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1. Introduction

Decision problems occur in various forms and under various circumstances in our casual
and professional life. Sometimes, there is a unique goal that we want to optimize,
but mostly we want to achieve several goals simultaneously. Moreover, we often lack
complete knowledge of the decision problem’s data or we suspect that we might not be
able to put a selected solution into practice exactly as intended.

Decision problems of this kind are investigated in this thesis and they are called uncer-
tain multiobjective optimization problems. A problem is called multiobjective (MOP) if
it has two or more objective functions that are in conflict with each other, which means
that optimizing all objective functions simultaneously is impossible. When considering
uncertain optimization problems, the two types of uncertainty parameter uncertainty
and decision uncertainty are typically distinguished. Parameter uncertainty means that
the problem parameters are not known precisely at the time when the problem is solved
and decision uncertainty means that the decision variables of the problem cannot be
implemented exactly as targeted. It is generally assumed that uncertain parameters or
decision variables vary within a known set, which is called the uncertainty set, and the
elements of this set are called scenarios. In case of decision uncertainty, the uncertainty
set is also called perturbation set. A multiobjective uncertain problem is therefore a mul-
tiobjective problem whose parameters or decision variables are affected by uncertainty.

The following example for such a decision problem is also studied in detail later in this
thesis. For the commercial cultivation of potted plants, a plant nursery aims to choose
the planter pots and the growing substrate such that an economic and an environmental
objective function are minimized. The economic function is the difference of the costs
and the selling price and the environmental objective function is the global warming
potential. While it is common to consider an economic objective, the environmental
objective is motivated by recent research on the negative environmental impacts of the
currently used pots and growing substrate. In this problem, the parameters are uncertain
due to annual fluctuations in the costs of the input materials and due to imprecisions in
the measurement of the global warming potential. Decision uncertainty is also present,
because the growing substrate can be any mixture of peat and compost and the mixing
is only performed roughly, which leads to different mixtures in different pots.

Uncertain multiobjective optimization is hence of practical interest. However, a so-
lution concept is required in order to solve uncertain MOPs. A research area that has
recently been developed to address this kind of problem is robust multiobjective opti-
mization. Various concepts of robustness in the literature define which solutions are
considered robust feasible or robust efficient for uncertain MOPs, where efficiency is the
multiobjective equivalent of optimality. A robustness concept is generally associated
with a so-called robust counterpart, which is a deterministic problem whose solutions are
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1. Introduction

defined to be the robust solutions to the uncertain problem.
One of the well-known and most studied robustness concepts is minmax robustness.

Minmax robustness was originally developed for uncertain single-objective optimization
and it has been studied for decades, see Ben-Tal, Ghaoui, and Nemirovski 2009. Ac-
cording to this robustness concept, solutions are considered robust feasible if they are
feasible for all scenarios, and robust optimal if they are the best solutions with respect
to the worst-case scenarios. Based on single-objective minmax robustness, various mul-
tiobjective minmax robustness concepts have been proposed in the literature and all
have in common that robust efficient solutions are defined to be those that are best
in the worst-case scenarios. In this thesis, two frequently studied minmax robustness
concepts for MOPs with parameter uncertainty are considered and a minmax robustness
concept for MOPs with decision uncertainty is introduced and investigated in the first
publication contributing to this thesis.

Minmax robustness is by definition a conservative approach to uncertainty, because
solutions are compared with respect to the worst-case scenario only. Conversely, an
optimistic approach is to choose some scenario and to determine its optimal solutions.
To measure the gap between this optimistic approach and the conservative minmax ro-
bustness approach, the robustness gap has been defined in single-objective optimization.
So far, no concept of a multiobjective robustness gap has been proposed. In the second
publication of this thesis, a multiobjective robustness gap is introduced and lower and
upper bounds for the gap are studied.

In the third and fourth publication of this thesis, the multiobjective minmax ro-
bustness concept from the first publication is applied to determine the robust efficient
solutions for a case study of the motivating example in this introduction.

The thesis is structured as follows: In Chapter 2, a literature review on minmax
robustness for single-objective optimization, minmax robustness for multiobjective opti-
mization and on further robustness concepts for uncertain MOPs is given. In Chapter 3,
the notation of this thesis is introduced and known definitions and results from the
literature that are used subsequently are recalled. In Chapter 4, the four publications
contributing to this thesis are summarized. In Chapter 5, the contributions of the four
publications to the topic of this thesis and the connections between the individual publi-
cations are discussed. In Chapter 6, the results of this thesis are summarized and options
of further research about minmax robustness for uncertain multiobjective optimization
are given.
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2. Literature Review

This thesis contributes to the young field of robust multiobjective optimization, which
is one of the research areas that address multiobjective optimization problems (MOPs)
that are affected by uncertainty. The three main areas dealing with uncertain MOPs
are fuzzy optimization, stochastic optimization and robust optimization. The former
two approaches are widely studied in the literature, see, e.g., Caballero, Cerdá, Muñoz,
et al. 2001; Zimmermann 2012 for surveys, and see Huang and Teghem 2012 for an
early comparison of these two classical approaches. However, in fuzzy and stochastic
optimization, it is required that some distribution function on the uncertainty set is
known. The approach robust multiobjective optimization has been developed to handle
uncertain problems where only the uncertainty set is known and where information
about any distribution on the uncertainty set is missing. It has mainly been researched
in recent years, but robust single-objective optimization has been studied for decades.

2.1. Robust Single-Objective Optimization

Robust optimization was initially developed and extensively studied for uncertain single-
objective problems and many robustness concepts, i.e., ideas of what is considered to be a
robust solution, have been proposed and studied in the literature. One of the well-known
and most studied single-objective robustness concepts is minmax robustness, see, e.g.,
Ben-Tal, Ghaoui, and Nemirovski 2009 for a comprehensive textbook and see Soyster
1973 for an early study thereof. Minmax robust solutions are defined as those that are
feasible for all scenarios and that perform best in the worst-case scenarios.

In the minmax robust optimization literature, parameter uncertainty and decision
uncertainty are typically distinguished, but each of the two is addressed under various
names. Parameter uncertainty is also referred to as uncertain data, see, e.g., Ben-Tal,
Ghaoui, and Nemirovski 2009; Ben-Tal and Nemirovski 1998, and studies of decision
uncertainty are also frequently found under the name implementation error, see Ben-Tal
and Hertog 2011; Ben-Tal and Nemirovski 2002; Bertsimas and Nohadani 2010; Bertsi-
mas, Nohadani, and Teo 2007, 2010b; Stinstra and Hertog 2008 or robust regularization,
see Bayer and Sendhoff 2007; Lewis and Pang 2009 or under the general name robustness,
see Das 1997.

This thesis contributes to the investigation of minmax robustness for multiobjective
optimization with decision and/or parameter uncertainty. A minmax robustness concept
for MOPs with decision uncertainty is proposed and analyzed in the first publication
contributing to this thesis. Moreover, this minmax robustness concept is combined with
a well-known minmax robustness concept for parameter uncertainty in MOPs and it is
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2. Literature Review

applied in a case study to determine robust solutions to a biobjective problem with de-
cision and parameter uncertainty. This application is described in the third publication
contributing to this thesis.

Minmax robustness is a conservative concept. Conversely, an optimistic approach
would be to chose a solution that is optimal for some scenario and to hope for that
scenario. In order to compare minmax robust solutions to the optimal solutions of the
scenarios the concept of the robustness gap has been introduced in Ben-Tal and Ne-
mirovski 1998, 1999. The robustness gap measures the distance between the robust
optimal objective value and the supremum of the optimal objective values of the sce-
narios. Therefore, studies of minmax robustness naturally lead to investigations of the
robustness gap.

A novel concept for a multiobjective robustness gap is proposed and investigated in
the second publication contributing to this thesis. To the best knowledge of the author
of this thesis, it is the first approach to define a multiobjective robustness gap and the
proposed gap is applicable to one of the most studied concepts among the various min-
max robustness concepts for MOPs in the literature.

For surveys and/or comparisons of further single-objective robustness concepts that
have been proposed in the literature see, e.g., Bayer and Sendhoff 2007; Bertsimas,
Brown, and Caramanis 2011; Bertsimas and Sim 2004; Gabrel, Murat, and Thiele 2014;
Goerigk and Schöbel 2016; Klamroth, Köbis, Schöbel, and Tammer 2017.

2.2. Robust Multiobjective Optimization

The topic of this thesis is minmax robustness for MOPs with decision and/or parameter
uncertainty. Based on single-objective minmax robustness, multiobjective robustness
concepts are considered minmax robustness concepts here, if a solution is robust feasible
whenever it is feasible for all scenarios and if a solution is robust efficient whenever it is
efficient with respect to an objective function representing the worst cases of the original
objective function over the scenarios. In contrast to single-objective optimization, the
notion of a worst-case is not clear in multiobjective optimization. Therefore, there are
various options of how to define multiobjective minmax robustness.

In the robust multiobjective optimization literature, decision and parameter uncer-
tainty are typically addressed with distinct robustness concepts in distinct papers. De-
cision uncertainty in MOPs is scarcely treated in the literature and an overview on
robustness concepts for this topic is provided next. The major part of the robust multiob-
jective optimization literature is concerned with parameter uncertainty and an overview
of minmax robustness for parameter uncertainty is given. Also, a summary of further
multiobjective robustness concepts is stated to reflect the variety of concepts in the
literature.
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2.2. Robust Multiobjective Optimization

Robustness for MOPs with Decision Uncertainty

Among the multiobjective robustness concepts in the literature, those that are developed
to address decision uncertainty in MOPs are of particular interest in this thesis, because
a minmax robustness concept for MOPs with decision uncertainty is defined and analyzed
in the first publication contributing to this thesis.

One of the earliest multiobjective robustness concept proposed in the literature ad-
dresses decision uncertainty. Deb and Gupta 2005, 2006 propose two different robustness
concepts for MOPs with decision uncertainty and they claim that theirs is the first work
on robust multiobjective optimization. The authors first define a new deterministic
MOP by replacing every component of the objective function by the mean value of the
objective in a given neighborhood of the solution. A Multi-objective Robust Solution
of Type 1 is then defined as an efficient solution to the latter problem. As a second
robustness concept, the authors add a new constraint to the MOP, allowing only solu-
tions whose outcome vector is within a fixed distance from the previously used mean
objective function, and an efficient solution to the newly generated MOP is denoted as
a Multi-objective Robust Solution of Type 2.

Around the same time, Barrico and Antunes 2006 suggest a concept of sensitivity
analysis for MOPs with decision uncertainty, called the degree of robustness, and for
each solution the size of its neighborhood is scaled such that the outcome of the solution
and the outcomes of its neighbors are within a given distance.

Neither of these approaches is based on evaluating worst case scenarios and hence,
neither is a minmax robustness approach. A minmax robustness approach for decision
uncertainty in MOPs with finitely many feasible solutions and finitely many realizations
is applied in Avigad and Branke 2008. Though that paper mainly addresses parameter
uncertainty in MOPs, also for each solution a finite set of realizations is considered. An
evolutionary algorithm is then applied in two steps. In the first step, for each solution
a set of worst case scenarios is searched and in the second step, each pair of solutions
and the images of their respective worst case scenarios are compared in a point-wise way.

In the first publication contributing to this thesis, the robustness concept decision
robust efficiency for decision uncertainty in MOPs is introduced and analyzed. Among
other results, it is shown that the concept corresponds to comparing solutions by their
worst case outcomes that form specific sets in the objective space, known as supremal
sets. Therefore, the proposed concept is considered a minmax robustness concept for
decision uncertainty in MOPs.

Minmax Robustness for MOPs with Parameter Uncertainty

Parameter uncertainty in MOPs is recently addressed by different minmax robustness
concepts and two of the most frequently studied minmax robustness concepts in the
literature are of particular interest for this thesis. To distinguish the two concepts,
the names point-based robust efficiency and set-based robust efficiency are used subse-
quently, since both concepts are called robust efficiency in the respective original papers.
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2. Literature Review

Point-based robust efficiency goes back to Kuroiwa and Lee 2012. A new deterministic
problem, the so-called robust counterpart, is defined by replacing every component of
the objective function with its supremum over the uncertainty set. Point-based robust
efficient solutions are then defined as the efficient solutions to the robust counterpart,
which is an MOP. The robust counterpart can equivalently be defined by replacing the
objectives of the MOP with their suprema and transferring them to the constraints in
the way proposed by Ben-Tal, Ghaoui, and Nemirovski 2009 for single-objective minmax
robustness. Point-based robust efficiency has frequently been studied, see, e.g., Chuong
2016; Doolittle, Kerivin, and Wiecek 2015; Fakhar, Mahyarinia, and Zafarani 2017;
Fliege and Werner 2014; Goberna, Jeyakumar, Li, and Vicente-Pérez 2014, 2015; Kim
2013a,b; Lee and Lee 2016; Wang, Liu, and Chai 2015.

This minmax robustness concept is considered in the second, third and fourth pub-
lications of this thesis. In the second publication, a multiobjective robustness gap is
defined with respect to this robustness concept.

Set-based robust efficiency is predicated on the idea to compare solutions by their
whole outcome sets, i.e., the set of objective function vectors for all scenarios. The
robust counterpart of this robustness concept is a set-valued optimization problem, and
set dominance is defined through the order induced by the Pareto cone. The concept is
introduced in Ehrgott, Ide, and Schöbel 2014 and it is extended to various order relations
for set-valued problems in Bischoff, Jahn, and Köbis 2017; Ide 2014; Ide and Köbis
2014; Ide, Köbis, Kuroiwa, et al. 2014. Comparing the outcomes for all scenarios can be
considered a minmax approach, because it is equivalent to comparing the outcomes of
certain worst-case scenarios that are obtained by solving a second level MOP as done in
Avigad and Branke 2008 with multiobjective evolutionary algorithms. Also, solutions are
compared by their whole set of outcomes in different ways in Crespo, Bergez, and Garcia
2010. Scalarizations of uncertain MOPs are investigated as a method to determine set-
based robust efficient solutions in Bokrantz and Fredriksson 2017; Wei, Chen, and Li
2017. In the former, also a similar set-valued robustness concept is proposed where
solutions are compared by the convex hull of the outcomes of all scenarios rather than
by the outcome set itself.

The concept of set-based robust efficiency is considered in the first, third and fourth
publications contributing to this thesis. In the first publication, the introduced concept
Decision robust efficiency for MOPs with decision uncertainty is based on the same
idea as set-based robust efficiency, which is to compare solutions by the whole sets of
possible realizations. In the third and fourth publication of this thesis, a special case
of parameter uncertainty occurs in the presented application of multiobjective minmax
robustness, and this specific uncertainty implies that point-based and set-based robust
efficiency coincide. Therefore, the third and fourth publications can be considered as an
application not only of decision robust efficiency, but also of point-based and of set-based
robust efficiency.

The two multiobjective minmax robustness concepts point-based robust efficiency
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2.2. Robust Multiobjective Optimization

and set-based robust efficiency have various applications in the literature. Point-based
robust efficiency has been applied to several fields, such as radiation therapy, see Chen,
Unkelbach, Trofimov, et al. 2012, and game theory, see Yu and Liu 2013 and set-based
robust efficiency has been applied to veneer production in Ide, Tiedemann, Westphal,
and Haiduk 2015.

As an application of minmax robustness for uncertain MOPs, a mixing problem arising
in agriculture is investigated in this thesis, and it is a biojective problem with one
economic and one environmental objective function that is affected by decision and
parameter uncertainty. It is noted that point-based and set-based robust efficiency
have recently been applied to two case studies on similar problems, i.e., problems with
economical and environmental objectives that are effected by parameter uncertainty.
An application of point-based robust efficiency to supply chain planning for the German
biodiesel market is given in Hombach, Büsing, and Walther 2017, and see Majewski,
Wirtz, Lampe, and Bardow 2017 for an application of set-based robust efficiency to
distributed energy supply system design. Note that the robust counterpart in the latter
problem reduces to a deterministic MOP instead of a set-valued problem due to its
specific uncertainty set and objective functions and hence, point-based and set-based
minmax robust efficiency coincide in that publication.

In contrast, in the application presented in the third publication of this thesis, the
set-valued minmax robust efficiency concept for decision uncertainty from the first publi-
cation is applied and minmax (decision) robust efficient solutions are obtained by solving
a set-valued problem that cannot be reduced to a deterministic MOP.

For further multiobjective minmax robustness approaches in the literature, see, e.g.,
Li and Azarm 2008 where feasibility for all scenarios is required and, as a worst-case ap-
proach, the infinity-norm of all balls containing the outcome set is minimized. Feasibility
for all scenarios is also required in Kalantari, Dong, and Davies 2016 and a deterministic
MOP is generated by replacing the uncertain parameters in the objective function with
their mean values, leading to another robustness concept that is related to minmax ro-
bustness by its concept of robust feasibility. Moreover, a robustness concept combining
feasibility for all scenarios with minimizing the distance between the outcomes of the
worst-case and best-case scenarios is studied in Besharati and Azarm 2006.

Further Multiobjective Robustness Concepts

Even though the research topic of robust multiobjective optimization has mainly been
developed in recent years, it is noted that a specific class of uncertain MOPs has been
studied already in the 1980s, namely linear MOPs with uncertain coefficients that lie
in known intervals. Two solution concepts for these problems are suggested in Bitran
1980: solutions that are either efficient for all scenarios or for at least one scenario. How-
ever, the two solution concepts were not given names and they were not called robust
approaches therein. The former is named necessarily efficient and the latter is named
possibly efficient in Ida 1996 and for further research on this topic, see Hlad́ık 2010, 2012;
Ida 2003; Rivaz and Yaghoobi 2013 and see Oliveira and Antunes 2007 for a survey. The
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2. Literature Review

two solution concepts are later introduced as robustness concepts for general uncertain
MOPs: necessary efficiency is also known as highly robust efficiency while possible effi-
ciency is also called flimsily robust efficiency, see Ide and Schöbel 2016; Kuhn, Raith,
Schmidt, and Schöbel 2016; Raith, Schmidt, Schöbel, and Thom 2017.

Apart from minmax robustness, there are various further multiobjective robustness
concepts that are based on single-objective robustness concepts. Cardinality-constrained
robustness, which is also referred to as budget of uncertainty, is applicable in the case
that the uncertainty set consists of an interval for each parameter. It is assumed that
only a predefined number of parameters can attain their worst-case values simultane-
ously. The concept is originally defined in Bertsimas and Sim 2004 for single-objective
problems and it has been extended to MOPs by considering for each component of the
objective function the worst case with respect to the cardinality-constrained uncertainty
set, see, e.g., Hassanzadeh, Nemati, and Sun 2013, 2014; Raith, Schmidt, Schöbel, and
Thom 2018; Wang, Li, Ding, et al. 2017. Note that this approach is similar to the ex-
tension of minmax robustness to point-based robust efficiency. In Schmidt, Schöbel, and
Thom 2018, set-based robust efficient solutions to combinatorial MOPs with cardinality-
constrained uncertainty set are determined by means of scalarization techniques. Also,
algorithms for finding robust efficient solutions to combinatorial MOPs with respect to
cardinality-constrained, flimsily, highly, point-based and set-based robust efficiency are
developed in Thom 2018.

Another well-known concept from single-objective optimization is regret robustness.
Regret robust solutions are those that minimize the maximal regret which is defined
for each solution and for each scenario as the difference between the objective function
value of a solution and the optimal value of the scenario. The single-objective concept
is studied in Kouvelis and Yu 1997 and it is transferred to MOPs in various ways. In
Xidonas, Mavrotas, Hassapis, and Zopounidis 2017, every component of the objective
function is replaced by its maximal regret, which is again similar to the extension of
minmax robustness to point-based robust efficiency. In Rivaz and Yaghoobi 2013, the
maximum regret over all components of the objective function is minimized. In Hu and
Mehrotra 2012, the regret of each component is weighted, thus leading to a scalarized
objective function, and the maximum over a set of uncertain weights is minimized. In
Nikulin, Karelkina, and Mäkelä 2013 a relative regret is minimized, which is itself calcu-
lated by maximizing the relative deviations of solutions at the smallest components of
the objective function, i.e., a single-objective min-max-min problem is obtained.

Also, the single-objective robustness concept of light robustness, see, e.g., Fischetti
and Monaci 2009; Schöbel 2014, has been extended to MOPs. Lightly robust feasible
solutions are those that are feasible for a nominal scenario and whose objective value
in the nominal scenario is within a fixed range of the optimal objective value. For all
other scenarios, the distance to feasibility is measured and the solution that is closest to
feasibility is considered lightly robust optimal. In the multiobjective case, see Ide and
Schöbel 2016; Kuhn, Raith, Schmidt, and Schöbel 2016, a nominal scenario is selected
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2.2. Robust Multiobjective Optimization

and it is required that a solution is mapped by every component of the nominal objec-
tive function within a fixed range of its optimal value, which implies one constraint per
component of the objective function. Lightly robust solutions are then considered as
the solutions to the robust counterpart of set-based minmax efficiency that satisfy these
additional constraints.

Some robustness concepts for uncertain MOPs are also related to sensitivity analysis.
In this case, the uncertainty set is not fixed, but there is a basic set such as a norm
ball whose size can be adjusted by multiplying each element with a nonnegative scalar.
Instead of requiring that a certain condition is satisfied for the whole uncertainty set,
each solution is mapped to the maximal size that the uncertainty set can have while the
condition holds.

In Georgiev, Luc, and Pardalos 2013 a norm ball around the parameters of the ob-
jective function is considered and for each solution the maximum size of the norm ball
such that the solution is efficient for all scenarios is called the radius of robustness. A
solution is then considered robust if it has a positive radius of robustness and this ro-
bustness concept is also studied in Kabgani and Soleimani-damaneh 2018; Pourkarimi
and Soleimani-damaneh 2016; Zamani, Soleimani-damaneh, and Kabgani 2015.

A related concept is the radius of robust feasibility as defined in Goberna, Jeyakumar,
Li, and Vicente-Pérez 2014, 2015, which is defined as the maximum size of the uncer-
tainty set under the condition that the MOP does still have a solution that is feasible
for all scenarios. In Gunawan and Azarm 2005, the insensitivity of a solution for a
fixed nominal scenario is defined as the maximum size of the uncertainty set such that
for every scenario the objective vector of the solution is within a neighborhood of the
objective vector of the nominal scenario.

Various further multiobjective robustness concepts have been proposed in the litera-
ture. One robustness concept is multi-scenario efficiency, where a new objective function
is built by adding one deterministic objective function for each scenario and for each
component of the uncertain objective function thereby creating a big objective func-
tion vector. The efficient solutions to the new MOP are then considered multi-scenario
efficient, see, e.g., Botte and Schöbel 2016; Fadel, Haque, Blouin, and Wiecek 2005.

All scenarios in the uncertainty set are evaluated and compared by three different
definitions of dominance in Crespo, Bergez, and Garcia 2010. Deterministic MOPs with
uncertain decision maker preferences that are modeled by weighted-sum scalarization
with uncertain weights are studied, e.g., in Farshidi, Rakai, Behjat, and Westwick 2016;
Hu and Mehrotra 2012; Mavrotas, Pechak, Siskos, et al. 2015; Palma and Nelson 2010.
Uncertain MOPs are scalarized and then investigated by means of single-objective robust
optimization, e.g., in Asprion, Blagov, Böttcher, et al. 2017; Doolittle, Dranichak, Muir,
and Wiecek 2016. Moreover, MOPs with one uncertain parameter are investigated in
Witting 2012; Witting, Ober-Blöbaum, and Dellnitz 2013 with a variational approach
where robust solutions are considered as paths in the decision space.

Note that uncertain MOPs have also been addressed frequently in the field of evo-
lutionary optimization by considering a so-called robustness measure as an additional
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2. Literature Review

objective function. Many robustness measures have been proposed to suit specific prob-
lems as discussed in, e.g., Gabrel, Murat, and Thiele 2014; Gaspar-Cunha and Covas
2008 and the references therein.

For further multiobjective robustness concepts, see, e.g., the comprehensive surveys
Ide and Schöbel 2016; Wiecek and Dranichak 2016 and the references therein.
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3. Preliminaries and Notation

In the following, the problems considered in this thesis are introduced and related defi-
nitions, results and solution concepts from the literature are recalled.

Throughout this thesis, for every set S, its interior, closure and boundary are denoted
as int (S), cl (S) and bd (S) respectively. For every p ∈ N, the p-dimensional real vector
space is denoted as Rp.

3.1. Minmax Robustness for Uncertain Single-Objective
Optimization

Two types of uncertainty, parameter uncertainty and decision uncertainty, are distin-
guished.

Parameter Uncertainty

For uncertain optimization with parameter uncertainty, each realization of the uncer-
tain parameters is called a scenario and the set consisting of all scenarios is called the
uncertainty set U . In this thesis, it is assumed that the uncertainty set U is a compact
subset of a finite dimensional vector space. A single-objective optimization problem with
parameter uncertainty is given as

{
(Ps−o(ξ)) min g(x, ξ)

s.t. x ∈ X(ξ)

}

ξ∈U
, (3.1)

where g : Rn×U → R is a single-objective function and X(ξ) ⊆ Rn denotes the feasible
set with respect to the scenario ξ ∈ U .

Minmax robustness for the uncertain problem {Ps−o(ξ)}ξ∈U was initially proposed
in Soyster 1973, and it has been extensively studied for various problem classes and
uncertainty sets, see, e.g., Ben-Tal and Nemirovski 1998, 1999, 2000. In minmax robust
optimization, the following concepts of robust feasibility and robust optimality are used,
see, e.g., Ben-Tal, Ghaoui, and Nemirovski 2009.

Definition 3.1.1. A solution x ∈ Rn is called robust feasible for the uncertain problem
{Ps−o(ξ)}ξ∈U , if it is feasible for all scenarios ξ ∈ U , i.e., x is robust feasible if and only
if x ∈ X(ξ) for all ξ ∈ U . The robust feasible set is denoted as

XRC :=
⋂

ξ∈U
X(ξ).

11



3. Preliminaries and Notation

Throughout this thesis, it is assumed that the robust feasible set XRC is nonempty.
The minmax robust optimal solutions for the uncertain problem {Ps−o(ξ)}ξ∈U are defined
as the optimal solutions to the following deterministic problem, which is called its robust
counterpart

(RCs−o) min
x∈XRC

sup
ξ∈U

g(x, ξ). (3.2)

Minmax robustness is widely considered a conservative approach to uncertainty, since
minmax robust optimal solutions are those that are best in the worst-case scenarios.
Conversely, an optimistic approach would be to chose an optimal solution to some sce-
nario. It is hence of interest to compare robust optimal solutions to the optimal solutions
of the scenarios. To this end, the concept of the robustness gap has been proposed and
studied in Ben-Tal and Nemirovski 1998, 1999 as follows.

Definition 3.1.2. For the uncertain problem {Ps−o(ξ)}ξ∈U , the single-objective robust-
ness gap is defined as

ϑs-o := min
x∈XRC

sup
ξ∈U

g(x, ξ)− sup
ξ∈U

min
x∈X(ξ)

g(x, ξ).

The robustness gap corresponds to the minimum distance between the robust optimal
objective value and the set of optimal objective values of the scenarios, because the
robust optimal objective value is as least as big as every scenario’s optimal value.

One of the main results on the single-objective robustness gap is that it is zero in
case of so called constraint-wise uncertainty and further assumptions, see Ben-Tal and
Nemirovski 1998, Th. 2.1. The uncertainty in {Ps−o(ξ)}ξ∈U is called constraint-wise, if
the uncertainty set is given as

U := U1 × · · · × Um (3.3)

and if for every scenario ξ ∈ U with ξ = (ξ1, . . . , ξm)T and ξi ∈ Ui, the feasible set of the
scenario ξ is given as

X(ξ) := {x ∈ Rn | Fi(x, ξi) ≥ 0, i = 1, . . . ,m}, (3.4)

where Fi : Rn×Ui → R for all i = 1, . . . ,m. Note that constraint-wise uncertainty occurs
often in practice, e.g., when each parameter affects only one constraint and when the
uncertainty set is given as a product of intervals. The additional assumptions made for
the result on the zero robustness gap are the following.

Assumption 3.1.1.

(i) There exists a compact convex set X ⊆ Rn with int (X) 6= ∅ such that

⋃

ξ∈U
X(ξ) ⊆ X.

(ii) The uncertainty set U is closed and convex, int (U) 6= ∅, and the uncertainty is
constraint-wise.

12



3.1. Minmax Robustness for Uncertain Single-Objective Optimization

(iii) For every x ∈ X, the functions f(x, ·) : U → Rp and F (x, ·) : U → Rm are affine in
ξ.

The result on the zero robustness gap according to Ben-Tal and Nemirovski 1998, Th.
2.1 is then given as follows.

Theorem 3.1.3. Let Assumption 3.1.1 hold and let the function f(·, ξ) : U → Rp be
convex and continuous and let the functions Fi(·, ξ) : U → R, i = 1, . . . ,m be concave
and continuous in x for every ξ ∈ U . The robust counterpart RCs−o is then feasible if
and only if all instances of the uncertain problem {Ps−o(ξ)}ξ∈U are feasible, and, in this
case, the single-objective robustness gap satisfies ϑs-o = 0.

Decision Uncertainty

Decision uncertainty means that a vector of decision variables cannot be put into practice
exactly as planned but its realization is an element of a specific set. Each realization
of a solution x ∈ Rn comprises x and an element of a fixed perturbation set Z, and the
set of realizations of a decision vector x ∈ Rn is defined as {x} + Z. In this thesis, it is
assumed that the perturbation set Z is a compact subset of the decision space such that
0 ∈ Z. A single-objective optimization problem with decision uncertainty is given as

{
(Ps−o(z)) min g(x+ z)

s.t. x+ z ∈ Ω

}

z∈Z
, (3.5)

where g : Ω→ R is a single-objective function and Ω ⊆ Rn denotes the feasible set.
Minmax robust feasibility and optimality for decision uncertainty are similar to min-

max robustness for parameter uncertainty. Decision uncertainty is also addressed with
minmax robustness under the name implementation error, see Ben-Tal and Hertog 2011;
Ben-Tal and Nemirovski 2002; Bertsimas, Nohadani, and Teo 2007, 2010a,b; Stinstra
and Hertog 2008, under the name robust regularization, see, e.g., Lewis 2002; Lewis and
Pang 2009, or under the general name robustness, see Das 1997. The concepts of robust
feasibility and optimality with respect to decision uncertainty are given as follows.

Definition 3.1.4. A solution x ∈ Rn is called robust feasible for the uncertain problem
{Ps−o(z)}z∈Z , if all of its realizations x + z, for z ∈ Z, are feasible, i.e., x is robust
feasible if and only if x+ z ∈ Ω for all z ∈ Z. The decision robust feasible set is denoted
as

X := {x ∈ Rn | x+ z ∈ Ω, for all z ∈ Z} .

Throughout this thesis, it is assumed that the decision robust feasible set X is
nonempty. The minmax decision robust optimal solutions for the uncertain problem
{Ps−o(z)}z∈Z are associated with the optimal solutions to the following deterministic
problem, which is called its decision robust counterpart,

(DRCs−o) min
x∈X

sup
z∈Z

g(x+ z). (3.6)
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3.2. Deterministic Multiobjective Optimization

A deterministic multiobjective optimization problem (MOP) is given as

(P) min h(x)
s.t. x ∈ Ω

, (3.7)

where h : Rn → Rp with 2 ≤ p is the objective function and Ω ⊆ Rn is the feasible set.
The set h(Ω) := {h(x) ∈ Rp | x ∈ Ω} is called the outcome set of the problem P .

To compare elements of the multidimensional space Rp, closed convex pointed solid
cones are widely used, see, e.g., Jahn 2011.

Definition 3.2.1. A subset K ⊆ Rp is called a cone, if λk ∈ K for all λ ∈ R with
λ ≥ 0.

A cone K is called pointed if K ∩ (−K) = {0} and it is called solid if int (K) 6= ∅.

A given closed convex pointed solid cone K ⊆ Rp implies the following order relation
on for all y1, y2 ∈ Rp:

y1 5 y2 ⇔ y1 ∈ {y2} −K
y1 ≤ y2 ⇔ y1 ∈ {y2} −K\{0}
y1 < y2 ⇔ y1 ∈ {y2} − int (K).

(3.8)

This notation is common in the literature and it is important to note that the relation
≤ is defined here for Rp and that the same sign is used in the one dimensional space
R with its well-known and different meaning. In general, the meaning of the sign ≤
depends on the context. A frequently used choice for the ordering cone is

Rp
= := {y ∈ Rp | 0 ≤ yi for all i = 1, . . . , p}

and the order induced by Rp
= is also called component-wise order. Also, the simplified

notation Rp
≥ := Rp

=\{0} and Rp
> := int

(
Rp
=

)
is used in this thesis.

The classical optimality concept in multiobjective optimization, which is called effi-
ciency, is given in the next definition. Efficiency is defined with respect to a given closed
convex pointed solid cone K ⊆ Rp. The concept of efficiency goes back to Edgeworth
1881; Pareto 1906 and it is also known as (Edgeworth-)Pareto efficiency. For compre-
hensive textbooks on multiobjective optimization, see, e.g., Ehrgott 2005; Jahn 2011;
Miettinen 2012; Sawaragi, Nakayama, and Tanino 1985.

Definition 3.2.2. A solution x∗ ∈ Ω is called [weakly/·/strictly] efficient for (P), if
there is no x ∈ Ω\{x∗} such that

h(x) ∈ {h(x∗)} − [int(K)/K\{0}/K].

An outcome point y∗ ∈ h(Ω) is called a [weakly/·] non-dominated point of P , if there
exists a [weakly/·] efficient solution x∗ ∈ Ω with y∗ = f(x∗), i.e., if there does not exist
any y ∈ h(Ω) such that y ∈ {y∗} − [int(K)/K\{0}].
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If the order on the objective space is the component-wise order, i.e., K = Rp
=, then

a [weakly/·] non-dominated point of P is often also called a [weak/·] Pareto point. The
set of Pareto points is called the Pareto set of P and the set of efficient points is called
the efficient set of P or equivalently the set of efficient solutions. Furthermore, in case
of K = Rp

= the ideal point zIP ∈ Rp of P is defined as the vector that consists in every
component of the infimum of the outcome set of P

(zIP)i := inf
x∈Ω

hi(x).

In addition to the concept of efficiency, there are concepts of approximate efficiency in
the literature, see, e.g., Durea 2007 and the references therein, and the following concept
goes back to Kutateladze 1979.

Definition 3.2.3. Let k0 ∈ K\{0} and ε > 0 be given. The point x∗ ∈ Ω is a
[weakly/·/strictly] (ε, k0)-minimal solution for (P), if there exists no x ∈ Ω such that

h(x) ∈ {h(x∗)− ε k0} − [int(K)/K\{0}/K].

A notion of convexity for functions that map to the multidimensional space Rp ordered
by a given closed convex pointed solid cone K, is given as follows, see, e.g., Kuroiwa
1996, Def. 2.1.

Definition 3.2.4. Let Y ⊆ Rn be a convex set. A map h : Y → Rk is called K-convex,
if for all x1, x2 ∈ Y and λ ∈ [0, 1] it holds that

λh(x1) + (1− λ)h(x2) ∈ {h(λx1 + (1− λ)x2)}+K.

In case of K = Rp
=, K-convexity is also shortly referred to as convexity. Note that

the MOP P is called convex, if K = Rp
=, the objective function h is convex and if the

feasible set Ω is convex.

Among the solution methods for MOPs, one widely used is the weighted-sum scalar-
ization, see, e.g., Geoffrion 1968. In this thesis, the weighted sum scalarization is applied
in the case that the objective space Rp is considered a normed space that is equipped
with the ordering cone Rp

=. The primal norm on Rp is then denoted as ‖ ·‖ : Rp → R and

its dual norm is denoted as ‖ · ‖∗ : Rp → R. Correspondingly, the primal space is given
as (Rp, ‖ · ‖) and its dual space is given as (Rp, ‖ · ‖∗).

To keep notation simple, the weighted-sum scalarization for the normed space (Rp, ‖·‖)
with the ordering cone Rp

= is next recalled, and for a more general study of the weighted-
sum scalarization, see, e.g., Luc 1989.

The weighted-sum scalarization transforms an MOP into a single-objective problem
by applying linear functions to the objective function. The linear functions used are
called weights and they are elements of (Rp, ‖ · ‖∗), i.e., the dual space of (Rp, ‖ · ‖). The
weights are exactly the elements of the dual cone of the ordering cone Rp

= ⊆ (Rp, ‖ · ‖),
which is given as

{λ ∈ (Rp, ‖ · ‖∗) | λTk ≥ 0 for all k ∈ Rp
=},
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i.e., the dual cone to the cone Rp
= ⊆ (Rp, ‖ · ‖) is Rp

= ⊆ (Rp, ‖ · ‖∗).
Applying a weight λ of the dual cone Rp

= ⊆ (Rp, ‖ · ‖∗) to the MOP P yields the
single-objective problem

(P(λ)) min λTh(x)
s.t. x ∈ Ω

. (3.9)

The following relation between weakly efficient solutions and the solutions of the weighted-
sum scalarization goes back to Luc 1989, Th.2.10.

Proposition 3.2.5. If P is a convex MOP, then a solution x∗ ∈ Ω is a weakly efficient
solution of P if and only if there exists λ ∈ Rp

= ⊆ (Rp, ‖ · ‖∗) with λ 6= 0 such that x∗ is

an optimal solution to P(λ).

3.3. Set-Valued Optimization

A set-valued optimization problem is given as

(Pset) min H(x)
s.t. x ∈ Ω

, (3.10)

where H : Rn ⇒ Rp is a set-valued map and Ω ⊆ Rn is the feasible set. Throughout
this thesis it is assumed that the feasible set Ω is nonempty and that the sets H(x) are
nonempty for all x ∈ Ω.

