that ensures efficiency with respect to every scenario. At the

lower level, the weights λi, i = 1, . . . , s are implicitly known as soon as an optimal x

is known and are, therefore, not optimization variables. However, at the upper level,

λi, i = 1, . . . , s, i 6= ı̄, are unknown and become optimization variables so that they

may be determined. In addition, observe that in solving problem (6.54), the optimal

weights λi, i = 1, . . . , s, i 6= ı̄, obtained and the nominal weight λı̄ selected are indeed

the weights such that the optimal x-solution is an optimal solution to WSLP(λi,u
i)

and WSLP(λı̄,u
ı̄) as well.

In order to obtain solutions at the lower level, a final transformation is still

needed. Applying the KKT conditions (refer to Theorem 2.5.2) to the lower level in
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(6.54) yields

min
x,λi,i=1,...,s,i 6=ı̄
wi,vi,i=1,...,s

λTı̄ C(uı̄)x

s.t. λTi C(ui) + wT
i A−vi = 0 for all i = 1, . . . , s

vTi x = 0 for all i = 1, . . . , s

vi = 0 for all i = 1, . . . , s

λi > 0 for all i = 1, . . . , s, i 6= ı̄

x ∈ P,

(6.55)

where λı̄ > 0 is a vector of parameters, and vi ∈ Rn, i = 1, . . . , s, and wi ∈ Rm, i =

1, . . . , s, are the vectors of dual variables (Lagrange multipliers) associated with the

inequality and equality constraints in P , respectively. Note that the weight λı̄ is

not treated as a variable but rather as a vector of parameters, and the constraint

vTi x = 0 is nonlinear but would be eliminated if the original problem did not require

the nonnegativity of x.

Before discussing how (6.55) may be used as part of a method to obtain highly

robust efficient solutions, we address the feasibility of this problem. First, when the

highly robust efficient set is empty, it is clear that (6.55) is infeasible. Otherwise,

when the highly robust efficient set is nonempty, the feasibility of (6.55) depends on

the nominal weight λı̄. In particular, once λı̄ is selected, the constraints associated

with ı̄, as well as x ∈ P , effectively determine the optimal x-solution to (6.55) in

the case that WSLP(λı̄,u
ı̄) has a unique solution (or optimal x-solutions in the case

that alternate optimal solutions exist). Due to this interaction between the nominal

scenario and the x-solution to (6.55), it is possible that this problem is infeasible even

if the highly robust efficient set is nonempty. If the nominal weight λı̄ is such that

the corresponding x ∈ E(P,C(uı̄)) is not efficient with respect to at least one other
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scenario, then (6.55) is infeasible. Additionally, if the nominal weight λı̄ is such that

the associated weighted-sum problem WSLP(λı̄,u
ı̄) is unbounded (i.e., an extreme

direction is efficient), then the corresponding KKT constraints are inconsistent (as

the dual problem is infeasible if the primal is unbounded) and so (6.55) is infeasible.

On the other hand, if the nominal weight λı̄ is such that the corresponding x ∈

E(P,C(uı̄)) is efficient with respect to every other scenario, then (6.55) is feasible.

In view of the possibility that (6.55) is infeasible for a given weight λı̄ even

when highly robust efficient solutions exist, it is desirable to determine whether or

not the highly robust efficient set is empty prior to solving the bilevel problem. To

accomplish this task, the following KKT system given by

λTi C(ui) + wT
i A−vi = 0 for all i = 1, . . . , s

vTi x = 0 for all i = 1, . . . , s

vi = 0 for all i = 1, . . . , s

λi > 0 for all i = 1, . . . , s

x ∈ P,

(6.56)

where λi ∈ Rp,vi ∈ Rn,wi ∈ Rm, i = 1, . . . , s, and x are all treated as variables, may

be used.

Theorem 6.4.22. The highly robust efficient set is nonempty if and only if (6.56)

is consistent.

Proof. Let the highly robust efficient set be nonempty, i.e., there exists an x∗ ∈ P

such that x∗ ∈ E(P,C(ui)) for all i = 1, . . . , s. Equivalently, by Isermann’s Theorem

4.2.28, there exists a λ̄i > 0 such that x∗ is an optimal solution to WSLP(λ̄i,u
i) for

all i = 1, . . . , s. As WSLP(λ̄i,u
i) is an LP for each i = 1, . . . , s, x∗ is an optimal

solution to WSLP(λ̄i,u
i) if and only if there exist v̄i ∈ Rn and w̄i ∈ Rm such that
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(v̄i, w̄i,x
∗) satisfy the KKT system given by

λ̄
T
i C(ui) + wT

i A−vi = 0

vTi x∗ = 0

vi = 0

x∗ ∈ P,

(6.57)

for each i = 1, . . . , s. Since λ̄i > 0 and (v̄i, w̄i,x
∗) is feasible to (6.57) for all i =

1, . . . , s, it follows that (x∗, λ̄1, . . . , λ̄s, w̄1, . . . , w̄s, v̄1, . . . , v̄s) is also a solution to

(6.56)

An immediate consequence of Theorem 6.4.22 is that a feasible solution x∗ ∈

P is highly robust efficient if and only if (x∗, λ̄1, . . . , λ̄s, w̄1, . . . , w̄s, v̄1, . . . , v̄s) is a

solution to (6.56). Hence, in using (6.56) to check whether or not the highly robust

efficient set is nonempty, a highly robust efficient solution is generated along with a

nominal weight λı̄ for which (6.55) is feasible. It is also worth noting that even if the

highly robust efficient set is unbounded, there exists a highly robust efficient extreme

point by Proposition 6.3.1(v) so that (6.56) has a feasible solution.

If the highly robust efficient set is determined to be nonempty by virtue of

Theorem 6.4.22, then the bilevel problem is considered next in order to compute

other highly robust efficient solutions (if they exist). The following result accounts

for the feasibility of (6.55) and offers a means to compute highly robust efficient

solutions by solving (6.55) with different weights λı̄ > 0.

Theorem 6.4.23. Let ı̄ ∈ {1, . . . , s} be a given nominal index. A feasible solution

x∗ ∈ P is a highly robust efficient solution to MOLP(U) if and only if there exists

a λ̄ı̄ > 0 such that (x∗,λ1, . . . ,λı̄−1,λı̄+1, . . . ,λs,w1, . . . ,ws,v1, . . . ,vs) is an optimal

solution to (6.55).
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Proof. Let x∗ ∈ E(P,C(u), U), i.e., x∗ ∈ E(P,C(ui)) for all i = 1, . . . , s. Equiv-

alently, by Isermann’s Theorem, there exists a λ̄i > 0 such that x∗ is an optimal

solution to WSLP(λ̄i,u
i) for each i = 1, . . . , s. Since WSLP(λ̄i,u

i) is an LP for

each i = 1, . . . , s, x∗ is an optimal solution to WSLP(λ̄i,u
i) if and only if there exist

v̄i ∈ Rn and w̄i ∈ Rm such that (v̄i, w̄i,x
∗) satisfy the KKT system given by (6.57)

for each i = 1, . . . , s.