In order to define an optimality concept for the set-valued problem Pset, a concept
for comparing the sets that are the images of the objective function needs to be defined.
In the so-called set approach order relations are used to compare sets, see Eichfelder
and Jahn 2012; Ha and Jahn 2011; Kuroiwa 1998. In this thesis, the u-type less order
relation 4K is used to compare sets by means of a given closed convex pointed solid
cone K ⊆ Rp. The order relation 4K and the related set relations 4K\{0} and 4int(K)

are defined as follows for all sets A,B ⊆ Rp, see, e.g., Ha and Jahn 2011, Def. 3.2.

A 4K B ⇔ A ⊆ {B} −K
A 4K\{0} B ⇔ A ⊆ {B} −K\{0}
A 4int(K) B ⇔ A ⊆ {B} − int (K).

These set relations can equivalently be expressed as follows by using the order relations
for points in (3.8).

A[4 int(K) /4K\{0} /4K ]B ⇔ (∀a ∈ A ∃b ∈ B : a[</≤/5]b).

The following concept of optimality for the set-valued optimization problem Pset, see,
e.g., Rodŕıguez-Maŕın and Sama 2007, is used in this thesis.

Definition 3.3.1. The element x∗ ∈ Ω is called strictly optimal solution of the set-
valued optimization problem Pset w.r.t. 4, where 4∈ {4K ,4K\{0},4int(K)}, if there
exists no x ∈ Ω\{x∗} with H(x) 4 H(x∗).
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In the multidimensional space Rp with p ≥ 2, there exists no universal concept of
the supremum of a set. To this end, the concept of the supremal set is used, which is
introduced and thoroughly studied in Löhne 2011; Nieuwenhuis 1980.

Definition 3.3.2. For a bounded nonempty subset A ( Rp the supremal set of A is
defined as

Sup(A) = {y ∈ cl(A−K) | ({y}+ int (K)) ∩ cl (A−K) = ∅}.

Also note that, by Löhne 2011, Cor. 1.48(iv), the supremal set of a bounded nonempty
subset A ( Rk can be easily imagined, because it holds

Sup(A) = bd (A−K).

A notion of convexity for set-valued functions is recalled next and for detailed studies
thereof see, e.g., Benoist and Popovici 2003; Kuroiwa 1996.

Definition 3.3.3. Let Y ⊆ Rn be a convex set. A set-valued map H : Y ⇒ Rp is called
K-convex, if for all x1, x2 ∈ Y and λ ∈ [0, 1] it holds that λH(x1) + (1 − λ)H(x2) ⊆
H(λx1 + (1− λ)x2) +K.

In this thesis, semicontinuity of set-valued maps H : Ω ⇒ Rp is investigated for the
case that the set Ω is equipped with a norm, e.g., the set Ω can be considered a subset of
a normed vector space. Therefore, each subset Ω ⊆ Rp can be considered a metric space
and a standard definition of lower and upper semicontinuity can be applied, see, e.g.,
Khan, Tammer, and Zălinescu 2015, p. 3.1.1 and Aubin and Frankowska 1990, Section
1.4.

Definition 3.3.4. Let Ω be a metric space and let H : Ω⇒ Rp be a set-valued map.

(a) H is called lower semicontinuous at x0 ∈ Ω, if for all open sets V ⊆ Rp with
H(x0) ∩ V 6= ∅ there is a neighborhood U of x0 such that H(x) ∩ V 6= ∅ for all
x ∈ U . H is lower semicontinuous if it is lower semicontinuous at any x0 ∈ Ω.

(b) H is called upper semicontinuous at x0 ∈ Ω if for all open sets V ⊆ Rp with
H(x0) ⊆ V there is a neighborhood U of x0 such that H(x) ⊆ V for all x ∈ U . H
is upper semicontinuous if it is upper semicontinuous at any x0 ∈ Ω.

3.4. Minmax Robustness for Parameter Uncertainty in
Multiobjective Optimization

A multiobjective optimization problem with parameter uncertainty is given as

{
(P(ξ)) min f(x, ξ)

s.t. x ∈ X(ξ)

}

ξ∈U
, (3.11)

17



3. Preliminaries and Notation

where f : Rn × U → Rp and X(ξ) ⊆ Rn denotes the feasible set with respect to the
scenario ξ ∈ U .

Two frequently studied minmax robustness concepts for MOPs with parameter uncer-
tainty such as {P(ξ)}ξ∈U are point-based robust efficiency and set-based robust efficiency
and these two concepts are also considered in the publications contributing to this thesis.

Both robustness concepts use the same definition of robust feasibility as in single-
objective minmax robust optimization, see Definition 3.1.1. The two concepts are there-
fore distinguished by their definitions of worst-case outcomes in the objective space. The
robust counterpart corresponding to point-based robust efficiency is an MOP, whereas
the robust counterpart corresponding to set-based robust efficiency is a set-valued opti-
mization problem.

3.4.1. Point-Based Robust Efficiency

The concept of point-based robust efficiency goes back to Kuroiwa and Lee 2012.
This concept extends the minmax robust counterpart RCs−o as given in (3.2) to MOPs

with parameter uncertainty, by replacing every component of the objective function with
its supremum over the scenarios.

A worst-case objective function fRC : XRC → Rp is then defined as

fRC
i (x) := sup

ξ∈U
fi(x, ξ) (3.12)

for all 1 ≤ i ≤ p and for all robust feasible solutions x ∈ XRC.
The corresponding point-based robust counterpart is given as

(RCpoint) min
x∈XRC

fRC(x). (3.13)

and a solution x ∈ Rn is considered a point-based robust [weakly/·/strictly] efficient
solution of {P(ξ)}ξ∈U if it is a [weakly/·/strictly] efficient solution of RCpoint.

3.4.2. Set-Based Robust Efficiency

The concept of set-based robust efficiency goes back to Ehrgott, Ide, and Schöbel 2014.
This concept extends the minmax robust counterpart RCs−o as given in (3.2) to MOPs

with parameter uncertainty, by taking into account all scenarios and comparing solutions
by their entire sets of outcomes. Thus the robust counterpart is defined as a set-valued
optimization problem.

The objective function for the robust counterpart is defined as fU : XRC ⇒ Rp with

fU(x) := {f(x, ξ) | ξ ∈ U} (3.14)

for all robust feasible solutions x ∈ XRC.
The corresponding point-based robust counterpart is given as

(RCset) min fU(x)
s. t. x ∈ XRC,

(3.15)
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and a solution x ∈ Rn is considered a set-based robust [weakly/·/strictly] efficient solution
of {P(ξ)}ξ∈U if it is a strictly optimal solution of the set-valued problem RCset with
respect to [�int(K)/�K\{0}/�K ].

3.4.3. Relation between the two Concepts

The two concepts point-based robust efficiency and set-based robust efficiency coincide
under the condition that the uncertainty is objective-wise. Objective-wise uncertainty
is similar to constraint-wise uncertainty as given in Section 3.1, see (3.3) and (3.4), but
objective-wise uncertainty affects the objective function instead of the constraints.

The uncertainty in {P(ξ)}ξ∈U is called objective-wise, if the uncertainty set is given
as

U := U1 × · · · × Up (3.16)

and if for every scenario ξ ∈ U with ξ = (ξ1, . . . , ξp)
T and ξi ∈ Ui, and every solution

x ∈ X(ξ), the objective function f(x, ξ) is given as

f(x, ξ) := (f1(x, ξ1), · · · , fp(x, ξp))T . (3.17)

Note that objective-wise uncertainty occurs often in practice, e.g., when each parameter
affects only one component of the objective function and when the uncertainty set is
given as a product of intervals.

The following result, which corresponds to Ehrgott, Ide, and Schöbel 2014, Th. 5.4,
shows the equivalence of point-based and set-based robust efficiency under objective-wise
uncertainty.

Theorem 3.4.1. If the uncertainty in {P(ξ)}ξ∈U is objective-wise and if maxξi∈Ui fi(x, ξi)
exists for all i = 1, . . . , p, then every solution x ∈ XRC is a point-based robust efficient
solution of {P(ξ)}ξ∈U if and only if it is a set-based robust efficient solution of {P(ξ)}ξ∈U .
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4. Summary of the publications

In the following, the four publications contributing to this thesis are summarized.

In Section 4.1, an overview on the results in Eichfelder, Krüger, and Schöbel 2017
is given. A minmax robustness concept for uncertain multiobjective problems with
decision uncertainty is proposed. The robust counterpart is introduced as a set-valued
optimization problem and it is shown that two different set-valued maps can be used
as the objective function of the robust counterpart, yielding the same set of solutions.
Analytical properties of the two set-valued maps are studied and solution approaches for
three problem classes are investigated. The presented robustness concept for decision
uncertainty is also compared to other robustness concepts in the literature.

In Section 4.2, the contents of the publication Krüger, Schöbel, and Wiecek 2017
are summarized. A robustness gap for robust multiobjective optimization is introduced
and the multiobjective robustness gap is defined as the minimal distance between the
Pareto sets of the scenarios and the robust Pareto set, i.e., the Pareto set of the robust
counterpart that is an MOP. The gap is hard to compute and lower and upper bounds
are presented for the case of convex uncertain MOPs. Two conditions for the gap to be
zero are given, one for convex MOPs, extending a well-known major result on the single-
objective gap, and one for linear MOPs. For linear MOPs, a DC optimization problem
whose optimal objective value corresponds to the lower bound is also presented.

In Section 4.3, an application of robust multiobjective optimization to a biobjective
problem with decision uncertainty is investigated that is of interest for the commercial
cultivation of potted plants. The aim is to choose a type of planter pot and a mix-
ture of growth substrate such that a economic and an environmental objective function
are optimized. The problem is addressed first as a deterministic problem and second,
parameter and decision uncertainty are taken into account. For both cases a solution
approach is given. These solutions appraoches are applied within a case study and the
deterministic efficient solutions and the (decision) robust efficient to the problem are
calculated and compared.

The content of this research is divided into two parts: the practical part that is given in
the publication Krüger, Castellani, Geldermann, and Schöbel 2018 and the theoretical
part that is given in the publication Krüger 2018. The practical part consists of a
detailed motivation of the problem’s relevance for the horticulture industry as well as
the computation and analysis of the deterministic and the robust efficient solutions for
a case study. The theoretical part provides the background of the solution techniques
that are used in the practical part. Analytical descriptions of the deterministic efficient
solutions and the robust efficient solutions are presented and extensions of the presented
solution approaches to further uncertain biobjective problems are given.
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4. Summary of the publications

4.1. Decision Uncertainty in Multiobjective
Optimization

In this section, the publication Eichfelder, Krüger, and Schöbel 2017 is summarized,
which is joint work with Prof. Dr. Gabriele Eichfelder and Prof. Dr. Anita Schöbel. The
final publication is available at link.springer.com.

As a motivation to consider decision uncertainty in multiobjective optimization, two
applications are briefly stated, one being an application in the Lorentz force velocimetry
framework and the other one being the peat-and-pots problem that in studied in detail
in Krüger 2018; Krüger, Castellani, Geldermann, and Schöbel 2018 and that is summa-
rized in Section 4.3.

A multiobjective optimization problem with decision uncertainty is considered as
{

(P(z)) min f(x+ z)
s.t. x+ z ∈ Ω

}

z∈Z
, (4.1)

where f : Ω → Rp and Ω ⊆ Rn denotes the feasible set. Throughout the publication it
is assumed that the perturbation set Z is compact with 0 ∈ Z.

To define decision robust feasibility for the uncertain problem {P(z)}z∈Z , the concept
from single-objective robust optimization is used, see Section 3.1 Definition 3.1.4, since
feasibility is not affected by the dimension of the objective space. Correspondingly, a
point x ∈ Rn is called decision robust feasible for {P(z)}z∈Z if all realizations of x are
feasible, i.e., if {x + z | z ∈ Z} ⊆ Ω, and the set of decision robust feasible solutions is
denoted as X .

As an optimality concept, the concept of decision robust efficiency is then introduced.
The idea is to compare solutions by their entire outcome sets, i.e., by considering for
each solution x ∈ X the outcome set of all its realizations, which is given as

fZ(x) := {f(x+ z) | z ∈ Z}.
Definition 4.1.1 (Eichfelder, Krüger, and Schöbel 2017, Def. 2). A solution x∗ ∈ X is
called a decision robust [weakly/·/strictly] efficient solution of {P(z)}z∈Z , if there is no
x ∈ X\{x∗} with the property

fZ(x) ⊆ fZ(x∗)− [int(K)/K\{0}/K]. (4.2)

This definition is motivated in two ways. One the one hand, considering the definition
of efficiency for deterministic MOPs, see Definition 3.2.2, and replacing for every x ∈ X
the point f(x) by the set fZ(x), yields Definition 4.1.1. This motivation also corresponds
to the idea behind set-based robust efficiency for MOPs with parameter uncertainty as
proposed in Ehrgott, Ide, and Schöbel 2014.

On the other hand, the concept of decision robust efficiency can equivalently be ob-
tained by defining the robust counterpart of {P(z)}z∈Z as the set-valued problem

(DRC) min
x∈X

fZ(x), (4.3)
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and applying the optimality concept stated in Definition 3.3.1, see (Eichfelder, Krüger,
and Schöbel 2017, Th. 5).

Recall that minmax robustness for single-objective optimization is a worst-case ap-
proach, and it involves minimizing the supremum over all scenarios, see (3.2). To see
that decision robust efficiency is a minmax robustnes concept for multiobjective opti-
mization, it is shown that the set-valued objective function in (4.3) can be replaced
by a supremal set, which is a concept of a supremum in multidimensional space, see
Definition 3.3.2. The corresponding set-valued optimization problem is then given as

min
x∈X

fSup(x) with fSup : X ⇒ Rk, x 7→ Sup (fZ(x)). (4.4)

The problems (4.3) and (4.4) are equivalent in the sense that their optimal solutions
coincide, which are exactly the decision robust efficient solutions to {P(z)}z∈Z .
Theorem 4.1.2 (Eichfelder, Krüger, and Schöbel 2017, Th. 9). Let f be continuous.
A point x∗ ∈ X is a decision robust [weakly/·/strictly] efficient solution of {P(z)}z∈Z if
and only if x∗ ∈ X is a strictly optimal solution for the set-valued optimization problem
(4.4) w.r.t. [4 int(K) /4K\{0} /4K ].

Because the two set-valued problems (4.3) and (4.4) both lead to the same set of
solutions, namely the decision robust efficient solutions, analytical properties of the two
set-valued objective functions are investigated such as convexity and lower and upper
semicontinuity.

As shown in (Eichfelder, Krüger, and Schöbel 2017, Prop. 12), the decision robust
feasible set is convex if the feasible set Ω and the perturbation set Z are convex. The
objective function of (4.3), fZ , is K-convex if the map f is K-convex. However, the
objective function of (4.4), fSup, is not convex under this assumption.

For the objective function of (4.3), fZ , lower and upper semicontinuity are shown
under the assumption that the the map f is continuous in (Eichfelder, Krüger, and
Schöbel 2017, Prop. 14, Prop. 15). The latter assumption is passable according to
(Eichfelder, Krüger, and Schöbel 2017, Ex. 2) where it is illustrated that the set-valued
map fZ is not necessarily lower or upper semicontinuous if there is at least one point
where f is not continuous.

The alternative objective function of (4.4) fSup that maps solutions to supremal sets
is also lower semicontinuous if f is continuous as shown in (Eichfelder, Krüger, and
Schöbel 2017, Prop. 17). However, continuity of f does not imply upper semicontinuity
of fSup, which is illustrated in (Eichfelder, Krüger, and Schöbel 2017, Ex. 3).

As the main result on the continuity of the map fSup, it is then shown that if two
solutions are close to each other, the supremal sets of their outcome sets are also within
an arbitrarily small neighborhood of each other. Note that in the next result the open
ball around 0 is denoted as B(0, ε) := {y ∈ Rp | ‖y‖ < ε}.
Theorem 4.1.3 (Eichfelder, Krüger, and Schöbel 2017, Th. 18). Let f : Ω → Rp be
continuous. Then for each x0 ∈ Ω and ε > 0 there exists δ > 0 such that

Sup(fZ(x)) ⊆ Sup(fZ(x0)) +B(0, ε)
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for all x ∈ Ω with ‖x0 − x‖ < δ.

The concept of decision robust efficiency is not only interesting because of its practical
motivation and its relation to deterministic multiobjective and set optimization, but it
also constitutes a link two robustness concepts in the literature. It can be considered an
extension of a single-objective robustness concept and it can be considered as a special
case of a multiobjective robustness concept for parameter uncertainty. In (Eichfelder,
Krüger, and Schöbel 2017, Prop. 19), it is first related to a robustness concept for
decision uncertainty in single-objective optimization and it is shown that decision robust
efficiency can be considered a generalization of the single-objective concept. The set-
valued objective function fSup corresponds to a supremum in the single-objective case
and the concepts of robust optimality, see Section 3.1 and decision robust efficiency,
see Definition 4.1.1, are closely related and even coincide if the objective function f
is continuous. If f is not continuous then different implications hold for weakly and
strictly robust efficiency as stated in (Eichfelder, Krüger, and Schöbel 2017, Rem. 2):
every decision robust [weakly/·] efficient solution is also robust optimal and if there is a
unique robust optimal solution, then it is also decision robust strictly efficient.

Decision robust efficiency is secondly compared with the minmax robustness concept
set-based robust efficiency for parameter uncertainty in multiobjective optimization, see
Section 3.4, and Problem (3.13). By (Eichfelder, Krüger, and Schöbel 2017, Prop. 21),
every MOP with decision uncertainty can be rewritten as an MOP with parameter
uncertainty such that the decision robust efficient solutions to the former are exactly the
set-based robust efficient solutions to the latter.

As a consequence of this, MOPs with decision uncertainty can be regarded as a special
case of MOPs with parameter uncertainty and the results of Ehrgott, Ide, and Schöbel
2014 apply. Decision uncertainty in MOPs implies more structure than parameter un-
certainty and this structure is reflected in properties of decision uncertainty that do not
hold for parameter uncertainty. A significant difference between the two types of uncer-
tainty is the following: For MOPs with parameter uncertainty, no method is known to
determine all set-based robust efficient solutions, not even in the case of linear objec-
tive functions, see (Ehrgott, Ide, and Schöbel 2014, p. 30). However, for MOPs with
decision uncertainty, all decision robust efficient solutions can be determined by meth-
ods from deterministic multiobjective optimization if the objective function is linear.
It is shown that the decision robust efficient solutions for {P(z)}z∈Z correspond to the
efficient solutions of the deterministic problem

(P|X ) min
x∈X

f(x).

Theorem 4.1.4 (Eichfelder, Krüger, and Schöbel 2017, Th. 23). Let f : Ω → Rp be
linear. Then for each decision robust feasible solution x ∈ X

x is [weakly/·/strictly] efficient for (P|X )

⇔ x is decision robust [weakly/·/strictly] efficient for {P(z)}z∈Z .
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Solution approaches for MOPs with decision uncertainty that are based on methods for
deterministic MOPs are of particular interest, because deterministic MOPs are generally
easier to solve than set-valued optimization problems.

Two additional types of objective functions are investigated in this publication, Lips-
chitz continuous objective functions and monotonic objective functions. If the objective
function f is Lipschitz continuous then every decision robust efficient solution is also
approximately efficient for the deterministic problem P|X , i.e., a necessary condition for
decision robust efficiency is proved. Note that the closed ball around 0 is denoted as
B̄(0, ε) := {y ∈ Rp | ‖y‖ ≤ ε} in the next result.

Theorem 4.1.5 (Eichfelder, Krüger, and Schöbel 2017, Th. 25). Let f : Ω → Rp be
Lipschitz continuous with Lipschitz constant L > 0 and Z 6= {0}. Furthermore, set

L̃ := L ·max
z∈Z
‖z‖ and S :=

⋂

h∈B(0,L̃)

{h}+K.

If x∗ ∈ X is decision robust [weakly/·/strictly] efficient for {P(z)}z∈Z , then there exists
no x̃ ∈ X and no s ∈ S such that f(x̃) ∈ {f(x∗) − s} − [int(K)/K\{0}/K]. Hence, x∗

is an [weakly/·/strictly] (ε, k0)-minimal solution for (P|X ), i.e., minx∈X f(x), where

k0 =
s

‖s‖ and ε = ‖s‖

for all s ∈ S.

The final result for determining decision robust efficient solutions for specific problem
classes is given for the case of monotonic objective functions. If the objective function
f is monotonically increasing in at least one component and monotonically decreasing
in another component, then a sufficient condition for decision robust efficiency is given
as follows.

Theorem 4.1.6 (Eichfelder, Krüger, and Schöbel 2017, Th. 27). Let X ⊆ Ω ⊆ Rn and
let x ∈ X be such that for all y ∈ X

x 6= y ⇒ x [≤ / < / ≤] y or y [≤ / < / ≤] x

and let Z ⊆ Rn have the property

z1 6= z2 ⇒ z1 [≤ / < / ≤] z2 or z2 [≤ / < / ≤] z1

for all z1, z2 ∈ Z. Let p ≥ 2 and let f : Rn → Rk have the property that there exist
j, l ∈ {1, . . . , k}, j 6= l, such that

(a) fj : Rn → R is [./strictly/strongly] increasing on X

(b) fl : Rn → R is [./strictly/strongly] decreasing on X .

Then x is decision robust [weakly/strictly/strictly]–efficient.
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A direct consequence of this is the next corollary in which a sufficient condition for
decision robust efficiency is given for the case that the feasible set is an interval.

Corollary 4.1.7 (Eichfelder, Krüger, and Schöbel 2017, Cor. 28). Let Z ⊆ R and
X ⊆ Ω ⊆ R be compact intervals and f : R → Rp be such that f1 : R → R is [./strictly]
increasing and f2 : R→ R is [./strictly] decreasing.

Then all x ∈ X are decision robust [weakly/strictly]–efficient.

These two results for monotonic objective functions are illustrated by an example in
(Eichfelder, Krüger, and Schöbel 2017, Ex. 4). The results are of interest for applications
in production planning where one objective function represents the costs of a produc-
tion process while another objective function represents the environmental impacts. In
particular, the corollary can be used to adjust the results of the third publication of
this thesis for applications where traditional input materials of a production process
are substituted by alternative that are more eco-friendly and more expensive than the
traditional materials, see Section 4.3.

In summary, decision robust efficiency is introduced as a solution concept for MOPs
with decision uncertainty and it is shown that this concept can be considered as a min-
max robustness concept, because the decision robust efficient solutions are the optimal
solutions of a set optimization problem defined by minimizing supremal sets over the
set of solutions that are feasible for all their realizations. The concept is also shown to
fit to existing minmax robustness concepts in the literature as it might be considered a
generalization of one concept and as a special case of another concept.

The concept of decision robust efficiency is nevertheless worth studying in its own
right. The two set-valued maps that can equivalently be considered as the objective
functions of the decision robust counterpart are shown to possess several continuity
properties, which are an important for solution methods to optimization problems such
as decent methods. Moreover, solution approaches for three specific classes of MOPs
with decision uncertainty are presented.

Own Contribution
The introduction of the concept decision robust efficiency and its connection to ro-

bustness for parameter uncertainty, set-valued optimization and supremal sets is joint
work of all authors of the publication. The largest part of the writing of this publication
was done by the author of this thesis. The author of this thesis contributed to most
of the proofs and examples in this publication. In particular, the proof of the upper
semicontinuity of the function fZ , the proofs of the semicontinuity of the function fSup,
and the proof that the decision robust counterpart can be considered as an MOP in
case of linear objective functions, were mostly done by the author of this thesis with the
advice of the coauthors.
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4.2. The Robustness Gap for Uncertain Multiobjective
Optimization

The publication Krüger, Schöbel, and Wiecek 2017 is summarized next, which is joint
work with Prof. Dr. Anita Schöbel and Prof. Dr. Margaret Wiecek.

Throughout the publication, the p-dimensional vector space Rp is considered as a
normed space with norm ‖·‖ : Rp → R. The dual norm of ‖·‖ is denoted as ‖·‖∗ : Rp → R.
The primal space is then referred to as (Rp, ‖ · ‖) and the dual space is referred to as
(Rp, ‖ · ‖∗). To keep notation short, the primal space is also simply written as Rp. It is
also assumed that the primal space is ordered by the Pareto cone Rp

=.
The uncertain multiobjective optimization problem





(P(ξ)) min
x

f(x, ξ)

s. t. F (x, ξ) = 0

x ∈ Rn




ξ∈U

is considered, see Section 3.4, and the uncertainty set U is assumed to be a compact
subset of a finite dimensional vector space. For each scenario ξ ∈ U the feasible set is
denoted as

X(ξ) := {x ∈ Rn | F (x, ξ) = 0} (4.5)

and each set X(ξ) is assumed to be compact.
Throughout the paper, the following Continuity Assumption is made: The functions

f(·, ξ) : Rn → Rp and F (·, ξ) : Rn → Rm are assumed to be continuous for all ξ ∈ U and
the functions f(x, ·) : U → Rp and F (x, ·) : U → Rm are assumed to be continuous for
all x ∈ Rn.

A direct consequence of the continuity assumption is that for each scenario ξ ∈ U the
outcome set is compact, which is the image of the feasible set,

Y(ξ) := {y ∈ Rp | ∃x ∈ X(ξ) : y = f(x, ξ)} = f(X(ξ), ξ).

For each scenario ξ ∈ U , the Pareto set and the efficient set are denoted as YP (ξ) and
XE(ξ) respectively.

As a concept of robustness to address the uncertain multiobjective problem {P(ξ)}ξ∈U ,
point-based robust efficiency is applied, which leads to a robust counterpart that is
an MOP and which is widely studied in the literature, see Section 3.4.1. The robust
counterpart of {P(ξ)}ξ∈U is hence given by (3.13), where the objective function is defined
by (3.12).

The robust feasible set XRC is compact since it is the intersection of the feasible sets
of the scenarios Y(ξ) by Definition 3.1.1. The robust outcome set, which is the outcome
set of the robust feasible set XRC, is denoted as YRC := fRC(XRC).

The robust counterpart RC is a deterministic MOP and the robust Pareto set, that
is the Pareto set of the robust counterpart, and the robust efficient set are denoted as
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YRC
P and XRC

E , respectively.

As a first result, a basic geometric connection between the outcome sets of the sce-
narios and the robust outcome set is presented. In (Krüger, Schöbel, and Wiecek 2017,
Prop. 4) it is shown that the robust outcome set is contained in the outcome set of each
scenario plus the Pareto cone. This directly implies a geometric relation between the
Pareto sets of the scenarios and the robust Pareto set. By (Krüger, Schöbel, and Wiecek
2017, Cor. 5), for each robust Pareto point and for each scenario, there exists a Pareto
point of that scenario that dominates the robust Pareto point.

Point-based robust efficiency is a conservative robustness concept, since it favors so-
lutions that are best in the worst-case. It is therefore of interest to compare this con-
servative approach with the optimistic approach of choosing an optimal solution to
some arbitrary scenario ξ ∈ U . To this end, the concept of the robustness gap for single-
objective robust optimization has been developed in Ben-Tal and Nemirovski 1998, 1999,
see Definition 3.1.2 in Section 3.1. The single-objective robustness gap measures the dis-
tance between the robust optimal objective value and the optimal objective values of the
scenarios. In multiobjective optimization the Pareto set takes the place of the optimal
objective value. The multiobjective robustness gap is therefore defined as the minimal
distance between the robust Pareto set YRC

P and the Pareto sets of the scenarios YP (ξ),
ξ ∈ U .
Definition 4.2.1 (Krüger, Schöbel, and Wiecek 2017, Def. 8). For each ξ ∈ U let

ϑ(ξ) := dist
(
YRC
P ,YP (ξ)

)
= inf

z∈YRC
P

inf
y∈YP (ξ)

‖z − y‖

and define the multiobjective robustness gap as

ϑ := inf
ξ∈U

ϑ(ξ) = inf
ξ∈U

dist
(
YRC
P ,YP (ξ)

)
.

The single objective robustness gap and the multiobjective robustness gap are illus-
trated in (Krüger, Schöbel, and Wiecek 2017, Ex. 7) and (Krüger, Schöbel, and Wiecek
2017, Ex. 9).

The multiobjective robustness gap is hard to compute, because it requires minimizing
the distance between Pareto sets, which are generally nonconvex even for convex MOPs.
For convex MOPs, a lower and an upper bound on the robustness gap are developed
that are easier to calculate then the robustness gap itself. For the remainder of the
publication the following Convexity Assumption is assumed to hold: It is required that
f(·, ξ) : Rn → Rp be Rp

=-convex and F (·, ξ) : Rn → Rm be Rm
= -concave for all ξ ∈ U ,

which implies that each instance of {P(ξ)}ξ∈U is a convex MOP.
Because the problems P(ξ) for all ξ ∈ U , and the robust counterpart RC are convex

MOPs, the efficient solutions to each of these MOPs can be determined by solving
the single-objective problems that correspond to the weighted-sum scalarizations of the
MOPs, see Proposition 3.2.5 in Section 3.2.
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Applying the weighted-sum scalarization to each instance of the problems {P(ξ)}ξ∈U
and RC, we obtain an uncertain scalarized problem

{
(P(ξ, λ)) min

x
λTf(x, ξ)

s. t. x ∈ X(ξ)

}

ξ∈U
,

and the scalarized robust counterpart

(RC(λ)) min
x

λTfRC(x)

s. t. x ∈ XRC,

for each weight vector λ ∈ Rp
= ⊆ (Rp, ‖·‖∗). The weights λ are here the linear functionals

that are the elements of the dual cone to the Pareto cone Rp
= ⊆ (Rp, ‖ · ‖).

These are single objective problems and applying the definition of the single-objective
robustness gap, see Definition 3.1.2 in Section 3.1, yields

min
x∈XRC

λTfRC(x)− sup
ξ∈U

min
x∈X(ξ)

λTf(x, ξ) = inf
ξ∈U

(
min
z∈YRC

λT z − min
y∈Y(ξ)

λTy

)
.

This is used to define the lower and the upper robustness bounds for the robustness
gap ϑ.

Definition 4.2.2 (Krüger, Schöbel, and Wiecek 2017, Def. 10). For each ξ ∈ U and
for each λ ∈ Rp

=, we define

∆(ξ, λ) := min
z∈YRC

λT z − min
y∈Y(ξ)

λTy.

Furthermore, we define the lower robustness bound and upper robustness bound as

∆L := inf
ξ∈U

min
λ∈Rp

≥,
‖λ‖∗=1

∆(ξ, λ) and ∆U := inf
ξ∈U

max
λ∈Rp

≥,
‖λ‖∗=1

∆(ξ, λ).

It is then stated that the single-objective robustness gap coincides with the lower and
the upper robustness bound in case of p = 1, which further motivates the definition of
the lower robustness bound ∆L and upper robustness bound ∆U . Before it is proven that
∆L and ∆U are indeed a lower and an upper bound of the robustness gap ϑ, it is shown
that the lower and upper bound are nonnegative in (Krüger, Schöbel, and Wiecek 2017,
Prop. 11) and well-defined in (Krüger, Schöbel, and Wiecek 2017, Prop. 13). The lower
and the upper robustness bound ∆L and ∆U are illustrated by continuing the example
on the robustness gap, see (Krüger, Schöbel, and Wiecek 2017, Ex. 12).

It is then proven that ∆L is a lower bound of the robustness gap ϑ.

Theorem 4.2.3 (Krüger, Schöbel, and Wiecek 2017, Th. 14). The lower robustness
bound ∆L is a lower bound for the robustness gap ϑ, i.e.,

inf
ξ∈U

min
λ∈Rp

≥,
‖λ‖∗=1

∆(ξ, λ) = ∆L ≤ ϑ. (4.6)
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Second it is shown that the upper robustness bound ∆U is indeed an upper bound of
ϑ under the following condition and three significant cases are presented in which it is
satisfied.

Condition A. Let the primal space be (Rp, ‖ · ‖) with the dual space (Rp, ‖ · ‖∗). We
say that Condition A holds for a scenario ξ̄ ∈ U if there exist z̄ ∈ YRC

P , ȳ ∈ YP (ξ̄) and
λ̄ ∈ (Rp, ‖ · ‖∗) such that

(i) κ̄ := z̄ − ȳ ∈ Rp
≥ ⊆ (Rp, ‖ · ‖) and λ̄ ∈ Rp

≥ ⊆ (Rp, ‖ · ‖∗)

(ii) λ̄ ∈ arg maxλ∈Rp
≥,‖λ‖∗=1 κ̄

Tλ

(iii) z̄ ∈ arg minz∈YRC λ̄T z.

The condition is illustrated for the ongoing example in (Krüger, Schöbel, and Wiecek
2017, Fig. 3), and the main result about the upper bound on the robustness gap is given
as follows.

Theorem 4.2.4 (Krüger, Schöbel, and Wiecek 2017, Th. 16). If Condition A is satisfied
for all ξ ∈ U with YP (ξ) ∩ YRC

P = ∅ then

ϑ ≤ ∆U .

Moreover, it is remarked in (Krüger, Schöbel, and Wiecek 2017, Rm. 17) that for
every scenario ξ̄ in which the robustness gap is attained and for which Condition A is
satisfied there exists a weight λ̄ such that the robustness gap corresponds to ∆(ξ̄, λ̄) and
then the robustness gap can directly be calculated.

Three cases in which Condition A is satisfied are next investigated in which the primal
norm is a p norm with 1 ≤ p ≤ ∞. The three cases differ with respect to the dimension
of the objective space and the considered norm. In the first investigated case in (Krüger,
Schöbel, and Wiecek 2017, Lem. 18), the dimension p of the primal space is arbitrary
and the primal norm is considered as the p-norm ‖ · ‖1.

In the second investigated case in (Krüger, Schöbel, and Wiecek 2017, Lem. 19),
the dimension of the primal space is again arbitrary. It is proven that Condition A is
satisfied if the primal norm is a p-norm with 1 < p ≤ ∞ under an additional assumption
on the ideal point zIRC of the robust counterpart that is zIRC ∈ Y(ξ̄) + Rp

=, for a scenario

ξ̄ with YP (ξ̄) ∩ YRC
P = ∅.

In the third investigated case in (Krüger, Schöbel, and Wiecek 2017, Lem. 20), it is
shown that Condition A is valid for every p-norm with 1 ≤ p ≤ ∞ without any further
assumptions if the dimension of the primal space is p = 2, i.e., the uncertain problem
{P(ξ)}ξ∈U is biobjective.

In addition to the three investigated cases, two sufficient conditions for Condition A
are mentioned that involve normal cones as defined in Rockafellar 2015 and restricted
normal cones as defined in Bauschke, Luke, Phan, and Wang 2013.
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A major result on the single-objective robustness gap is then extended to the multi-
objective case for convex MOPs. This result, see Theorem 3.1.3 in Section 3.1, states
that the robustness gap is zero under certain assumptions including constraint-wise un-
certainty. Assumption 3.1.1 together with the continuity assumption and the convexity
assumption corresponds to the assumptions of (Ben-Tal and Nemirovski 1998, Th. 2.1),
which is the original source of the result. The same assumptions are used for the mul-
tiobjective case and they are extended by the assumption objective-wise uncertainty on
the objective function, see Section 3.4.3.

As a preparation for the result on the zero robustness gap it is first shown that, under
these assumptions, for every robust Pareto point z ∈ YRC

P and every neighborhood of
this point there exists a scenario ξ with a Pareto point y ∈ YP (ξ) that falls within this
neighborhood.

This result is then used to show that the assumptions that are sufficient for the zero
robustness gap in the single-objective case combined with objective-wise uncertainty are
sufficient for the zero robustness gap in the multiobjective case.

Theorem 4.2.5 (Krüger, Schöbel, and Wiecek 2017, Th. 23). Let the Continuity As-
sumption, the Convexity Assumption and Assumption 3.1.1 hold and let the uncertainty
set U be constraint-wise and objective-wise. Then

(a) The robust counterpart RC is feasible if and only if all instances of {P(ξ)}ξ∈U are
feasible.

(b) If fRC is given as in (3.12) then the robustness gap vanishes, i.e., ϑ = 0.

In the final part of the publication, uncertain linear MOPs (MOLPs) are considered
and the two types of uncertainty decision uncertainty and parameter uncertainty are
distinguished.

Decision uncertainty in linear multi-objective problems is investigated first and it
is modeled within the framework proposed in Eichfelder, Krüger, and Schöbel 2017,
which is summarized in Section 4.1. Also the corresponding concepts of decision robust
feasibility and decision robust efficiency are used. In this setting, it is assumed that
each decision vector x is realized within the set x + Z, where the perturbation set Z
is a compact and convex subset of Rp. Note that, in order to distinguish decision and
parameter uncertainty in this summary, the perturbation set is denoted as Z rather than
U . An MOLP with decision uncertainty is then given as





(MOLP(z)) min C(x+ z)
s. t. A(x+ z) = b

x ∈ Rn




z∈Z

,

where the problem data satisfies (C,A, b) ∈ Rp×n×Rm×n×Rm. In this setting, the deci-
sion robust counterpart is a set-valued optimization problem by definition. However, the
objective function of the uncertain problem {MOLP(z)}z∈Z is linear and Theorem 4.1.4
applies. The decision robust counterpart of {MOLP(z)}z∈Z can hence be considered as
a semi-infinite MOLP and the decision uncertainty is only contained in its constraints.
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According to a result from the literature, see (Ben-Tal, Ghaoui, and Nemirovski 2009,
Th. 1.3.4), the decision robust feasible set XRC can equivalently be represented by
finitely many linear inequalities.

The set XRC can therefore be considered as a polyhedral set, which is used in (Krüger,
Schöbel, and Wiecek 2017, Prop. 25) to derive a sufficient condition for the zero robust-
ness gap in case of MOLPs with decision uncertainty. It is shown that the robustness gap
is zero if there exists a decision robust efficient p− 1-dimensional face of the polyhedral
set XRC.

Moreover, a single-objective optimization problem whose optimal objective value cor-
responds to the lower bound ∆L of the gap ϑ is given. This problem is obtained by
combining the polyhedral description of XRC with the definition of the lower bound
∆L and by applying linear programming duality to that part of ∆L that corresponds
to the robust optimal objective value of the scalarized problem. The problem is a DC
optimization problem if the objective matrix C ∈ Rp×n is positive semidefinite, if the
perturbation set Z is a convex polytope and if the primal norm ‖ · ‖ is a block norm,
i.e., the unit ball of the primal norm is a polyhedral set.

For the upper bound ∆U , an optimization problem whose optimal objective value
corresponds to ∆U is derived in a similar way. The polyhedral formulation of XRC is
combined with Definition 4.2.2 and applying linear programming duality yields a biob-
jective problem that has linear constraints and a quadratic objective function on the
lower level.

For MOLPs with parameter uncertainty, single-objective optimization problems whose
optimal objective values correspond to the lower and upper bound are also given. In
case of parameter uncertainty the objective function C ∈ Rp×n and the linear constraints
A ∈ Rm×n, b ∈ Rm are considered uncertain, and the scenarios of the uncertainty set are
denoted as ξ = (C,A, b) ∈ U . An MOLP with parameter uncertainty is considered as





(MOLP(ξ)) min Cx
s. t. Ax = b

x ∈ Rn




ξ:=(C,A,b)∈U

.

It is remarked that this setting is not only suitable to address MOLPs with parame-
ter uncertainty but also MOLPs with both decision and parameter uncertainty, because
as we have seen previously in (Eichfelder, Krüger, and Schöbel 2017, Prop. 21), every
MOLP with decision uncertainty can be formulated as an MOLP with parameter uncer-
tainty. In this publication, MOLPs with parameter uncertainty are treated as a special
case of {P(ξ)}ξ∈U . Therefore, the concept of robust feasibility applies, see Definition 3.1.1
and the robust counterpart of {MOLP(ξ)}ξ∈U is a semi-infinite MOLP.

The robust counterpart RCMOLP is reformulated such that only the constraints are
affected by parameter uncertainty, which is frequently done in the literature, see, e.g.,
Ben-Tal, Ghaoui, and Nemirovski 2009 for single objective reformulations and Fliege
and Werner 2014 and Goberna, Jeyakumar, Li, and Vicente-Pérez 2014 for multiobjec-
tive reformulations. Because the problem RCMOLP then is a semi-infinite MOLP that is
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affected by uncertainty only in the constraints, a result from single-objective optimiza-
tion can be applied. According to (Ben-Tal, Ghaoui, and Nemirovski 2009, Cor. 1.3.5),
the constraints of a semi-infinite MOLP can be represented by a finite system of linear
inequalities if the uncertainty set U is a polyhedral set. The robust counterpart can
therefore be considered as an MOLP.

A single objective problem whose optimal objective value corresponds to the lower
bound ∆L of the gap ϑ is it then developed analogously to the previous case of decision
uncertainty in MOLPs.

The description of RCMOLP as an MOLP is combined with the definition of ∆L, and,
applying linear programming duality yields a DC optimization problem if the linear
objective function of the robust counterpart is positive semidefinite and if the dual norm
can be formulated as linear constraints, which is the case for block norms.

For the upper bound ∆U , an optimization problem whose optimal objective value
corresponds to ∆U is derived in a similar way. The polyhedral formulation of RCMOLP

is combined with Definition 4.2.2 and applying linear programming duality yields a
biobjective problem that has linear constraints and a quadratic objective function on
the lower level.

In summary, a concept for a multiobjective robustness gap has been developed that
applies to minmax robust counterparts that are MOPs. For convex problems, a lower
and an upper bound for the gap are given. For linear problems, the lower and upper
bounds can be calculated by solving the presented single-objective problems.

Own Contribution
The central idea how to define the multiobjective robustness gap and suitable lower

and upper bounds was developed together by all coauthors. The proof of the lower bound
and the development of the single-objective problems that yield the bounds in the linear
case are also joint work. The proofs of the upper bound and of the zero robustness
gap under certain conditions, and the ongoing example were mostly contributed by the
author of this thesis with the help and advice of the coauthors. The structure of this
publication is joint work of all coauthors and the largest part of its writing was done by
the author of this thesis.
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4.3. An Application of Robust Multiobjective
Optimization in Agriculture

The publications Krüger, Castellani, Geldermann, and Schöbel 2018 and Krüger 2018
are summarized next. The former is joint work with Francesco Castellani, Prof. Dr.
Jutta Geldermann and Prof. Dr. Anita Schöbel and the latter was written by the au-
thor of this thesis.

The research presented in this section is the result of an interdisciplinary coopera-
tion within the research training group RTG 1703 ”Resource Efficiency in Corporate
Networks”. An uncertain biobjective optimization problem that is relevant for the com-
mercial cultivation of potted plants is investigated and it is called the peat-and-pots
problem. This work is composed of two parts: a practical and a theoretical study of the
problem.

The practical study of the peat-and-pots problem is motivated by an application in an
Italian plant nursery that is described in detail in Krüger, Castellani, Geldermann, and
Schöbel 2018. The decision problem is introduced such that it reflects the information
gained through this application. The resulting decision problem is addressed in two ways.
First, it is considered as a deterministic problem and the efficient solutions are calculated.
Second, parameter uncertainty and decision uncertainty are taken into account and the
decision robust efficient solutions are calculated. The two solution approaches are then
compared and it is found that the robust solutions are preferable over the deterministic
solutions.

The theoretical study of the peat-and-pots problem that is given in Krüger 2018 aims
to determine the efficient solutions to the deterministic peat-and-pots problem and the
decision robust efficient solutions to the uncertain peat-and-pots problem. The presented
solution approaches are suitable to solve a slightly generalized version of the problem
that is considered in the practical study Krüger, Castellani, Geldermann, and Schöbel
2018 and hence, this study provides the theoretical background for the aforementioned
publication. In the last part of this publication, two extensions of the problem are
discussed and suitable approaches to determine deterministic and robust solutions are
given.

The practical viewpoint on the problem as contained in Krüger, Castellani, Gelder-
mann, and Schöbel 2018 is summarized in Section 4.3.1 and the theoretical background
of the problem as presented in Krüger 2018 is summarized in Section 4.3.2.

4.3.1. Peat and Pots: An Application of Robust Multiobjective
Optimization to a Mixing Problem in Agriculture

In the following, the publication Krüger, Castellani, Geldermann, and Schöbel 2018 is
summarized, which can be considered as a practical study on the peat-and-pots problem.

The aim of the peat-and-pots problem is to choose a mixture of growth substrate and a

34



4.3. An Application of Robust Multiobjective Optimization in Agriculture

type of planter pot for the commercial cultivation of potted plants such that a monetary
and an environmental objective are optimized. The peat-and-pots problem is therefore
a biobjective optimization problem. While the consideration of a monetary objective
is typical for enterprises such as plant nurseries, the consideration of the environmental
impact as a second objective is motivated by recent research on the greenhouse gas
emissions of cultivation processes in the horticulture sector as described in detail in
Section 2 of this publication. In that section, also the advantages and disadvantages
of different types of planter pots and growth media are discussed. The planter pots
that can be chosen are plastic pots or biodegradable pots (bio-pots) and the growth
medium can been chosen as a mixture of peat and compost. The properties of these
input materials that are relevant for the biobjective problem are their costs and their
greenhouse gas emissions.

The classical and widely used option is a plastic pot filled with 100% peat. Plastic
pots are cheaper than bio-pots. However, plastic pots are generally landfilled after use,
while bio-pots can be put into the soil along with the plant, and hence, the former cause
a larger quantity of greenhouse gas emissions than the latter.

The growing medium peat is traditionally used because of its agronomic properties
that lead to high quality plants. Peat is more expensive than its substitute compost,
which is a byproduct from other industries such as the olive oil industry. Moreover,
the harvesting of peat causes significant CO2 emissions because peatlands are important
carbon sinks. Peatlands also provide important living spaces for various plant and
animal species and are vital for biodiversity and ecosystem services. Replacing peat
with compost therefore reduces costs and greenhouse gas emissions at the same time.

The monetary objective function of the peat-and-pots problem are the additional costs
(adC) that are the difference between the decision relevant costs of the input materials
and the selling price of a potted plant. The environmental objective function is the
global warming potential (GWP) of the decision relevant input materials.

Following on this motivation and introduction to the peat-and-pots problem, an ap-
plication is presented in detail in Section 3 of this publication. A case study on the
cultivation of the species Photinia x fraseri by an Italian plant nursery is described and
the data collection process for the costs and emissions of the input materials plastic pots,
bio-pots, peat and compost is reported.

The peat-and-pots problem is then modeled as a deterministic biobjective optimization
problem that reflects the case study. It is assumed that a plant nursery uses the same
planter pot and the same mixture of growth medium for all potted plants of the same
species, i.e., one potted plant represents all plants of the species Photinia and only one
plant is considered in the decision problem.
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The (deterministic) peat-and-pots problem is introduced as

(P) min

(
adC(γ, β)
GWP (γ, β)

)

s.t. Q(γ, β) ≥ 3
γ ∈ [0, 1]
β ∈ {0, 1}.

There are two decision variables in the peat-and-pots problem:

• The share of compost γ ∈ [0, 1] used to replace peat.

• The type of pots β ∈ {0, 1} to use, where β =

{
1 if bio-pot chosen

0 if plastic pot chosen
.

Due to the first constraint, the quality of the potted plant that is associated with a
solution has to be high enough for selling. There is a finite set of quality levels and
the quality function Q maps each solution to the quality level that reflects the plant’s
aesthetic and agronomic properties. For the species Photinia, the minimum salable
quality level is 3.

To complete the description of the deterministic peat-and-pots problem, it remains
to describe the two objective functions in detail. The monetary objective that is the
additional costs (adC) is considered as the difference between the costs of the input
materials and the selling price of the potted plant. These two parts of the adC function
are next introduced separately.

The cost function costs is defined as the sum of the decision relevant input materials
that is the planter pot and the growth medium. The function costs is therefore defined
as costs : [0, 1]× {0, 1} → R with

costs(γ, β) = cpeat + cplas + γ · (ccomp − cpeat) + β · (cbio − cplas),

where the parameters cpeat, ccomp, cplas, cbio denote the costs of one functional unit of peat
or compost and the cost of a plastic pot or a bio pot, respectively.

The selling price of a solution is determined by combining two functions: the quality
function Q that maps each solution to the quality level of the potted plant and the
function price that assigns each quality level to a selling price.

The quality function is a piecewise constant function on the share of compost for each
pot β ∈ {0, 1}. A plant of the species Photinia can attain any quality level in {1, . . . , 5}
and the quality function Q for this species is illustrated in Figure 4.1, which corresponds
to (Krüger, Castellani, Geldermann, and Schöbel 2018, Fig. 1). It is assumed that
the quality level of a plant raised in a bio-pot is higher or equal than the quality of a
plant raised in a plastic pot on a identical mixture of growth substrate under equivalent
agricultural conditions.

Without loss of generality, it can be assumed that the quality levels are defined such
that a higher quality always implies a higher selling price, i.e., the selling price function
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Figure 4.1.: Quality function for the species Photinia. Dashed lines indicate a plastic
pot (β = 0) and straight lines indicate a biodegradable pot (β = 1).

price is monotonically increasing on the quality levels. The selling price of each quality
level is then given by the monotonically increasing price function

price : {1, . . . , 5} → R.

Combining the cost function costs with the quality function Q and the related price
function price yields the monetary objective function

adC(γ, β) := costs(γ, β)− price(Q(γ, β)). (4.7)

The second objective function is the global warming potential GWP that is measured
in terms of greenhouse gas emissions. The greenhouse gas emissions of the input mate-
rials are the linear combination of the emissions of the individual input materials and
thus GWP is defined as

GWP (γ, β) = empeat + emplas + γ · (emcomp − empeat) + β · (embio − emplas), (4.8)

where the parameters empeat, emcomp, emplas, embio denote the greenhouse gas emissions
of one functional unit of peat or compost and the emissions of a plastic pot or a bio pot,
respectively.

After the deterministic peat-and-pots problem has been introduced, it is addressed
in two ways: It is first considered as a deterministic biobjective problem and a solution
approach to determine its (Pareto-)efficient solutions is discussed. Second, it is recog-
nized that the problem is affected by decision and parameter uncertainty and a solution
approach to determine the decision robust efficient solutions is applied.

The idea of the deterministic appraoch is to solve the problem in two steps: first, to
solve it once for each value of the pot variable β ∈ {0, 1} and second, to compare the
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resulting solution sets. For each fixed β, the efficient solutions can be computed by an
analytical description that is developed in Krüger 2018. For the species Photinia in the
case study that is described in Section 3 of this publication, this solution approach can
be described as follows: Due to the values of the cost and emission parameters, it is
observed that the objective functions adC and GWP are both monotonically strictly
decreasing on each of the constant intervals of the quality function and hence, only
the endpoints of these intervals can be efficient solutions. Infeasible endpoints of the
intervals are excluded, which means that the corresponding quality level of the remaining
solutions is at least 3. This yields a finite candidate set and from this set the largest
solutions are iteratively selected such that each solution is of a higher quality than the
previously selected solution.

The uncertainty in the peat-and-pots problem and an approach to determine the deci-
sion robust efficient solutions is then described in Section 5 of the publication. The cost
and emission parameters of the problem are affected by parameter uncertainty, due to
fluctuations during the processing of the raw materials, for example fluctuations of the
electricity consumption. According to the data collection as described in Section 3 of
the publication, every parameter is known to fall within a given interval of values rather
than being known as an exact number. By definition of the objective functions, the cost
parameters only contribute to the first objective function adC and the emission param-
eters only contribute to the second objective function GWP. Therefore, the parameter
uncertainty is objective-wise and, by Section 3.4.3, the two minmax robustness concepts
set-based robust efficiency and point-based robust efficiency coincide. The robust effi-
cient solutions can hence be determined by replacing each parameter with the maximum
value of its interval and by solving the resulting deterministic biobjective problem.

Thus, it remains to address the decision uncertainty in the peat-and-pots problem.
The pot variable β can naturally be implemented exactly, but the decision variable γ that
denotes the share of compost in the growth medium is affected by decision uncertainty,
since the growth medium is prepared and mixed in big heaps. The plant nursery provides
minimum perturbation zmin and a maximum perturbation zmax for the share of compost.
These minimum and maximum values are based on the plant nursery’s experience and
the precision of the mixing process. The decision variable γ is implemented as an element
of a perturbation set Z(γ) that is an interval. The perturbation sets of all solutions are
bounded by the minimum and maximum perturbation zmin and zmax, but there are
solutions that have individual smaller perturbation sets. This is because solutions can
never be realized as less than 0% or more than 100% of compost. Hence, the perturbation
sets of solutions near 0 or near 1 are smaller than the interval [zmin, zmax] and for each
solution γ ∈ (0, 1), the perturbation set is therefore given as

Z(γ) :=
[
max

{
zmin,−γ

}
,min {zmax, 1− γ}

]
. (4.9)

The solutions γ ∈ {0, 1} are exceptions that are realized exactly, because no mixing
is required. Decision robust efficiency is then considered as the minmax robustness
concept to address this uncertainty. Even though this robustness concept is introduced in
Section 4.1 for the case that the perturbation set is constant for all solutions, it is applied
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here to the case of individual perturbation set. This slight extension of decision robust
efficiency is also mentioned in the conclusions of the original publication Eichfelder,
Krüger, and Schöbel 2017.

In order to determine the decision robust efficient solutions, the suitable solution ap-
proach that is presented in Krüger 2018 is applied. Similar to the previous deterministic
approach, the problem is solved in two steps: first, it is solved once for each value of
the pot variable β ∈ {0, 1} and second, the resulting sets of solutions are compared. For
each fixed β, the decision robust efficient solutions can be computed by an analytical
description that is given in Krüger 2018.

The solution approaches for the deterministic and the robust efficient solutions are
similar in the way that the problem is solved for each β by first constructing a finite can-
didate set. However, there are two major differences between them: First, the endpoints
of the intervals of the quality function are considered in the deterministic approach,
whereas, in the robust approach, a safety margin is kept towards the right hand interval
bounds. Second, the resulting finite set of solutions is compared with respect to their
quality in the former and it is compared with respect to the minimum quality of the
realizations in the latter.

In Section 6 of this publication, these solution approaches are applied to solve the peat-
and-pots problem for the case study of the species Photinia and the data from Section 3
is used to determine the deterministic and the decision robust efficient solutions.

Because the peat-and-pots problem is investigated as a deterministic and as an un-
certain problem, two sets of data are provided. The first set of the problem parameters
for the costs and emissions contains the average values and the second set includes the
minimal and maximal values that the parameters can attain, see (Krüger, Castellani,
Geldermann, and Schöbel 2018, Tab. 1).

It is found that there are four distinct deterministic efficient solutions and four distinct
decision robust efficient solutions. In both cases, deterministic and robust, only one
solution involves a plastic pot while the other three solutions involve a biodegradable
pot.

It is observed that in each case the solution with a plastic pot performs best with
respect to the monetary objective function adC due to the price difference of the two
pots. However, comparing the solution with the plastic pot to the efficient solution
with a bio-plot that is smallest in the share of compost γ, the former solution is only
slightly better in the first objective function adC while the latter it’s significantly better
in the second objective function GWP. In the uncertain case, the only decision robust
efficient solution with a plastic pot is the traditional solution involving 100% peat. It is
therefore concluded as a rule of thumb for the species Photinia that, in case of decision
uncertainty, a substitution of peat with compost must be combined with replacing the
plastic pots by biodegradable pots.

The deterministic and robust efficient solutions of the case study are then compared.
It is important to note that the sets of deterministic efficient solutions and of decision
robust efficient solutions in the case study are disjoint. Evaluating the four deterministic
efficient solutions shows that two of the four solutions are not decision robust efficient,
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i.e., they have realizations that do not yield the minimum required quality. The re-
maining two deterministic efficient solutions are each dominated by one or more of the
decision robust efficient solutions, which shows that the latter solutions are preferable
over the former. In summary, it is concluded that (decision) robust efficiency is a concept
that is worth considering to address the peat-and-pots problem with decision uncertainty.

4.3.2. Peat and Pots: Analysis of Robust Solutions for a
Biobjective Problem in Agriculture

The publication Krüger 2018 that can be considered as a theoretical study of the peat-
and-pots problem is summarized next.

This publication provides the theoretical background for the solution approaches to
the peat-and-pots problem that are applied in the case study in Krüger, Castellani,
Geldermann, and Schöbel 2018. The peat-and-pots problem is considered first as a
deterministic problem and a solution approach to determine the efficient solutions is
developed. Second, the parameter and decision uncertainty in the problem are taken
into account and a solution approach to determine the decision robust efficient solutions
is given.

The motivation and description of the peat-and-pots problem correspond in large
parts to those in the previously summarized publication Krüger, Castellani, Geldermann,
and Schöbel 2018. Therefore, only those parts of the problem description that are not
contained in the former publication are stated here.

In the Section 4.3.1, the problem is modeled in a way that reflects the specific setting
of the case study. In this theoretical investigation of the peat-and-pots problem the
problem is considered in a more general way. The problem investigated here extends the
peat-and-pots problem in the previous section by two properties: First, the problem is
modeled for arbitrary plant species and hence, the quality function is defined in a more
general way. Second, the availability of compost is considered to be limited throughout
this publication, since, in practice, compost occurs as a byproduct rather than being
produced intentionally.

The peat-and-pots problem is given as follows:

(P) min

(
adC(γ, β)
GWP (γ, β)

)

s.t. Q(γ, β) ≥ α
γ ≤ vcomp

γ ∈ [0, 1]
β ∈ {0, 1}.

The quality function is given as

Q : [0, 1]× {0, 1} → {1, . . . , ν},
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where ν denotes the maximum quality of the considered species, and where {1, . . . , ν} is
the set of quality levels. The minimum quality that is salable depends on the species and
it is denoted as α. The quality function Q is a piecewise constant function for each fixed
planter pot β ∈ {0, 1}. Its constant parts can be expressed by their boundary points

0 = tβ0 < tβ1 < tβ2 < · · · < tβω = 1,

where ω is the number of the quality function’s constant parts. For every 1 ≤ i ≤ ω,
there is qi ∈ {1, . . . , ν} such that Q(γ, β) = qi for all γ ∈ (tβi−1, t

β
i ). The quality level of

each interval bound that belongs to two intervals is defined as the maximum quality of
the two intervals, that is

Q(γ, β) =

{
qi, if γ ∈ (tβi−1, t

β
i ), for i = 1, . . . , ω

max{qi, qi+1} if γ = tβi for i = 1, . . . , ω.

The solutions tβ0 = 0 and tβω = 1 are boundary points for only one interval each and
their quality is defined as Q(tβ0 , β) = q1 and Q(tβω, β) = qω, respectively. Therefore, the
quality function Q is not continuous but upper semicontinuous on the share of compost
γ ∈ [0, 1]. As in Section 4.3.1, it is assumed that the quality of a plant raised in a
biodegradable pot is higher or equal than that of a plant raised in a plastic pot on an
identical mixture of growth substrate.

As the second extension of the problem in Section 4.3.1, it is required that the share
of compost γ is smaller than the available quantity of compost vcomp in the second
constraint of P , because it is assumed that the available quantity of compost is limited.
In fact, vcomp denotes the available quantity of compost per pot, since the functional
unit of the problem is one plant as a representative of its species.

The aim of this publication is to find solution approaches for the deterministic and the
uncertain peat-and-pots problem. In particular, it is intended to solve the case study
in Krüger, Castellani, Geldermann, and Schöbel 2018. The data that characterizes the
case study has three properties that must be taken into account in a suitable solution
approach. The three properties are therefore stated as three assumptions. The first
assumption, (Krüger 2018, Ass. 1) is that the cost of compost ccomp is strictly smaller
than the cost of peat cpeat. The second assumption, (Krüger 2018, Ass. 2) is that for each
pair of solutions that yield distinct quality levels their cost difference is smaller than the
difference of their selling prices. The third assumption, (Krüger 2018, Ass. 3) is that
the GWP of the traditional input materials plastic pots and peat is strictly larger than
the GWP of their alternatives composts and biodegradable pots, respectively.

If first and second assumptions are met, the objective function adC has two properties
that lead to a simple structure of the solution set of the peat-and-pots problem in the
subsequent results. In (Krüger 2018, Lem. 1) it is shown that adC is monotonically
strictly decreasing on each of the constant parts of the quality function. In (Krüger
2018, Lem. 2) it is proven that an increase of quality always causes a decrease of the
additional costs.
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If the third assumption is met, the second objective function GWP is monotonically
strongly decreasing as shown in (Krüger 2018, Lem. 3).

The peat-and-pots problem is next solved such that it reflects the properties of the
case study, that is the three assumptions are taken into account.

In Section 3 of the publication, the peat-and-pots problem is addressed as a determin-
istic problem. The classical optimality concept Pareto efficiency, see Definition 3.2.2, is
considered and the (deterministic) efficient solutions to the peat-and-pots problem are
determined.

The presented solution approach for the peat-and-pots problem is based on the idea
to solve the problem once for each value of the pot variable β ∈ {0, 1}, followed by a
pairwise comparison of the obtained solutions. The efficient solutions for each β can
be calculated with little computational effort, because an analytical description of the
solutions is provided in the publication and the number of efficient solutions is small for
each β ∈ {0, 1}.

Three results on the deterministic efficient solutions to the peat-and-pots problem
are given in the publication. It is first shown, that the weakly and the strictly efficient
solutions of the peat-and-pots problem coincide for each β ∈ {0, 1} under the three
assumptions that reflect observations on the problem data. This is stated in (Krüger
2018, Prop. 5). Hence, weak and strict (deterministic) efficiency do not need to be
distinguished subsequently and it is sufficient to determine the efficient solutions for
each β ∈ {0, 1}.

The second and main result on the deterministic efficient solutions is their analytical
description for each β.

Theorem 4.3.1 (Krüger 2018, Th. 6). For each fixed pot variable β ∈ {0, 1}, the set

D(β) :=
ν⋃

j=νmin

{max{γ ∈ F(β) | Q(γ, β) ≥ j}} ,

is the set of efficient solutions.

As a consequence of this theorem, the deterministic efficient solutions are a finite
set for each β ∈ {0, 1}. The maximum share of compost for each considered quality or
higher exists, because the quality function Q is upper semicontinuous. Furthermore, this
maximum share of compost falls on a boundary point of a constant interval.

As the third and last result on the deterministic efficient solutions, it is stated that
there always exists an efficient solution to the peat-and-pots problem, see (Krüger 2018,
Cor. 7), which follows directly from the finiteness of the efficient set for each β ∈ {0, 1}.

In Section 4, the presence of the parameter and decision uncertainty in the peat-and-
pots problem is recognized and motivated by the case study. Parameter uncertainty
is discussed in Section 4.1. The economic objective adC is only affected by the cost
parameters (c) and the environmental objective GWP is only affected the emission
parameters (em). Based on the data of the case study and on the background of the

42



4.3. An Application of Robust Multiobjective Optimization in Agriculture

data collection described in Krüger, Castellani, Geldermann, and Schöbel 2018, it is
assumed that the uncertainty set is a direct product of compact intervals, where each
interval contains the values one parameter can attain.

U =
{

(c, em) | cpeat ∈ [cpeat, cpeat], · · · , embio ∈ [embio, embio]
}
.

The parameter uncertainty is therefore objective-wise and the two minmax robustness
concepts set-based robust efficiency and point-based robust efficiency coincide, see Sec-
tion 3.4. Because the uncertainty set is compact and because the decision variables are
nonnegative, there exists a worst-case scenario (c, em) that corresponds to the maxi-
mum value of each interval. To determine the minmax robust efficient solutions to the
peat-and-pots problem with parameter uncertainty, it is therefore sufficient to solve the
deterministic problem with respect to the worst-case scenario.

Decision uncertainty in the peat-and-pots problem is investigated in Section 4.2 of the
publication. The planter pot is generally used as intended and only the decision variable
γ that represents the share of compost is affected by decision uncertainty, since the
mixing of growth substrate is only performed roughly in plant nurseries. As described
in Section 4.3.1, the perturbation set of a solution γ is given as

Z(γ) :=
[
max

{
zmin,−γ

}
,min {zmax, 1− γ}

]
. (4.10)

The solutions smaller than |zmin| and larger than 1−|zmax| have smaller perturbation
sets then the basic interval [zmin, zmax]. Moreover, these smaller realization sets are
nested within each other which requires specific consideration in the solution approach
for determining the decision robust efficient solutions.

Having established the individual perturbation sets of the solutions γ ∈ [0, 1], the
concept of decision robust feasibility is then defined accordingly. A feasible solution
(γ, β) is defined as decision robust feasible if all its realizations are salable, see (Krüger
2018, Def. 8).

As a concept of optimality for the peat-and-pots problem, decision robust efficiency
is applied as defined and studied in the first publication contributing to this thesis, see
(Eichfelder, Krüger, and Schöbel 2017, Def. 3).

The presented solution approach to determine the decision robust efficient solutions
is based on an idea similar to the presented deterministic approach. The basic idea is
to determine the decision robust efficient solutions for each β ∈ {0, 1}, which is a small
finite set, followed by pairwise comparisons of the obtained solutions.

To this end a finite candidate set for the decision robust efficient solutions is con-
structed in three steps for each β ∈ {0, 1}. In the first step, the bounds of the finitely
many constant intervals of the quality function are considered and from each of these
points the maximum perturbation zmax is subtracted. The minimum robust feasible so-
lution 0 and the maximum robust feasible solution are also added to the candidate set.
In the second step, this set is reduced to those elements that are decision robust feasible.
By definition of the decision robust feasible set, the resulting candidate set hence only
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contains solutions that are smaller or equal than the available quantity of compost per
pot and the elements whose realizations yield a quality of α are kept. In the third step,
the largest solutions of this set are then iteratively selected such that each solution has
a higher minimum quality than the previously selected solution. The resulting finite
candidate set is denoted as W(β).

This set is a valid choice for a candidate set, since, by (Krüger 2018, Prop. 12), all
elements of W(β) are decision robust weakly efficient and every decision robust strictly
efficient solution is an element of the candidate set. The set W(β) is then used in a
straightforward way to determine the set of decisions robust [weakly/·/strictly] efficient
solutions [wE(β)/E(β)/sE(β)].

The sets of decision robust [weakly/·/strictly] efficient solutions do not generally co-
incide. It depends on the perturbation set of each solution, whether weak and strict
efficiency coincide for the solution. For all solutions γ that are larger than the absolute
value of the minimum perturbation |zmin|, the concepts of decision robust weak and
strict efficiency coincide, which is shown in (Krüger 2018, Prop. 10). Solutions smaller
than |zmin| have smaller perturbation sets, see (4.10). The realization sets are nested
within each other and so are their outcome sets in the objective space. Therefore, these
solutions are not decision robust strictly efficient. As a consequence, there is an intervall
of decision robust [weakly/·] efficient solutions if and only if there is at least one that is
smaller than |zmin|. The difference between the sets of decision robust weakly and strictly
efficient solutions and its connection to the solutions smaller or larger than |zmin| is re-
flected in the following two theorems that state the decision robust [weakly/·/strictly]
efficient solutions to the peat-and-pots problem for each β ∈ {0, 1}.

Theorem 4.3.2 (Krüger 2018, Th. 13). If W(β) satisfies W(β) ∩ [0,−zmin] = ∅, then
the set

E(β) = sE(β) = wE(β) =W(β)

is the set of decision robust [weakly/·/strictly] efficient solutions.

Theorem 4.3.3 (Krüger 2018, Th. 14). If W(β) satisfies W(β) ∩ [0,−zmin] 6= ∅, the
following are true.

a) The set of decision robust [weakly/·] efficient solutions is given as

E(β) = wE(β) = [0, γβW ] ∪W(β),

where γβW := max {γ | γ ∈ W(β) ∩ [0, zmin]} .

b) The set of decision robust strictly efficient solutions is given as

sE(β) =W(β)\(0,−zmin].

The results presented so far provide the solution approaches for the case study in
Krüger, Castellani, Geldermann, and Schöbel 2018 with its specific requirements. In
Section 5, these results are extended to further biobjective problems with one function
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4.3. An Application of Robust Multiobjective Optimization in Agriculture

that is the sum of a piecewise constant and a linear function and one linear objective
function.

To this end the three assumptions that characterize the peat-and-pots problem of the
case study are neglected. It is assumed that (Krüger 2018, Ass. 3), that is the GWP
of the alternative input materials is lower then the GWP of the traditional materials,
is a basic motivation for the considered decision problem. The solution approaches for
the deterministic and the uncertain problem are then further extended to the cases that
either (Krüger 2018, Ass. 1) or (Krüger 2018, Ass. 2) does not hold.

The case that the first assumption fails is of interest, because this means that the
environmentally friendly input materials are more expensive than the traditional ones.
The main difference between the solutions with or without this assumption is that in
the former case the solution sets are finite unions of points while in the latter case,
these solution sets are finite unions of intervals. This is true for the set of deterministic
efficient solutions as well as the set of decision robust efficient solutions. Two algorithms
are given, one to determine each set of solutions.

The absence of the second assumption means that the objective function value of adC
is influenced stronger by the costs of the input materials than it is influenced by the
quality of the final product. In this case, it is reasonable to reduce costs at the expense
of quality. The case is hence of particular interest for applications with expensive input
materials.

Two algorithms are presented to solve the problem in the absence of the second as-
sumption. The first algorithm yields the deterministic solutions for each β. The second
algorithm yields a candidate set for the decision robust efficient solutions that can be
used to determine the decision robust efficient solutions by replacing the candidate set
W(β) in Theorem 13 and 14 of this publication.

There are two main differences between the set of deterministic efficient solutions and
the candidates set for the decision robust efficient solutions with and without (Krüger
2018, Ass. 2). The first difference is that the weakly efficient solutions and the efficient
solutions do not coincide. However, the sets of efficient solutions and the set of strictly
efficient solutions coincide in the deterministic and in the robust case. The second
differences is that, in the algorithms, the solutions are compared with respect to their
additional costs rather than with respect to their quality.

In summary, solution approaches to determine the efficient solutions for the deter-
ministic peat-and-pots problem and three solution approaches to determine the decision
robust efficient solutions for the uncertain peat-and-pots problem are presented, that
depend on the presence or absence of the three assumptions defined by the case study.

The problem is first investigated under the assumptions that are required by the case
study in Krüger, Castellani, Geldermann, and Schöbel 2018. The presented solution
approaches can therefore be considered as the theoretical background for the latter
publication. Furthermore, the problem is investigated in a more general form than
required by the case study and the solution approaches are hence applicable to a wider
class of problems. In particular, arbitrary piecewise constant quality functions are taken
into account and it is considered that the available supply of compost is often limited
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4. Summary of the publications

in practice.
The problem is then investigated without the assumptions that characterize the case

study and algorithms are given that yield the deterministic efficient solutions and the
decision robust efficient solutions in the absence of the assumptions. They presented
solution approaches are hence not only suitable for the case study but they are also of
interest for further applications.

Own Contribution
The abstract, introduction and conclusion are joint work of all coauthors. The problem

description and motivation in Section 2 of the publication Krüger, Castellani, Gelder-
mann, and Schöbel 2018 was done by Francesco Castellani and Jutta Geldermann. The
input data section, Section 3, was provided by Francesco Castellani. The idea of the
objective functions was provided by Francesco Castellani and Jutta Geldermann and
written down by the autor of this thesis. The description of the uncertainty in the de-
cision problem and the deterministic and robust solution approaches in Sections 4 and
5 was mostly contributed by the author of this thesis with the advice of Anita Schöbel.
Moreover, the determination of the deterministic and the robust efficient solutions for
the case study as well as their comparison was performed and written by the author of
this thesis with the advice of all coauthors.

The author of this thesis is the sole author of the publication Krüger 2018. As stated
in the publication, parts of the problem motivation and description correspond to the
publication Krüger, Castellani, Geldermann, and Schöbel 2018, since this publication
provides the theoretical background for the former publication. The remaining results
contained in this publication were developed and written down by the author of this
thesis. Nevertheless the author would like to acknowledge the advice of her advisor Anita
Schöbel on the results and the structure of this publication. Moreover, the cooperation
with Francesco Castellani and Jutta Geldermann contributed to the problem motivation
and description.
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5. Discussion

Minmax robustness for uncertain multiobjective optimization is a broad field of research,
which is also reflected in the literature review of this thesis. Solutions to these prob-
lems depend on the type of uncertainty and on the robustness concept. In this thesis,
two types of uncertainty at distinguished, namely decision and parameter uncertainty.
The three considered minmax robustness concepts are decision robust efficiency, which
is introduced in the first publication contributing to this thesis, point-based robust effi-
ciency and set-based robust efficiency, and the latter two are frequently studied minmax
robustness concepts for parameter uncertainty in the literature. Each of these minmax
robustness concept is associated with its robust counterpart that is either an MOP or a
set optimization problem.

The results of this thesis therefore contribute to minmax robustness for multiobjec-
tive optimization with decision or parameter uncertainty under consideration of robust
counterparts that are either MOPs or set optimization problems. Each of the four pub-
lications of this thesis is to some extent related to each of the aforementioned types of
uncertainty and robust counterparts and this is discussed subsequently. Cases in which
the two types of uncertainty or robust counterparts coincide are also emphasized in this
thesis, either by contributing new results or by using known results in a new context.

In the first publication Eichfelder, Krüger, and Schöbel 2017, decision robust efficiency
is introduced as a robustness concept for decision uncertainty. The introduced decision
robust counterpart is a set optimization problem and because it involves optimizing
supremal sets, decision robust efficiency can be considered as a minmax robustness
concept. The set-valued objective function of the decision robust counterpart and its
supremal set are investigated with respect to convexity and semicontinuity. Also, solu-
tion approaches for three specific classes of objective functions are given. Even though
this publication is mainly concerned with decision uncertainty and set-valued robust
counterparts, a link to minmax robustness for parameter uncertainty is shown, which
is that decision robust efficiency can be considered as a special case of set-based robust
efficiency. Decision robust effiency is nevertheless worth studying in its own right, be-
cause the specific structure of the decision robust counterpart leads to results that fail for
set-based robust efficiency. In particular, the result that the decision robust counterpart
can be considered as a deterministic MOP in case of linear objective functions. Hence,
this publication contributes to both types of uncertainty and to both types of robust
counterparts with a focus on decision uncertainty and set-valued robust counterparts.

In the second publication Krüger, Schöbel, and Wiecek 2017, a multiobjective ro-
bustness gap is introduced for MOPs with decision uncertainty and robustness concepts
whose robust counterpart is an MOP. For convex MOPs, the gap is shown to be zero un-
der certain conditions including objective-wise uncertainty, and hence point-based and
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5. Discussion

set-based robust efficiency coincide under these conditions. Lower and upper bounds
for the robustness gap are given and single-objective problems with optimal objective
values that correspond to these bounds are developed for the case of linear MOPs. The
linear case is investigated for decision and parameter uncertainty and, since the decision
robust counterpart can be considered as an MOP in case of linear objective functions
according to the first publication, the developed results apply to the concept of decision
robust efficiency. The results of this publication therefore mostly apply to parameter
uncertainty and robust counterparts that are MOPs, but certain results are specifically
developed for the case of decision robust efficiency.

The topic of the third publication Krüger, Castellani, Geldermann, and Schöbel 2018
and the fourth publication Krüger 2018 is an application of minmax robust efficiency
to a biobjective problem in horticulture. The considered decision problem originates
from a case study and, due to this practical background, both types of uncertainty are
present. However, the parameter uncertainty in the problem is objective-wise and hence
point-based and set-based robust efficiency coincide. There even exists a global worst-
case scenario. Parameter and decision uncertainty can be addressed simultaneously
by solving the decision robust counterpart with the worst-case scenario in place of the
uncertain parameters. Analytic descriptions of the decision robust efficient solutions
to the set-valued robust counterpart are given. The third publication can hence be
considered as a practical study on both types of uncertainty and both types of robust
counterparts. The fourth publications focuses mostly on decision uncertainty and on
solving the set-valued decision robust counterpart of the application’s decision problem.