As λ̄i > 0 for all i = 1, . . . , s, and (v̄i, w̄i,x
∗) is feasible to (6.57) for all i =

1, . . . , s, (x∗, λ̄1, . . . , λ̄ı̄−1, λ̄ı̄+1, . . . , λ̄s, w̄1, . . . , w̄s, v̄1, . . . , v̄s) is also a feasible solution

to (6.55). Moreover, since there exists a λ̄ı̄ > 0 such that λ̄
T
ı̄ C(uı̄)x∗ ≤ λ̄Tı̄ C(uı̄)x

for all x ∈ P by optimality to WSLP(λ̄ı̄,u
ı̄), the point (x∗, λ̄1, . . . , λ̄ı̄−1, λ̄ı̄+1, . . . , λ̄s,

w̄1, . . . , w̄s, v̄1, . . . , v̄s) is a feasible and optimal solution to (6.55).

Considering Theorems 6.4.22 and 6.4.23, the two-step procedure to compute

highly robust efficient solutions to MOLP(U) involves first verifying the consistency

of (6.56), and then solving the bilevel problem (6.55) as follows:

1. If λı̄ is a known vector of parameters (e.g., its value is provided by the decision

maker, or it is chosen from within a neighborhood of the weight λ̄ı̄ that is obtained

during the first phase), then (6.55) is solved for x,λi, i = 1, . . . , s, i 6= ı̄,wi,vi, i =

1, . . . , s, where x, if it exists, is a highly robust efficient solution to the UMOLP.

This method generates a highly robust efficient solution for a given λı̄. To generate

other highly robust efficient solutions, different weights must be selected. With

the involvement of a decision maker in the process of selecting different nominal

weights, this approach may be classified as an interactive method (see Miettinen

et al. [111]).

2. If λı̄ is an unknown vector of parameters, then (6.55) is a multiparametric problem

(refer to Domı́nguez et al. [34]) and parametric solutions may be obtained by:
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(i) discretizing the parameter space Λı̄ = {λı̄ ∈ Rp :
∑p

k=1 λı̄k = 1,λı̄ > 0} into

a finite set of vectors {λ1
ı̄ , . . . ,λ

ν
ı̄ } and solving (6.55) with λ`ı̄ , ` = 1, . . . , ν, for

x`,λ`i , i = 1, . . . , s, i 6= ı̄,w`
i ,v

`
i , i = 1, . . . , s, where x`, if it exists, is a highly

robust efficient solution to MOLP(U). This approach provides a collection

of highly robust efficient solutions and may be referred to as a discretized

multiparametric method.

(ii) using multiparameteric optimization and solving (6.55) for x(λı̄),λi(λı̄), i =

1, . . . , s, i 6= ı̄,wi(λı̄),vi(λı̄), i = 1, . . . , s, where x(λı̄), if it exists, is a highly

robust efficient solution function to MOLP(U). If the nonlinear constraints

vTi x = 0, i = 1, . . . , s in (6.55) are eliminated, then the bilevel problem is

a multiparametric LP (see Gal and Nedoma [55]) and may be solved using

the Multi-Parametric Toolbox in MATLAB (refer to Herceg et al. [66]) or a

two-phase algorithm proposed by Adelgren and Wiecek [1]. In any case, this

approach yields highly robust efficient solutions as functions of the nominal

weight λı̄ and treats (6.55) as a (continuous) multiparametric optimization

problem (see Gal and Greenberg [54]).

We illustrate the discretized multiparametric approach on three small exam-

ples.

Example 6.4.24. (i) Consider the following UMOLP, which is a transformed version

of UMOLP (6.12) obtained by adding slack variables x3 and x4, given by


min
x

[
3u11 −9u12 0 0
−u21 9u22 0 0

]
x

s.t. x ∈ P ′1


u1∈U1,u2∈U2,

(6.58)

where U1 = {(1, 1, 0, 0)}, U2 = {(1, 1, 0, 0), (2,−1/9, 0, 0)}, and P ′1 is the bounded
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λ11 x∗

0.05, . . . , 0.25 (6, 0)
0.3, . . . , 0.65 infeasible
0.7, . . . , 0.95 (2, 4)

(a) UMOLP (6.58)

λ21 x∗

0.05, . . . , 0.75 (0, 3)
0.8, . . . , 0.95 (2, 4)

(b) UMOLP (6.60)

λ11 x∗

0.05, . . . , 0.5 (0, 3)
0.55, . . . , 0.95 infeasible

(c) UMOLP (6.61)

Table 6.1: Optimal x-solutions to (6.55) corresponding to UMOLPs (6.58), (6.60),
and (6.61) with varying nominal weights as given

(a) UMOLP (6.58) (b) UMOLP (6.60) (c) UMOLP (6.61)

Figure 6.7: Feasible sets (blue) and highly robust efficient points (red) for Examples
6.4.24(i), (ii), and (iii)

feasible set given by

P ′1 := {x ∈ R4 : −x1+2x2+x3 = 6, x1+x2+x4 = 6, xi ≥ 0, i = 1, . . . , 4}. (6.59)

As shown in Example 6.3.2, the highly robust efficient set (refer to Figure 6.7a)

in the original decision space R2 is the disconnected set of isolated extreme

points (2, 4) and (6, 0). In terms of Theorem 6.4.23 and problem (6.55), we

choose ı̄ = 1 and discretize the parameter space Λ1 by letting Λ1 = {λ1 ∈ R2 :

λ11 +λ12 = 1, λ11 = 0.05µ, µ = 1, . . . , 19}. The results of solving the subsequent

collection of problems in AMPL [53] with the nonlinear solver MINOS 5.51 [114]

are presented in Table 6.1a.

Inspecting Table 6.1a, we observe that nominal weights λ1 for which

λ11 = 0.3, . . . , 0.65, return that (6.55) is infeasible because an optimal solution
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to WSLP(λ1,u
1) for these weights is either the extreme point (0, 0) or (0, 3).

These two extreme points, although efficient with respect to scenario u1, are not

highly robust efficient and therefore, as discussed earlier, lead to the infeasibility

of (6.55). Furthermore, we observe that the results provide no indication that

the highly robust efficient set is disconnected.

(ii) Second, consider the UMOLP, which is a transformed version of UMOLP (6.29),

given by 
min
x

[
u11 −3u12 0 0
u21 u22 0 0

]
x

s.t. x ∈ P ′1


u1∈U1,u2∈U2,

(6.60)

where U1 = {(1, 1, 0, 0)}, U2 = {(1,−1, 0, 0), (1, 1, 0, 0)}, and P ′1 is as in (6.59).