So far, the connection of every publication with the topic of this thesis has been
discussed, which is minmax robustness for multiobjective optimization with decision
or parameter uncertainty. Moreover, there are various links between the individual
publications, which are pointed out next.

The first and the second publication are connected, since the aforementioned result
that the decision robust counterpart can be considered as an MOP in case of linear
objective functions, is directly used in the second publication to develop a sufficient
condition for the zero robustness gap and to develop the single-objective problems that
can be used to calculate the lower and upper bounds.

The first publication is relevant for the third and fourth publications, because the
considered decision problem in the latter publications is an application of the concept
decision robust efficiency, even though the concept is slightly adapted to fit the require-
ments of the application. In contrast to the first publication, the perturbation sets in
the third and fourth publication are not constant, but they depend on the solution. This
extension of decision robust efficiency is also mentioned as further research in the con-
clusions of the first publication. Nevertheless, the concepts of decision robust feasibility
and efficiency can be applied in this case. The main difference compared to decision
robust efficiency is that different perturbation sets cause case distinctions when deter-
mining the decision robust efficient solutions. The concept of decision robust feasibility
is also slightly altered in the application, where the second constraint is only required to
hold for the decision variable itself rather than for all of its realizations. This is because
the second constraint models a part of the application that is unaffected by decision
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uncertainty. The decision problem in the third and fourth publications can therefore
be considered as an application of the first publication’s minmax robustness concept.
Moreover, the first publication’s result on MOPs with monotonic objective functions is
used in one of the solution approaches that are given in the fourth publication. This
result is originally given for functions that are monotonic on the decision space and it
is then extended to functions that are piecewise monotonic. Hence, there are two links
between the first and the third and fourth publications: the minmax robustness concept
and the solution approach for the case of monotonic objective functions.

The third and fourth publication are naturally closely related because they both in-
vestigate the same decision problem from a practical and from a theoretical perspective.
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6. Conclusions

This thesis contributes different aspects to the research area of minmax robust multiob-
jective optimization: a minmax robustness concept for MOPs with decision uncertainty
is introduced and studied, it is also applied to a case study and a first definition for a
multiobjective robustness gap is given and investigated.

In the first publication, the multiobjective minmax robustness concept decision robust
effiency is introduced. This concept addresses decision uncertainty, whereas the majority
of publications in robust multiobjective optimization address parameter uncertainty.
The corresponding decision robust counterpart is a set optimization problem whose
objective function can either be chosen as the set of all outcomes of a solution or as the
supremal set thereof. The concept decision robust efficiency is related to existing single-
and multiobjective minmax robustness concepts in the literature. For three specific
problem classes, that is MOPs with linear, Lipschitz continuous or monotonic objective
functions, conditions that are necessary or sufficient for decision robust efficiency are
presented. These problem classes are of interest due to their properties that enable
specific solution approaches and due to their relevance in applications. Linear MOPs are
among the most studied problem classes in the discrete optimization literature, Lipschitz
continuous objective functions are frequently considered in the continuous optimization
literature and, in particular, an application of an MOP with decision and parameter
uncertainty and monotonic objective functions is studied in the fourth publication of
this thesis.

In the second publication, a first concept of a multiobjective robustness gap is pre-
sented. Even though there are various studies about minmax robust multiobjective
optimization, no multiobjective robustness gap has been proposed until now. For con-
vex MOPs, a lower and an upper bound for the gap are given and a sufficient condition
for the zero gap is provided that supplements a major result on the single objective gap.
A second and different condition for the zero robustness gap is provided for MOLPs
with decision uncertainty. Also, single objective problems are formulated that yield the
lower and upper bound for MOLPs. The presented multiobjective robustness gap is
defined for every minmax robustness concept whose robust counterpart is an MOP, such
as point-based robust efficiency, set-based robust efficiency in case of objective-wise un-
certainty, decision robust efficiency if the objective function is linear and all MOPs that
are affected by uncertainty only in the constraints.

In the third and fourth publications, the concept decision robust efficiency is applied
to a case study. Solution approaches to determine the decision robust efficient solutions
are developed and applied to calculate the solutions for the case study. The practical
results show that selecting decision robust efficient solutions rather than deterministic
efficient solutions is worth considering.
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6. Conclusions

The results of this thesis nevertheless point out various options for further research.
In the first publication, several necessary and sufficient conditions for decision robust
efficiency are presented that depend on specific properties of the objective functions.
Results for linear, Lipschitz continuous, and monotonic objective functions are shown
and it seems promising to investigate further classes of objective functions such as convex
ones. Moreover, decision uncertainty is modeled in the first publication by assuming
that each solution is affected by exactly the same perturbations set. Conversely, the
application in the third and fourth publications shows that perturbation sets that depend
on the solution are also worth studying. The concept of decision robust feasibility and
decision robust efficiency can equivalently be used for these individual perturbation
sets and solving the resulting robust counterpart is a topic that offers plenty of novel
opportunities and challenges.

The proposed multiobjective robustness gap is suitable for various multiobjective ro-
bustness concepts and it can be approximated by computing its lower and upper bounds.
However, the multiobjective robustness gap is only applicable to robust counterparts
that are MOPs and minmax robustness concepts with set-valued robust counterparts
require a different definition of a multiobjective robustness gap. Moreover, the proposed
robustness gap measures the distance between Pareto sets and to define a robust Pareto
set for set-valued robust counterparts is also a topic of future research.

As mentioned in the third publication of this thesis, uncertain decision problems
with environmental and economic objective functions have more applications than the
investigated case study in the plant nursery, for example in the area of food packaging.
The presented application of decision robust efficiency thus shows that applications of
this and other minmax robustness concepts are of interest from a theoretical and a
practical perspective.
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tion”. In: European Journal of Operational Research 252, pp. 418–431. url: http:
//dx.doi.org/10.1016/j.ejor.2016.01.015.

Kuroiwa, D. (1996). “Convexity for set-valued maps.” In: Appl. Math. Lett. 9.2, pp. 97–
101.

— (1998). “The natural criteria in set-valued optimization.” In: RIMS Kokyuroku 1031,
pp. 85–90.

57

http://dx.doi.org/10.1186/1687-1812-2014-83
http://www.fixedpointtheoryandapplications.com/content/2014/1/83
http://dx.doi.org/10.1016/j.ejor.2016.01.015
http://dx.doi.org/10.1016/j.ejor.2016.01.015


Bibliography

Kuroiwa, D. and G. M. Lee (2012). “On Robust Multiobjective Optimization”. In: Viet-
nam Journal of Mathematics 40.2&3, pp. 305–317.

Kutateladze, S. (1979). “Convex ε-programming”. In: Soviet Math Dokl 20.2, 391–393.
Lee, J. H. and G. M. Lee (2016). “On optimality conditions and duality theorems for

robust semi-infinite multiobjective optimization problems”. In: Annals of Operations
Research, pp. 1–20.

Lewis, A. S. (2002). Robust Regularization. Tech. rep. Available online at http://

people.orie.cornell.edu/aslewis/publications/2002.html. Cornell Univer-
sity, Ithaca, NY.

Lewis, A. S. and C. H. J. Pang (2009). “Lipschitz Behavior of the Robust Regulariza-
tion”. In: SIAM Journal on Control and Optimization 48.5, pp. 3080–3105.

Li, M. and S. Azarm (2008). “Multiobjective collaborative robust optimization with
interval uncertainty and interdisciplinary uncertainty propagation”. In: Journal of
mechanical design 130.8, p. 081402.
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Raith, A., M. Schmidt, A. Schöbel, and L. Thom (2017). Extensions of Labeling Al-
gorithms for Multi-objective Uncertain Shortest Path Problems. Tech. rep. 2017-

58

http://people.orie.cornell.edu/aslewis/publications/2002.html
http://people.orie.cornell.edu/aslewis/publications/2002.html


Bibliography

2. Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Georg-
August Universität Göttingen.

— (2018). “Multi-objective minmax robust combinatorial optimization with cardinality-
constrained uncertainty”. In: European Journal of Operational Research 267, pp. 628–
642. url: https://doi.org/10.1016/j.ejor.2017.12.018.

Rivaz, S. and M. A. Yaghoobi (2013). “Minimax regret solution to multiobjective linear
programming problems with interval objective functions coefficients”. In: Central
European Journal of Operations Research 21.3, pp. 625–649.

Rockafellar, R. T. (2015). Convex analysis. Princeton Landmarks in Mathematics and
Physics. Princeton university press.
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Abstract

In many real-world optimization problems, a solution cannot be realized in prac-
tice exactly as computed, e.g., it may be impossible to produce a board of exactly
3.546 mm width. Whenever computed solutions are not realized exactly but in a
perturbed way, we speak of decision uncertainty. We study decision uncertainty in
multiobjective optimization problems and we propose the concept of decision robust
efficiency for evaluating the robustness of a solution in this case. This solution con-
cept is defined by using the framework of set-valued maps. We prove that convexity
and continuity are preserved by the resulting set-valued maps. Moreover, we obtain
specific results for particular classes of objective functions that are relevant for solving
the set-valued problem. We furthermore prove that decision robust efficient solutions
can be found by solving a deterministic problem in case of linear objective functions.
We also investigate the relationship of the proposed concept to other concepts in the
literature.

1 Introduction

When applying mathematical optimization methods to real world problems, several diffi-
culties have to be considered. We study a class of problems where two specific difficulties
occur simultaneously. First, the problem can have several conflicting objectives, leading to
a multiobjective optimization problem. Second, a calculated solution may only be realized
within some accuracy instead of being put into practice exactly. Realizations of calculated
solutions have to be considered uncertain in this case. In the following, we refer to this
kind of uncertainty as decision uncertainty since the decision variables are the source of
uncertainty inside the problem. We distinguish decision uncertainty from parameter uncer-
tainty in optimization problems, where the values of parameters are not known at the time

∗Email address: Gabriele.Eichfelder@tu-ilmenau.de
†Corresponding author; Email address: ckrueger@math.uni-goettingen.de
‡Supported by DFG RTG 1703 “Resource Efficiency in Corporate Networks”
§Email address: schoebel@math.uni-goettingen.de

65



a problem is solved, see, e.g., [BTGN09] for parameter uncertainty in single-objective op-
timization and [EIS14], [FW14] or [GJLVP14] for parameter uncertainty in multiobjective
optimization.

In recent years, multiobjective optimization problems including parameter uncertainty
have been studied in various ways. In [KL12] and [GJLVP14], the authors consider for
each solution the vector consisting in each component of the worst case of the associated
objective in place of the uncertain objective. The authors of [EIS14] and [AB08] compare
solutions by the sets of their possible outcome vectors. Solutions that are effficient for all
realizations of uncertainty are studied, e.g., in [GLP13]. For a survey of different concepts
of robustness in the literature, we refer the reader to [IS16] and [WD16].

Single-objective optimization problems including decision uncertainty have been treated
with minmax robustness under different names. Common names are ”robust optimiza-
tion with implementation error“, see, e.g., [BTH11, BTN02, BNT07, BNT10a, BNT10b,
SdH08], or robust regularization, see [BS07, LP09]. Also [Das97, BN10] deal with deci-
sion uncertainty. Decision uncertainty in multiobjective optimization has been addressed
by evaluating the mean or integral of each objective over the set of possible values of a
solution, see, e.g. [DG06], or by sensitivity analysis, see, e.g., [BA06]. However, until now,
there exists no worst-case robustness approach for decision uncertainty in multiobjective
optimization.

In this work, we investigate decision uncertainty in multiobjective optimization with
a minmax robustness approach based on set-valued optimization, i.e., we define and an-
alyze a robust counterpart for this kind of problem and we present approaches to solve
it. The conceptual idea of the presented robustness concept, which we call decision robust
efficiency, is based on a minmax robustness approach to parameter uncertainty in multi-
objective optimization introduced by [EIS14]. However, exploiting the specific structure
arising in problems with decision uncertainty, we obtain results that are generally not valid
for problems with parameter uncertainty.

In the following paragraphs we sketch practical applications of multiobjective prob-
lems that are affected by decision uncertainty. Definitions from set-valued optimization
are recalled in Section 2. Following on that, the robustness concept of decision robust
efficiency is developed. In Section 3, the set-valued functions that correspond to decision
robust efficiency are investigated with respect to continuity and convexity properties. Sec-
tion 4 relates the presented robustness concept to approaches in the literature. Solution
approaches for problem classes with specific objective functions are studied in Section 5.

Applications

We present two real-world applications for multiobjective decision uncertainty. First, we
present an application in the Lorentz force velocimetry framework and second, we present
the Growing Media Mixing Problem for plant nurseries. Both applications can be modeled
as biobjective optimization problems with decision uncertainty.

A. Decision Uncertainty in Multiobjective Optimization
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Lorentz Force Velocimetry (LFV) Framework: The LFV is an electromagnetic
non-contact flow measurement technique for electrically conducting fluids. This is espe-
cially suited for corrosive or extremely hot fluids like glass melts or acidic mixtures which
can damage other measurement setups [DTE14]. The magnetic field of the permanent
magnets interacts with an electrically conducting fluid which moves through a channel, see
Figure 1. Eddy currents develop and the resulting secondary magnetic field acts on the

Figure 1: Illustration of a non-contact flow measurement system with 8 magnets.

magnet system. The Lorentz force breaks the fluid and an equal but opposite force deflects
the magnet system, which can be measured. Fluids with a small electrical conductivity
produce only very small Lorentz forces. Thus, a sensitive balance system is required for a
reliable measurement. This limits the weight of the external magnet system. Hence, we
obtain two conflicting goals: maximize the Lorentz force and minimize the magnetization.
As variables, the direction of the magnetization of each magnet and the magnetization
have to be optimized.

Figure 1 gives a simple arrangement of eight permanent magnets around a channel.
In practice an (optimally) chosen magnetic direction cannot be realized in the desired
accuracy, as magnets can only be produced with a guarantee of the magnetic directions
within some tolerance interval. Therefore, decision uncertainty has to be taken into account
here, in order to avoid solutions with practical realizations that are far from being efficient
in the worst case.

Growing Media Mixing Problem for a Plant Nursery: For each plant species, a
plant nursery that produces potted plants has to decide the type of planter pot and the
type of growing media to be used. First, possible types of planter pots are plastic pots
made from fossil ressources and bio-degradable planter pots. The former are cheaper, while
the latter are more eco-friendly. Second, the growing media can be chosen as a mixture of
peat and compost, where the feasible mixing ratio lies between 100% peat and 33% peat
plus 66% compost. The associated decision problem consists of determining one type of
planter pot and one mixing ratio for each plant species such that two objectives, i.e., costs
and global warming potential, are minimized.

However, a chosen mixing ratio can usually not be put into practice exactly. Workers in
plant nurseries are used to work rather fast than exactly and the different types of soil are
often mixed in a rough fashion only. Hence, the mixing ratio will vary in each planter pot.
Because the mixing ratio influences the quality of the raised plant and therefore its selling
price, decision uncertainty has to be taken into account in this biobjective optimization
problem. A detailed study of this problem can be found in [CKGS17].
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2 Decision Robust Efficiency

We consider the (deterministic) multiobjective optimization problem

(P) min
x∈Ω

f(x)

with feasible set Ω ⊆ Rn and objective function f : Ω→ Rk. We want to take into account
the fact that the decision variables in (P) are uncertain, i.e., they can not be realized
exactly as computed.

The practical realization of a solution x ∈ Rn is composed of x and a perturbation from
a fixed perturbation set Z ⊆ Rn, i.e., the realization of a solution x is an element of the set
{x} + Z = {x + z | z ∈ Z}. Because a solution might as well be put into practice exactly
as planned, we require 0 ∈ Z. Decision uncertainty in (P) is modeled by considering the
family of optimization problems

(
P(z) min

x+z∈Ω
f(x+ z), z ∈ Z

)
.

The goal is to find a solution x without knowing the value of the perturbation z. We want
to hedge against the worst case. Addressing decision uncertainty within the framework of
robust optimization, we define:

Definition 1. A point x ∈ Rn is called decision robust feasible for (P(z), z ∈ Z) if
{x+ z | z ∈ Z} ⊆ Ω, i.e., if all realizations of x are feasible solutions. We call

X := {x ∈ Rn | x+ z ∈ Ω for all z ∈ Z}

the set of decision robust feasible solutions.

Definition 1 takes a conservative point of view since x is required to be feasible for every
perturbation that may occur. This conceptual idea corresponds to strict robust feasibility
by [BTGN09] for single-objective robust optimization with parameter uncertainty and is
studied for multiobjective optimization with parameter uncertainty in [GJLVP14].

In the remainder of the paper, we make the following two assumptions:

• We assume Z ⊆ Rn is a compact set and 0 ∈ Z. Hence, X ⊆ Ω.

• We furthermore assume X 6= ∅.

For each decision robust feasible solution x ∈ X we define the image set of all realiza-
tions of x as

fZ(x) := {f(x+ z) | z ∈ Z}.
In order to develop a solution concept for (P(z), z ∈ Z), we recall solution concepts from
both, multiobjective optimization and set-valued optimization.

A. Decision Uncertainty in Multiobjective Optimization
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2.1 Approach using Ideas from Parameter Uncertainty

In the following, we write cl(·), int (·) and bd(·) for the closure, the interior and the
boundary of a set, respectively. Furthermore, we denote the open and closed ball of radius
ε > 0 for a given norm ‖·‖ on Rk around a point ȳ ∈ Rk as B(ȳ, ε) := {y ∈ Rk | ‖y−ȳ‖ < ε}
and B(ȳ, ε) := {y ∈ Rk | ‖y − ȳ‖ ≤ ε}.

Recall that a nonempty set K is called a cone if λk ∈ K for all λ ≥ 0 and all k ∈ K,
pointed if K ∩ (−K) = {0}, and solid if int (K) 6= ∅. A cone K is convex if and only if
K+K = K. It is well known that for a convex pointed coneK we haveK+int (K) = int (K)
as well as K\{0}+K = K\{0} and that the sets int (K) and K\{0} are also convex (see
for instance [Jah11]). A closed convex pointed and solid cone K ⊆ Rk defines a partial
order on Rk. We consider the following relations:

x [</≤/5] y ⇔ y − x ∈ [int(K)/K\{0}/K]

A possible choice for K ⊆ Rk is K = Rk
+ :=

{
y ∈ Rk | yi ≥ 0, ∀1 ≤ i ≤ k

}
. Then the

partial order introduced by K is also called the component-wise or natural order on Rk.
Given a closed, convex, pointed and solid coneK ⊆ Rk, the classical optimality concepts

for the deterministic multiobjective problem (P) are given in the following definition. We
remark that efficiency is often referred to as (Edgeworth-) Pareto minimality.

Definition 2. A solution x∗ ∈ Ω is called [weakly/·/strictly] efficient for (P) if there is
no x ∈ Ω \ {x∗} with the property f(x) ∈ {f(x∗)} − [int(K)/K\{0}/K].

For robust multiobjective optimization with parameter uncertainty, [EIS14] propose a
solution concept that generalizes Definition 2 in the following way: the outcome vector
f(x) in Definition 2 is replaced by the set of all possible outcomes for all scenarios. Cor-
respondingly, for robust multiobjective optimization with decision uncertainty, we replace
the outcome vector f(x) in Definition 2 by the outcome set fZ(x) to obtain the solution
concept decision robust efficiency in the following definition.

Definition 3. A solution x∗ ∈ X is called a decision robust [weakly/·/strictly] efficient
solution of (P(z), z ∈ Z), if there is no x ∈ X\{x∗} with the property

fZ(x) ⊆ fZ(x∗)− [int(K)/K\{0}/K]. (1)

In Section 2.2 we motivate that Definition 3 indeed makes sense for handling decision
uncertainty. We do this by showing that the set of decision robust efficient solutions of
(P(z), z ∈ Z) equals the set of optimal solutions of a deterministic set-valued optimization
problem.

2.2 Approach using Set-Valued Optimization

Considering the image set of all realizations fZ(x) for all x ∈ X defines a set-valued
map fZ : X ⇒ Rk. We define the Robust Counterpart (RC) of the decision uncertain
multiobjective problem (P(z), z ∈ Z) as the set-valued optimization problem

(RC) min
x∈X

fZ(x).
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Next, we see that the decision robust efficient solutions of (P(z), z ∈ Z) are exactly the op-
timal solutions to the set-valued problem (RC). In set-valued optimization, i.e., in optimiza-
tion with a set-valued objective function, the so called set approach [EJ12, HJ11, Kur98]
uses order relations to compare the sets that are the images of the objective function. One
widely used order relation is the u-type less order relation 4K , see [HJ11, Def. 3.2], which
is defined for arbitrary nonempty sets A,B ⊆ Rk by

A 4K B :⇔ A ⊆ B −K. (2)

The order relation 4K is a reflexive and transitive binary relation. It can also be written
in the following form:

A 4K B ⇔ (∀a ∈ A ∃b ∈ B : a 5 b). (3)

If we replace K by K\{0} or int (K) in (2), and thus 5 by ≤ or by < in (3), we analogously
obtain the set relations 4K\{0} and 4int(K) . However, these are no longer reflexive.

In order to specify optimal solutions of the set-valued optimization problem (RC), we
make use of the following definition, see, e.g., [RMS07].

Definition 4. Let a nonempty set X ⊆ Rn and a set-valued map H : X ⇒ Rk be given
with H(x) 6= ∅ for all x ∈ X. The element x∗ ∈ X is called strictly optimal solution of the
set-valued optimization problem

min
x∈X

H(x)

w.r.t. 4, where 4∈ {4K ,4int(K),4K\{0}}, if there exists no x ∈ X\{x∗} with H(x) 4
H(x∗).

Using the set relation (2) we can replace

fZ(x) ⊆ fZ(x∗)− [int(K)/K\{0}/K]

in (1) by
fZ(x) [4int(K) /4K\{0} /4K ] fZ(x∗)

as done similarly in [IKK+14] for multi-objective parameter uncertainty. Consequently, we
receive equivalence of the optimal solutions to (RC) using Definition 4 and decision robust
efficient solutions according to Definition 3.

Theorem 5. A point x∗ ∈ X is a decision robust [weakly/·/strictly] efficient solution
of (P(z), z ∈ Z) if and only if x∗ ∈ X is a strictly optimal solution of the set-valued
optimization problem (RC) w.r.t. [4int(K) /4K\{0} /4K ].

It is known from multiobjective optimization with parameter uncertainty that efficient
solutions to the unperturbed deterministic problem are not necessarily robust efficient, see,
e.g., [FW14, p. 431]. The following example shows that this is also true for multiobjective
optimization with decision uncertainty.

A. Decision Uncertainty in Multiobjective Optimization
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Example 1. Let

(P) min
x∈Ω

(
x21
−x2

)

and

(P(z), z ∈ Z) =

(
min
x+z∈Ω

(
(x1+z1)2

−x2−z2

)
, z ∈ Z

)
,

where

Ω = conv
{

( −0.6
0 ) , ( −0.6

1 ) , ( 1
1 ) , ( 1

0 ) , ( 0.7
−0.3 ) ,

( −0.3
−0.3

)}

and Z = conv
({

( −0.6
0 ) , ( 0

0 ) ,
( −0.3
−0.3

)})
.

Consequently, we obtain X = [0, 1]2 as the set of decision robust feasible solutions. The
feasible set Ω and the decision robust feasible set X are visualized in Figure 2.

x1

x2

-1 1 2
-1

1

2
Ω

x1

x2

-0.5 0.5

-1

1

2

Z

{x1}+ Z{x0}+ Z

x1

x2

-1 1 2
-1

1

2
X

Figure 2: Illustration of the sets Ω and X in Example 1.

Furthermore, let K = R2
+. We obtain

(RC) min
x∈X

fZ(x) where fZ(x) =
{(

(x1+z1)2

−x2−z2

)
, z ∈ Z

}
.

Consider x0 := ( 0.3
1 ) and x1 := ( 0

1 ) . In this example:

• The solution x1 is efficient for (P), but not decision robust efficient for (P(z), z ∈ Z).

• The solution x0 is decision robust efficient for (P(z), z ∈ Z), but not efficient for
(P).

One can check that there exists no x ∈ Ω with f(x) ∈ {f(x1)} − R2
+\{0}. Hence, x1 is

efficient for the deterministic problem. In particular,

f(x1) = ( 0
−1 ) ≤ ( 0.09

−1 ) = f(x0).

Consequently, x0 is not efficient for the deterministic problem. Looking at the set fZ(x) for
each x ∈ X, one can check that there is no x ∈ X\{x0} with fZ(x) ⊆ fZ(x0)−R2

+\{0} and
x0 is decision robust efficient according to Definition 3. In particular, it holds fZ(x0) ⊆
fZ(x1)−R2

+\{0} as illustrated in Figure 3. Hence, x1 is not decision robust efficient even
though being efficient for the deterministic problem.
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Figure 3: Illustration of the set fZ(x0) and the set fZ(x1) of Example 1.

2.3 Approach using Supremal Sets

In minmax robust optimization, solutions are determined that perform best in the objective
function when evaluated together with worst-case realizations of uncertainty. In view of
that, we investigate suprema of the sets fZ(x) for x ∈ X. We show that minimizing the
supremal sets of the sets fZ is equivalent to solving (RC).

We use a concept for the supremum of a set that is defined and studied thoroughly in
[Nie80] and [Löh11].

Definition 6. For a bounded nonempty subset A ( Rk the supremal set of A is defined as

Sup(A) = {y ∈ cl(A−K) | ({y}+ int (K)) ∩ cl (A−K) = ∅}.

According to [Löh11, Cor. 1.48, Cor. 1.49], for a bounded nonempty subset A ( Rk it
holds

Sup(A) = bd (Sup(A)−K). (4)

For an illustration of a supremal set, we refer to the right hand picture of Figure 3.
The boundary of the set fZ(x1)−R2

+\{0} (including the dashed and solid lines) is exactly
the supremal set of fZ(x1) in Example 1.

Following Definition 6, we formulate another set-valued optimization problem

min
x∈X

fSup(x) with fSup : X ⇒ Rk, x 7→ Sup (fZ(x)). (5)

In general set-valued optimization problems, the image set of the objective function,
such as fSup(x) in (5), is assumed to be nonempty. To this end, we additionally assume f
to be continuous in the remainder of the section.

Remark 1. Due to our assumptions, the perturbation set Z is nonempty and compact and
f : Ω→ Rk is continuous. Hence, fZ(x) is compact and nonempty for all x ∈ X ⊆ Ω and

fZ(x)−K = cl (fZ(x)−K) 6∈ {Rk, ∅}.

According to Corollary 1.44 in [Löh11], this directly implies

fSup(x) = Sup(fZ(x)) 6= ∅.

A. Decision Uncertainty in Multiobjective Optimization
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The following lemma is fundamental for our main result which relates the solutions of
(5) to the solutions of (RC) and the decision robust [weakly/·/strictly] efficient solutions
of (P(z), z ∈ Z).

Lemma 7. Let A,B ( Rk be compact sets. Then

A− [int(K)/K\{0}/K] = Sup (A)− [int(K)/K\{0}/K]

and thus for any 4∈ {4K ,4int(K),4K\{0}} it holds

A 4 B ⇔ Sup (A) 4 Sup (B).

Proof. In [Löh11, Chapter 1] it was shown that Sup (A)−int (K) = cl(A−K)−int (K). As
A is compact and K is closed we have cl(A−K) = A−K and we get Sup (A)− int (K) =
A− int (K). Next we show

A−K = Sup (A)−K. (6)

By [Löh11, p.24 Cor. 1.48 (ix)] we have cl (A−K) = Sup (A) ∪ (Sup (A)− int (K)). And
thus

A−K = cl (A−K) = Sup (A) ∪ (Sup (A)− int (K)) ⊆ Sup (A)−K.
By the definition of the supremal set and the compactness of A we also have Sup (A)−K ⊆
cl (A−K)−K = A−K and we have shown (6). Finally we get from (6)

A−K\{0} = A−K −K\{0} = Sup (A)−K −K\{0} = Sup (A)−K\{0}.

Due to Relation (2) we obtain the last assertion:

A ⊆ B − [int(K)/K\{0}/K] ⇔ A−K ⊆ B − [int(K)/K\{0}/K]
⇔ Sup (A)−K ⊆ Sup (B)− [int(K)/K\{0}/K]
⇔ Sup (A) ⊆ Sup (B)− [int(K)/K\{0}/K].

Due to Z being compact, the set fZ(x) is compact for a continuous objective function
f and for each x ∈ X.
Corollary 8. Let f be continuous. Then it holds for all x, x′ ∈ X and 4∈ {4K ,4int(K),4K\{0}}

fZ(x) 4 fZ(x′) if and only if Sup (fZ(x)) 4 Sup (fZ(x′)),

i.e., the set-valued optimization problems (RC) and (5) are equivalent in the sense that the
sets of strictly optimal solutions w.r.t. [4int(K) /4K\{0} /4K ] are the same.

Using Theorem 5 and Corollary 8 we directly obtain our main result of this section.

Theorem 9. Let f be continuous. A point x∗ ∈ X is a decision robust [weakly/·/strictly]
efficient solution of (P(z), z ∈ Z) if and only if x∗ ∈ X is a strictly optimal solution for
the set-valued optimization problem (5) w.r.t. [4int(K) /4K\{0} /4K ].
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3 Properties of the Set-Valued Functions fZ(·) and

Sup(fZ(·))
We prove that convexity of the vector-valued function f implies convexity of the set-valued
map fZ . Furthermore, we prove that continuity of the vector-valued function f leads to
lower and upper semicontinuity of the set-valued map fZ , which maps a point to the image
set of all of its realizations. Also, if f is continuous, the set-valued map fSup, which maps
every solution x ∈ X to the supremal set of the set fZ(x), is lower semicontinuous.

3.1 Convexity

We start by recalling the definition of a K-convex single-valued and a K-convex set-valued
map for a convex cone K. See here, e.g., [Kur96, Def. 2.1],[AF90, Lemma 2.1.2] as well as
[BP03] and the references therein.

Definition 10. Let Y ⊆ Rn be a convex set. A map f : Y → Rk is called K-convex, if for
all x1, x2 ∈ Y and λ ∈ [0, 1] it holds that λf(x1)+(1−λ)f(x2) ∈ {f(λx1 +(1−λ)x2)}+K.

Definition 11. Let Y ⊆ Rn be a convex set. A set-valued map H : Y ⇒ Rk is called
K-convex, if for all x1, x2 ∈ Y and λ ∈ [0, 1] it holds that λH(x1) + (1 − λ)H(x2) ⊆
H(λx1 + (1− λ)x2) +K.

K-convexity plays an important role for many tools used in set optimization such as
subdifferentials, derivatives and optimality conditions. Under convexity assumptions in Ω,
Z and f we obtain cone-convexity of our set-valued objective map.

Proposition 12. Let Ω and Z be convex. Then, X is a convex set. If, in addition,
f : Ω → Rk is a K-convex single-valued map, then fZ : X ⇒ Rk is a K-convex set-valued
map.

Proof. For fixed z ∈ Z, the set {x ∈ Rn | x + z ∈ Ω} is convex. Hence, X =
⋂
z∈Z{x ∈

Rn | x+ z ∈ Ω} is convex as an intersection of convex sets.
Let a ∈ fZ(x1) and b ∈ fZ(x2) be arbitrarily chosen. Then there exist z1, z2 ∈ Z with

a = f(x1 +z1) and b = f(x2 +z2). With x := λx1 +(1−λ)x2 and z := λ z1 +(1−λ) z2 ∈ Z
we obtain

λ a+ (1− λ) b = λ f(x1 + z1) + (1− λ) f(x2 + z2)
∈ {f(λ (x1 + z1) + (1− λ) (x2 + z2))}+K
= {f(x+ z)}+K
⊆ fZ(x) +K.

Note that Sup(fZ(·)) is not a K-convex map and that, in contrast to K-convexity,
linearity of a function f : Ω→ Rk does not necessarily lead to linearity in the corresponding
set-valued function fZ : X ⇒ Rk.

A. Decision Uncertainty in Multiobjective Optimization
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3.2 Semicontinuity

(Semi)continuity is a very important property in optimization as it is a basic assumption
for a large class of algorithms such as decent methods (see, e.g., [Jah15]). Hence, we
investigate semicontinuity as a first basic property of the new problem on multiobjective
decision uncertainty. We use here the standard definition as provided in Definition 3.1.1
in [KTZ15], see also [AF90, Section 1.4].

We prove that, if f is continuous everywhere, the set-valued functions fZ and Sup(fZ(·))
inherit continuity properties. We show that continuity of f leads to semicontinuity of fZ .
Moreover, Sup(fZ(·)) is lower but not necessarily upper semicontinuous if f is continuous.

Throughout this section, we consider the feasible set Ω ⊆ Rn as a metric space. Ω is
equipped with the metric derived from an arbitrary norm ‖ · ‖ on Rn. Hence, we can use
the following definition of [AF90, Section 1.4] to define semicontinuity on subsets of Rn,
such as Ω.

Definition 13. Let S be a metric space and let H : S ⇒ Rk be a set-valued map.

(a) H is called lower semicontinuous at x0 ∈ S, if for all open sets V ⊆ Rk with H(x0)∩
V 6= ∅ there is a neighborhood U of x0 such that H(x) ∩ V 6= ∅ for all x ∈ U . H is
lower semicontinuous if it is lower semicontinuous at any x0 ∈ S.

(b) H is called upper semicontinuous at x0 ∈ S if for all open sets V ⊆ Rk with H(x0) ⊆
V there is a neighborhood U of x0 such that H(x) ⊆ V for all x ∈ U . H is upper
semicontinuous if it is upper semicontinuous at any x0 ∈ S.

An equivalent definition can be found in [KTZ15] under the name of lower and upper
continuity. For a survey of the different and related notions for upper and lower semicon-
tinuity used in the literature, we refer to [DD79].

If the function f is not continuous everywhere, the set-valued map fZ might be neither
lower nor upper semicontinuous. By a similar example, it is also easy to see that the
set-valued map fZ does not need to be upper semicontinuous if f is continuous everywhere
except at one point.

Example 2. Let f : R→ R be defined by

f(x) =

{
0 if x ≥ −1,
1 else

and Z := [−1, 1]. Then

fZ(x) =




{0} if x ≥ 0,
{0, 1} if − 2 ≤ x < 0,
{1} if x < −2.

Let x0 = 0 and V = (−0.5, 0.5). Then fZ(x0) ⊆ V but there is no neighborhood U of x0

such that fZ(x) ⊂ V for all x ∈ U . However, fZ is lower semicontinuous at x0.
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Next, we show that fZ is both upper and lower semicontinuous if f is continuous.

Proposition 14. Let f : Ω → Rk be continuous. Then fZ : X ⇒ Rk is lower semicontin-
uous.

Proof. Let x0 ∈ X and let V ⊆ Rk be an arbitrary open set such that fZ(x0)∩V 6= ∅. Then
there exists z ∈ Z such that f(x0 + z) ∈ V . As V is an open set, there exists ε > 0 such
that B(f(x0 + z), ε) ⊆ V. Because f is continuous in x0 + z, there exists δ > 0 such that
‖f(x0 + z)− f(w)‖ < ε for all w ∈ Ω with ‖x0 + z −w‖ < δ. We define the neighborhood
U(x0) = {x ∈ X | ‖x − x0‖ < δ} of x0 in X. Then we have for all x ∈ U(x0) an element
w := x+ z ∈ {x}+ Z and

‖x0 + z − w‖ = ‖x− x0‖ < δ.

Hence, f(x+ z) = f(w) ∈ B(f(x0 + z), ε) ⊆ V and fZ(x) ∩ V 6= ∅.

Proposition 15. Let f : Ω → Rk be continuous. Then fZ : X ⇒ Rk is upper semicontin-
uous.

Proof. Let x0 ∈ X be given and let V ⊆ Rk be open such that fZ(x0) ⊆ V. Because f
is continuous, the inverse image W := {y ∈ Ω | f(y) ∈ V } is open in Ω. If W = Ω, we
immediately obtain {x}+ Z ⊆ W and fZ(x) ⊆ V for all x ∈ X and our claim is true.

Otherwise, A := Ω\W is nonempty and closed in the metric space Ω and disjoint
from the compact set {x0} + Z ⊆ W. Consequently, there exists δ > 0 such that for all
y ∈ {x0}+ Z and a ∈ A

‖y − a‖ > δ.

Thus, ⋃

z∈Z
B(x0 + z, δ) ⊆ W.

We define the neighborhood U := B(x0, δ) ⊆ X. For all x ∈ U and z ∈ Z we have
‖x+ z − (x0 + z)‖ = ‖x− x0‖ < δ and

{x}+ Z ⊆
⋃

z∈Z
B(x0 + z, δ) ⊆ W,

where B(x0 + z, δ) denotes an open ball in the metric space Ω for all z ∈ Z. Hence, for all
x ∈ U

fZ(x) ⊆ {f(w) | w ∈ W} ⊆ V.

As we have seen in Theorem 9, determining whether a decision robust feasible solution
is decision robust efficient is equivalent to a comparison of supremal sets. Thus, we continue
by examining semicontinuity properties of the set-valued function

fSup : X ⇒ Rk, x 7→ Sup(fZ(x))

A. Decision Uncertainty in Multiobjective Optimization
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that was already introduced as (5) in Section 2.3.
The following lemma serves as a preparation for proving the lower semicontinuity of

the function fSup in Proposition 17.

Lemma 16. Let ε > 0, and let a ∈ int (K) with ‖a‖ < ε. Then

T = B(0, ε) ∩ ({a} − int (K)) ∩ ({−a}+ int (K))

(a) is convex and open,

(b) B(0, ε̃) ⊆ T ⊆ B(0, ε) for some 0 < ε̃ < ε,

(c) T is symmetric, i.e. T = −T.

(d) For all s, u ∈ Rk it holds

{s}+ T ⊆ {u} − int (K) ⇔ {u}+ T ⊆ {s}+ int (K).

(e) a ∈ cl (T ).

Proof. The set T is convex and open as an intersection of three convex and open sets,
hence (a) holds. Furthermore, T ⊆ B(0, ε). To see the second part of (b), note that 0 ∈ T
because 0 ∈ B(0, ε), 0 = a− a ∈ {a} − int (K) and 0 = −a+ a ∈ {−a}+ int (K). Because
T is open, there exists ε̃ > 0 such that B(0, ε̃) ⊆ T.

Next, (c) results from B(0, ε) = −B(0, ε) and from {a}− int (K) = − ({−a}+ int (K)),
and (d) is a direct consequence of (c). Finally, for (e), note that a ∈ int (B(0, ε)) and that
a ∈ int ({−a}+ int (K)) since a = −a+2 ·a and a ∈ int (K). Because a is in the interior of
both sets, every sequence that is convergent to a has a subsequence that converges to a in
B(0, ε)∩ ({−a}+ int (K)) . Furthermore, a ∈ cl ({a} − int (K)) and the result follows.

Proposition 17. Let f : Ω→ Rk be continuous. Then fSup : X ⇒ Rk with x 7→ Sup(fZ(x))
is lower semicontinuous.

Proof. Let x0 ∈ X and let V ⊆ Rk be an open set such that Sup(fZ(x0))∩ V 6= ∅. Choose
s ∈ Sup(fZ(x0)) ∩ V 6= ∅. Due to Lemma 7 we have for all x ∈ X

fZ(x)−K = Sup(fZ(x))−K. (7)

Consequently, there exist z ∈ Z and k ∈ K such that s := f(x0 + z) − k. Furthermore,
there exists ε > 0 such that {s}+B(0, ε) ⊆ V.

Additionally, there exists a convex neighborhood T of 0 ∈ Rk that satisfies the prop-
erties of Lemma 16. In accordance with Property (a) of Lemma 16, let a ∈ Rk such
that

T = B(0, ε) ∩ ({a} − int (K)) ∩ ({−a}+ int (K)) . (8)
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According to Property (b) of Lemma 16, {s}+ T is a convex neighborhood of s satisfying
{s} + B(0, ε̃) ⊆ {s} + T ⊆ {s} + B(0, ε) ⊆ V . Because f is continuous, there exists for
ε̃ > 0 some δ0 > 0 such that

f(y) ∈ {f(x0 + z)}+ T for all y ∈ Ω with ‖y − (x0 + z)‖ < δ0. (9)

Furthermore, fZ is upper semicontinuous in x0 due to Proposition 15. Consequently, there
exists δ1 > 0 such that fZ(x) ⊆ fZ(x0) + T for all x ∈ X with ‖x − x0‖ < δ1. We define
δ := min{δ0, δ1}. The set U := {x ∈ X | ‖x− x0‖ < δ} is a neighborhood of x0 in X with
respect to the subset topology inherited from Rn.

Assume that there exists x ∈ U such that

Sup(fZ(x)) ∩ ({s}+ T ) = ∅. (10)

Next, we show that this assumption leads to

{s}+ T ⊆ Sup(fZ(x))−K. (11)

We have ‖x+ z − (x0 + z)‖ < δ ≤ δ0, hence, using (9) and the definition of s, we get

f(x+ z)− k ∈ {s}+ T.

Together with (7), we obtain

f(x+ z)− k ∈ ({s}+ T ) ∩ (fZ(x)−K) = ({s}+ T ) ∩ (Sup(fZ(x))−K) . (12)

By our Assumption (10), f(x+ z)− k 6∈ Sup(fZ(x)). Next, we assume that (11) does not
hold. Then, there exists t ∈ T such that s+ t 6∈ Sup(fZ(x))−K. Due to (12) and because
of {s}+ T being convex due to Lemma 16, there exists w ∈ conv{f(x+ z)− k, s+ t} such
that, using (4),

w ∈ bd (Sup(fZ(x))−K) ∩ ({s}+ T ) = Sup(fZ(x)) ∩ ({s}+ T )

in contradiction to Assumption (10). Hence, (11) holds and by using (7) and Remark 1 we
obtain

cl ({s}+ T ) ⊆ cl (Sup(fZ(x))−K) = cl (fZ(x)−K) = fZ(x)−K.
By Property (e) in Lemma 16 we get

s+ a ∈ cl ({s}+ T ) ⊆ fZ(x)−K.

Therefore, there exists z̃ ∈ Z such that s+ a ∈ {f(x+ z̃)} −K. Consequently, due to (8),

{s}+ T ⊆ {s+ a} − int (K) ⊆ {f(x+ z̃)} − int (K).

According to Property (d) in Lemma 16 this is equivalent to

{f(x+ z̃)}+ T ⊆ {s}+ int (K).

A. Decision Uncertainty in Multiobjective Optimization
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Because of ‖x− x0‖ < δ ≤ δ1, there exists z0 ∈ Z such that f(x0 + z0) ∈ {f(x+ z̃)}+ T.
As a consequence, we finally obtain

f(x0 + z0) ∈ {f(x+ z̃)}+ T ⊆ {s}+ int (K)

in contradiction to s ∈ Sup(fZ(x0)). Thus, (10) does not hold and we have for all x ∈ U

∅ 6= Sup(fZ(x)) ∩ ({s}+ T ) ⊆ Sup(fZ(x)) ∩ ({s}+B(0, ε)) ⊆ Sup(fZ(x)) ∩ V.

While the set-valued function fSup(·) = Sup(fZ(·)) is lower semicontinuous, it is not
upper semicontinuous as the following counterexample shows.

Example 3. Let Ω = [−1, 1]2, Z = {0}, K = R2
+ and f = id: R2 → R2, x 7→ x. Then

X = Ω and we have for all x ∈ X

Sup(fZ(x)) = {x} − bd(R2
+).

The set

V :=
{
z ∈ R2 | z1 ≤ 0

}
∪
{
z ∈ R2 | z1 > 0, z2 > −

1

z1

}

is a neighborhood of Sup(fZ(x0)) with x0 = (0, 0)>. We show that for each δ > 0 there
exists x ∈ X with ‖x0−x‖∞ < δ and with Sup(fZ(x)) 6⊆ V . Choose an arbitrary δ > 0 with
δ < 2. Then x′ := δ

2
(1, 0)> ∈ X satisfies ‖x0 − x′‖∞ < δ. We have w := (δ/2,−4/δ)> ∈

Sup(fZ(x′)) but due to

w2 = −4

δ
≤ −2

δ
= − 1

w1

it holds w 6∈ V . Because δ > 0 can be chosen arbitrarily small, we see that Sup(fZ(·)) is
not upper semicontinuous.

The results on the semicontinuity of the functions considered in this section are sum-
marized in the following table. For continuous objective functions f we have:

fZ(·) Sup(fZ(·))
lower semicontinuous 3 3

upper semicontinuous 3 7

Even though Sup(fZ(·)) is not upper semicontinuous, we finally show that Sup(fZ(x0))
and Sup(fZ(x)) are arbitrary close for x0, x ∈ X with ‖x0−x‖ < δ if we chose δ > 0 small
enough.

Theorem 18. Let f : Ω→ Rk be continuous. Then for each x0 ∈ X and ε > 0 there exists
δ > 0 such that

Sup(fZ(x)) ⊆ Sup(fZ(x0)) +B(0, ε)

for all x ∈ X with ‖x0 − x‖ < δ.
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Proof. Let x0 ∈ X and let ε > 0. Let a ∈ int (K) such that ‖a‖ < ε and define

T = B(0, ε) ∩ ({a} − int (K)) ∩ ({−a}+ int (K)) (13)

as in Lemma 16.
According to Property (b) of Lemma 16, for every v ∈ Rk the set {v} + T is a convex

neighborhood of v satisfying {v}+ T ⊆ B(v, ε).
Because fZ(x0) is compact in Rk and

⋃
z∈Z{f(x0 + z)}+ 1

2
T is an open cover of fZ(x0),

there exists a finite subcover

fZ(x0) ⊆
⋃

z̃∈Z̃

{f(x0 + z̃)}+
1

2
T,

which will be indexed by Z̃ ⊆ Z with |Z̃| <∞. Furthermore, there exists δ1 > 0 such that

fZ(x) ⊆
⋃

z̃∈Z̃

{f(x0 + z̃)}+
1

2
T (14)

for all x ∈ X with ‖x−x0‖ < δ1 because fZ is upper semicontinuous due to Proposition 15.
Because f is continuous on Ω, there exists δ(z̃) > 0 for each z̃ ∈ Z̃ such that

f(y) ∈ {f(x0 + z̃)}+
1

2
T for all y ∈ Ω with ‖y − (x0 + z̃)‖ < δ(z̃). (15)

Let δ2 = min{δ(z̃) | z̃ ∈ Z̃} and define δ := min{δ1, δ2}.
We hence have that f(x+ z̃) ∈ {f(x0 + z̃)}+ 1

2
T for all x ∈ X with ‖x0 − x‖ < δ ≤ δ2

and all z̃ ∈ Z̃. Consequently, f(x0 + z̃) ∈ {f(x + z̃)} − 1
2
T and, because of the symmetry

of T according to Property (c) in Lemma 16,

f(x0 + z̃) ∈ {f(x+ z̃)}+
1

2
T. (16)

Additionally, for each z ∈ Z there exists z̃ ∈ Z̃ such that

f(x0 + z) ∈ {f(x0 + z̃)}+
1

2
T

because our finite subcover is indexed by Z̃. Together with Relation (16) we see that for
each x ∈ X with ‖x0 − x‖ < δ and z ∈ Z there exists z̃ ∈ Z̃ such that

f(x0 + z) ∈ {f(x0 + z̃)}+
1

2
T ⊆ ({f(x+ z̃)}+

1

2
T ) +

1

2
T = {f(x+ z̃)}+ T

because T is convex. Hence, using again the symmetry of T, we obtain for each z ∈ Z the
existence of some z̃ ∈ Z̃ such that

f(x+ z̃) ∈ {f(x0 + z)}+ T. (17)

A. Decision Uncertainty in Multiobjective Optimization
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In order to prove Theorem 18, we assume on the contrary that there exists x ∈ X with
‖x0 − x‖ < δ such that

Sup(fZ(x)) 6⊆ Sup(fZ(x0)) + T. (18)

Then there exists y ∈ Sup(fZ(x)) such that y 6∈ Sup(fZ(x0))+T and, due to the symmetry
of T,

({y}+ T ) ∩ Sup(fZ(x0)) = ∅. (19)

Recall from Lemma 7 that for all x′ ∈ X

fZ(x′)−K = Sup(fZ(x′))−K. (20)

From (20) we know that there exist z ∈ Z and k ∈ K such that

y = f(x+ z)− k. (21)

Next, we show that Assumption (19) leads to

{y}+ T ⊆ Sup(fZ(x0))−K. (22)

We have ‖x − x0‖ < δ ≤ δ1. Due to (14) together with the symmetry of T, there exists
z̃ ∈ Z̃ such that f(x0 + z̃) ∈ {f(x+ z)}+ 1

2
T ⊆ {f(x+ z)}+ T, because T is convex and

0 ∈ T. Hence, we get from (21)

f(x0 + z̃)− k ∈ ({y}+ T ) ∩
(
Sup(fZ(x0))−K

)
. (23)

By Assumption (19), f(x0 + z̃)− k 6∈ Sup(fZ(x0)).
We assume that (22) does not hold. Then, there exists t ∈ T such that y + t 6∈

Sup(fZ(x0))−K. Because {y}+ T is convex and due to (23), there exists

w ∈ conv{f(x0 + z̃)− k, y + t} ⊆ {y}+ T

such that, using (4),

w ∈ bd
(
Sup(fZ(x0))−K

)
∩ ({y}+ T ) = Sup(fZ(x0)) ∩ ({y}+ T )

in contradiction to (19). Hence, (22) holds and by using (20) we obtain

cl ({y}+ T ) ⊆ cl
(
Sup(fZ(x0))−K

)
= cl

(
fZ(x0)−K

)
.

By Property (e) in Lemma 16 and Remark 1 we get

y + a ∈ cl ({y}+ T ) ⊆ cl
(
fZ(x0)−K

)
= fZ(x0)−K.

Hence, there exists z′ ∈ Z such that y + a ∈ {f(x0 + z′)} −K. Then, due to (13), it holds

{y}+ T ⊆ {y + a} − int (K) ⊆ {f(x0 + z′)} − int (K).
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According to Property (d) in Lemma 16 this is equivalent to

{f(x0 + z′)}+ T ⊆ {y}+ int (K).

Due to (17), there exists z̃ ∈ Z such that f(x + z̃) ∈ {f(x0 + z′)} + T. As a consequence,
we finally obtain

f(x+ z̃) ∈ {f(x0 + z′)}+ T ⊆ {y}+ int (K)

in contradiction to y ∈ Sup(fZ(x)). Thus, (18) does not hold and we have

Sup(fZ(x)) ⊆ Sup(fZ(x0)) + T ⊆ Sup(fZ(x0)) +B(0, ε).

4 Relationship to Robustness Concepts in the Liter-

ature

This section compares decision robust efficiency to two types of robustness concepts in the
literature. First, a minmax robust counterpart for decision uncertainty in single objective
optimization is investigated. We show that decision robust efficiency can be considered as
a general approach to decision uncertainty because it reduces to a scalar-valued decision
robustness concept when applied to single objective problems. Secondly, we investigate
a robustness concept for parameter uncertainty in multiobjective optimization. We show
that decision robust efficiency can be considered a special case of the presented concept
if the corresponding multiobjective problem with decision uncertainty is reformulated ac-
cordingly.

4.1 Relationship to Minmax Robustness for Decision Uncertainty
in Single-Objective Optimization

Single-objective optimization with decision uncertainty has been studied for years in the
areas robust optimization and robust optimal control, see [BS07] for a survey.

In single-objective robust optimization, the function f : Rn → R is replaced by the map

x 7→ f̄(x) := sup
z∈Z

f(x+ z),

leading to the single-objective minmax robust counterpart

(RCso) min
x∈X

f̄(x).

The map f̄ is studied in more detail under the name robust regularization in [Lew02] and
[LP09]. For special cases of perturbation sets, the problem (RCso) has been studied under
the name ”robust optimization with implementation error“, see, e.g., [BTH11, BNT07,
BNT10a, SdH08].
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The definition of the robust regularization f̄ is given under the assumption that for all
x ∈ X the supremum satisfies supz∈Z f(x+ z) <∞ and hence f̄ : X → R.

In the literature on single-objective optimization with decision uncertainty, Z is widely
defined as a convex compact neighborhood of 0. However, we only require 0 ∈ Z and Z
compact. Proposition 19 shows that fSup, which is studied in Section 2.3, reduces to f̄ in
single-objective problems. Hence, the set of decision robust efficient solutions corresponds
exactly to the minimizers of (RCso) if k = 1 and K = R+. Our definition of decision robust
efficiency can hence be considered as a generalization of the single-objective framework.

Proposition 19. Let f : Ω → R be continuous and let K = R+. Then we have for all
x∗ ∈ X

(i) fSup(x∗) = {f̄(x∗)} = {supz∈Z f(x∗ + z)},

(ii) x∗ is decision robust [weakly/·/strictly] efficient in the sense of Definition 3 if and
only if x∗ is [an/an/the unique] optimal solution of (RCso).

Proof. We consider dimension k = 1, hence int (R+) = R+\{0} and decision robust effi-
ciency coincides with decision robust weak efficiency. The maximum maxz∈Z f(x∗ + z) =
f̄(x∗) exists because f is continuous and Z is compact. Consequently, for all x∗ ∈ X it
holds according to Definition 6

fSup(x) = {y ∈ cl (fZ(x)− R+) | ∀y′ > y : y′ 6∈ cl (fZ(x)− R+)}
= {supz∈Z f(x+ z)} = {maxz∈Z f(x+ z)}.

Applying Theorem 9, we therefore obtain that x∗ is decision robust [weakly/·/strictly]
efficient if and only if maxz∈Z f(x + z)[≥ / ≥ / >] maxz∈Z f(x∗ + z) for all x ∈ X\{x∗},
i.e., if and only if x∗ is [an/an/the unique] optimal solution of (RCso).

Remark 2. Result (i) in Proposition 19 also holds if f is not continuous, but (ii) is less
strong in that case. If f is not continuous, it is straightforward to prove for all x∗ ∈ X:

• If x∗ is decision robust [weakly/·] efficient, then x∗ is an optimal solution of (RCso).

• If x∗ is the unique optimal solution of (RCso), then x∗ is decision robust strictly
efficient.

4.2 Relationship to Parameter Uncertainty in Multiobjective Op-
timization

Decision robust efficiency is a concept to handle decision uncertainty in multiobjective
optimization. Parameter uncertainty in multiobjective optimization has recently been
addressed with minmax robustness, see, e.g., [EIS14]. From a mathematical point of view,
both concepts are related, as Proposition 21 shows. We first give the definition of robust
efficiency for parameter uncertainty in multiobjective optimization problems.
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Definition 20 ([EIS14],[IKK+14]). Let (P(ξ), ξ ∈ U) be a family of optimization problems
of the type

(P(ξ)) min
x∈Rn
{g(x, ξ) | Gj(x, ξ) ≤ 0,∀1 ≤ j ≤ m},

where U ⊆ Rp, g : Rn × U → Rk and G : Rn × U → Rm. A point x ∈ Rn is called robust
feasible for (P(ξ), ξ ∈ U) if x is feasible for (P(ξ)) for all ξ ∈ U .

A robust feasible solution x ∈ Rn is called robust [weakly/·/strictly] efficient for (P(ξ), ξ ∈
U) if there is no other robust feasible y 6= x such that

gU(y) ⊆ gU(x)− [int(K)/K\{0}/K],

where gU(y) = {g(y, ξ) | ξ ∈ U} for y ∈ Rn. In case of K = Rk
+, each robust [weakly/·/strictly]

efficient solution is called a minmax robust [weakly/·/strictly] efficient solution.

In the following we show that we can rewrite the multiobjective problem with decision
uncertainty (P(z), z ∈ Z) to an equivalent problem with parameter uncertainty and that
the decision robust [weakly/·/strictly] efficient solutions for the former coincide with the
robust [weakly/·/strictly] efficient solutions for the latter.

Proposition 21. (i) Every family (P(z), z ∈ Z), where

P(z) = min
x∈Rn
{f(x+ z) | Fj(x+ z) ≤ 0 ∀1 ≤ j ≤ m}

can be written as a family (P(ξ), ξ ∈ U) of uncertain multiobjective optimization
problems in the sense of Definition 20, where U = Z, g(x, ξ) = f(x+ξ) and Gj(x, ξ) =
Fj(x+ ξ) for x ∈ Ω, ξ ∈ U .

(ii) A solution x ∈ Ω is decision robust [weakly/·/strictly] efficient for (RC) if and only
if it is robust [weakly/·/strictly] efficient w.r.t. the family of uncertain multiobjective
optimization problems according to (i).

Proof. (i) Plugging the definitions of U , g : Ω×U → Rk, and G : Ω×U → Rm into (P(ξ))
results exactly in (P(z)) for all z ∈ Z.

(ii) A solution x is robust feasible in the sense of Definition 20 if and only if Gj(x, ξ) ≤ 0
for all 1 ≤ j ≤ m and ξ ∈ U . Then

x is decision robust feasible

⇔ ∀z ∈ U = Z ∀1 ≤ j ≤ m : 0 ≥ Fj(x+ z) = Gj(x, z)

⇔ x is robust feasible in the sense of Definition 20.

From the definitions of g and U in (i) we have fZ(x) = gU(x) for all x ∈ X = {y ∈ Rn |
Fj(y + z) ≤ 0 ∀z ∈ Z ∀1 ≤ j ≤ m} = {y ∈ Rn | Gj(y, z) ≤ 0 ∀z ∈ U ∀1 ≤ j ≤ m}.
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Hence,

x ∈ X is decision robust [weakly/·/strictly] efficient for (RC)

⇔ ∀y ∈ X\{x} : fZ(y) * fZ(x)− [int(K)/K\{0}/K]

⇔ ∀y ∈ X\{x} : gU(y) * gU(x)− [int(K)/K\{0}/K]

⇔ x ∈ X is robust [weakly/·/strictly] efficient w.r.t. Definition 20.

Hence, from the mathematical point of view, decision uncertainty can be considered
as a special case of parameter uncertainty and the results of [EIS14] apply. However, the
setting of decision uncertainty in multiobjective optimization adds a considerable amount
of structure to the robust counterpart leading to significant results that do not hold for
parameter uncertainty. In particular, a research gap stated in [EIS14, p. 30] is that there
exists no method to calculate all robust efficient solutions for parameter uncertainty in mul-
tiobjective optimization, not even for linear objectives. However, for decision uncertainty
in multiobjective optimization with linear objective functions all decision robust efficient
solutions can be determined by methods from deterministic multiobjective optimization,
which is shown in Section 5. Further results are gained for two other specific classes of
objective functions: Lipschitz continuous or monotonic objective functions. To the best of
our knowledge, no such results exist for parameter uncertainty. Moreover, in Section 3.2,
the specific structure of decision uncertainty leads to the presented continuity properties
of the set-valued functions fZ and fSup.

5 Results for Special Classes of Objective Functions

In the following, we investigate properties of the decision robust counterpart (RC) for
three distinct types of objective functions. The types are linear, Lipschitz continuous and
monotonic objective functions. For linear objective functions, we show that the decision
robust [weakly/·/strictly] efficient solutions can be determined by methods from determin-
istic linear multiobjective optimization. A necessary condition for decision robust efficient
solutions is given in case of Lipschitz continuous objective functions. We also present a
sufficient condition for decision robust efficient solutions in case of monotonic objective
functions.

5.1 Linear Objective Functions

In this section we look at the case where the objective function f is linear. We prove
that each decision robust feasible solution is decision robust [weakly/·/strictly] efficient for
(P(z), z ∈ Z) if and only if it is [weakly/·/strictly] efficient for the deterministic multiob-
jective problem

(P|X) min
x∈X

f(x).

As a preparation for the main result of this section, we state the following lemma.
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Lemma 22. Let K be a closed convex pointed solid cone in Rk. Let v ∈ Rk such that
v 6∈ [int(K)/K\{0}/K]. Then there exists c ∈ Rk such that 〈c, v〉 < 〈c, k〉 for all k ∈
[int(K)/K\{0}/K].

Proof. In case of v 6∈ K or v 6∈ int (K) the claim corresponds to the Theorem of Hahn-
Banach, see, e.g., [Rud91].

For the case v 6∈ K\{0} we distinguish two cases: If v 6= 0 we can separate v from K,
hence also from K\{0}. Now, let v = 0. Because K is closed, convex and pointed, we have

K# = {d ∈ Rk | 〈d, k〉 > 0, ∀k ∈ K\{0}} 6= ∅

due to Theorem 3.38 in [Jah11]. Hence, for each c ∈ K# and all k ∈ K\{0} it holds
〈c, k〉 > 0 = 〈c, v〉.

Now, we can prove our main result about decision robust [weakly/·/strictly] efficient
solutions to uncertain problems with linear objective functions.

Theorem 23. Let f : Ω → Rk be linear. Then for each decision robust feasible solution
x ∈ X

x is [weakly/·/strictly] efficient for (P|X)

⇔ x is decision robust [weakly/·/strictly] efficient for (P(z), z ∈ Z).

According to this theorem, solving the deterministic linear multiobjective problem
(P|X), is equivalent to determining decision robust efficient solutions. Hence, linear mul-
tiobjective problems including decision uncertainty can be solved by any solution method
for deterministic linear multiobjective optimization. This is particularly interesting as a
method to compute all robust efficient solutions for linear multiobjective problems with
parameter uncertainty is not known so far, see [EIS14].

Proof. We begin by showing that every [weakly/·/strictly] efficient solution for (P|X)
is also decision robust [weakly/·/strictly] efficient for (P(z), z ∈ Z). Let x ∈ X be
[weakly/·/strictly] efficient for (P|X) and assume that x is not decision robust [weakly/·/strictly]
efficient for (P(z), z ∈ Z). Consequently, there exists y ∈ X\{x} such that fZ(y) ⊆
fZ(x)− [int(K)/K\{0}/K].

Since x is [weakly/·/strictly] efficient

v := f(x)− f(y) = f(x− y) 6∈ [int(K)/K\{0}/K].

According to Lemma 22 there exists c ∈ Rk such that

〈c, v〉 < 〈c, k〉 ∀k ∈ [int(K)/K\{0}/K]. (24)

Choose z̃ ∈ argmaxz∈Z〈c, f(z)〉, which is nonempty, because f and the inner product are
continuous and Z is compact. Hence,

〈c, f(z − z̃)〉 ≤ 0 ∀z ∈ Z. (25)
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Because fZ(y) ⊆ fZ(x)−[int(K)/K\{0}/K], there exists z ∈ Z and k ∈ [int(K)/K\{0}/K]
such that f(y + z̃) = f(x+ z)− k. Then, by using (25),

k = f(x− y) + f(z − z̃) = v + f(z − z̃)

⇒ 〈c, k〉 = 〈c, v〉+ 〈c, f(z − z̃)〉 ≤ 〈c, v〉
⇒ 〈c, k〉 ≤ 〈c, v〉

in contradiction to Equation (24). Therefore, x is decision robust [weakly/·/strictly] effi-
cient.

Now, the opposite implication is proven. Assume that x is not [weakly/·/strictly]
efficient for (P|X). We show that x can not be decision robust [weakly/·/strictly] efficient
in this case.

x is not [weakly/·/strictly] efficient

⇒ ∃y ∈ X\{x} : f(y) ∈ {f(x)} − [int(K)/K\{0}/K]

⇒ ∃y ∈ X\{x} : ∀z ∈ Z f(y + z) ∈ {f(x+ z)} − [int(K)/K\{0}/K]

⇒ ∃y ∈ X\{x} : ∀z ∈ Z∃z′ = z ∈ Z : f(y + z) ∈ {f(x+ z′)} − [int(K)/K\{0}/K]

⇒ x is not decision robust [weakly/·/strictly] efficient.

5.2 Lipschitz Continuous Objective Functions

In general, decision robust efficient solutions for (P(z), z ∈ Z) are not efficient for (P|X). As
Example 1 shows, this is not even true for Lipschitz objective functions, since the objective
function is Lipschitz on the compact feasible set Ω. Nevertheless, in case of Lipschitz ob-
jective functions, every decision robust efficient solution is at least approximately efficient.
In view of that, we prove a necessary condition for a decision robust efficient solution.

Recall that a function f : Rn → Rk is called Lipschitz continuous or Lipschitz with
Lipschitz constant L > 0 if for all x, y ∈ Rn

‖f(x)− f(y)‖ ≤ L · ‖x− y‖.

Several concepts of approximate solutions for multiobjective optimization problems
have been introduced in the literature see for instance [Dur07] and the references therein.
We use the following concept which goes back to Kutateladze [Kut79].

Definition 24. Let k0 ∈ K\{0} and ε > 0 be given. The point x∗ ∈ X is a [weakly/·/strictly]
(ε, k0)-minimal solution for (P|X), i.e., minx∈X f(x), if there exists no x ∈ X such that

f(x) ∈ {f(x∗)− ε k0} − [int(K)/K\{0}/K].

In the following we assume w.l.o.g. ‖k0‖ = 1 in the definition above.

87



Theorem 25. Let f : Rn → Rk be Lipschitz continuous with Lipschitz constant L > 0 and
Z 6= {0}. Furthermore, set

L̃ := L ·max
z∈Z
‖z‖ and S :=

⋂

h∈B(0,L̃)

{h}+K.

If x∗ ∈ X is decision robust [weakly/·/strictly] efficient for (P(z), z ∈ Z), then there exists
no x̃ ∈ X and no s ∈ S such that f(x̃) ∈ {f(x∗) − s} − [int(K)/K\{0}/K]. Hence, x∗ is
an [weakly/·/strictly] (ε, k0)-minimal solution for (P|X), i.e., minx∈X f(x), where

k0 =
s

‖s‖ and ε = ‖s‖

for all s ∈ S.
Proof. First we note that S ⊆ K\{0}: as K is pointed and solid there exists h̃ ∈ int (K)∩
B(0, L̃) and thus we have S ⊆ {h̃}+K ⊆ int (K) and 0 6∈ S.

Because f is Lipschitz continuous, we have for all x ∈ X and the closed ball of radius
L̃, B(0, L̃),

fZ(x) ⊆ {f(x)}+B(0, L̃).

Consequently, for each x ∈ X and z ∈ Z there exists h ∈ B(0, L̃) such that f(x + z) =
f(x) + h. Furthermore, it holds s ∈ S if and only if h ∈ {s} −K for all h ∈ B(0, L̃).

Let x∗ ∈ X be decision robust [weakly/·/strictly] efficient and suppose there exists
x̃ ∈ X and s ∈ S such that

f(x̃) ∈ {f(x∗)− s} − [int(K)/K\{0}/K].

Then, for each z ∈ Z there exists h ∈ B(0, L̃) such that

f(x̃+ z) = f(x̃) + h

∈ {f(x̃)}+ ({s} −K)

⊆ {f(x∗)− s}+ {s} − [int(K)/K\{0}/K]

= {f(x∗)} − [int(K)/K\{0}/K]

⊆ fZ(x∗)− [int(K)/K\{0}/K],

in contradiction to x∗ being decision robust [weakly/·/strictly] efficient.

5.3 Monotonic Objective Functions

In the following, we look at the special case of monotonically decreasing and increasing ob-
jective functions. We show that, in case of at least one increasing objective, one decreasing
objective and a partially ordered feasible set, all solutions are decision robust efficient.

Throughout this section, we assume that Rk is partially ordered by the closed convex
pointed solid cone Rk

+ and that Rn is ordered correspondingly by the cone Rn
+. First, we

recall the definition of a monotonically increasing function on Rn, see, e.g., [Jah11, Mie12].
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Definition 26. Let S be a nonempty subset of Y ⊆ Rn. Then the function h : Y → R is
called

(a) monotonically increasing on S if for all x, y ∈ S it holds

x 5 y ⇒ h(x) ≤ h(y).

(b) strictly monotonically increasing on S if for all x, y ∈ S it holds

x < y ⇒ h(x) < h(y).

(c) strongly monotonically increasing on S if for all x, y ∈ S it holds

x ≤ y ⇒ h(x) < h(y).

Similarly, f is called decreasing if (−f) is increasing.

Note that every strongly increasing function is also strictly increasing and increasing,
while strictly increasing functions are not necessarily increasing if n ≥ 2. For n = 1, strict
and strong monotonicity coincide and every strictly increasing function is also increasing.

Theorem 27. Let X ⊆ Ω ⊆ Rn and let x ∈ X be such that for all y ∈ X

x 6= y ⇒ x [≤ / < / ≤] y or y [≤ / < / ≤] x

and let Z ⊆ Rn have the property

z1 6= z2 ⇒ z1 [≤ / < / ≤] z2 or z2 [≤ / < / ≤] z1

for all z1, z2 ∈ Z.
Let k ≥ 2 and let f : Rn → Rk have the property that there exist j, l ∈ {1, . . . , k}, j 6= l,

such that

(a) fj : Rn → R is [./strictly/strongly] increasing on X

(b) fl : Rn → R is [./strictly/strongly] decreasing on X.

Then x is decision robust [weakly/strictly/strictly]–efficient.

Proof. Choose y ∈ X\{x} arbitrarily. Because Z is compact and totally ordered with
respect to 5, there exist a minimal element zmin ∈ Z and a maximal element zmax ∈ Z
due to Zorn’s Lemma.

We distinguish two cases. First, we study the case x [≤ / < / ≤] y. This leads to

x+ z [≤ / < / ≤] y + z 5 y + zmax ∀z ∈ Z
(a)⇒ fj(x+ z) [≤ / < / <] fj(y + zmax) ∀z ∈ Z
⇒ f(y + zmax) 6∈ fZ(x)− [int(Rk

+)/Rk
+/Rk

+]

⇒ fZ(y) * fZ(x)− [int(Rk
+)/Rk

+/Rk
+].
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Secondly, we study the alternative case y [≤ / < / ≤] x. This leads to

y + zmin [≤ / < / ≤] x+ zmin 5 x+ z ∀z ∈ Z
(b)⇒ fl(y + zmin) [≥ / > / >] fl(x+ z) ∀z ∈ Z
⇒ f(y + zmin) 6∈ fZ(x)− [int(Rk

+)/Rk
+/Rk

+]

⇒ fZ(y) * fZ(x)− [int(Rk
+)/Rk

+/Rk
+].

In summary, there is no y ∈ X\{x} such that fZ(y) ⊆ fZ(x) − [int(Rk
+)/Rk

+/Rk
+]. Conse-

quently, x is decision robust [weakly/strictly/strictly]–efficient.

For an illustarion of Theorem 27, we refer to Example 4 in Appendix A.
A direct consequence of Theorem 27 is the next Corollary.

Corollary 28. Let Z ⊆ R and X ⊆ Ω ⊆ R be compact intervals and f : R → Rk be such
that f1 : R→ R is [./strictly] increasing and f2 : R→ R is [./strictly] decreasing.

Then all x ∈ X are decision robust [weakly/strictly]–efficient.

In particular, Corollary 28 can be applied whenever f : I → Rk is a curve with at least
one increasing and one decreasing objective, where I ⊆ R is an interval.

6 Conclusions

A robustness concept for decision uncertainty in multiobjective optimization is introduced
and investigated. The corresponding decision robust counterpart (RC) is introduced as a
set-valued optimization problem. Semicontinuity and convexity of the set-valued objective
functions in (RC) and their supremal sets are proven under the assumption that the vector-
valued objective function in (P) is continuous.

Results are obtained that lead to the determination of decision robust efficient solutions
by methods from deterministic multiobjective optimization for three types of objective
functions. First, in case of linear objective functions, solving (RC) is equivalent to solving
a deterministic linear multiobjective problem. Second, a necessary condition for decision
robust efficient solutions in case of Lipschitz objective functions is presented. Third, a
sufficient condition for decision robust efficient solutions in case of monotonic objective
functions is obtained.

Decision robust efficiency and (RC) are consistent with the generalization of the supre-
mum to supremal sets in set-valued optimization. Furthermore, decision robust efficiency
is closely related to existing robustness concepts in the literature in two ways. On the one
hand, it is a generalization of minmax robustness approaches for decision uncertainty in
single-objective optimization and on the other hand, it can be regarded as a special case
of minmax robust efficiency for parameter uncertainty in multiobjective optimization.

Following the presented theoretical results, there are different options for further re-
search. The results for the different classes of objective functions indicate that extended
study of problems with specific structure might lead to specific solution techniques for
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various applications. In particlular, solution techniques and numerical evaluations of the
growing media mixing problem presented in the introduction are currently under research,
see [CKGS17]. Therein, the investigation of monotonic functions, as studied in Theo-
rem 27, is extended to piecewise monotonic functions with two objectives and the results
are then used to calculate decision robust efficient solutions for a case study on an Italian
plant nursery.

Additionally, the problem description of decision uncertainty can be extended by al-
lowing the perturbation set Z to depend on the solution. There are various applica-
tions for problems with variable perturbation sets, including perturbation sets whose
size depend on a percentage of the solution aimed at. A specific case of variable per-
turbation sets that would be interesting to study is the relative implementation error,
which is also studied in single objective robust optimization see, e.g., [SdH08, BTN02].
This error affects each component of a solution x by multiplication, i.e., each compo-
nent xi is realized within the set {(1 + ξi)xi | |ξi| < εi}, leading to the perturbation set
Z(x) = [−ε1x1, ε1x1] × · · · × [−εnxn, εnxn]. We note that the solution 0 is not affected
by the relative error. However, decision uncertainty in the solution 0 is required by the
applications presented in Section 1. In addition, for perturbation sets that vary with dif-
ferent solutions, we expect that objective function dependent solution approaches like in
Section 5 will be harder to find and be more expensive to use than the results of this work.
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Appendix A An Example for Monotonic Objective

Functions

This example illustrates Theorem 27 and shows that, after having excluded a specific part
of the decision robust feasible set, all decision robust efficient solutions can be determined
by Theorem 27.

Example 4. Let the feasible set, the perturbation set and the objective function be

Ω = conv {( 0
0 ) , ( 1.5

0 ) , ( 1.5
1 ) , ( 1

1 )} , Z = [0, 0.5]× {0}
and f : R2 → R2, x 7→

(
−(x1+x2)

x21+x22

)
.

A. Decision Uncertainty in Multiobjective Optimization

94



Then f1 is strongly decreasing and f2 is strongly increasing on R2
+ and therefore also on

the decision robust feasible subset X of Ω, which is illustrated in Figure 4.

x1

x2

1 2

1

2

Ω

x1

x2

1 2

1

2

X

Figure 4: The feasible set Ω and the decision robust feasible set X in Example 4.

We show next that the set of decision robust [·/strictly] efficient solutions is

Y = conv {( 0
0 ) , ( 1

1 )} .

We first show that the elements of X\Y can not be decision robust efficient.
For all s ∈ (0, 2) we define the set Ls = {x ∈ X | x1 + x2 = s} and ys = 1

2
· ( ss ) ∈ Ls,

which is illustrated in Figure 5.
Let s ∈ (0, 2) and let x ∈ Ls\{ys}. Then x1 > x2 and there exists 0 < t ≤ s

2
such that

x1 = s
2

+ t and x2 = s
2
− t. For each z ∈ Z it holds

f1(x+ z) = −(x1 + x2 + z1) = −(s+ z1) = −(ys1 + ys2 + z1) = f1(ys + z)

as well as

f2(ys + z) =
s2

2
+ s · z1 + z2

1

and

f2(x+ z) =
s2

2
+ s · z1 + z2

1

︸ ︷︷ ︸
=f2(ys+z)

+ 2t2︸︷︷︸
>0

+ 2tz1︸︷︷︸
≥0

> f2(ys + z).