As shown in Example 6.3.29, the highly robust efficient set (see Figure 6.7b)

in the original decision space R2 is the connected set given by the line segment

joining the extreme points (0, 3) and (2, 4). With respect to Theorem 6.4.23 and

problem (6.55), we choose ı̄ = 2 and discretize Λ2 in the same manner as with

UMOLP (6.58). The results of solving (6.55) with respect to Λ2 in AMPL with

MINOS 5.51 are summarized in Table 6.1b. Similar to the above discussion,

the connectedness of the highly robust efficient set is not apparent based on the

obtained solutions.

(iii) Finally, consider the UMOLP given by


min
x

[
u11 −3u12 0
u21 u22 0

]
x

s.t. x ∈ P2


u1∈U1,u2∈U2,

(6.61)

where U1 = {(1, 1, 0)}, U2 = {(1,−1, 0), (1, 1, 0)}, and P2 is the unbounded

feasible set (obtained by eliminating the second equality constraint from P1 and
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adding a single slack variable x3) given by

P2 := {x ∈ R3 : −x1 + 2x2 + x3 = 6, xi ≥ 0, i = 1, 2, 3}. (6.62)

It can be shown that the highly robust efficient set in the original decision space

R2 is the vertex (0, 3) and the ray with slope 1/2 emanating from it (see Figure

6.7c). With respect to Theorem 6.4.23 and problem (6.55), we choose ı̄ = 1 and

discretize Λ1 in the same manner as with the previous examples. The results of

solving (6.55) with respect to Λ1 in AMPL with MINOS 5.51 are summarized

in Table 6.1c. In this case, not only is the connectedness of the highly robust

efficient set not immediately obvious based on the obtained solutions, but also

the unboundedness of the highly robust efficient set is not indicated.

In view of Examples 6.4.24(i), (ii), and (iii), we observe that the bilevel ap-

proach does not clearly identify the connectedness nor unboundedness of the highly

robust efficient set. To address the former issue, the results in Section 6.4.1, e.g., the

recognition method of Proposition 6.4.6(i), in conjunction with Proposition 6.3.1(iv)

may be used to identify whether or not a face containing two or more of the effi-

cient points obtained by the bilevel approach is itself highly robust efficient. If the

face is in fact highly robust efficient, then it forms a connected subset of the highly

robust efficient set. Otherwise, the highly robust efficient solutions may form iso-

lated points within the highly robust efficient set. The application of Propositions

6.4.6(i) and 6.3.1(iv) to identify the connectedness of the highly robust efficient set

is demonstrated in the following example.

Example 6.4.25. First, consider UMOLP (6.58). The highly robust efficiency of a

point x0 in the relative interior of the line segment (face) joining (2, 4) and (6, 0)

may be verified using EKLP1(x0, U) and Proposition 6.4.6(i). For example, if x0 is
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chosen to be (4, 2), then solving EKLP1(x0, U) in AMPL with MINOS 5.51 yields

an optimal objective value of 8 6= 0. Hence, x0 = (4, 2) is not highly robust efficient

by Proposition 6.4.6(i), which implies that the line segment joining the two highly

robust efficient extreme points is not highly robust efficient as well, indicating that

the highly robust efficient set is disconnected.

Similarly, consider UMOLP (6.60). The highly robust efficiency of a point

x0 in the relative interior of the line segment (face) joining (0, 3) and (2, 4) may

be confirmed using EKLP1(x0, U) and Proposition 6.4.6(i). For instance, if x0 is

selected to be (1, 3.5), then solving EKLP1(x0, U) in AMPL with MINOS 5.51 yields

an optimal objective value of 0. Thus, x0 = (1, 3.5) is indeed highly robust efficient,

which implies that the line segment joining the two highly robust efficient extreme

points is also highly robust efficient, indicating that the highly robust efficient set is

connected.

Considering Example 6.4.25, not only do the Ecker-and-Kouada-type results

of Section 6.4.1 give decision makers the ability to select any feasible solution that is

deemed desirable a priori and verify whether or not it is also highly robust efficient, but

they also provide a tool to identify whether highly robust efficient solutions obtained

from the bilevel method form a connected set.

6.4.5 Application

To demonstrate the bilevel approach, we consider the deterministic triobjective

linear program given in Eatman and Sealey [40] (and subsequently studied by Tayi and

Leonard [131], Hwang et al. [75], and Doolittle et al. [35]) that models a commercial

bank balance sheet management problem. The three criteria are the bank’s (after-tax)

profit to be maximized, the capital-adequacy ratio to be minimized, and the risk-asset
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to capital ratio to also be minimized, where the capital-adequacy and risk-asset to

capital ratios are measures of the bank’s liquidity/risk. In particular, the capital-

adequacy ratio is the ratio of required to actual bank capital, while the risk-asset

to capital ratio is a type of capital-adequacy ratio involving the bank’s least liquid

assets with the highest rates of default. The model involves 16 decision variables,

the first 13 of which represent changes (with respect to balances at the beginning of

the period) in the bank’s assets and liabilities, and incorporates 12 context-specific

constraints. Eatman and Sealey report a complete list of 11 efficient extreme points

and examine the managerial utility performance of several solutions in order to choose

a preferred efficient solution. When profit is considered more important than risk,

the point yielding the most profit emerges as the preferred efficient extreme point.

On the other hand, if the levels of importance (as dictated by the bank manager)

change, then other efficient extreme points become preferred.

Since the model by Eatman and Sealey naturally exhibits uncertainty un-

der dynamic economic conditions and the subjective judgments of decision makers

(Hwang et al. [75]), we reformulate the problem as a UMOLP with objective-wise
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uncertainty. In particular, the UMOLP we consider is given by

min
x



u12x2+ u13x3 + u14x4 + u15x5 + u16x6 +

u17x7 + u18x8 + u19x9 + u1,10x10 +

u1,11x11 + u1,12x12 + u1,13x13

u22x2+ u23x3 + u24x4 + u25x5 + u26x6 +

u27x7 + u28x8 + u29x9 + u2,10x10 +

u2,14x14 + u2,15x15 + u2,16x16

u37x7+ u38x8 + u39x9 + u3,10x10


s.t. x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10−

x11 − x12 − x13 = 12.2

x1− 0.04x13 − x17 = 6.4

x1 + 0.995x2 + 0.995x3 + 0.96x4 − x11 − x12−

x13 + x14 − x18 = 22.832

x1 + 0.995x2 + 0.995x3 + 0.96x4 + 0.9x5 − x11−

x12 − x13 + x15 − x19 = 20.762

x1 + 0.995x2 + 0.995x3 + 0.96x4 + 0.9x5 + 0.85x6−

x11 − x12 − x13 + x16 − x20 = 13.877

x2− 0.4x11 − x21 = 0

x3− 0.4x13 − x22 = 2.4

x11 + x12 + x13 + x23 = 6.5

x11 + x24 = 3.9

x12 + x25 = 3.9

x13 + x26 = 3.9

x8− 0.25x11 − 0.25x12 − 0.25x13 − x27 = 1.45

xi ≥ 0 for all i = 1, . . . , 27


u1∈U1,u2∈U2,u3∈U3

(6.63)

where slack variables x17, . . . , x27 have been included so that the constraints are of

the form Ax = b, and the partial uncertainty sets U1, U2, U3 ⊂ R27 are given by
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polytopes. The extreme points of each polytope, as discussed below, take on an

important meaning with respect to the original deterministic coefficients specified by

Eatman and Sealey, as well as the lower and upper bounds given by Hwang et al.