Consequently, f(ys + z) ≤ f(x+ z) for all z ∈ Z. Since x ∈ Ls was arbitrarily chosen,
we have for all x ∈ Ls\{ys}

fZ(ys) ⊆ fZ(x)− R2
+\{0},

which is visualized in Figure 5. Hence, the set of decision robust [·/strictly] efficient so-
lutions is a subset of Y. Furthermore, because of the transitivity of 5, every element in
Y that is not decision robust [·/strictly] efficient is dominated by another element of Y.
Since Y and Z are totally ordered with respect to 5, f1 is strongly de- and f2 is strongly
increasing, Theorem 27 can be applied, leading to the conclusion that all y ∈ Y are decision
robust [·/strictly] efficient.
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x1

x2

1

1
X

Y

L1 f1(x)

f2(x)

fZ(y1 = (0.5, 0.5)T )
fZ(x′ = (0.75, 0.25)T )
fZ(x′′ = (1, 0)T )

Figure 5: Illustration of Example 4. The sets Y and Ls for s = 1 are illustrated on the left
hand side. On the right hand side, inclusions of the sets fZ for different elements of L1 are
displayed.
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Abstract

In robust single-objective optimization, the robustness gap is a measure of the
distance between the robust optimal objective value and the optimal objective values
of the scenarios. While robust multiobjective optimization is a growing field of study,
no notion of a robustness gap has been proposed. A concept of a robustness gap for
uncertain multiobjective optimization problems is introduced. The gap is defined
as the minimal distance between the robust Pareto set and the Pareto sets of the
scenarios. Because the distance between Pareto sets is hard to compute, lower and
upper bounds for the gap are derived for convex problems. It is shown that the gap is
zero whenever the uncertainty is constraint-wise and objective-wise, supplementing
a major result about the single-objective robustness gap. For linear problems, a
condition for the gap to be zero is presented and a DC optimization problem is
formulated to compute the lower bound.

1 Introduction

Uncertain multiobjective optimization addresses decision making problems with multiple
and conflicting objectives, and uncertainties carried in parameters or decision variables.
One of the paradigms to deal with this type of problems originates from robust optimiza-
tion that has first been developed for uncertain single-objective optimization problems
[BTGN09]. For a survey of recent literature on robust multiobjective optimization see
[IS16] and [WD16].

∗Supported by DFG RTG 1703 “Resource Efficiency in Corporate Networks”.
†Partially supported by grant N00014-16-1-2725 funded by the United States Office of Naval Research.
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There exist various concepts of robust solutions to uncertain multiobjective optimization
problems (MOPs) and for each concept the corresponding robust solutions are defined as
the solution set to a robust counterpart. A robust counterpart of an uncertain problem is
a deterministic problem that typically takes into account worst case realizations of uncer-
tain parameters or variables. So far, different concepts of robustness for MOPs have been
developed, each of which can be associated with the solution set to a specific robust coun-
terpart. The individual robust counterpart in each of [KL12, FW14, GJLVP14, Chu16] is
a deterministic MOP, whereas in [EKS17, EIS14] the respective robust counterparts can be
interpreted as set-valued optimization problems. Robustness concepts that lead to a mul-
tiobjective (vector-valued) robust counterpart are most widely studied. Moreover, under
certain conditions, the set-valued problems studied as robust counterparts can be consid-
ered and solved as vector-valued problems, see, [EKS17] for the case of linear objective
functions or [EIS14] for specific, so-called objective-wise, uncertainty sets.

Robust single-objective optimization resolves uncertainty by yielding an optimal solution
to the robust counterpart and the objective value of that solution is worse than or equal to
the optimal objective values of the scenarios. In order to evaluate the quality of a robust
optimal solution in single-objective optimization, it is of interest to recognize and gauge
the gap between its objective value and the optimal objective values of the scenarios, or
in other words, to measure the loss when the robust optimal solution rather than an op-
timal solution to a scenario is implemented. This question of gap quantification, which
is important to both mathematicians and practitioners, was initially raised in [BTN98]
and [BTN99] who defined the gap as the minimal difference between the robust optimal
objective value and the set of optimal objective values to the scenarios.

The question of how to measure a robustness gap in robust multiobjective optimization
remains wide open because a gap of this type has not been defined. In this paper, we pro-
pose a definition of a robustness gap in uncertain multiobjective optimization with respect
to a robustness concept whose robust counterpart can be considered an MOP and which is
also the most often studied multiobjective robustness concept in the literature. Aiming to
measure the proposed gap, we derive lower and upper bounds for the gap that are easier
to calculate than the gap itself. We also investigate conditions under which the presented
bounds are tight.

The paper is structured as follows. We continue this section by formulating the relevant
MOPs and accompanying concepts, while in Section 2 we define the robustness gap for
general uncertain MOPs. In Section 3, for convex MOPs, we derive bounds for this gap
and give a sufficient condition for the zero gap. For uncertain linear MOPs we obtain
further results in Section 4. Among others, we present another sufficient condition for the
zero robustness gap and a DC optimization problem whose optimal objective value yields
the lower bound on the robustness gap.

Throughout this work, let Rp be the p-dimensional real vector space. Let ‖ · ‖ : Rp → R
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denote a norm on Rp and ‖ · ‖∗ denote the dual (or polar) norm to ‖ · ‖. In specific results
we consider p-norms with p ∈ [1,∞] and block norms because of the properties they and
their dual norms have. Given the norms, we define the primal space (Rp, ‖ · ‖) and its dual
space (Rp, ‖·‖∗). To keep notation short, we also refer to the primal space (Rp, ‖·‖) simply
as Rp.
For every point ỹ ∈ Rp, the closed and open ball of radius ε > 0 are defined as B(ỹ, ε) :=
{y ∈ Rp | ‖y − ỹ‖ ≤ ε} and B◦(ỹ, ε) := {y ∈ Rp | ‖y − ỹ‖ < ε} respectively. For
a set A ⊆ Rp, the closure, the interior, and the relative interior of A are denoted as
cl (A), int (A), and rel int (A), respectively. The cone defined by the nonnegative orthant
of Rp is Rp

= := {y ∈ Rp | yi ≥ 0 ∀i = 1, . . . , p} and we also refer to Rp
≥ := Rp

=\{0} and

Rp
> := int

(
Rp

=

)
. For all y, z ∈ Rp, where p ≥ 2, the order relations induced by Rp

= are

given by y < z ⇔ yi < zi ∀1 ≤ i ≤ p; y ≤ z ⇔ y 6= z and yi ≤ zi ∀1 ≤ i ≤ p; and y 5 z ⇔
yi ≤ zi ∀1 ≤ i ≤ p.
We consider the uncertain multiobjective optimization problem





(P(ξ)) min
x

f(x, ξ)

s. t. F (x, ξ) = 0

x ∈ Rn




ξ∈U

.

The uncertainty set U is assumed to be a compact subset of a finite dimensional real vector
space and the elements ξ ∈ U are called scenarios of U . Note that the uncertainty set is
not assumed to be convex anywhere in the paper except for Section 3.3 and Section 4. For
a fixed scenario ξ ∈ U , it is assumed that no uncertainty is present in P(ξ), i.e., all data of
P(ξ) is known. Therefore, for each ξ ∈ U , P(ξ) is considered a deterministic MOP.

We make the following Continuity Assumption: The functions f(·, ξ) : Rn → Rp and
F (·, ξ) : Rn → Rm are assumed to be continuous for all ξ ∈ U and the functions f(x, ·) : U →
Rp and F (x, ·) : U → Rm are assumed to be continuous for all x ∈ Rn.

For every scenario ξ ∈ U , the feasible set of P(ξ) is denoted as

X(ξ) := {x ∈ Rn | F (x, ξ) = 0}. (1)

and it is assumed that X(ξ) is compact. Also, for every ξ ∈ U , the outcome set of P(ξ),
which is the image set of the feasible set X(ξ), is given as

Y(ξ) := {y ∈ Rp | ∃x ∈ X(ξ) : y = f(x, ξ)} = f(X(ξ), ξ).

The set Y(ξ) is compact since X(ξ) is assumed to be compact and f(·, ξ) is assumed to be
continuous.
The classical solution concept for deterministic MOPs is (Pareto-)efficiency, which is de-
fined as follows with respect to the deterministic MOP P(ξ) for a fixed scenario ξ ∈ U .
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Definition 1. An outcome point y∗ ∈ Y(ξ) is called a Pareto point for P(ξ) if there is no
y ∈ Y(ξ) with the property y ∈ {y∗} − Rp

≥ or, equivalently, if there is no y ∈ Y(ξ) with
the property y ≤ y∗. A feasible solution x∗ ∈ X(ξ) is called a (Pareto-)efficient solution for
P(ξ) if the image f(x∗, ξ) is a Pareto point of P(ξ).

The (Pareto-)efficient set of P(ξ) is denoted as XE(ξ), and the Pareto set of P(ξ) is de-
noted as YP (ξ).

For defining the feasibility of the uncertain multiobjective problem {P(ξ)}ξ∈U , the robust-
ness concepts we take into account use the definition of robust feasibility by [BTGN09],
which is the most often used concept in robust optimization.

Definition 2. A point x∗ ∈ Rn is called a robust feasible solution to {P(ξ)}ξ∈U if x∗ is
feasible for all possible realizations of uncertainty, i.e., if

x∗ ∈ XRC := {x ∈ Rn | F (x, ξ) = 0 ∀ξ ∈ U}.

The set XRC is called the robust feasible set.

As a consequence of (1) and Definition 2, we obtain

XRC =
⋂

ξ∈U
X(ξ). (2)

Hence, the robust feasible set XRC is compact as an intersection of compact sets.

In this study we address multiobjective robustness concepts that are characterized by
a robust counterpart that assumes the form of an MOP over the feasible set XRC. We
therefore formulate the general multiobjective robust counterpart for {P(ξ)}ξ∈U as

(RC) min
x

fRC(x)

s. t. x ∈ XRC,
(3)

where fRC : Rn → Rp is a deterministic function that is defined depending on the concept
of robustness. The most frequently used choice for the objective function fRC of RC is
given as

fRC
i (x) = sup

ξ∈U
fi(x, ξ) (4)

for all 1 ≤ i ≤ p and for any x ∈ Rn. For studies of the robust counterpart corresponding to
this kind of objective function, see, e.g., [KL12, FW14, GJLVP14]. There are also various
investigations of uncertain MOPs where the uncertainty does not affect the objective func-
tions at all, leading to an RC with the same deterministic objective function as the original
problem, see, e.g., [Chu16, DKW12]. Note that the latter type of RC can be considered
as a special case of the former type of RC because, if the objective function is not affected
by uncertainty, the supremum over all scenarios of the objective function is the objective
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function itself. Therefore, in the following, we assume that the objective function of RC is
given by (4).

The robust outcome set, which is the image of the robust feasible set XRC, is denoted as

YRC := {fRC(x) | x ∈ XRC} = fRC(XRC).

Because the robust counterpart RC is a deterministic MOP, we can apply to it the tradi-
tional solution concepts known for MOPs, see Definition 1.

Definition 3. A point z∗ ∈ YRC is called a robust Pareto point of {P(ξ)}ξ∈U if it is a
Pareto point of RC in the sense of Definition 1, i.e., if there is no z ∈ YRC with the
property z ∈ {z∗} −Rp

≥. A solution x∗ ∈ XRC is called a robust (Pareto-)efficient solution
of {P(ξ)}ξ∈U if it is an efficient solution to RC in the sense of Definition 1.

The robust (Pareto-)efficient set of {P(ξ)}ξ∈U is denoted as XRC
E , and the robust Pareto set

of {P(ξ)}ξ∈U is denoted as YRC
P . We remark that robust efficiency according to Definition 3

is often called point-based minmax robust efficiency to distinguish it from other minmax
robust efficiency concepts such as set-based or hull-based robust efficiency, see [EIS14,
BF17].
We also use the general notion of the ideal point zIRC of RC, which is given by (zIRC)i :=
minx∈XRC fRC

i (x) for each component 1 ≤ i ≤ p, where fRC
i : Rn → R is the i-th component

of the objective function fRC of RC.

We conclude the section by presenting a result for the outcome set of RC and we also see
that the special case of {P(ξ)}ξ∈U having a deterministic objective functions, i.e., f = fRC,
leads to a stronger result.

Proposition 4. Let fRC : Rn → Rp be such that for all 1 ≤ i ≤ p and x ∈ Rn it holds
fRC
i (x) = supξ∈U fi(x, ξ). Then

YRC ⊆
⋂

ξ∈U
Y(ξ) + Rp

= (5)

and, if f = fRC, then

YRC ⊆
⋂

ξ∈U
Y(ξ). (6)

Proof. If fRC = f for all x ∈ Rn and 1 ≤ i ≤ p, then Equation (2) directly results in

YRC = f(XRC) = f

(⋂

ξ∈U
X(ξ)

)
⊆
⋂

ξ∈U
f (X(ξ)) =

⋂

ξ∈U
Y(ξ).

Hence, let fRC
i (x) = supξ∈U fi(x, ξ) for all x ∈ Rn and 1 ≤ i ≤ p and let y ∈ YRC. Then

there exists x ∈ XRC such that y = fRC(x) and consequently,

fi(x, ξ) ≤ sup
ξ′∈U

fi(x, ξ
′) = fRC

i (x) = yi
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for all ξ ∈ U and 1 ≤ i ≤ p. Hence, y ∈ {f(x, ξ)} + Rp
= for all ξ ∈ U . Because x ∈ XRC =⋂

ξ∈U X(ξ), we have f(x, ξ) ∈ Y(ξ) for all ξ ∈ U . Consequently, y ∈ {f(x, ξ)} + Rp
= ⊆

Y(ξ) + Rp
= for all ξ ∈ U .

The following result is a direct consequence of Proposition 4.

Corollary 5. Let fRC : Rn → Rp be such that for all 1 ≤ i ≤ p and x ∈ Rn it holds
fRC
i (x) = supξ∈U fi(x, ξ). Then for very z ∈ YRC

P and for every ξ ∈ U , there exists
y ∈ YP (ξ) such that y ∈ {z} − Rp

=.

Proof. Let z ∈ YRC
P and ξ ∈ U . By Proposition 4, there exists y′ ∈ Y(ξ) such that y′ 5 z.

Then there exists y ∈ YP (ξ) such that y 5 y′ according to [Luc84, Prop. 3.1] because Y(ξ)
is compact, and we obtain y 5 y′ 5 z.

2 Defining a Robustness Gap for Uncertain Multiob-

jective Optimization

In this section we first review the definition of the robustness gap in single-objective opti-
mization and then propose a definition for the multiobjective case.

Let g : Rn × U → R. For the uncertain single-objective optimization problem formulated
as {

(P s-o(ξ)) min
x∈X(ξ)

g(x, ξ)

}

ξ∈U

its robust counterpart is defined as

(RCs-o) min
x∈XRC

gRC(x),

where gRC : Rn → R with gRC(x) := supξ∈U g(x, ξ) is a deterministic scalar-valued function.
The following definition of the single-objective robustness gap ϑs-o goes back to [BTN98].

Definition 6. The single-objective robustness gap is defined as

ϑs-o := min
x∈XRC

gRC(x)− sup
ξ∈U

min
x∈X(ξ)

g(x, ξ).

The concept in Definition 6 aims to evaluate decision maker’s loss when choosing a robust
optimal solution. The knowledge of the magnitude of this loss may help decision makers to
decide whether they would accept this solution. If there is a scenario ξ ∈ U such that the
optimal objective value of (P s-o(ξ)) is equal to the robust optimal objective value, then the
robustness gap is zero and the decision maker might be likely to accept a robust optimal
solution as the preferred solution. The knowledge that the gap is nonzero but small may
also encourage the decision maker to accept a robust optimal solution. If the gap is large,
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the decision maker will be aware of the loss and in this way motivated to look for a less
conservative decision. In general, the robustness gap is a problem intrinsic characteristic;
its size depends on the structure of the optimization problem, the uncertainty set, and the
way both structures interact.

The single-objective robustness gap according to Definition 6 is illustrated in the next
example.

Example 7. Consider the following uncertain single-objective optimization problem
{

(P s-o(ξ)) min
x

ξ1x1 + ξ2x2

s. t. x ∈ X(ξ)

}

ξ∈U

,

where

X(ξ) := {x ∈ R2 | 3x1 + x2 ≥ ξ3 ∧ x1 + 4x2 ≥ ξ4 ∧ −4x1 − 5x2 ≥ ξ5}
for all ξ ∈ U and U =

{
ξ1 := (2, 3, 14, 12,−48)T , ξ2 := (4, 1, 11, 22,−55)T

}
⊆ R5. Hence,

the set of robust feasible solutions is

XRC = {x ∈ R2 | 3x1 + x2 ≥ 14 ∧ x1 + 4x2 ≥ 22 ∧ −4x1 − 5x2 ≥ −48}
and the robust counterpart of {(P s-o(ξ))}ξ∈U is

(RC) min
x

max {2x1 + 3x2, 4x1 + x2}
s. t. x ∈ XRC.

The single-objective robustness gap according to Definition 6 is

ϑs-o = min
x∈XRC

max{2x1 + 3x2, 4x1 + x2} −max

{
min

x∈X(ξ1)
2x1 + 3x2, min

x∈X(ξ2)
4x1 + x2

}

= 20.25−max{14, 11} = 6.25.

We now extend the notion of the robustness gap from uncertain single-objective optimiza-
tion to uncertain MOPs. According to Definition 6, the single-objective robustness gap
can be considered as the minimal distance between the robust optimal objective value and
the set of the optimal objective values of all the scenarios ξ ∈ U . In multiobjective opti-
mization, the idea of a minimal distance between Pareto outcomes can be represented by
the minimal distance between the robust Pareto set YRC

P and the Pareto sets YP (ξ) of the
scenarios ξ ∈ U . We therefore introduce the following definition of a robustness gap for
uncertain MOPs.

Definition 8. For each ξ ∈ U let

ϑ(ξ) := dist
(
YRC
P ,YP (ξ)

)
= inf

z∈YRC
P

inf
y∈YP (ξ)

‖z − y‖

and define the multiobjective robustness gap as

ϑ := inf
ξ∈U

ϑ(ξ) = inf
ξ∈U

dist
(
YRC
P ,YP (ξ)

)
.
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Figure 1: Illustration of Example 9. The feasible sets are displayed on the left hand side
and the outcome sets are displayed on the right hand side. In the right hand picture,
the thick solid lines depict the Pareto sets YP (ξ1), YP (ξ2) and YRC

P and ϑ illustrates the
robustness gap.

The multiobjective robustness gap ϑ depends on the norm ‖·‖ of the primal space (Rp, ‖·‖).
The gap is illustrated in Example 9 and Figure 1 for the Euclidean norm.

Example 9. We investigate a multiobjective version of the problem studied in Example 7
and consider the following uncertain MOP

{
(P (ξ)) min

x
(ξ1x1 + 1, ξ2x2 + 1)T

s. t. x ∈ X(ξ)

}

ξ∈U

,

where U =
{
ξ1 := (2, 3, 14, 12,−48)T , ξ2 := (4, 1, 11, 22,−55)T

}
⊆ R5. The corresponding

robust counterpart is

(RC) min
x

(maxξ∈U ξ1x1 + 1, maxξ∈U ξ2x2 + 1)T

s. t. x ∈ XRC.

Assuming the Euclidean norm in the objective space R2, the multiobjective robustness gap
is

ϑ = min
ξ∈U

min
z∈YRC

P

min
y∈YP (ξ)

‖z − y‖2 =
18√
73
≈ 2.11,

which is also illustrated in Figure 1.
Moreover, we note that the robustness gap, which depends on the structure of the unertainty
set U , would be zero if U was defined differently. For instance, for the uncertainty set
U ′ := {ξ ∈ R5 | ξi ∈ [ξ1

i , ξ
2
i ], i = 1, . . . , 5} with ξ1, ξ2 ∈ U as defined before, the robustness

gap is zero.
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However, in general robust multiobjective optimization, the robustness gap is hard to
compute. By Definition 8, determining the robustness gap requires solving a minimization
problem with decision variables that are elements of various Pareto sets, which are generally
nonconvex even for convex MOPs. For this reason, in the next section, we consider convex
problems for which we derive a lower bound as well as an upper bound on the robustness
gap ϑ.

3 Bounds on the Robustness Gap for Convex Prob-

lems

In this section, we introduce convexity assumptions and we develop upper and lower bounds
for the multiobjective robustness gap. We make use of a scalarization of MOPs whose
scalarizing parameter turns out to be instrumental in the derivation of the bounds.

The following Convexity Assumption is made: In the remainder of this work, we require
that f(·, ξ) : Rn → Rp be Rp

=-convex and F (·, ξ) : Rn → Rm be Rm
= -concave for all ξ ∈ U ,

which implies that each instance of {P(ξ)}ξ∈U is a convex MOP.
Under this assumption, the feasible sets X(ξ) are convex and their images Y(ξ) are Rp

=-

convex for all ξ ∈ U and, consequently, the robust feasible set XRC =
⋂
ξ∈U X(ξ) is convex

as an intersection of convex sets. Under the Convexity Assumption on f(·, ξ) for all ξ ∈ U ,
the function fRC as given in (4) is Rp

=-convex as the component-wise supremum of convex

functions. Because fRC is Rp-convex and XRC is convex, RC, see (3), is a convex problem.
Rp

=-convexity of fRC implies that YRC = fRC(XRC) is an Rp
=-convex set. Furthermore, fRC

is continuous because it is Rp
=-convex and therefore YRC is compact as the image of the

compact set XRC under fRC.
Note that if fi is strictly convex for all 1 ≤ i ≤ p, then fRC

i as given in (4) is strictly convex
for all 1 ≤ i ≤ p and we obtain that the efficient sets XRC

E and XE(ξ) are compact for all
ξ ∈ U , see [BS99, Th. 3.4]. The images of these efficient sets, YRC

P and YP (ξ) for all ξ ∈ U ,
are then compact due to the continuity of the respective objective functions. Given the com-
pactness, the minimum distance between each pair of Pareto sets is attained and the multi-
objective robustness gap according to Definition 8 is ϑ = infξ∈U minz∈YRC

P
miny∈YP (ξ) ‖z−y‖.

Since every instance of {P(ξ)}ξ∈U and RC are convex MOPs, we are able to use the well-
known weighted-sum scalarization of MOPs, see [Geo68], to construct bounds on the ro-
bustness gap ϑ. This scalarization transforms deterministic MOPs into single objective
problems by applying linear functions to the objective functions of MOPs. Linear functions
mapping the objective space (Rp, ‖ · ‖) to R are typically elements of the space (Rp, ‖ · ‖∗)
that is dual to the primal space (Rp, ‖ · ‖). In the dual space, the linear functions that are
used for weighted-sum scalarization are exactly the elements of the cone Rp

= ⊆ (Rp, ‖ · ‖∗)
that is the dual cone to the Pareto cone Rp

= ⊆ (Rp, ‖ · ‖), see, e.g., [BGW09] and [Luc89].
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In the following, bounds on the robustness gap ϑ are constructed by applying the weighted-
sum scalarization. Hence, the calculation of these bounds involves the dual norm ‖ · ‖∗
rather than the primal norm ‖ · ‖.

Applying the weighted-sum scalarization to the problems {P(ξ)}ξ∈U and RC, we obtain for
each weight vector λ ∈ Rp

= ⊆ (Rp, ‖ · ‖∗) the uncertain scalarized problem

{
(P(ξ, λ)) min

x
λTf(x, ξ)

s. t. x ∈ X(ξ)

}

ξ∈U

,

and the scalarized robust counterpart

(RC(λ)) min
x

λTfRC(x)

s. t. x ∈ XRC.

Because the problems (P(ξ, λ)) and (RC(λ)) are single-objective, we can to apply to them
the definition of the single-objective robustness gap in Definition 6. Hence, we obtain

min{λTfRC(x) | x ∈ XRC} − sup
ξ∈U

min{λTf(x, ξ) | x ∈ X(ξ)}

= inf
ξ∈U

(
min
z∈YRC

λT z − min
y∈Y(ξ)

λTy

)
.

We then introduce a definition of a gap for a scenario ξ and a weight vector λ, which allows
us to define the lower robustness bound ∆L and the upper robustness bound ∆U . Note
that, because each weight vector λ lives in the dual space (Rp, ‖ · ‖∗), all λ are normalized
with respect to the dual norm.

Definition 10. For each ξ ∈ U and for each λ ∈ Rp
=, we define

∆(ξ, λ) := min
z∈YRC

λT z − min
y∈Y(ξ)

λTy.

Furthermore, we define the lower robustness bound and upper robustness bound as

∆L := inf
ξ∈U

min
λ∈Rp

≥,
‖λ‖∗=1

∆(ξ, λ) and ∆U := inf
ξ∈U

max
λ∈Rp

≥,
‖λ‖∗=1

∆(ξ, λ).

Note that, in single-objective optimization, it holds {λ ∈ R> | ‖λ‖∗ = 1} = {1}. Therefore,
ϑs-o = ∆L = ∆U in uncertain single-objective optimization which additionally justifies
Definition 10. Also note that, in the multiobjective setting, ∆L and ∆U are not only likely
to be different but that they are also dependent on the dual norm ‖·‖∗. From Definition 10
we immediately obtain that ∆L and ∆U are nonegative.
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Proposition 11. For ∆L and ∆U as defined in Definition 10 holds

0 ≤ ∆L ≤ ∆U .

Proof. Based on the properties of the weighted-sum scalarization, see, e.g., [Geo68], we
have for all λ ∈ Rp

≥ and for all ξ ∈ U

min
y∈Y(ξ)

λTy = min
y∈Y(ξ)+Rp

=
λTy ≤ min

y∈YRC
λTy,

where the inequality results from Proposition 4.

The lower robustness bound ∆L and the upper robustness bound ∆U for Example 9 are
calculated in Example 12.

Example 12. We consider the uncertain MOP studied in Example 9 for which we deter-
mine ∆L and ∆U . In order to calculate ∆L, we consider z̃ := (9, 25)T ∈ YRC, ỹ := (9, 9)T ∈
Y(ξ1) and λ̃ := (1, 0)T ∈ R2

≥ and since, in this example, the primal and the dual space are
both (R2, ‖ · ‖2), we note ‖λ‖2 = 1. Then

0 ≤ ∆L = inf
ξ∈U

min
λ∈R2

≥,
‖λ‖2=1

(
min
x∈YRC

λT z − min
y∈Y(ξ)

λTy

)
≤ ∆(ξ1, λ̃) ≤ λ̃T z̃ − λ̃T ỹ = 9− 9 = 0,

where the first inequality results from Proposition 11. Consequently, we obtain ∆L = 0 and
the lower robustness bound is displayed in Figure 2.
In order to determine ∆U , we first calculate max λ∈R2

≥,
‖λ‖2=1

∆(ξ2, λ). By linear programming

theory, for any λ ∈ R2
≥, the sets arg minz∈YRC λT z and arg miny∈Y(ξ2) λ

Ty each contain at

least one vertex of YRC and Y(ξ2) respectively. Hence, we can write Λ := {λ ∈ R2
≥ |

‖λ‖2 = 1} as a union of subsets Λ =
⋃5
i=1 Λi such that

⋂
λ∈Λi

arg minz∈YRC λT z 6= ∅ and⋂
λ∈Λi

arg miny∈Y(ξ2) λ
Ty 6= ∅ for all i = 1, . . . , 5. To this end, we distinguish the five cases

λ ∈ Λ1, · · · ,Λ5, where Λ1 := {λ ∈ Λ | λ2 ≤ 9
2
λ1 ≤ 1}, Λ2 := {λ ∈ Λ | 39

16
λ2 ≤ λ1 ≤ 9

2
λ2},

Λ3 := {λ ∈ Λ | 3
8
λ2 ≤ λ1 ≤ 39

16
λ2}, Λ4 := {λ ∈ Λ | 3

16
λ2 ≤ λ1 ≤ 3

8
λ2} and Λ5 := {λ ∈ Λ |

0 ≤ λ1 ≤ 3
16
λ1}. By direct calculation, we then obtain

max
λ∈R2

≥,
‖λ‖2=1

∆(ξ2, λ) = max
i=1,...,5

{
max
λ∈Λi

∆(ξ2, λ)

}
= ∆

(
ξ2, (1, 0)T

)
= 8.

Next, we show max λ∈R2
≥,

‖λ‖2=1

∆(ξ2, λ) < max λ∈R2
≥,

‖λ‖2=1

∆(ξ1, λ). For λ′ := (0, 1)T we obtain

max
λ∈R2

≥,
‖λ‖2=1

∆(ξ1, λ) ≥ ∆(ξ1, λ′) = 13− 1 = 12 > 8 = max
λ∈R2

≥,
‖λ‖2=1

∆(ξ2, λ).
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Figure 2: The lower robustness bound ∆L, the upper robustness bound ∆U and the ro-
bustness gap ϑ for the uncertain MOP in Example 12.

Therefore,
∆U = inf

ξ∈U
max
λ∈R2

≥,
‖λ‖2=1

∆(ξ, λ) = max
λ∈R2

≥,
‖λ‖2=1

∆(ξ2, λ) = 8.

The upper robustness bound ∆U is also displayed in Figure 2.

The following proposition shows that ∆L and ∆U are well-defined, i.e., it is shown that the
minima/maxima over all λ ∈ Rp

≥ with ‖λ‖∗ = 1 and the minima over all z ∈ YRC and all
y ∈ Y(ξ), ξ ∈ U , exist.

Proposition 13. For every ξ ∈ U the map

∆(ξ, ·) : {λ ∈ Rp
≥ | ‖λ‖∗ = 1} → R, λ 7→ ∆(ξ, λ)

is continuous,
inf

λ∈Rp
≥,‖λ‖∗=1

∆(ξ, λ) = min
λ∈Rp

≥,
‖λ‖∗=1

∆(ξ, λ)

and
sup

λ∈Rp
≥,‖λ‖∗=1

∆(ξ, λ) = max
λ∈Rp

≥,
‖λ‖∗=1

∆(ξ, λ).

I.e., the lower robustness bound ∆L and the upper robustness bound ∆U according to Defi-
nition 10 are well-defined.

Proof. Let ξ ∈ U be fixed. The set Λ := {λ ∈ Rp
≥ | ‖λ‖∗ = 1} is compact and, by

assumption, the sets YRC and Y(ξ) are compact. Hence, for Y ∈ {YRC,Y(ξ)}, the inner
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product 〈·, ·〉 : Λ×Y, (λ, y) 7→ λTy is uniformly continuous as a continuous function on the
compact set Λ× Y. For every Y ∈ {YRC,Y(ξ)}, the auxiliary map

h : Λ→ R, λ 7→ min
y∈Y

λTy

is continuous according to Berge’s maximum theorem, see [Ber63, p. 116].
As a consequence, the function ∆(ξ, ·) is continuous, as a sum of two continuous functions,
and it attains a minimum and a maximum over the compact set Λ.

In the two subsequent subsections we derive bounds for the multiobjective robustness gap.

3.1 A lower bound

We now show that ∆L defined in Definition 10 is indeed a lower bound for the robustness
gap ϑ, i.e.,

∆L ≤ ϑ.

Theorem 14. The lower robustness bound ∆L is a lower bound for the robustness gap ϑ,
i.e.,

inf
ξ∈U

min
λ∈Rp

≥,
‖λ‖∗=1

∆(ξ, λ) = ∆L ≤ ϑ. (7)

Proof. Let ξ̄ ∈ U , let z̄ ∈ YRC
P and let ȳ ∈ YP (ξ̄). Due to the Rp

=-convexity of Y(ξ̄) and

the properties of the weighted-sum scalarization, there exists λ̄ ∈ Rp
≥, ‖λ̄‖∗ = 1, such that

ȳ ∈ YP (ξ̄) satisfies
λ̄T ȳ = min

y∈Y(ξ̄)
λ̄Ty.

By Hölder’s inequality, we know that

‖z̄ − ȳ‖ = ‖λ̄‖∗‖z̄ − ȳ‖ ≥ |λ̄T (z̄ − ȳ)|
and consequently

‖z̄ − ȳ‖ ≥ λ̄T z̄ − λ̄T ȳ
≥ min

z∈YRC
λ̄T z − λ̄T ȳ

= min
z∈YRC

λ̄T z − min
y∈Y(ξ̄)

λ̄Ty

= ∆(ξ̄, λ̄)

≥ inf
ξ∈U

min
λ∈Rp

≥,
‖λ‖∗=1

∆(ξ, λ) = ∆L,

where the last equality results from Definition 10. Hence, ∆L ≤ ‖z − y‖ for all z ∈ YRC
P

and for all y ∈ YP (ξ) and ξ ∈ U . Finally, we obtain

ϑ = inf
ξ∈U

inf
z∈YRC

P

inf
y∈YP (ξ)

‖z − y‖ ≥ inf
ξ∈U

inf
z∈YRC

P

inf
y∈YP (ξ)

∆L = ∆L.
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If the robustness gap is zero, then ∆L is a tight lower bound of ϑ as shown in Corollary 15.

Corollary 15. If ϑ = 0, then the lower robustness bound is a tight bound of the robustness
gap, i.e., ∆L = ϑ.

Proof. By Proposition 11, we have 0 ≤ ∆L. By Theorem 14, we obtain 0 ≤ ∆L ≤ ϑ = 0.

3.2 An upper bound

In this section, we show that ∆U defined in Definition 10 is indeed an upper bound on the
robustness gap ϑ under some additional assumptions, i.e.,

ϑ ≤ ∆U .

It is proven that this inequality holds under the following condition and it is shown that
this condition is satisfied in many significant cases. These cases are distinguished by the
norms on the primal and dual spaces. Two separate cases are proven that cover every
choice of p-norms with 1 ≤ q ≤ ∞ under at most one additional assumption. Moreover,
it is shown that the condition is always satisfied for bicriteria problems, i.e, Rp = R2, and
every choice of p-norms with 1 ≤ q ≤ ∞.
The condition depends on the scenario ξ̄ ∈ U and is the following.

Condition A. Let the primal space be (Rp, ‖·‖) with the dual space (Rp, ‖·‖∗). We say that
Condition A holds for a scenario ξ̄ ∈ U if there exist z̄ ∈ YRC

P , ȳ ∈ YP (ξ̄) and λ̄ ∈ (Rp, ‖·‖∗)
such that

(i) κ̄ := z̄ − ȳ ∈ Rp
≥ ⊆ (Rp, ‖ · ‖) and λ̄ ∈ Rp

≥ ⊆ (Rp, ‖ · ‖∗)

(ii) λ̄ ∈ arg maxλ∈Rp
≥,‖λ‖∗=1 κ̄

Tλ

(iii) z̄ ∈ arg minz∈YRC λ̄T z.

In Figure 3, Condition A is illustrated for Example 12, the primal space (R2, ‖ ·‖1) and the
dual space (R2, ‖ · ‖∞). The following shows that ∆U is an upper bound for the robustness
gap if Condition A is satisfied.

Theorem 16. If Condition A is satisfied for all ξ ∈ U with YP (ξ) ∩ YRC
P = ∅ then

ϑ ≤ ∆U .

Proof. If there exists ξ0 ∈ U such that YP (ξ0)∩YRC
P 6= ∅, then by Definition 8, ϑ = ϑ(ξ0) = 0

and the claim follows immediately. Therefore, we assume that YP (ξ) ∩ YRC
P = ∅ for all

ξ ∈ U and we consider any ξ̄ ∈ U . By assumption, Condition A is satisfied for ξ̄. Hence,
there exist z̄ ∈ YRC

P and ȳ ∈ YP (ξ̄) such that κ̄ := z̄ − ȳ ∈ Rp
≥ and there exists λ̄ ∈ Rp

≥
such that

λ̄ ∈ arg max
λ∈Rp, ‖λ‖∗=1

κ̄Tλ and z̄ ∈ arg min
z∈YRC

λ̄T z. (8)
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Figure 3: Illustration of Condition A. The left hand picture displays Condition A (i) and
(ii), since λ̄ is in the maximal level set of the linear function corresponding to the dashed
line with the normal vector κ̄. Condition A (iii) is depicted on the right hand side.

As a consequence, we obtain by Definition 10,

max λ∈Rp
≥,

‖λ‖∗=1

∆(ξ̄, λ) ≥ ∆(ξ̄, λ̄)

= minz∈YRC λ̄T z −miny∈Y(ξ̄) λ̄
Ty = λ̄T z̄ −miny∈Y(ξ̄) λ̄

Ty

≥ λ̄T z̄ − λ̄T ȳ = λ̄T κ̄,

where the third equality follows from the right-hand side of (8) and the last equality follows
from κ̄ = z̄− ȳ. Using the left-hand side of (8) and the definition of the dual norm for ‖κ̄‖
and Definition 8, we have

max λ∈Rp
≥,

‖λ‖∗=1

∆(ξ̄, λ) ≥ λ̄T κ̄ = max λ∈Rp,
‖λ‖∗=1

κ̄Tλ

= ‖κ̄‖ = ‖z̄ − ȳ‖
≥ infz∈YRC

P ,y∈YP (ξ̄) ‖z − y‖ = ϑ(ξ̄)

Because ξ̄ ∈ U was arbitrarily chosen, we obtain ϑ(ξ) ≤ max λ∈Rp
≥,

‖λ‖∗=1

∆(ξ, λ) for all ξ ∈ U

which directly implies

ϑ = inf
ξ∈U

ϑ(ξ) ≤ inf
ξ∈U

max
λ∈Rp

≥,
‖λ‖∗=1

∆(ξ, λ) = ∆U .

Remark 17. It can also be shown that if ϑ = infξ∈U ϑ(ξ) = minξ∈U ϑ(ξ) and Condition A
is satisfied for some ξ̄ ∈ arg minξ∈U ϑ(ξ), then there exists λ̄ ∈ Rp

≥ ⊆ (Rp, ‖ · ‖∗) with
‖λ̄‖∗ = 1 such that

ϑ = ∆(ξ̄, λ̄).
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If Condition A is satisfied for a scenario ξ ∈ U , it may not hold for every z̄ ∈ YRC
P and

ȳ ∈ YP (ξ). It can be checked in Figure 3 that for the rightmost point z = (29.81, 10.91) ∈
YRC
P , there do not exist any y ∈ YP (ξ2) and λ ≥ 0 that satisfy Condition A.

In the following, we investigate three cases in which Condition A is satisfied. First, it is
shown that Condition A holds if the primal norm is the p-norm with p = 1 (Lemma 18).
Second, it is proven that Condition A is satisfied if the primal norm is any p-norm with
1 ≤ p ≤ ∞ under an additional assumption for the ideal point of RC (Lemma 19). Third,
it is shown that Condition A always holds for biobjective problems without further as-
sumptions whenever the primal norm is any p-norm with 1 ≤ p ≤ ∞ (Lemma 20).

We first show that Condition A holds for all scenarios ξ̄ with YP (ξ̄)∩YRC
P = ∅ if the primal

norm is the p-norm with p = 1.

Lemma 18. Let the primal norm be ‖ · ‖ = ‖ · ‖1 with the dual norm ‖ · ‖∗ = ‖ · ‖∞. If
YP (ξ̄) ∩ YRC

P = ∅ for a scenario ξ̄ ∈ U , then Condition A is satisfied for ξ̄.

Proof. Let YP (ξ̄) ∩ YRC
P = ∅ and set λ̄ := (1, 1, . . . , 1)T ∈ Rp

≥. Because YRC is compact,
there exists

z̄ ∈ arg min
z∈YRC

λ̄T z,

hence, z̄ ∈ YRC
P and by Corollary 5, there exists ȳ ∈ YP (ξ̄) such that ȳ ∈ {z̄} − Rp

=. By

assumption, YP (ξ̄) ∩ YRC
P = ∅, hence z̄ 6= ȳ and ȳ ∈ {z̄} − Rp

≥. We set κ̄ := z̄ − ȳ ∈ Rp
≥.

Then Condition A (i) and (iii) are satisfied. Furthermore, the dual norm to ‖ · ‖ = ‖ · ‖1

is ‖ · ‖∗ = ‖ · ‖∞, and we obtain

max
λ∈Rp,
‖λ‖∞=1

κ̄Tλ = max
λ∈Rp,
‖λ‖∞=1

p∑

i=1

κ̄i︸︷︷︸
≥0

λi︸︷︷︸
≤1

≤
p∑

i=1

κ̄i = κ̄T λ̄

and therefore λ̄ ∈ arg maxλ≥0, ‖λ‖∞=1 κ̄
Tλ, which proves Condition A (ii).

Moreover, Condition A is satisfied if the primal norm on (Rp, ‖ · ‖) is a p-norm ‖ · ‖p with
p ∈ (1,∞] if an additional assumption holds.

Lemma 19. Let the primal norm be ‖ · ‖ = ‖ · ‖p for p ∈ (1,∞] with the dual norm
‖ · ‖∗ = ‖ · ‖q where q ∈ [1,∞) and 1

p
+ 1

q
= 1. If YP (ξ̄) ∩ YRC

P = ∅ for a scenario ξ̄ ∈ U
and if the ideal point of RC satisfies zIRC ∈ Y(ξ̄) + Rp

=, then Condition A is satisfied for ξ̄.

Proof. By assumption, zIRC ∈ Y(ξ̄)+Rp
= for the scenario ξ̄ ∈ U . Then there exists y′ ∈ Y(ξ̄)

such that y′ ∈ {zIRC}−Rp
= and there exists ȳ ∈ YP (ξ̄) such that ȳ ∈ {y′}−Rp

= ⊆ {zIRC}−Rp
=

according to [Luc84, Prop. 3.1] which is applicable because Y(ξ̄) is compact.
Furthermore, there exists z̄ ∈ (arg minz∈YRC ‖z − ȳ‖p) ∩ YRC

P , which follows from [Ehr05,
Prop. 4.21 (2.)] for p ∈ (1,∞), and from [Ehr05, Prop. 4.22 (2.)] for p =∞ since ȳ 5 zIRC
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and YRC is compact. Consequently, ȳ 5 zIRC 5 z̄ and the assumption YRC
P ∩ YP (ξ̄) = ∅

implies z̄ 6= ȳ, which results in κ̄ := z̄ − ȳ ∈ Rp
≥.

Because the sets Bp(ȳ, ‖z̄−ȳ‖p) and YRC+Rp
= are convex, the Eidelheit separation theorem

can be applied, see, e.g., [Lue69]. That is, there exists a vector in the dual space, λ̄ ∈
(Rp, ‖ · ‖q) with ‖λ̄‖q = 1, such that for all y ∈ Bp(ȳ, ‖z̄ − ȳ‖p) and for all z ∈ YRC

λ̄Ty ≤ λ̄T z̄ ≤ λ̄T z.

Hence,
z̄ ∈ arg max

y∈Bp(ȳ,‖z̄−ȳ‖p)

λ̄Ty and z̄ ∈ arg min
z∈YRC

λ̄T z (9)

where the left-hand side leads to

κ̄ ∈ arg max
λ∈Bp(0,‖κ̄‖p)

λ̄Tλ. (10)

In order to show λ̄ ∈ Rp
≥, we distinguish the two cases p = ∞ and p ∈ (1,∞). First, let

p = ∞ and we assume that there is an index 1 ≤ j ≤ p such that λ̄j < 0. Because ȳ ≤ z̄,
there exists ε > 0 such that ȳj − 1 < z̄j − ε < z̄j and, hence, z̄ − ε · ej ∈ B∞(ȳ, ‖z̄ − ȳ‖∞),
where ej ∈ Rp is the j-th unit vector. Then λ̄T (z̄−ε·ej) = λ̄T z̄−ελ̄j > λ̄T z̄ in contradiction
to the left-hand side of (9).
Second, let p ∈ (1,∞) and we assume that there is an index 1 ≤ j ≤ p such that λ̄j < 0.
Due to the duality of the norms ‖·‖p and ‖·‖q and (10), we obtain ‖λ̄‖q = max‖λ‖p=1 λ̄

Tλ =
λ̄T κ̄
‖κ̄‖p and hence λ̄T κ̄ = ‖κ̄‖p‖λ̄‖q. Consequently, Hölder’s inequality is satisfied by κ̄ and

λ̄ with equality and by the conditions for Hölder’s inequality being satisfied with equality
for p ∈ (1,∞), see, e.g., [Cve12, Th. 9.2], we obtain that there exists α ∈ R\{0} such that
κ̄pj = α · λ̄qj 6= 0. Then κ̄j > 0, κ′ := κ̄− 2κ̄jej ∈ Bp(0, ‖κ̄‖p), where ej ∈ Rp is the j-th unit

vector, and λ̄Tκ′ = λ̄T κ̄− 2λ̄jκ̄j > λ̄T κ̄ in contradiction to (10).
As a consequence of both cases, we have λ̄ ∈ Rp

≥ for both p = ∞ and p ∈ (1,∞) and
Condition A (i) and (iii) are satisfied. It remains to show Condition A (ii), i.e., λ̄ ∈
arg maxλ∈Rp,‖λ‖q=1 κ̄

Tλ. Let λ� ∈ arg maxλ∈Rp,‖λ‖q=1 κ̄
Tλ, then, because ‖ · ‖q is the dual

norm of ‖ · ‖p, and by (10),

1 = ‖λ̄‖q = max
λ∈Rp,
‖λ‖p=1

λ̄Tλ = λ̄T
κ̄

‖κ̄‖p
≤ max

λ∈Rp,
‖λ‖q=1

κ̄Tλ

‖κ̄‖p
=
κ̄Tλ�
‖κ̄‖p

≤ ‖κ̄‖p‖κ̄‖p
‖λ�‖q = 1,

where the second inequality follows from Hölder’s inequality. Consequently, all inequalities
are equalities and, because the first inequality is an equality, λ̄ ∈ arg maxλ∈Rp,‖λ‖q=1 κ̄

Tλ.

Lemma 19 is instrumental to establish Condition A and the result of Theorem 16 and
requires the special assumption about the location of the ideal point of RC, zIRC, with
respect to the outcome set Y(ξ̄). In particular, it is shown that ȳ serves as a utopia point
for the minimum norm problem solved on YRC while z̄ ∈ YRC

P is an optimal solution to
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this problem. Since ȳ is a utopia point, we also have ȳ ≤ z̄ and we immediately obtain
κ̄ ∈ Rp

≥.

Lemma 20 corresponds to a biobjective version of Lemma 18 and Lemma 19 in which the
additional assumption on the ideal point is dropped. In absence of this assumption, the
location of the point ȳ ∈ YP (ξ̄) with respect to YRC is unknown and therefore this point
cannot play the role of a utopia point as it does in the multiobjective case. The existence
of the direction vector κ̄ is thus supported by solving the minimum norm problem with
the ideal point yI

P(ξ̄)
of Y(ξ̄) as a utopia point of YRC and the fact that p = 2.

Lemma 20. Let Rp = R2 and let the primal norm be ‖ · ‖ = ‖ · ‖p for p ∈ [1,∞] with the
dual norm ‖ · ‖∗ = ‖ · ‖q where q ∈ [1,∞] and 1

p
+ 1

q
= 1. If YP (ξ̄)∩YRC

P = ∅ for a scenario

ξ̄ ∈ U , then Condition A is satisfied for ξ̄.

Proof. Let zIRC denote the ideal point of RC and let yI
P(ξ̄)

denote the ideal point of P(ξ̄).

Note that, if zIRC ∈ Y(ξ̄) + R2
=, then the claim follows directly from Lemma 19.

Hence, in the following, we only consider the case zIRC 6∈ Y(ξ̄) + R2
=, which also implies

yI
P(ξ̄)
6∈ Y(ξ̄) +R2

= because otherwise zIRC ∈ {yIP(ξ̄)
}+R2

= ⊆ Y(ξ̄) +R2
=. We show that there

exist ȳ ∈ YP (ξ̄) and z̄ ∈ (arg minz∈YRC ‖z − ȳ‖p) ∩ YRC
P such that κ̄ := z̄ − ȳ ∈ R2

≥.
By Proposition 4, we have YRC ⊆ Y(ξ̄) +R2

= and hence yI
P(ξ̄)

5 zIRC. Then yI
P(ξ̄)

is the ideal

point or a utopia point for RC and there exists

z̄ ∈
(

arg min
z∈YRC

‖z − yIP(ξ̄)‖p
)
∩ YRC

P ,

which follows from [Ehr05, Prop. 4.21 (2.)] for p ∈ (1,∞), and from [Ehr05, Prop. 4.22
(2.)] for p =∞ since YRC is compact.
Because z̄ ∈ Y(ξ̄) + R2

=, y
I
P(ξ̄)
6∈ Y(ξ̄) + R2

=, and Y(ξ̄) + R2
= is convex and closed, the

intersection of bd
(
Y(ξ̄) + R2

=

)
with the line segment between yI

P(ξ̄)
and z̄ is nonempty and

compact and

ȳ := arg min
{
‖y − yIP(ξ̄)‖p | y ∈ conv ({yIP(ξ̄), z̄}) ∩ bd

(
Y(ξ̄) + R2

=

)}
(11)

is well-defined because the minimum is attained at exactly one point. Hence, yI
P(ξ̄)
≤ ȳ 5 z̄.

Because of the assumption YP (ξ̄) ∩ YRC
P = ∅, we have ȳ 6= z̄, and so κ̄ := z̄ − ȳ ∈ R2

≥. We
obtain z̄ ∈ arg minz∈YRC ‖z − ȳ‖p because

‖z̄ − yI
P(ξ̄)
‖p = minz∈YRC ‖z − yI

P(ξ̄)
‖p ≤ ‖ȳ − yI

P(ξ̄)
‖p + minz∈YRC ‖z − ȳ‖p

≤ ‖ȳ − yI
P(ξ̄)
‖p + ‖z̄ − ȳ‖p = ‖z̄ − yI

P(ξ̄)
‖p,

i.e., all inequalities have to be equalities. It remains to show that ȳ ∈ YP (ξ̄). Note that
there exist y1 ∈ arg miny∈YP (ξ̄)(1, 0)y and y2 ∈ arg miny∈YP (ξ̄)(0, 1)y according to [Luc84,
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Prop. 3.1] since Y(ξ̄) is compact and, because the objective space is two-dimensional, we
have

bd
(
Y(ξ̄) + R2

=

)
= YP (ξ̄) ∪ {y1 + r · (0, 1)T | r ∈ R>} ∪ {y2 + r · (1, 0)T | r ∈ R>}. (12)

For a contradiction, assume that ȳ ∈ bd
(
Y(ξ̄) + R2

=

)
\YP (ξ̄). By (12), we obtain ȳ ∈

{y1 + r · (0, 1)T | r ∈ R>} ∪ {y2 + r · (1, 0)T | r ∈ R>} and we assume without loss of
generality that ȳ ∈ {y2 + r · (1, 0)T | r ∈ R>}. Note that ȳ2 = y2

2 = yI
P(ξ̄)2

and by (11),

we have z̄2 = ȳ2 = yI
P(ξ̄)2

. Because we assumed ȳ 6∈ YP (ξ̄), we have y2
1 < ȳ1. Therefore, y2

is an element of the line segment between yI
P(ξ̄)

and z̄, and we have |y2
2 − yIP(ξ̄)2

| = 0 and

|ȳ1−yIP(ξ̄)1
| > |y2

1−yIP(ξ̄)1
| in contradiction to ȳ being the point closest to yI

P(ξ̄)
by definition.

Therefore, ȳ ∈ YP (ξ̄).
In summary, there exist ȳ ∈ YP (ξ̄) and z̄ ∈ (arg minz∈YRC ‖z − ȳ‖p) ∩ YRC

P such that
κ̄ := z̄ − ȳ ∈ R2

≥. The remainder of the proof is analogous to the proof of Lemma 19.

For the Euclidean norm ‖ · ‖ = ‖ · ‖2 = ‖ · ‖∗, the primal and dual space coincide and so do
the vectors λ̄ and κ̄ in Condition A. In this case, we relate Condition A to normal cones
as defined in [Roc15].

Remark 21. Using the normal cone to YRC at z̄ ∈ YRC as defined in [Roc15], i.e.,
NYRC(z̄) := {v ∈ Rp | 〈v, z̄ − z〉 ≤ 0 ∀z ∈ YRC}, we obtain the following. Condition A is
satisfied for a scenario ξ̄ ∈ U if YP (ξ̄) ∩ YRC

P = ∅ and there exists z̄ ∈ YRC such that

(
{z̄}+

(
NYRC(z̄) ∩ (−Rp

≥)
))
∩ YP (ξ̄) 6= ∅.

A further sufficient condition for Condition A to be satisfied can be formulated via restricted
normal cones as defined in [BLPW13].

3.3 A condition for the zero robustness gap

The main result about the robustness gap in the original papers on single-objective robust
optimization, see [BTN98, Th. 2.1] and [BTN99, Prop. 2.1], is that the robustness gap is
zero if the uncertainty is constraint-wise, i.e., if the uncertainty set is a Cartesian product
of the uncertainty sets of the constraints. In this section, we extend that result and we
provide a condition on the uncertainty set U that has two effects. Under the condition, for
each point in the robust Pareto set z ∈ YRC

P there is a scenario ξ ∈ U whose Pareto set
YP (ξ) is arbitrarily close to z. Also, the condition is sufficient for ϑ = 0.
In the following the uncertainty is required to be constraint-wise and objective-wise as also
studied in [KL12, EIS14]. The uncertainty set U in {P(ξ)}ξ∈U is called constraint-wise and
objective-wise if U = U1×· · ·×Up×Up+1×· · ·×Up+m such that {P(ξ)}ξ∈U can equivalently
be written as
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



(P(ξ)) min
x

(f1(x, ξ1), . . . , fp(x, ξp))
T

s. t. Fj(x, ξp+j) = 0 ∀j = 1, . . . ,m

x ∈ Rn





(ξ1,...,ξp+m)T∈U1×···×Up+m

.

The following assumption corresponds to the setting for the single-objective robustness
gap result in [BTN98] plus the assumption of objective-wise uncertainty. Recall that, by
the Convexity Assumption at the beginning of Section 3, P(ξ) is assumed to be a convex
problem for every ξ ∈ U .
Assumption 1.

(i) There exists a compact convex set X ⊆ Rn with int (X) 6= ∅ such that
⋃
ξ∈U X(ξ) ⊆ X.

(ii) The uncertainty set U is closed and convex and int (U) 6= ∅.

(iii) For every x ∈ X, the functions f(x, ·) : U → Rp and F (x, ·) : U → Rm are affine in ξ.

(iv) U is constraint-wise and objective-wise.

Under Assumption 1, every point in the robust Pareto set is arbitrarily close to the set of
Pareto sets of the scenarios as the following result shows.

Proposition 22. Let the Continuity Assumption, the Convexity Assumption, and As-
sumption 1 hold.
Then for every z∗ ∈ YRC

P and every ε > 0, there exists a scenario ξ̄ ∈ U such that

dist
(
{z∗},YP (ξ̄)

)
< ε

and
inf
ξ∈U

inf
y∈YP (ξ)

‖z∗ − y‖ = 0.

Proof. Let z∗ ∈ YRC
P and let ε > 0. Because of the Continuity Assumption, the Convexity

Assumption, and Assumption 1 (i), [Har78, Th. 5.5] and [Geo68, Th. 1] can be applied
and hence, there exist z̄ ∈ YRC

P and a vector λ̄ in the dual space, λ̄ ∈ Rp
> with ‖λ̄‖∗ = 1,

such that
‖z∗ − z̄‖ < ε

2
and z̄ ∈ arg min

z∈YRC

λ̄T z. (13)

We next show that there exists a scenario ξ̄ ∈ U such that dist
(
{z̄},YP (ξ̄)

)
< ε

2
.

The map λTf(x, ·) : U → R is affine in ξ for all x ∈ Rn and all λ ∈ Rp as a composition
of a linear and an affine function, and the map λTf(·, ξ) : Rn → R is convex in x for all
ξ ∈ U and all λ ∈ Rp

= as a nonnegative sum of convex functions. Therefore, the uncertain
single-objective optimization problem





(P(ξ, λ̄)) min
∑p

i=1 λ̄ifi(x, ξi)

s. t. Fj(x, ξp+j) = 0 ∀j = 1, . . . ,m

x ∈ Rn





(ξ1,...,ξp+m)T∈U1×···×Up+m
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satisfies Assumption 1 (i) - (iii) as required in [BTN98, Th. 2.1], which we apply to
Definition 6, and we obtain

ϑs−o := min
x∈XRC

sup
ξ∈U

λ̄Tf(x, ξ)− sup
ξ∈U

min
x∈X(ξ)

λ̄Tf(x, ξ) = 0.

Because the uncertainty is objective-wise, we have for all x ∈ Rn

supξ∈U λ̄
Tf(x, ξ) = sup(ξ1,...,ξp)∈U1×···×Up

∑p
i=1 λ̄ifi(x, ξi)

=
∑p

i=1 λ̄i supξi∈Ui fi(x, ξi) = λ̄TfRC(x)

and hence,
min
x∈XRC

λ̄TfRC(x)− sup
ξ∈U

min
x∈X(ξ)

λ̄Tf(x, ξ) = 0,

which, by the choice of λ̄, is equivalent to

λ̄T z̄ − sup
ξ∈U

min
x∈X(ξ)

λ̄Tf(x, ξ) = 0. (14)

Let α :=
∑p

i=1 ‖ei‖, where ei ∈ Rp is the i-th unit vector and let λmin := mini=1,...,p λ̄i.
Using (14), we show that there exists ξ̄ ∈ U such that dist

(
{z̄},YP (ξ̄)

)
< ε

2
. We set

ε̄ := ε · λmin

2α
> 0 and by (14), there exists ξ̄ ∈ U such that

λ̄T z̄ − min
x∈X(ξ̄)

λ̄Tf(x, ξ̄) < ε̄. (15)

By Corollary 5, there exists ȳ ∈ YP (ξ̄) such that ȳ 5 z̄. Moreover, because Y(ξ̄) is Rp
=-

convex, we obtain for the half space H := {y ∈ Rp | λ̄Ty ≥ miny∈Y(ξ̄) λ̄
Ty} that ȳ ∈(

{z̄} − Rp
=

)
∩H and consequently, using Definition 8,

dist
(
{z̄},YP (ξ̄)

)
= inf

y∈YP (ξ̄)
‖z̄ − y‖ ≤ ‖z̄ − ȳ‖ ≤ max

y∈
(
{z̄}−Rp

=

)
∩H
‖z̄ − y‖. (16)

For each y ∈
(
{z̄} − Rp

=

)
∩H, by the choice of ξ̄ in (15), we have

λmin
p∑

i=1

(z̄i − yi) ≤
p∑

i=1

λ̄i(z̄i − yi) = λ̄T (z̄ − y) ≤ λ̄T z̄ −min
y∈H

λ̄Ty = λ̄T z̄ − min
y∈Y(ξ̄)

λ̄Ty < ε̄,

since (z̄i − yi) ≥ 0 for all i = 1, . . . , p, and hence,

max
i=1,...,p

|z̄i − yi| <
ε̄

λmin
.

As a consequence, we obtain

dist
(
{z̄},YP (ξ̄)

)
≤ max

y∈
(
{z̄}−Rp

=

)
∩H ‖z̄ − y‖

≤ max
y∈

(
{z̄}−Rp

=

)
∩H
∑p

i=1 |z̄i − yi|‖ei‖ ≤ max
y∈

(
{z̄}−Rp

=

)
∩H maxi=1,...,p |z̄i − yi|α

< ε̄ α
λmin = ε

2
,
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where the first inequality follows from (16) and the second inequality follows from the
triangle inequality of the primal norm ‖ · ‖. We then obtain, by the triangle inequality,

dist
(
{z∗},YP (ξ̄)

)
= inf

y∈YP (ξ̄)
‖z∗ − y‖ ≤ ‖z∗ − z̄‖+ dist

(
{z̄},YP (ξ̄)

)
<
ε

2
+
ε

2
= ε.

Because ε > 0 was arbitrarily chosen, this implies infξ∈U infy∈YP (ξ) ‖z∗ − y‖ = 0.

Under Assumption 1, we obtain a result for convex robust multiobjective optimization that
generalizes [BTN98, Th. 2.1].

Theorem 23. Let the Continuity Assumption, the Convexity Assumption and Assump-
tion 1 hold. Then

(a) The robust counterpart RC is feasible if and only if all instances of {P(ξ)}ξ∈U are
feasible.

(b) If fRC is given as in (4) then the robustness gap vanishes, i.e., ϑ = 0.

Proof. Part (a) follows directly from [BTN98, Th. 2.1] since the definition of robust feasi-
bility in [BTN98] is the one used in this work.
Part (b) follows directly from Definition 8 and Proposition 22

ϑ = inf
ξ∈U

inf
z∈YRC

P

inf
y∈YP (ξ)

‖z − y‖ = inf
z∈YRC

P

(
inf
ξ∈U

inf
y∈YP (ξ)

‖z − y‖
)

= inf
z∈YRC

P

0 = 0,

where the second equality holds because all three infima are finite since ‖ · ‖ is bounded
from below by 0.

4 Approximating the robustness gap for linear prob-

lems

In this section, we study {P(ξ)}ξ∈U in the linear form under two types of uncertainty, deci-
sion uncertainty and parameter uncertainty. In multiobjective linear programs (MOLPs)
decision uncertainty can be contained in the vector of decision variables x ∈ Rn and pa-
rameter uncertainty can be contained in the problem data (C,A, b) ∈ Rp×n ×Rm×n ×Rm.
In the following, we separately discuss uncertain MOLPs that are affected by either kind
of uncertainty or both.

4.1 Decision Uncertainty

Decision uncertainty in MOLPs is first discussed and an optimization problem for comput-
ing ∆L is developed. Decision uncertainty accounts for the difference between a calculated
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solution and the way that solution is put into practice. For single-objective robust opti-
mization problems, decision uncertainty has been studied under various names, see, e.g.,
[BTN02, BNT07, Das00, LP09, SdH08]. It is also known as implementation error.
We assume that the realization of a decision vector x ∈ Rn is an element of the set {x}+U ,
where U ⊆ Rn is a compact uncertainty set. This setting leads to the following uncertain
MOLP 




(MOLP(ξ)) min C(x+ ξ)

s. t. A(x+ ξ) = b

x ∈ Rn




ξ∈U

.

The following concept addresses robust feasiblity in case of decision uncertainty in MOLPs.
This definition of decision robust feasibility for {MOLP(ξ)}ξ∈U fits Definition 2.

Definition 24. A point x∗ ∈ Rn is called a decision robust feasible solution to {MOLP(ξ)}ξ∈U
if all possible realizations of x∗ are feasible, i.e., if

x∗ ∈ XRC := {x ∈ Rn | A(x+ ξ) = b, ∀ξ ∈ U} .

The set XRC is called the decision robust feasible set.

For a thorough study of a solution concept for decision uncertainty in multiobjective op-
timization, we refer the reader to [EKS17], and we use the robust counterpart defined
therein. Note that in this setting the robust counterpart of {MOLP(ξ)}ξ∈U is a set-valued
optimization problem. However, according to [EKS17, Th. 22], for the special case of
decision uncertainty in MOLPs, the robust counterpart of {MOLP(ξ)}ξ∈U reduces to an
MOLP of the form

(DecRCMOLP) min Cx

s. t. x ∈ XRC,
(17)

where the objective function is exactly the deterministic objective function of {MOLP(ξ)}ξ∈U
and XRC is defined as in Definition 24. In the following, DecRCMOLP is called the decision
robust counterpart of {MOLP(ξ)}ξ∈U and a solution x∗ ∈ XRC is called a decision robust
(Pareto-)efficient solution of {MOLP(ξ)}ξ∈U if it is an efficient solution to DecRCMOLP in
the sense of Definition 1, i.e., if there is no x ∈ XRC with the property Cx ≤ Cx∗.
Note that DecRCMOLP is a semi-infinite optimization probem with the decision uncertainty
in DecRCMOLP contained only in the constraints, which are linear inequalities by Defini-
tion 24. According to [BTGN09, Th. 1.3.4], the set XRC can be equivalently represented
as a finite system of linear inequalities.
In order to construct a finite representation of the linear inequalities defining XRC, the
inequalities are first reformulated. Let U ′ ⊆ Rm be defined as U ′ := {b−Aξ | ξ ∈ U}, then

XRC = {x ∈ Rn | Ax = ξ, ∀ξ ∈ U ′} .

Because the uncertainty set U is assumed to be compact, the uncertainty set U ′ is also com-
pact and maxξ∈U ′ ξi exists for all 1 ≤ i ≤ m.Hence, the vector b̃ := (maxξ∈U ′ ξ1, . . . ,maxξ∈U ′ ξm) ∈

121



Rm is well-defined. Then the set XRC can equivalently be represented as

XRC =
{
x ∈ Rn | Ax = b̃

}
, (18)

which is a finite system of linear inequalities. Therefore, DecRCMOLP with XRC as in (18)
reduces to an MOLP if {MOLP(ξ)}ξ∈U carries decision uncertainty.

Using the specific setting of decision uncertainty in MOLPs and (18), an additional condi-
tion for the robustness gap being zero is provided in the following result.

Proposition 25. Let XRC in DecRCMOLP be given by (18). If there exists an (n − 1)-
dimensional face F of the polyhedral set XRC such that F ⊆ XRC

E , then

ϑ = 0,

and there exists a scenario ξ̄ ∈ U and an (n− 1)-dimensional face F ′ of the polyhedral set
X(ξ̄) such that F ′ ⊆ XE(ξ̄).

Proof. By [KL00, Cor. 5.7], F ⊆ XRC
E if and only if there exist 1 ≤ j ≤ m such that

F = {x ∈ Rn | Ajx = b̃j, Aix ≥ b̃i ∀1 ≤ i ≤ m},

where Ai is the i-th row of A for all 1 ≤ i ≤ m, and µ ∈ Rp
> such that

Aj =

p∑

i=1

µiCi, (19)

where Ci is the i-th row of C for all 1 ≤ i ≤ p.
Because U is compact, it holds supξ∈U ′ ξj = maxξ∈U ξj and there exists ξ̄ ∈ U such that

b̃j = maxξ∈U ξj = ξ̄j. For every x ∈ F and every 1 ≤ i ≤ m we have Aix ≥ b̃i ≥ ξ̄i and
hence

F ⊆ F ′ := {x ∈ Rn | Ajx = b̃j, Aix ≥ ξ̄i ∀1 ≤ i ≤ m} ⊆ X(ξ̄).

Applying the reverse direction of [KL00, Cor. 5.7] to both F ′ and (19), we obtain F ′ ⊆
XE(ξ̄) and hence, F ⊆ F ′ ⊆ XE(ξ̄). Therefore, F ⊆ XRC

E ∩XE(ξ̄) and, because fRC(x) =
f(x, ξ̄) = Cx for all x ∈ Rn, applying Definition 8, we obtain ϑ = 0.

We now show that the lower bound ∆L on the robustness gap ϑ may be computed as the
optimal value of a DC optimization problem, if the uncertainty set U is a convex polytope,
the matrix C ∈ Rp×n is positive semidefinite, and the primal norm is a block norm, i.e.,
the unit ball of the norm is a polyhedral set. In particular, the objective function of this
optimization problem is a difference of two convex functions and the constraints are linear
functions.
Note that the uncertainty set U ′ = {b − Aξ | ξ ∈ U} is also a convex polytope whenever
U is a convex polytope. Hence, we assume that the uncertainty set is given as U ′ = {ξ ∈
Rm | Dξ = d}, where D ∈ Rt×m and d ∈ Rt.

B. The Robustness Gap for Uncertain Multiobjective Optimization
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By Definition 10, the lower bound ∆L is given as

∆L = inf
ξ∈U ′

min
λ∈Rp

≥,
‖λ‖∗=1

(
min
x

λTCx − min
x

λTCx

s. t. Ax = b̃ s. t. Ax = ξ

)
,

where (18) is used in the left hand problem. Applying linear programming duality to the
right hand problem, we obtain

∆L = inf
ξ∈U ′

min
λ∈Rp

≥,
‖λ‖∗=1




min
x

λTCx − max
v

vT ξ

s. t. Ax = b̃ s. t. vTA = λTC

v = 0


 .

Finally, assuming the infimum can be replaced by the minimum, the following formulation
is obtained

∆L =




min
x,v,λ,ξ

λTCx− vT ξ
s. t. Ax = b̃

Dξ = d

vTA = λTC

‖λ‖∗ = 1

λ, v = 0




,

which becomes a DC problem if C is positive semidefinite and the primal norm (and hence
its dual) is a block norm. Computing the block norm of a point can be formulated as
linear constraints using characterizations of [WW85] see, e.g., also [CGS17] when applied
to robust optimization.

For the upper bound ∆U , using Definition 10 we proceed in a similar way. Applying linear
programming duality to the left hand problem in

∆U = inf
ξ∈U ′

max
λ∈Rp

≥,
‖λ‖∗=1

(
min
x

λTCx − min
x

λTCx

s. t. Ax = b̃ s. t. Ax = ξ

)
,

we obtain

∆U = inf
ξ∈U ′




max
x,u,λ

uT b̃− λTCx
s. t. Ax = ξ

uTA = λTC

‖λ‖∗ = 1

λ, u = 0



,

which is a bilevel problem that has a quadratic objective function on the lower level.
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4.2 Parameter Uncertainty

Parameter uncertainty in MOLPs is now investigated and an optimization problem for
computing ∆L is given. Parameter uncertainty accounts for uncertainty in the data of
optimization problems. Hence, both the linear objective and the linear constraints are
considered to be uncertain and the scenarios in the uncertainty set are written as ξ :=
(C,A, b) ∈ U , where (C,A, b) ∈ Rp×n × Rm×n × Rm and where the matrices C and A
consist of the rows Ci ∈ Rn for i = 1, . . . , p and Aj ∈ Rn for j = 1, . . . ,m, respectively.
This setting leads to the following uncertain MOLP





(MOLP(ξ) min Cx

s. t. Ax = b

x ∈ Rn




ξ:=(C,A,b)∈U

.

Note that MOLPs with decision uncertainty can be considered as MOLPs with parameter
uncertainty as defined here where only the right-hand side b ∈ Rm is affected by uncer-
tainty, see (18) in Section 4.1. Hence, this section covers not only the case of MOLPs that
are affected by either uncertainty but also the case of MOLPs containing both types of
uncertainty.

In the following MOLPs with parameter uncertainty are treated as a special cases of uncer-
tain MOPs, as introduced in Section 1, and so robust feasibility for {MOLP(ξ)}ξ∈U follows
from Definition 2.

Definition 26. A point x∗ ∈ Rn is called a robust feasible solution to {MOLP(ξ)}ξ∈U if
x∗ is feasible for all scenarios (C,A, b) ∈ U , i.e., if

x∗ ∈ XRC := {x ∈ Rn | Ax = b, ∀ξ = (C,A, b) ∈ U} .

The robust counterpart of {MOLP(ξ)}ξ∈U makes use of the concepts (3) and (4) in Sec-
tion 1. We obtain

(RCMOLP) min (supξ∈U C1x, . . . , supξ∈U Cpx)T

s. t. x ∈ XRC,

where supξ∈U Cix = maxξ∈U Cix for all 1 ≤ i ≤ p because U is a compact set. Because

RCMOLP is an MOP, we can directly apply the classical definition of Pareto efficiency as is
also done in Definition 3 for general uncertain MOPs. By Definition 3, a solution x∗ ∈ XRC

is called a robust (Pareto-)efficient solution of {MOLP(ξ)}ξ∈U if it is an efficient solution
to RCMOLP in the sense of Definition 1, i.e., if there is no x ∈ XRC with the property

(sup
ξ∈U

C1x, . . . , sup
ξ∈U

Cpx)T ≤ (sup
ξ∈U

C1x
∗, . . . , sup

ξ∈U
Cpx

∗)T .

This approach is found often in the literature, see, e.g., [KL12, FW14, GJLVP14, Chu16].
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The robust counterpart RCMOLP can equivalently be rewritten such that only the con-
straints are affected by uncertainty

(RCMOLP) min τ

s. t. −Cx+ τ = 0 ∀(C,A, b) ∈ U
Ax = b ∀(C,A, b) ∈ U

where τ ∈ Rp, which has commonly been used in single-objective reformulations, see, e.g.,
[BTGN09], and multiobjective reformulations, see, e.g., [FW14, GJLVP14].
In order to simplify the notation, we can further reformulate RCMOLP by defining a new
uncertainty set

U ′ :=
{
ξ := (A′, b′) ∈ R(p+m)×(n+p+1)

∣∣∣∣∣A
′ =

(
−C Ip

A 0

)
, b′ =

(
0

b

)
, (C,A, b) ∈ U

}

where Ip ∈ Rp×p is the identity matrix. Letting C̄ :=
(

0 Ip

)
∈ Rp×(n+p) and x′ :=

(x, τ)T ∈ Rn+p, RCMOLP can be rewritten as

(RCMOLP) min C̄x′

s. t. A′x′ = b′ ∀(A′, b′) ∈ U ′. (20)

The robust counterpart RCMOLP in (20) is a semi-infinite problem that carries uncertainty
only in the constraints. Therefore, results from single-objective robust optimization can
be applied and, according to [BTGN09, Cor. 1.3.5], the constraints of RCMOLP can be
represented as a finite system of linear inequalities if U is a polyhedral set.
Considering the inequality system Āx′ = b̄ as the corresponding finite representation of
the system A′x = b′ for all (A′, b′) ∈ U ′, we obtain

(RCMOLP) min C̄x′

s. t. Āx′ = b̄.
(21)

Analogously to Section 4.1, we now develop an optimization problem to compute ∆L. If
the uncertainty set U is a convex polytope, the matrix C̄ ∈ Rp×n is positive semidefinite,
and the primal norm is a block norm then the lower bound ∆L of ϑ may be computed as
the optimal objective value of a DC optimization problem. Note that the uncertainty set
U ′ is also a convex polytope whenever U is a convex polytope. Hence, we assume that the
uncertainty set is given as

U ′ =
{

(A′, b′) ∈ R(p+m)×(n+p+1)

∣∣∣∣∣

p+m∑

i=1

n+p+1∑

j=1

Dkij(A
′, b′)ij = dk, 1 ≤ k ≤ t

}
,

where D ∈ Rt×(p+m)×(n+p) and d ∈ Rt.
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By Definition 10, the lower bound ∆L is given as

∆L = inf
(A′,b′)∈U ′

min
λ∈Rp

≥,
‖λ‖∗=1

(
min
x

λT C̄x − min
x

λT C̄x

s. t. Āx = b̄ s. t. A′x = b′

)
,

where (21) is used in the left hand problem. Applying linear programming duality to the
right hand problem, we obtain

∆L = inf
(A′,b′)∈U ′

min
λ∈Rp

≥,
‖λ‖∗=1




min
x

λT C̄x − max
v

vT b′

s. t. Āx = b̄ s. t. vTA′ = λT C̄

v = 0


 .

Finally, assuming the infimum can be replaced by the minimum, the following formulation
is obtained

∆L =




min
x,v,λ,(A′,b′)

λT C̄x− vT b′

s. t. Āx = b̄

vTA′ = λT C̄∑p+m
i=1

∑n+p+1
j=1 Dkij(A

′, b′)ij = dk ∀1 ≤ k ≤ t

‖λ‖∗ = 1

λ, v = 0




,

which becomes a DC problem if C is positive semidefinite and if the dual norm ‖ · ‖∗ is a
block norm.