The partial uncertainty sets each contain three extreme points. As such,

the sets of extreme points of each partial uncertainty set are defined by Upts
k :=

{u1
k,u

2
k,u

3
k}, k = 1, 2, 3, where ujk is referred to as a partial scenario in general for

each j = 1, 2, 3. Since the convex hull of the Cartesian product of sets is the Cartesian

product of the convex hulls, the uncertainty set U = U1 ×U2 ×U3 ⊂ R81 contains 27

total extreme points, which are given by the triples (uj11 ,u
j2
2 ,u

j3
3 ), j1, j2, j3 ∈ {1, 2, 3}.

In view of Theorem 6.2.1, the task of solving for the highly robust efficient set with

respect to U thus reduces to finding the highly robust efficient set with respect to

Upts, the set of 27 extreme points. That is, in order to obtain highly robust efficient

points of UMOLP (6.63), we may instead compute highly robust efficient solutions

to the collection of 27 instances corresponding to the extreme points of U .

Regarding Table 6.2, each column represents one of the extreme points ujk ∈

Uk, j = 1, 2, 3. Observe that partial scenario (extreme point) components correspond-

ing to zero coefficients in the cost matrix of (6.63) are treated as zero since no uncer-

tainty exists in these coefficients. Accordingly, since the slack variables x17, . . . , x27

do not contribute to the objective functions of (6.63), the partial scenario compo-

nents are all considered to be zero and are therefore omitted from Table 6.2. Note

also that the first element in each extreme point set gives the original deterministic

coefficients specified by Eatman and Sealey, while the second and third elements yield

the lower and upper bounds, respectively, provided by Hwang et al. These partial

scenarios produce, when combined to form (extreme point) scenarios in U , a variety

of instances (27 total with one corresponding to each u ∈ Upts) whose cost matrices

are combinations of the deterministic coefficients and the lower and upper bounds.
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Upts
1 Upts

2 Upts
3

u1
1 u2

1 u3
1 u1

2 u2
2 u3

2 u1
3 u2

3 u3
3

0 0 0 0 0 0 0 0 0
−0.052 −0.072 −0.042 0.001 0 0.003 0 0 0
−0.053 −0.073 −0.043 0.001 0 0.003 0 0 0
−0.056 −0.076 −0.046 0.008 0.006 0.012 0 0 0
−0.058 −0.078 −0.048 0.008 0.006 0.012 0 0 0
−0.059 −0.079 −0.049 0.012 0.009 0.018 0 0 0
−0.062 −0.082 −0.052 0.02 0.015 0.03 0.2 0.1 0.4
−0.076 −0.096 −0.066 0.02 0.015 0.03 0.2 0.1 0.4
−0.071 −0.091 −0.061 0.02 0.015 0.03 0.2 0.1 0.4
−0.095 −0.115 −0.085 0.02 0.015 0.03 0.2 0.1 0.4
0.052 0.042 0.072 0 0 0 0 0 0
0.05 0.04 0.07 0 0 0 0 0 0
0.055 0.045 0.075 0 0 0 0 0 0

0 0 0 0.013 0.01 0.019 0 0 0
0 0 0 0.008 0.006 0.012 0 0 0
0 0 0 0.019 0.014 0.029 0 0 0

Table 6.2: The sets of extreme points of U1, U2, and U3 associated with UMOLP
(6.63), where the components corresponding to the slack variables are all treated as
zero and are therefore omitted

Further note that the deterministic coefficients for the third objective (the first partial

scenario u1
3 ∈ U3 shown in Table 6.2) are those used by Eatman and Sealey, which

differ from those used by Hwang et al., and the lower and upper bounds corresponding

to the third cost coefficients are adjusted accordingly.

In order to obtain highly robust efficient solutions to UMOLP (6.63), we utilize

the discretized multiparametric approach described in the previous section. We choose

ı̄ = 1, which corresponds to the scenario u1 = (u1
1,u

1
2,u

1
3) yielding the deterministic

model from Eatman and Sealey, and discretize the parameter space Λ1 by using a

mesh with an interval step size of 0.00625. The results of solving the subsequent
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collection of 12,720 problems in AMPL (refer to Appendix C for a sample of the

AMPL files used) with the nonlinear solver MINOS 5.51 are presented in Table 6.3. As

previously mentioned, Eatman and Sealey report 11 efficient extreme point solutions

to the deterministic model. Of those points, as presented in Table 6.3, six (numbered

1, 2, 3, 7, 10, and 11) remain as highly robust efficient solutions to UMOLP (6.63).

(Note that we may confirm that the other five efficient extreme points are in fact not

highly robust efficient by applying Proposition 6.4.6(i) to each solution.)

The practical implications of solution 7 are addressed by Eatman and Sealey,

while the utility of solutions 1, 2, 3, 10, and 11 is not discussed. Regarding solution

7, Eatman and Sealey comment that among the efficient extreme points it is the most

profitable, least liquid, and most risky solution and may therefore be too risky for

even the most profit-minded bank managers. Even though solutions 1, 2, 3, 10, and

11 are not examined further, as highly robust efficient solutions that remain efficient

under a variety of cost matrix conditions, their relevance and practical importance

is obvious. In particular, solution 11 emerges as an even more attractive decision

when considering the findings of Doolittle et al., who obtain it as a min-max robust

weakly efficient solution in the sense of their definition of robust efficiency (Definition

7, Doolittle et al. [35]).
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1 2 3 7 10 11

x1 6.4 6.4 6.4 6.504 6.4 8.35
x2 0 0 0 0 0 0
x3 2.4 2.4 2.4 2.504 4.35 2.4
x4 1.95 0 0 0 0 0
x5 0 1.95 0 0 0 0
x6 0 0 1.95 0 0 0
x7 0 0 0 0 0 0
x8 1.45 1.45 1.45 3.075 1.45 1.45
x9 0 0 0 0 0 0
x10 0 0 0 6.617 0 0
x11 0 0 0 0 0 0
x12 0 0 0 3.9 0 0
x13 0 0 0 2.6 0 0
x14 12.172 14.044 14.044 20.33652 12.10375 12.094
x15 10.102 10.219 11.974 18.26652 10.03375 10.024
x16 3.217 3.334 3.4315 11.38152 3.14875 3.139

Table 6.3: Highly robust efficient extreme point solutions to UMOLP (6.63), where
the solutions are numbered as in Eatman and Sealey [40]
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Chapter 7

Conclusions and Future Research

7.1 Contributions

In this dissertation, we have presented the first in-depth analysis of highly

robust efficient solutions to objective-wise uncertain multiobjective linear programs

(UMOLPs), as well as uncertain multiobjective programs (UMOPs), under finite

sets of scenarios, while also addressing the unboundedness of the sets of feasible

decisions and uncertainties. The assumed objective-wise uncertainty has three main

benefits including that it permits (i) the model to incorporate the practical reality

that conflicting criteria are unlikely to depend on the same uncertainty, (ii) interval

multiobjective linear programming to be considered as a special case, and (iii) the

application of an existing polytopal uncertainty set reduction, which consequently

motivates the use of finite sets of scenarios. Although UMOLPs without objective-

wise uncertainty are not considered herein, if the three aforementioned reasons or

benefits of studying objective-wise uncertainty are not of concern, the theoretical and

methodological results regarding highly robust efficient solutions are still applicable.

Further theoretical and methodological contributions are summarized in Sections 7.1.1
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and 7.1.2, respectively, and a unifying framework to obtain highly robust efficient

solutions is outlined in Section 7.1.3.

7.1.1 Theoretical

During the course of the preceding chapter, we address various theoretical

results regarding highly robust efficient solutions to UMOLPs such as an uncertainty

set reduction, properties and characterizations of the highly robust efficient set, bound

sets on (i.e., sets that contain or are contained in) the highly robust efficient set, and

a robust counterpart (RC) for a class of UMOLPs.

We first derive an unbounded polyhedral uncertainty set reduction for a class

of UMOLPs in which the highly robust efficient set of a UMOLP whose uncertainty

set is an unbounded polyhedron is shown to be equal to the highly robust efficient

set of the same UMOLP whose uncertainty set is instead the finite set of extreme

points and directions. The reduction simultaneously illustrates that, at least under

specific circumstances, unbounded uncertainty sets may be considered, and also gives

added reason for the consideration of finite sets of scenarios. Although this reduction

pertains to a very specific class of problems, it is unique in the robust optimization

literature since the uncertainty set is typically assumed to be bounded.

In addition, we present a variety of properties of the highly robust efficient set

including those regarding closedness, convexity, and connectedness. The properties

of the highly robust efficient set highlight several key aspects of solving UMOLPs

for highly robust efficient solutions. One such aspect is that since the highly robust

efficient set is shown to be possibly disconnected, a simplex algorithm approach to

computing highly robust efficient points is not advantageous to pursue and obtain-

ing highly robust efficient solutions is in fact a global optimization task. Moreover,
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characterizations of the highly robust efficient set are provided by means of the cones

of improving directions associated with the UMOLP, the normal cone (under certain

acuteness assumptions), and the recession cone. The characterizations include neces-

sary and/or sufficient conditions for the highly robust efficiency of feasible solutions,

as well as conditions under which the highly robust efficient set is empty.

Following these characterizations, multiple bound sets on the highly robust

efficient set are proposed. The existence of such bound sets is closely related to the

above characterizations and two properties of the cone of improving directions of the

UMOLP, acuteness and polyhedrality. In fact, several of the bound sets follow directly

from the above characterizations while the acuteness of the closed cone of improv-

ing directions leads to a lower bound set on the highly robust efficient set that also

guarantees the highly robust efficient set is nonempty provided that the feasible set is

bounded. The acuteness of the cone may be checked by either of two proposed meth-

ods, solving a system of linear inequalities or computing the dimension of the cone,

both of which are easily performed using readily available software. Furthermore, the

polyhedrality of the closed cone of improving directions also leads to a deterministic

multiobjective linear program (MOLP) that is an RC of the UMOLP. The compu-

tation of this RC is an important task since MOLPs are readily solvable and highly

robust efficient solutions may thus be promptly obtained. The polyhedrality of the

cone may be verified and its algebraic representation computed by an existing algo-

rithm that immediately leads to a closed form representation of the aforementioned

RC.
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7.1.2 Methodological

Similarly, throughout the previous two chapters, we address several method-

ological approaches with respect to highly robust efficient solutions to UMOPs and

UMOLPs including methods to identify whether or not highly robust efficient solu-

tions exist, determine the highly robust efficiency of a given feasible decision, and

generate highly robust efficient solutions.

The first approach involves determining whether or not the highly robust ef-

ficient set of a UMOLP is empty. As is clear, being able to determine whether or

not highly robust efficient solutions exist before attempting to solve a UMOLP is

important. If highly robust efficient solutions exist, then the UMOLP needs to be

solved. Otherwise, highly robust efficient solutions do not exist and the decision

maker needs to possibly consider other solution concepts or other uncertainty sets.

Several methods are given to determine the emptiness of the highly robust efficient

set, including various ones that are not guaranteed to identify this property and one

that is. The former methods are extensions of both Ecker and Kouada’s method and

Benson’s method for deterministic MOLPs, and generally indicate that the highly

robust efficient set is empty because the efficient set of at least one instance of the

UMOLP is empty or an upper bound set on the highly robust efficient set is empty.

On the other hand, the latter method expresses highly robust efficiency in terms of the

Karush-Kuhn-Tucker (KKT) conditions associated with the weighted-sum problem

corresponding to each instance of the UMOLP. As such, this method is “foolproof”

and identifies the emptiness of the highly robust efficient set in general.

Another approach concerns the recognition of the highly robust efficiency of a

given feasible solution. This verification is a particularly meaningful tool for decision

makers for two reasons: (i) a feasible solution that is deemed desirable a priori may
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be verified as highly robust efficient without computing (subsets of) the highly robust

efficient set, and (ii) whether obtained highly robust efficient solutions to a UMOLP

form a connected set may be determined by utilizing the property of the highly robust

efficient set that a face is highly robust efficient provided a point in its relative interior

is as well. Methods to perform this recognition task are proposed for both UMOPs

and UMOLPs. In the case of the former problem, an extension of Benson’s method

for deterministic MOPs is derived, while an extension of Ecker and Kouada’s method

for deterministic MOLPs is provided in the case of the latter problem.

Moreover, a third approach is with regards to the computation of highly ro-

bust efficient points. Since highly robust efficient solutions are considered desirable

under all realizations of the uncertain data, the ability to compute them is worth-

while. Assorted methods to compute highly robust efficient solutions to both UMOPs

and UMOLPs are thus developed. One method is a straightforward extension of the

weighted-sum method in which the family of instances defining the UMOP or UMOLP

is solved by the corresponding family of weighted-sum problems. A second method

is an extension of Benson’s method for deterministic MOPs, respectively Ecker and

Kouada’s method for deterministic MOLPs, in which a new highly robust efficient

point may be generated from given a current feasible solution by solving an associated

auxiliary problem. Finally, highly robust efficient solutions to UMOLPs may also be

computed (even when the feasible set is unbounded) using a two-step approach. The

first step is determining whether or not the highly robust efficient set is empty, and

if it is nonempty, then the second step is to solve a bilevel problem for highly robust

efficient solutions. In order to implement the latter to generate multiple highly robust

efficient points, three separate approaches are described: an interactive method, a dis-

cretized multiparametric method, and a (continuous) multiparametric optimization

method. The discretized multiparametric bilevel approach is demonstrated on an ap-
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plication problem from bank balance-sheet management. Considering the subsequent

discussion, a particular highly robust efficient solution emerges as a very attractive

decision that the bank manager should examine in more detail.

7.1.3 Summary

In view of the above theoretical and methodological contributions, a systematic

approach for the computation of highly robust efficient solutions is given in Figures

7.1 and 7.2.

The scheme begins by determining whether or not the cone of improving di-

rections D5(C(u), U) of the input UMOLP (which is specified by the polyhedral

feasible set P , the cost matrix under uncertainty C(u), and the uncertainty set U)

is polyhedral. As previously discussed, the polyhedrality of the cone may be verified

computationally using an existing algorithm. If the cone is in fact polyhedral, the al-

gorithm also provides an algebraic representation of the cone that immediately leads

to a closed form representation of the associated RC. Since the RC is a deterministic

MOLP that may be readily solved using a variety of available methods, all highly

robust efficient points may be efficiently computed.

Otherwise, if the cone of improving directions is not polyhedral, then its acute-

ness is verified by either of two proposed methods. If the cone of improving directions

is indeed acute, then its strict polar is used to produce a deterministic MOLP whose

efficient set is a lower bound set on the highly robust efficient set. Since the deter-

ministic MOLP may be solved (similarly to the RC) using various efficient methods,

some highly robust efficient points may be computed by solving this MOLP.

On the other hand, if the cone of improving directions is not acute, then the

two-step approach to compute highly robust efficient decisions is used. First, the
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emptiness of the highly robust efficient set is determined in general using the “fool-

proof” method described earlier. If the highly robust efficient set is empty, then the

procedure terminates and the decision maker should consider alternative uncertainty

sets or possibly different robust solution concepts. Otherwise, a highly robust effi-

cient solution is generated and additional points may be computed by completing the

second step of solving the bilevel problem (which may be done using any of three

suggested approaches).

7.2 Future Research

Our work immediately opens up several avenues for continued research. First

and foremost, it is desirable to implement the above scheme and automate the com-

putation of highly robust efficient points. By following the proposed strategy, highly

robust efficient solutions are computed in the least computationally expensive manner

currently available depending on the characteristics of the UMOLP being solved.

In addition, the only proposed MOLP whose efficient set is a lower bound

set on the highly robust efficient set results from the fact that the closed cone of

improving directions of the UMOLP is acute. However, as the assumption that this

cone is acute limits the types of UMOLPs the bound set addresses, it is also desirable

to relax this assumption.

Moreover, developing other upper or lower bound sets on the highly robust

efficient set of a UMOLP is worthwhile to pursue. Foremost, the bound sets provide

valuable information regarding the highly robust efficient set and may be used, in the

case of lower bound sets for example, to prove that the highly robust efficient set is

nonempty. Additionally, new recognition and existence conditions for highly robust

efficient solutions to UMOLPs may be derived since these conditions may be obtained
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Input: P,C(u), U

Is D5(C(u), U) polyhedral?

Is D5(C(u), U) acute? A

Ds+
5 (C̃) = Ds+

5 (C(u), U)D5(C) = D5(C(u), U)

E(P,C(u), U) = E(P,C)

Solve minx∈P Cx
for all solutions

x∗ ∈ E(P,C(u), U)

E(P,C(u), U) ⊇ E(P, C̃)

Output: Points
in E(P,C(u), U)

Solve minx∈P C̃x
for some solutions

x∗ ∈ E(P,C(u), U)

Yes

Definition 3.1.6(ii)

No

Theorem 6.3.27

Yes

Proposition 3.2.20(i)

and

Theorem 3.2.13(i)

No

Theorem 6.3.24

Figure 7.1: Flow-chart scheme for the computation of highly robust efficient solutions
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A

Is the weighted-sum KKT
system (6.56) feasible?

x∗ ∈ E(P,C(u), U)
is obtained

Output:
E(P,C(u), U) = ∅

Solve the weighted-sum
bilevel problem (6.55)
for x∗ ∈ E(P,C(u), U)

Output: Points
in E(P,C(u), U)

Yes

Theorem 6.4.22

No

Theorem 6.4.22

Theorem 6.4.23

Figure 7.2: Continuation of the flow-chart scheme for the computation of highly
robust efficient solutions
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by relating Ecker and Kouada’s or Benson’s method to the MOLPs corresponding to

the bound sets.

Finally, our work reveals that pursuing other means to identify highly robust

efficient solutions is still advantageous. In particular, the computational expense

of solving the bilevel problem may be prohibitive in some applications since each

scenario dramatically increases the size of the problem. Further, even though our

two-step procedure is able to accommodate the situation that the feasible or highly

robust efficient set is unbounded, it does not directly identify that the highly robust

efficient set is unbounded or compute highly robust efficient direction(s).
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Appendix A USOP Reformulation

A single-objective linear program (LP) is given by

min
x

cTx

s.t. Ax = b,
(1)

where c ∈ Rn is the cost vector or vector of objective coefficients, A ∈ Rm×n is

the constraint matrix, and b ∈ Rm is the vector of right-hand side (RHS) values.

Considering uncertainty in any of the data c,A, or b, we obtain an uncertain single-

objective LP (USOLP). Although uncertainty may exist in any of the problem data,

it may be assumed to be in the left-hand side (LHS) of the constraints without loss of

generality (WLOG). In order to demonstrate this fact (first described by Ben-Tal and

Nemirovski [8]), we consider USOLP (1) with uncertainty in either the cost vector c

or the RHS vector b.

If the uncertainty is in the objective coefficients c, we use an auxiliary variable

to transform USOLP (1) as follows:

min
x,ϑ

ϑ

s.t. cTx ≤ ϑ

Ax = b.

Now, the uncertainty is only in the LHS. On the other hand, if the uncertainty is in

the vector of RHS values b, we perform the following transformations:

min
x

cTx min
x

cTx + 0 · xn+1 min
z

(c′)Tz

s.t. Ax = b ⇐⇒ s.t. Ax − b · xn+1 = 0 ⇐⇒ s.t. A′z = 0

0Tx + 1 · xn+1 = 1 aTm+1z = 1,
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where (c′)T =
[
cT 0

]
∈ Rn+1, zT =

[
xT xn+1

]
∈ Rn+1,A′ =

[
A −b

]
∈ Rm×(n+1),

and aTm+1 =
[
0T 1

]
∈ Rn+1. Again, the uncertainty is now only in the LHS. There-

fore, WLOG, the uncertainty may always be restricted to the LHS of the constraints.
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Appendix B Computing M̃T in SageMath

Recall Example 3.2.11. The two cones K5(M1) and K5(M2), as well as their

polars, are shown in Figure 3.5.

The goal in this example is to compute the matrix M̃T in {x ∈ R2 : x =

−M̃Tλ,λ = 0} =
[
K5(M1) ∪K5(M2)

]+
from Proposition 3.2.9(i). In order to do

so, the following steps using SageMath’s [132] polyhedron base class are used.

First, polyhedron objects corresponding to K+
5 (M1) and K+

5 (M2), whose

generator form representations are given by Proposition 3.2.7(i), are created.

1 K1Polar = Polyhedron(rays = [[2, −1], [−1, 3]]); K2Polar = Polyhedron(rays = [[−4, ...

−1], [1, 2]]);

Second, the intersection K+
5 (M1) ∩K+

5 (M2) =
[
K5(M1) ∪K5(M2)

]+
from Propo-

sition 3.2.8(i) is computed.

1 UnionPolar = K1Polar.intersection(K2Polar);

Finally, the generator form representation of the intersection is obtained.

1 UnionPolar.Vrepresentation();

The resulting output from SageMath

1 (A vertex at (0, 0),

2 A ray in the direction (1, 2),

3 A ray in the direction (−1, 3))

yields that the columns of −M̃T are the generators or rays
[
1 2

]T
and

[
−1 3

]T
.

249



Appendix C Application Problem AMPL Code

In order to compute highly robust efficient solutions to the bank balance-

sheet management UMOLP (6.63), the discretized multiparametric bilevel approach

described in Section 6.4.4 is used. As discussed in Section 6.4.5, the nominal index

is chosen to be ı̄ = 1, which corresponds to the scenario u1 = (u1
1,u

1
2,u

1
3) yielding

the deterministic model from Eatman and Sealey [40], and the parameter space Λ1 is

discretized by using a mesh with an interval step size of 0.00625. Since each value of

the parameter λ1 ∈ Λ1 is associated with an instance of the bilevel problem (6.55),

the chosen discretization results in a collection of 12,720 problems to be solved.

A sample of the AMPL [53] files needed to solve the collection of problems just

described is provided below and includes .run, .mod, and .dat files. Note that the

sample files account for only four scenarios instead of the complete set of 27. Accord-

ingly, the data file corresponds to four scenarios, specifically (u1
1,u

1
2,u

1
3), (u1

1,u
3
2,u

1
3),

(u3
1,u

1
2,u

1
3), (u3

1,u
3
2,u

1
3), where ujk is as defined in Table 6.2.

1 ## Run file

2 ## BilevelApplication 0−00625 Mesh.run

3

4 model BilevelApplication FourScenarios Scenario1 Nominal.mod;

5 data BilevelApplication FourScenarios.dat;

6

7 option solver msg 0; #suppresses solver messages

8 option send statuses 0; #status information about variables returned by the ...

previous solve will not be used as starting point for the next solve

9

10 set INDICES; #set of indices to count over

11 set XSOLUTIONS dimen 16 default {}; #set of x solutions

12 set LSOLUTIONS dimen 3 default {}; #set of lambda 1 solutions

13 set XTEST dimen 16 default {};

14
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15 param numberofweights; #number of lambda 1 weights

16 param counter;

17 param infeasible counter;

18

19 let numberofweights := 159;

20 let INDICES := 1..numberofweights by 1;

21 let l1[1] := 0; #where l1 corresponds to lambda 1

22 let counter := 0;

23 let infeasible counter := 0;

24

25 for {i in INDICES} {

26 let l1[1] := l1[1] + 0.00625;

27 let l1[2] := 0;

28

29 for {j in INDICES} {

30 let l1[2] := l1[2] + 0.00625;

31 let l1[3] := 1 − l1[1] − l1[2];

32

33 if l1[3] > 0 then {

34 solve;

35 let counter := counter + 1;

36

37 if match (solve message, "infeasible") > 0 then {

38 let infeasible counter := infeasible counter + 1;

39 printf "\n\n−−− infeasible at %d and %d −−−\n\n", i, j;

40 }

41 else {

42 let XTEST := XSOLUTIONS;

43

44 for {k in COLUMNS} {

45 let x[k] := round(x[k],8);

46 }

47

48 let XSOLUTIONS := XSOLUTIONS union ...

{(x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10],x[11], ...

x[12],x[13],x[14],x[15],x[16])};

49

50 if XSOLUTIONS not within XTEST then {

51 let LSOLUTIONS := LSOLUTIONS union ...
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{(round(l1[1],8),round(l1[2],8),round(l1[3],8))};

52 }

53 }

54 }

55 }

56 }

57

58 printf "\n\n Test 11 \n\n";

59 display XSOLUTIONS;

60 display LSOLUTIONS;

61 display counter;

62 display infeasible counter;

63

64 ## Model file

65 ## BilevelApplication FourScenarios Scenario1 Nominal.mod

66

67 param n > 0; #number of variables

68 param m > 0; #number of constraints

69 param p > 0; #number of objectives

70

71 set COLUMNS := 1..n;

72 set ROWS := 1..m;

73 set OBJECTIVES := 1..p;

74

75 param A {ROWS,COLUMNS};

76 param C1 {OBJECTIVES,COLUMNS}; #C(uˆ1)

77 param C2 {OBJECTIVES,COLUMNS}; #C(uˆ2)

78 param C3 {OBJECTIVES,COLUMNS}; #C(uˆ3)

79 param C4 {OBJECTIVES,COLUMNS}; #C(uˆ4)

80 param b {ROWS};

81 param epsilon {OBJECTIVES}; #used to represent strict inequalities

82 param l1 {OBJECTIVES}; #lambda 1

83

84 var x {COLUMNS} >= 0;

85 var v1 {COLUMNS} >= 0;

86 var w1 {ROWS};

87 var l2 {OBJECTIVES};

88 var v2 {COLUMNS} >= 0;

89 var w2 {ROWS};
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90 var l3 {OBJECTIVES};

91 var v3 {COLUMNS} >= 0;

92 var w3 {ROWS};

93 var l4 {OBJECTIVES};

94 var v4 {COLUMNS} >= 0;

95 var w4 {ROWS};

96

97 minimize Obj: sum {i in OBJECTIVES,j in COLUMNS} l1[i]*C1[i,j]*x[j];

98

99 subject to Feasibility {i in ROWS}: sum {j in COLUMNS} A[i,j]*x[j] == b[i];

100 subject to Gradient1 {i in COLUMNS}: sum {j in OBJECTIVES} C1[j,i]*l1[j] + sum {j ...

in ROWS} A[j,i]*w1[j] − v1[i] == 0;

101 subject to Gradient2 {i in COLUMNS}: sum {j in OBJECTIVES} C2[j,i]*l2[j] + sum {j ...

in ROWS} A[j,i]*w2[j] − v2[i] == 0;

102 subject to Gradient3 {i in COLUMNS}: sum {j in OBJECTIVES} C3[j,i]*l3[j] + sum {j ...

in ROWS} A[j,i]*w3[j] − v3[i] == 0;

103 subject to Gradient4 {i in COLUMNS}: sum {j in OBJECTIVES} C4[j,i]*l4[j] + sum {j ...

in ROWS} A[j,i]*w4[j] − v4[i] == 0;

104 subject to CompSlack1: sum {j in COLUMNS} v1[j]*x[j] == 0;

105 subject to CompSlack2: sum {j in COLUMNS} v2[j]*x[j] == 0;

106 subject to CompSlack3: sum {j in COLUMNS} v3[j]*x[j] == 0;

107 subject to CompSlack4: sum {j in COLUMNS} v4[j]*x[j] == 0;

108 subject to Positive2 {i in OBJECTIVES}: l2[i] >= epsilon[i];

109 subject to Positive3 {i in OBJECTIVES}: l3[i] >= epsilon[i];

110 subject to Positive4 {i in OBJECTIVES}: l4[i] >= epsilon[i];

111

112 ## Data file

113 ## BilevelApplication FourScenarios.dat

114

115 param n := 27;

116 param m := 12;

117 param p := 3;

118

119 param A:

120 1 2 3 4 5 6 7 8 9 10 11 12 ...

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27:=

121 1 1 1 1 1 1 1 1 1 1 1 −1 −1 ...

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

122 2 1 0 0 0 0 0 0 0 0 0 0 0 ...
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−0.04 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

123 3 1 0.995 0.995 0.96 0 0 0 0 0 0 −1 −1 ...

−1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0

124 4 1 0.995 0.995 0.96 0.9 0 0 0 0 0 −1 −1 ...

−1 0 1 0 0 0 −1 0 0 0 0 0 0 0 0

125 5 1 0.995 0.995 0.96 0.9 0.85 0 0 0 0 −1 −1 ...

−1 0 0 1 0 0 0 −1 0 0 0 0 0 0 0

126 6 0 1 0 0 0 0 0 0 0 0 −0.4 0 ...

0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

127 7 0 0 1 0 0 0 0 0 0 0 0 0 ...

−0.04 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

128 8 0 0 0 0 0 0 0 0 0 0 1 1 ...

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

129 9 0 0 0 0 0 0 0 0 0 0 1 0 ...

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

130 10 0 0 0 0 0 0 0 0 0 0 0 1 ...

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

131 11 0 0 0 0 0 0 0 0 0 0 0 0 ...

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

132 12 0 0 0 0 0 0 0 1 0 0 −0.25 −0.25 ...

−0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 −1;

133

134 param C1:

135 1 2 3 4 5 6 7 8 9 10 ...

11 12 13 14 15 16 17 18 19 20 ...

21 22 23 24 25 26 27:=

136 1 0 −0.052 −0.053 −0.056 −0.058 −0.059 −0.062 −0.076 −0.071 ...

−0.095 0.052 0.05 0.055 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0

137 2 0 0.001 0.001 0.008 0.008 0.012 0.02 0.02 0.02 ...

0.02 0 0 0 0.013 0.008 0.019 0 0 0 0 ...

0 0 0 0 0 0 0

138 3 0 0 0 0 0 0 0.2 0.2 0.2 0.2 ...

0 0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0;

139

140 param C2:

141 1 2 3 4 5 6 7 8 9 10 ...

11 12 13 14 15 16 17 18 19 20 ...
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21 22 23 24 25 26 27:=

142 1 0 −0.052 −0.053 −0.056 −0.058 −0.059 −0.062 −0.076 −0.071 ...

−0.095 0.052 0.05 0.055 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0

143 2 0 0.003 0.003 0.012 0.012 0.018 0.03 0.03 0.03 ...

0.03 0 0 0 0.019 0.012 0.029 0 0 0 0 ...

0 0 0 0 0 0 0

144 3 0 0 0 0 0 0 0.2 0.2 0.2 0.2 ...

0 0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0;

145

146 param C3:

147 1 2 3 4 5 6 7 8 9 10 ...

11 12 13 14 15 16 17 18 19 20 ...

21 22 23 24 25 26 27:=

148 1 0 −0.042 −0.043 −0.046 −0.048 −0.049 −0.052 −0.066 −0.061 ...

−0.085 0.072 0.07 0.075 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0

149 2 0 0.001 0.001 0.008 0.008 0.012 0.02 0.02 0.02 ...

0.02 0 0 0 0.013 0.008 0.019 0 0 0 0 ...

0 0 0 0 0 0 0

150 3 0 0 0 0 0 0 0.2 0.2 0.2 0.2 ...

0 0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0;

151

152 param C4:

153 1 2 3 4 5 6 7 8 9 10 ...

11 12 13 14 15 16 17 18 19 20 ...

21 22 23 24 25 26 27:=

154 1 0 −0.042 −0.043 −0.046 −0.048 −0.049 −0.052 −0.066 −0.061 ...

−0.085 0.072 0.07 0.075 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0

155 2 0 0.003 0.003 0.012 0.012 0.018 0.03 0.03 0.03 ...

0.03 0 0 0 0.019 0.012 0.029 0 0 0 0 ...

0 0 0 0 0 0 0

156 3 0 0 0 0 0 0 0.2 0.2 0.2 0.2 ...

0 0 0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0;

157
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158 param b :=

159 1 12.2

160 2 6.4

161 3 22.832

162 4 20.762

163 5 13.877

164 6 0

165 7 2.4

166 8 6.5

167 9 3.9

168 10 3.9

169 11 3.9

170 12 1.45;

171

172 param epsilon :=

173 1 0.0001

174 2 0.0001

175 3 0.0001;
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to multi-objective linear programs with uncertain data. European Journal of
Operational Research, 242:730–743, 2015.

[59] M.A. Goberna and M.A. Lopez. Linear semi-infinite programming theory: An
updated survey. European Journal of Operational Research, 143(2):390–405,
2002.

[60] B.L. Gorissen and D. Den Hertog. Approximating the Pareto set of multiob-
jective linear programs via robust optimization. Operations Research Letters,
40(5):319–324, 2012.

[61] S. Greco, M. Ehrgott, and J.R. Figueira. Multiple Criteria Decision Analy-
sis: State of the Art Surveys. International Series in Operations Research &
Management Science. Springer, New York, second edition, 2016.

[62] R. Greer. Trees and Hills: Methodology for Maximizing Functions of Systems
of Linear Relations, volume 22 of Annals of Discrete Mathematics. Elsevier
Science Publishers, Amsterdam, The Netherlands, 1984.
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