For the upper bound ∆U , using Definition 10 we proceed in a similar way. Applying linear
programming duality to the left hand problem in

∆U = inf
(A′,b′)∈U ′

max
λ∈Rp

≥,
‖λ‖∗=1

(
min
x

λT C̄x − min
x

λT C̄x

s. t. Āx = b̄ s. t. A′x = b′

)
,

we obtain

∆U = inf
(A′,b′)∈U




max
x,u,λ

uT b̄− λT C̄x
s. t. A′x = b′

uT Ā = λT C̄

‖λ‖∗ = 1

λ, u = 0



,

which is a bilevel problem that has a quadratic objective function on the lower level.
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5 Conclusions

A concept of a robustness gap for uncertain multiobjective optimization is introduced that
is applicable to the most often studied robustness concepts in the literature. The gap is
defined as the minimal distance between the robust Pareto set and the Pareto sets of the
scenarios.
Because Pareto sets are typically nonconvex even for linear programs and computing a
minimal distance between them is hard, lower and upper bounds for the robustness gap
are derived for the case of convex MOPs, using the weighted sum scalarization. Due to
the nature of this scalarization, the bounds are computed by solving a single-objective
problem in both the objective space and its dual space. A sufficient condition for the
upper bound to be valid is developed. This condition is satisfied by all pairs of p and
q-norms with p, q ∈ [1,∞] under an additional assumption, and it is always satisfied in the
two-dimensional objective space. The condition and the upper bound are also related to
normal cones and restricted normal cones as studied in the literature.
The proposed multiobjective robustness gap is related to the classical robustness gap con-
cept in the single-objective case. The well-known result about the single-objective zero
robustness gap is generalized for the multiobjective robustness gap, i.e., the multiobjec-
tive robustness gap is zero whenever the uncertainty is constraint-wise and objective-wise.
Moreover, it is shown that for every element in the robust Pareto set there exists a scenario
whose Pareto set is arbitrarily close to that specific robust Pareto point.
More results are obtained for the case of linear problems. For MOLPs with decision
uncertainty, the robustness gap is zero if there exists an (n−1)-dimensional robust efficient
face of the robust feasible set. In the case of MOLPs with decision uncertainty or parameter
uncertainty, the lower bound can be computed by methods from DC programming for
polyhedral uncertainty sets and block norms on the objective space.
Note that the presented concept of the multiobjective robustness gap is applicable to
all robustness concepts for uncertain MOPs whose robust counterpart is an MOP. The
proposed gap can also be applied to to other robustness concepts such as flimsily robust
efficiency and highly robust efficiency as defined in [IS16]. Due to the nature of these two
concepts, the robustness gap is always zero for flimsily robust efficiency and it is zero for
highly robust efficiency whenever a highly efficient solution exists.
There are different areas of interest for further research. First, it is of interest to eliminate
the additional assumption that is needed for the sufficient condition for the upper bound to
hold in case of pairs of p and q-norms with p, q ∈ (1,∞). Second, dependence of the bounds
for the robustness gap on the type of the scalarization used in their derivation could be
analyzed. Third, the robustness gap may require a different definition if an ordering cone
for an uncertain MOP is not the Pareto cone Rp

= but another suitable cone as used for robust

multiobjective optimization in [IKK+14]. For the latter, different scalarization techniques
may be beneficial. Finally, a robustness gap could be proposed for those concepts of
robustness for uncertain MOPs that do not define the robust counterpart as an MOP
but rather as a set-valued optimization problem, see e.g., [EKS17, EIS14]. However, in
case of objective-wise uncertainty, the set-valued robust counterpart can be reduced to an
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MOP, see [EIS14, Th. 5.4] and the presented concept of the multiobjective robustness gap
remains applicable.
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tween multi-objective robustness concepts and set valued optimization. Fixed
Point Theory and Applications, 2014(83), 2014.
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Abstract

In horticultural settings, mixing problems arise when choosing a suitable growth sub-
strate for potted plants. The aim of practitioners is to choose a pot and a growth substrate
mixture such that environmental emissions and costs are simultaneously minimized. The
impact of the plant’s quality on the selling price should also be considered. The deci-
sion problem outlined here is affected by two types of uncertainty. First, the problem
parameters are uncertain due to the nature of the input data. For example variations in
the agronomic characteristics of the growth media and in the weather conditions lead to
imprecision. Second, the composition of the growth media is generally not implemented
exactly due to variability in the mixing process itself. If these uncertainties are ignored,
the problem can be addressed using deterministic multiobjective optimization. If these
uncertainties are to be considered, the problem can be addressed by means of robust
multiobjective optimization. In this paper, we apply both a deterministic and a robust
approach to the problem, with and without uncertainty. We present a case study of an
Italian plant nursery and we compare deterministic and robust solutions. Our results
show that the robust solutions are preferable to the deterministic ones, and that the ro-
bust approach is indeed worth considering for horticultural mixing problems and might
also be used effectively in other settings where similar mixing decisions arise.

1 Introduction

Over the years, Operations Research has been used extensively to optimize environmentally
friendly production planning in agricultural supply chain management Crespo et al. (2010);
Bohle et al. (2010); Doole (2012). Multiobjective optimization is particularly helpful, since
objectives other than profitability must also be taken into account (for a survey on multi-
objective optimization in agriculture, see Hayashi (2000)). A specific challenge in handling
renewable resources is the fluctuation in their quantity, quality, and material properties arising
from the multiple-usage of by-products. Here, typical decision problems can be formulated
as mixing problems, which have been quite thoroughly investigated Ashayeri et al. (1994);
Shih and Frey (1995). In this work, however, we consider a specific mixing problem that is

∗corresponding author; e-mail: ckrueger@math.uni-goettingen.de
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currently a challenge in the horticulture sector: replacing peat substrate and plastic pots with
more environmentally-friendly alternatives.

Peat is a non-renewable resource widely used in horticulture due to its agronomic char-
acteristics, which guarantee the quality of plants to be sold in the market. Although peat
can indeed be replaced by compost—an agricultural by-product—the compost’s variable agro-
nomic properties determine different quality levels of a potted plant. Therefore, only a certain
percentage of peat can be substituted in a blending process. A second way to improve the
sustainability of horticulture would be to replace planter pots made of conventional plastic
with innovative, biodegradable pots.

In mathematical terms, this problem thus comprises a binary decision between two types
of pots and a decision about the share of compost used to partially replace the peat. Two ob-
jective functions are considered, one for the economic consequences and one for the ecological
consequences:

• The economic consequences are the additional costs due to the processing steps associ-
ated with compost handling. The selling price of agricultural and horticultural products
depends on their quality, a multi-faceted assessment often based on sampling, scoring,
and quality ratings.

• The ecological consequence is the greenhouse gas reduction achieved by replacing peat
(in part) with compost and plastic pots with biodegradable pots. This reduction can be
determined by calculating the global warming potential (GWP) in kg CO2 equivalents
IPCC (2007).

The problem is characterized by two types of uncertainty that are typical in renewable
resource processing: parameter uncertainty and decision uncertainty. The former is clearly
caused by fluctuations in quality, quantity and material properties, but inaccuracies in exper-
imental data and measurements also contribute Lowe and Preckel (2004); Geldermann et al.
(2016). The latter occurs whenever solutions are not implemented exactly as calculated, but
only within a range of the computed values. For example, the targeted share of compost is
generally not achieved exactly, due to imprecisions in the mixing process.

In these situations, robust optimization provides a suitable framework for decision support,
since it seeks solutions that are feasible for all scenarios and that perform best with respect
to the worst case. Classic robustness concepts are minmax robustness Ben-Tal et al. (2009)
and regret robustness Kouvelis and Yu (1997). Other concepts such as Bertsimas and Sim
(2004); Schöbel (2014) are reviewed in Goerigk and Schöbel (2016). Robust optimization has
been applied to various problems in agriculture. For example, Bohle et al. (2010) applied
it to the scheduling of wine grape harvesting in Brazil; Doole (2012) applied it to compare
deterministic and robust approaches to evaluating perennial pasture species in Australia by
using uncertain parameters within intervals; Munhoz and Morabito (2014) applied it to orange
juice production; and Hombach et al. (2017) applied a robust and multi-objective optimization
model with integrated risk attitude to a biodiesel supply chain in Germany.

In this paper, we consider a minmax robustness approach for both parameter and decision
uncertainty in multiobjective optimization (see Ehrgott et al. (2014); Kuroiwa and Lee (2012)
for parameter uncertainty and see Eichfelder et al. (2017) for decision uncertainty).

Robust minmax multi-objective optimization results in rather complicated (sometimes set-
valued) optimization problems (for recent surveys, see Ide and Schöbel (2016); Wiecek and
Dranichak (2016)). Here, we use robust multiobjective optimization to determine solutions

C. Peat and Pots: An Application of Robust Multiobjective Optimization to a Mixing
Problem in Agriculture

134



to our uncertain problem; the theoretical background for this work can be found in Krüger
(2018). We also describe the managerial implications in a real-world multiobjective problem
from the agricultural industry.

The paper is structured as follows. Section 2 describes the problem, which is initially
analyzed and mathematically formulated without taking uncertainty into account. Section 3
illustrates a case study with its input data (environmental emissions and costs). In Section 4
and Section 5, the model is described in detail and a deterministic solution approach for the
problem without uncertainty and a robust solution approach for the uncertain problem are
displayed. In Section 6, we compare the deterministic and robust results and draw some con-
clusions about current horticulture management practices and promising avenues for further
research.

2 Problem description

A major environmental problem in European horticulture is the greenhouse gas (GHG) emis-
sions caused by potted plant cultivation using peat and plastics Lazzerini et al. (2014).

Peat accumulates under anaerobic conditions over thousands of years from partially de-
cayed sphagnum, grasses, and other plants. It is a very flexible material that can be adapted
for most plants, since it is generally low in nutrients, pH, and bulk density. Moreover, it
exhibits favorable cation exchange capacity and air-filled porosity characteristics Robbins
and Evans (2001). Taken together, these parameters define the quality level of peat as a
growth medium in horticulture. However, peatlands (or bogs) are important carbon sinks,
and peat extraction results in significant emissions of carbon dioxide, methane, and nitrous
oxide Waddington et al. (2009). Consequently, peatland protection aims to maintain both bio-
diversity and such ecosystem services as climate protection and nutrient retention. To reduce
the environmental impacts of the sector, alternative materials (e.g., compost, bark, wood,
rice hulls, animal manure) made of renewable resources or by-products can be substituted for
peat.

In horticulture settings, peat could be best replaced by compost. Beyond a certain replace-
ment percentage, however, the agronomic quality of the potted plant becomes unacceptable
Papafotiou et al. (2005). Agricultural supply chains generate a great variety and quantity of
waste and by-products that could be used as compost, including the by-products from the
olive oil industry Raviv (2014).

In horticulture, plastic pots are widely used because of their low cost, durability, and ver-
satility. Since they cannot be recycled easily due to soil and vegetable matter contamination,
agrochemical residues, and additives, they are generally landfilled after one usage Schettini
et al. (2013). In the United States, an estimated 750 thousand tons of plastic pots are dis-
posed of annually Nambuthiri et al. (2015); in Italy, 91 thousand tons of plastic pots, sheets,
and twines used in agriculture are disposed of annually Scarascia-Mugnozza et al. (2011).
Here, biodegradable pots, which can be embedded in the soil with the plant or disposed of in
composting facilities, represent a viable alternative to plastic pots.

From a responsible management perspective, it makes sent to consider both peat substi-
tution and the replacement of plastic pots with biodegradable ones. The resulting reduction
in GHG emissions can be determined by a Life Cycle Assessment (LCA), which looks at
environmental impacts from all stages of a product’s life, including raw material extraction,
materials processing, manufacturing, distribution, use, repair, maintenance, and disposal or
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recycling Geldermann et al. (1999); Brandenburg et al. (2014).
Along with the goal of minimizing GHG emissions, one would also like to minimize the

additional costs associated with substituting for peat and plastic pots. The additional costs
comprise only those costs which are relevant for the decision, and that vary from the initial
situation (i.e., the only use of peat and plastic containers to grow plants). This leads to
a biobjective optimization problem, which is complicated by the two types of uncertainty
mentioned in Section 1. Parameter uncertainty arises from lack of exact knowledge of cost
and emission parameters. Here, one must work with intervals. Decision uncertainty arises
from variations in the implementation of the calculated solution. For instance, the calculated
share of compost cannot be mixed exactly using manual labor.

Mathematical formulation of the problem

In mathematical terms, we have a binary decision about whether or not to replace the plastic
pot with a biodegradable pot, along with a decision about how much compost to mix with
the peat. We let one potted plant be the functional unit of the problem and assume it is
representative of all plants of the same species cultivated in a given nursery. For each potted
plant, we must decide on

• the share of compost γ ∈ [0, 1] used to replace peat,

• which type of pot to use. This decision is modeled by introducing the pot variable

β ∈ {0, 1}, where β =

{
1 if a biodegradable pot chosen

0 if a plastic pot chosen
.

Using the two decision variables γ and β, the optimization problem for a specific plant
species can be written as the following biobjective minimization problem with two objective
functions and one constraint:

(P)
min adC(γ, β)

min GWP (γ, β)

s.t. Q(γ, β) ≥ 3

γ ∈ [0, 1]

β ∈ {0, 1}.

The first objective function represents the additional costs (adC) caused by the substitution,
which are to be minimized. The second objective function represents the global warming
potential (GWP ), which is also to be minimized. In the constraint, plants that fail to meet
the aesthetic requirements for sale are excluded.

3 Input data for the case study: one potted plant

The decision problem is elucidated here by means of a plant nursery in Pistoia, Italy. Input
data is collected for a potted plant of the species Photinia x fraseri, which is cultivated for 1
year in a 5 dm3 pot. This serves as our reference unit for the LCA calculations. Photinias are
very popular ornamental shrubs, grown for their decorative fruit and foliage, especially in Italy
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Pardossi et al. (2009); Chilosi et al. (2017). The two growth media considered are a generic
Baltic sphagnum peat and compost made of olive mill waste; the two planter pots considered
are non-biodegradable high-density polyethylene and biodegradable polylactid acid.

The environmental emissions, costs, and life cycles of these materials are treated as fol-
lows. We use GWP , one of the most relevant indicators in LCA Guinée et al. (2002). It is
expressed as carbon dioxide equivalent emissions (kg CO2-eq) and has a time horizon of 100
years. It is widely acknowledged, however, that LCA contains many sources of uncertainty,
including data inaccuracy and gaps, unrepresentative data, model uncertainty, uncertainty
due to choices, spatial and temporal variability, variability between sources and objects, epis-
temological uncertainty, measurement errors, and estimation uncertainty Björklund (2002).
Therefore, we use minimum and maximum values for GWP. The prices for peat, compost,
plastic pot, and biodegradable pot are also given as intervals (see Table 1).

The GWP for peat and the additional costs associated with substitutions pertain to the life
cycle stages from peatland extraction to transportation to the plant nursery. GWP emissions
from peat handling are negligible and can be neglected. The GWP emissions resulting from
peat extraction vary from study to study Couwenberg (2011). We take as our lower value
the 550 kg CO2-eq per ton of material reported in Brinkmann et al. (2004) and as our upper
value the 1197 kg CO2-eq per ton of material reported in Kranert et al. (2007). The costs of
peat are those of commercial peat (Gramoflor-Containersubstrat R©) produced in Germany.

The compost used in this study is produced from by-products of an olive-oil chain Altieri
et al. (2011): de-stoned olive mill waste, wastewater, olive leaves, and twigs. These are mixed
in a feed-mixing lorry, together with waste wool and straw. The resulting mixture is packaged
in net sacks and stored outdoors for three months to permit static-pile composting. The
compost is then allowed to mature to a final product—a process involving periodic manual
turning. It can then be transported to the plant nursery and used to prepare the growth
substrate. These additional steps lead to additional costs for logistics and production. The
life cycle stages from the production of the by-product, the processing, and the use as growth
medium for the substrate of plants are taken into account.

Plastic pots made of high-density polyethylene are commonly used in horticulture in Italy
Lazzerini et al. (2016). The typical upper and lower GWP values for this material are reported
by Yates and Barlow (2013). The minimum and maximum costs of plastic pots are taken
from three commercial products on the Italian market.

The biodegradable pot used in this study is made of polylactic acid (PLA), which is pro-
duced from the hydrolysis of polysaccharides as starches or lignocellulosic materials Gross
and Kalra (2002). The LCA of PLA includes the life cycle stages of of corn production and
transport to corn wet mill, destrose and lactic acid production, lactide production, polylactide
production, and injection molding. LCA studies by Hottle et al. (2013); Yates and Barlow
(2013) yield the lower and upper GPW values for PLA. It is assumed that PLA pots are 30%
more expensive than plastic pots, as reported by Bastioli (2001); Riggi et al. (2011).

The fluctuations in costs and emissions during the processing of raw materials (e.g., elec-
tricity consumption) lead to parameter uncertainty. Minimum, maximum, and average values
for GWP and costs are shown in Table 1.

137



Table 1: (Minimum |maximum|average) values of the problem parameters costs (c | c| ĉ) and
emissions (em | em| êm).

Material GWP (em) Costs (c)

(kg CO2-eq) (Euro)

min (em) max (em) avg (êm) min (c) max (c) avg (ĉ)

peat 0.498 1.083 0.79 0.16 0.24 0.20

compost 0.205 0.342 0.27 0.03 0.05 0.03

plastic pot 0.384 0.576 0.48 0.86 1.30 1.08

biodegradable pot 0.217 0.403 0.31 0.98 1.82 1.40

4 The deterministic problem

The problem analyzed in this paper has two objective functions, one economic (the additional
costs of the substitutions) and one ecological (the global warming potential). Since the two
objectives have incommensurable measurement units, the problem is modeled as a biobjective
problem. In this section, we describe the two objectives in detail, before an analytical de-
scription of the deterministic efficient solutions is stated that is originally developed in Krüger
(2018).

4.1 Analysis of additional costs

The first objective, the additional costs, has two parts: the purchase costs of the input
materials (growth media and pot) and the selling price of the potted plant. All other costs
can be neglected, since they are independent of the decision problem being considered here.

The following cost function costs : [0, 1]×{0, 1} → R is obtained as a part of the additional
costs function,

costs(γ, β) = cpeat · (1− γ) + ccomp · γ + cplas · (1− β) + cbio · β
= cpeat + cplas + γ · (ccomp − cpeat) + β · (cbio − cplas),

where the parameters cpeat, ccomp, cplas, cbio denote the costs of one functional unit of peat,
one functional unit of compost, a plastic pot, and a biodegradable pot, respectively.

The selling price of a potted plant depends on its quality, and each potted plant is assigned
a specific quality level between 1 and 5. The lower the quality level, the lower the selling
price of the potted plant. To determine the quality level of a potted plant, a qualitative
agronomic and aesthetic evaluation by experts is used. Replacing peat with compost changes
the agronomic quality of the plant, see Papafotiou et al. (2005). For the Photinia used in our
case study, it is assumed that the quality function Q assigns a quality level to each decision,
that is,

Q : [0, 1]× {0, 1} → {1, . . . , 5}.
The quality function Q is piecewise constant for each β ∈ {0, 1}, where the bounds of the
constant parts of the quality function are

0 = tβ0 < tβ1 < tβ2 < · · · < tβ8 = 1.
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Figure 1: Quality function for the species Photinia x Fraseri. Dashed black lines indicate a
plastic pot (β = 0) and straight lines indicate a biodegradable pot (β = 1).

The specific quality function for a fixed pot β ∈ {0, 1} for the species Photinia with respect
to one potted plant is

Q(γ, β) :=





5, if γ ∈ [tβ0 , t
β
1 ] ∪ [tβ4 , t

β
5 ]

4, if γ ∈ (tβ1 , t
β
2 ] ∪ [tβ3 , t

β
4 ) ∪ (tβ5 , t

β
6 ]

3, if γ ∈ (tβ2 , t
β
3 ) ∪ (tβ6 , t

β
7 ]

≤ 2, if γ ∈ (tβ7 , 1].

(1)

Figure 1 shows the dependence of the quality on the share of compost for Photinia.
Dashed and straight lines in Figure 1 demonstrate how the quality function Q depends

on the choice of planter pots. It is assumed that plants raised in biodegradable pots (straight
lines) are of better or equal quality than plants raised in plastic pots (dashed lines).

Following the qualitative evaluation, each quality level can be associated to the selling
price. It is assumed that a given number of quality levels can be attained, but that only
plants with high enough levels are suitable for selling. For our case study, this minimum
quality level is 3. The relationship between the quality and the price (in [AC]) of a potted
plant depends on the species and is defined by the function price, which assigns a price to
the quality levels.

The first objective adC is then obtained by combining the selling price and the costs

adC(γ, β) = costs(γ, β)− price(Q(γ, β)). (2)

4.2 Analysis of global warming potential

The second objective function GWP considers the decision-relevant emissions of a potted
plant. For each feasible share of compost γ, the GWP is the linear combination of the
corresponding values for 100% peat and 100% compost:

GWP (γ, β) = empeat · (1− γ) + emcomp · γ + emplas · (1− β) + embio · β
= empeat + emplas + γ · (emcomp − empeat) + β · (embio − emplas),

(3)
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where empeat, emcomp, emplas, embio denote the GWP of one functional unit of peat or compost
and the GWP of a plastic or biodegradable pot.

4.3 Deterministic efficient solutions to the problem

Since our problem has two objectives, we need a concept of optimality for multiobjective
problems. We subsequently use the classical optimality concept for this case, which is the
well-known Pareto efficiency, see Ehrgott (2005); Miettinen (2012). In the concept of Pareto
efficiency, a point y dominates a point z if y is less than or equal to z in every component,
and strictly less than z in at least one component. A solution x∗ is called efficient, if there is
no other feasible solution x whose outcome in the objective space dominates the outcome of
x∗. Hence, an efficient solution is one for which there exists no other solution that is better
or equal in terms of additional costs and GWP and strictly better in at least one of them.

We now describe an approach for finding the efficient solutions. The first step is to split
the problem P into two parts, that is, to solve the problem separately for β = 0 and for
β = 1. The efficient solutions can then be determined by a pairwise comparison of the
efficient solutions for both parts. In the remainder of this section, the pot variable β ∈ {0, 1}
is considered as fixed, and the efficient solutions are determined for each β. The set of feasible
solutions with respect to the fixed pot variable β is denoted as F(β) and for the case study

we have F(β) = [0, tβ7 ]. The quality level of the rightmost point of F(β) is given as νmin = 3
according to (1).

To find efficient solutions, we consider each quality level separately. This fixes the selling
price. Since the additional costs and GWP are both minimized for a given quality level if we
choose as much compost as possible (cf. Table 1), we need only consider the rightmost points
(Figure 2). However, we must still determine whether they are efficient or not.

Formally, the set of efficient solutions to the deterministic problem for the fixed pot
variable β is given as

D(β) :=
5⋃

j=νmin

{max{γ ∈ F(β) | Q(γ, β) ≥ j}} . (4)

This result confirms the intuitive approach of taking the maximum share of compost in a
plant nursery: for each quality level, all higher and equal quality levels are considered, and
the maximum share of compost thereof is chosen. Therefore, the set of deterministic efficient
solutions is easily computable.

In this section, we have described the cost function for purchasing growth media and
pot, the quality function for identifying suitable quality levels for selling, the additional costs
function, the environmental function, and the deterministic approach to solving the problem.
Since this approach is not suitable for the decision problem when it includes uncertainty,
however, we present an appropriate approach in the following section.
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Figure 2: Illustration of Equation (4). The dots mark the quality levels of the efficient
solutions for a plastic pot t05, t

0
6, t

0
5.

5 Uncertainty in the problem

In our case study, costs and emissions are expressed as ranges or intervals, rather than as exact
numbers. This creates parameter uncertainty. And our solutions—at least those concerning
the share of compost in the growth medium—cannot be put into practice exactly, but are
burdened with deviations. This creates decision uncertainty. In the literature, these two types
of uncertainty are also referred to as data uncertainty and implementation error Ben-Tal et al.
(2009); Ben-Tal and Nemirovski (2002); Bertsimas et al. (2007).

There are various ways to address these two types of uncertainty in biobjective problems
such as P. Robust optimization is especially suitable for problems in which the uncertainty
set (i.e., the set of all scenarios that may occur) is known, and where knowledge about a
probability distribution on the uncertainty set is not given Bertsimas et al. (2011).

5.1 Parameter uncertainty

Various robustness concepts for parameter uncertainty in bi-objective or multiobjective prob-
lems have been introduced in the literature. In each case, it is assumed that there is a so-called
uncertainty set containing all possible values of the data. Each element of the uncertainty
set is called a scenario. In the decision problem P, each parameter cpeat, ccomp, cplas, cbio and
empeat, emcomp, emplas, embio falls within an interval, and the intervals are independent of
each other. For example, cpeat ∈ [cpeat, cpeat], see Table 1. The worst case is given by

cpeat, ccomp, cplas, . . . , emplas, embio.

Here, all parameters are at the upper bounds of their intervals. This is a special situation in
robust optimization in which we can find a robust solution by considering these worst-case
values. That is, we replace cpeat by cpeat, . . . , cbio by cbio in the first objective function adC,
and we replace empeat by empeat, . . . , embio by embio in the second objective function GWP.
The parameter uncertainty is then included in the resulting problem’s objective functions.
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5.2 Decision uncertainty

Since, for our problem, it is reasonable to assume that a worker uses exactly the chosen type
of pot, the only decision uncertainty is the share of compost in the substrate. In horticulture,
growth substrate is prepared for many potted plants at one time, and the mixing is done
roughly in big heaps using skid-steer loaders. The maximum and minimum deviation in
compost share γ that can be expected in a single pot can be estimated by the plant nursery
based on experience (e.g., 10% lower or 10% higher than intended).

For our problem, we assume that both a minimum deviation zmin ≤ 0 and a maximum
deviation 0 ≤ zmax are given. The actual values of γ are expected to fall within [γ+zmin, γ+
zmax]. However, this is not correct for values γ < −zmin or γ > 1− zmax, since a share below
0% or above 100% is not permitted. The uncertainty when implementing a decision hence
depends on the values of γ. It is defined as

zmin(γ) :=

{
max

{
zmin,−γ

}
for γ ∈ (0, 1)

0 for γ ∈ {0, 1}

zmax(γ) :=

{
min {zmax, 1− γ} for γ ∈ (0, 1)

0 for γ ∈ {0, 1}

(5)

to yield the deviation set Z(γ) of γ ∈ [0, 1] as

Z(γ) :=
[
zmin(γ), zmax(γ)

]
. (6)

The realized values for every γ ∈ (0, 1) are finally obtained in

{γ}+ Z(γ) =
[
max

{
γ + zmin, 0

}
, min{γ + zmax, 1}

]
. (7)

The cases in which no mixing is needed (γ = 0 and γ = 1) can be realized exactly.
In the deterministic case, every solution (γ, β) is realized exactly. In in case of decision

uncertainty, however, there are many possible outcomes of the solution (γ, β), one for each
realization γ+z with z ∈ Z(γ). The plant nursery would like to avoid realizations in intervals
that lead to low quality. That is, it would like all possible realizations of a share γ to lead
to sellable plants. Therefore, we only consider solutions γ, for which the plant can be sold in
every realization. The set of solutions γ with this property is called the robust feasible set,
and it is denoted as XRC. This concept of robust feasibility was introduced by Eichfelder
et al. (2017); Ben-Tal et al. (2009).

The next question is this: which of the solutions are good choices? One might choose the
solutions from Section 4.3 for the deterministic case. However, these might not be the best
choice if γ is not implemented as planned, since one might obtain a substrate mixture that
drops into a lower quality level. Thus, the aim is to search for solutions that are robust against
these deviations. For every solution γ, the set of its realizations must be considered. In other
words, when assessing outcomes, one must compare sets instead of points. To accomplish the
complex task of comparing two possible solutions, we use the definition of robust efficiency
provided by (Eichfelder et al., 2017, Eq.(3)). Here, two solutions are compared by comparing
all their possible realizations with each other in the following way. A solution γ∗ dominates a
solution γ if, for every scenario z ∈ Z(γ), there exists a (perhaps different) scenario z∗ ∈ Z(γ∗)
such that the outcome of γ+ z is dominated by the outcome of γ∗+ z∗. The set of the robust
efficient solutions is denoted by E , and the set of robust efficient solutions for a fixed pot β is
E(β).
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5.3 Robust solutions to the problem

To determine the robust efficient solutions to the problem with decision uncertainty, the
approach of Krüger (2018) is followed using their analytical description of the solutions. The
problem is split into two parts and solved separately for β = 0 (plastic pot) and for β = 1
(biodegradable pot). The set of robust efficient solutions can then be derived by a pairwise
comparison of the robust efficient sets for the two values of β. As shown in Krüger (2018),
the number of robust solutions for each fixed pot variable β ∈ {0, 1} is small. Hence, only a
small number of pairwise comparisons is necessary.

In the remainder of this section, we therefore assume that the pot variable β ∈ {0, 1}
is fixed and determine the robust solutions for each β. The robust feasible set for the fixed
variable β is denoted as XRC

β . To illustrate XRC
β , we consider the quality function in Figure 1.

The dotted line at t07 indicates that, in a plastic pot (β = 0), every share of compost greater
than t07 yields a plant not suitable for sale. When dealing with decision uncertainty, if a
plant nursery assumes that the realized values of γ differ from their computed values (e.g.,
by at most ±10%,), then a safety margin is required between the robust feasible solutions
and those constant intervals of Q where the quality drops below 3. In our case study, the
safety margin corresponds to the maximum deviation from the computed value. From the
point of view of the plant nursery, the safety margin is the maximum hypothetical deviation
for which the quality level of a potted plant does not deviate from the expected level. For
the quality function in Figure 1, this can easily be achieved by subtracting 10% from the
maximum feasible solution tβ7 , that is, by taking tβ7 − 0.1 as the maximum solution yielding a
plant that can always be sold.

The following method based on Krüger (2018) can be used to determine the robust efficient
set E(β):

(i) take all interval bounds of the quality function and subtract the maximum deviation
zmax;

(ii) check whether these points are robust feasible and keep only the robust feasible points,
neglecting the rest. The resulting set is then called S(β);

(iii) choose the biggest element of the set S(β) and determine the minimum quality that the

realizations of this element can have as jβmax;

(iv) for each quality level j from jβmax until the maximum quality (i.e., 5), proceed as follows:
for every element of the set S(β), determine the minimum quality of its realizations. If
this quality is lower than j, delete that element from the set. Then, choose the biggest
element of the remaining set and add it to the set W(β).

This procedure yields the set W(β), in which every element is robust. One must now check
whether there are further robust solutions. To determine the whole set of robust solutions,
only two cases must be distinguished:

(a) if all elements of the set W(β) are larger than the minimum deviation |zmin|, then the
set of robust solutions is exactly W(β);

(b) if the smallest element of W(β) is smaller than |zmin|, then the set of robust solutions
is not only W(β), but also includes a whole interval of robust solutions between 0 and
the maximum element of the set W(β) that is smaller than |zmin|.
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Since there can never be less than 0% compost, the realization sets of the solutions near
zero are nested within each other. This makes their outcomes hard to distinguish, thus leading
to the whole interval of robust solutions. This is why there is an interval of robust solutions
if any element of W(β) is larger than the minimal deviation |zmin|.

As described in this section, the robust solutions can be determined directly by evaluating
the set W(β), which itself can be calculated with low computational effort from the finite set
of interval bounds of Q. The suggested steps for computing the set W(β) are similar to those
for the deterministic problem. The main differences are that a safety margin is considered
in the robust feasible set and that the finite candidate set is evaluated with respect to the
minimal quality of its element’s realizations.

6 Case study for the species Photinia

The model is applied to the real-world case study using the solution techniques for the de-
terministic and uncertain cases. The deterministic and robust solutions are determined and
compared from the practical perspective of a plant nursery.

6.1 Deterministic efficient solutions

We now present a detailed study by combining the results of Section 4 with the data in Table 1
and Table 2, which is illustrated in Figure 1.

Table 2: Boundaries of the constant parts of the quality function Q in [%].

tβ0 tβ1 tβ2 tβ3 tβ4 tβ5 tβ6 tβ7 tβ8
β = 0 0 9 27 40 54 72 81 89 100

β = 1 0 10.9 27.7 39.4 52.5 73 81.9 90.1 100

The price function of a Photinia is displayed in Table 3. Here, a potted plant grown in peat
can always be sold for 6,50AC (quality level 5, without substitution). When using compost,
additional selling costs (due to the lower prices) are assumed between 2,17AC (quality level 4)
and 4,34AC (quality level 3).

Table 3: Price function of a potted Photinia x Fraseri

Quality Q(·) Price price(Q(·))
5 6.50 AC

4 4.33 AC

3 2.16 AC

Applying Equation (4), the following sets of deterministic efficient solutions are obtained
for the pot variable values β ∈ {0, 1},
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D(0) =
{
t05, t

0
6, t

0
7

}
and D(1) =

{
t15, t

1
6, t

1
7

}

The outcomes of the efficient solution sets D(0) and D(1) are displayed in Figure 3.

adC in AC

GWP in kg CO2-eq

0−6 −5 −4 −3 −2 −1

1
3

2
3

1t05 t06 t07

t15 t16 t17

Figure 3: Deterministic efficient solutions for both types of planter pots: t05, t
0
6, t

0
7 are the effi-

cient solutions with plastic pots, whereas t15, t
1
6, t

1
7 are the efficient solutions with biodegradable

pots. The lines represent the Pareto order with which the solutions are compared. Dotted
lines correspond to plastic pots D(0), and dashed lines correspond to biodegradable pots, i.e.,
D(1).

As shown in Figure 3, the solution t06 ∈ D(0) is dominated by t15 ∈ D(1) and the solution
t07 ∈ D(0) is worse than each of the solutions t15, t

1
6 ∈ D(1) in both objectives, adC and GWP.

The set of (deterministic) efficient solutions to the problem is hence given as

D =
{

(t05, 0), (t15, 1), (t16, 1), (t17, 1)
}
.

These solutions are illustrated in Figure 4. One sees immediately that there are three solutions
with a biodegradable pot and only one with a plastic pot. Hence, the choice of a bio-pot goes
well with replacing peat by compost, even though a biodegradable pot is more expensive.
Although the most profitable solution (t05, 0) involves a plastic pot, there are also three efficient
solutions involving a biodegradable pot. Moreover, compared to (t05, 0), choosing (t15, 1) yields
only slightly more adC while improving GWP significantly. The solution (t15, 1) is the best
solution for a plant nursery when both objectives are equally weighted. If the economic
objective is weighted significantly higher, then (t05, 0) should be chosen. Conversely, a high
preference for the ecological objective leads to either (t16, 1) or (t17, 1).

6.2 Robust solutions

In this section, we take uncertainties into account. In our problem, the data for costs and
emissions is considered uncertain, and the exact share of compost in the growth media is
unknown. To account for uncertainty in the cost (c) and emissions (em) parameters, we
assume that their values lie in the intervals given in Table 1. To account for uncertainty
in the realized share of compost γ in the growing media, we assume that it varies from
its intended quantity by ±10%—an estimate based on plant nursery experience. Therefore,
zmin = −0.1 and zmax = 0.1.
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Figure 4: Deterministic efficient solutions

Using the framework from Section 5, we next determine the robust solutions to our problem
for the species Photinia.

We follow the procedure from Section 5.2 to determine the setW(β) for each choice of the
pot variable β ∈ {0, 1}. Toward this end, we first shift the set of boundaries of the constant
intervals of the quality function by zmax (see Table 2). This yields

{
(tβ1 − zmax), (tβ2 − zmax), . . . , (tβ7 − zmax), (1− zmax)

}
∪ {0, 1}

This set is then reduced to the elements that are robust feasible for the problem with uncer-
tainty, and the result is

S(0) =
{

0, (t02 − zmax), . . . , (t07 − zmax)
}
,

S(1) =
{

0, (t11 − zmax), (t12 − zmax), . . . , (t17 − zmax)
}
.

The maximum element of each of these sets is

t07 − zmax = 0.79

t17 − zmax = 0.80,

the minimum quality that both solutions can attain is given by

j0max = min
z∈[−0.1,0.1]

Q(t07 − zmax + z, 0) = 3 = min
z∈[−0.1,0.1]

Q(t17 − zmax + z, 1) = j1max,

where the set [−0.1, 0.1] reflects the fact that every solution is assumed to vary from its
intended value by ±10%. Note that the solution technique does not depend on zmax (chosen
here to be 0.1), and it can be adapted to any choice of zmax.

Calculating the minimum quality minz∈[−0.1,0.1]Q(s + z, β) for each s ∈ S(β) and β ∈
{0, 1}, and determining the largest element of S(β) for each quality level {jβmax, . . . , 5} =
{3, 4, 5}, we obtain

W(0) =
{

0, (t06 − zmax), (t07 − zmax)
}

W(1) =
{

(t15 − zmax), (t16 − zmax), (t17 − zmax)
}
.
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For both cases, a plastic pot (β = 0) and a biodegradable pot (β = 1), the first case (a) in
Section 5.3 is applied, and the set of robust solutions is determined as

E(0) = W(0) = {0, 0.71, 0.79}
E(1) = W(1) = {0.63, 0.72, 0.80} .

Figure 5 shows the outcomes of the robust solutions for each choice of pot. The outcome
of a solution is a set, rather than a point, since each solution is considered to be realized
within a range, rather than exactly. In accordance with the concept of dominance in robust
multiobjective optimization, the outcomes of solutions may be compared by subtracting the
cone that is nonnegative orthant from each point in the outcome set. A solution (γ′, β′)
is then dominated by a solution (γ̄, β̄) if and only if the outcome set of (γ̄, β̄) is contained
within the outcome set of (γ′, β′) minus the nonnegative orthant, see Eichfelder et al. (2017);
Ehrgott et al. (2014). As shown in Figure 5, the solution (t06 − zmax) ∈ E(0) is dominated

adC in AC
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Figure 5: Outcome sets of the robust solutions for each type of planter pot. Dotted lines
correspond to plastic pots (E(0)) and dashed lines correspond to bio pots (E(1)).

by (t15 − zmax) ∈ E(1) and the solution (t07 − zmax) ∈ E(0) is dominated by the solutions
(t15 − zmax), (t16 − zmax) ∈ E(1), a result that can also be verified by direct calculation. The
remaining solutions in Figure 5 do not dominate each other and are hence robust. The set of
robust solutions to our problem is given as

E =
{

(0, 0), (t15 − zmax, 1), (t16 − zmax, 1), (t17 − zmax, 1)
}

= {(0, 0), (0.63, 1), (0.72, 1), (0.80, 1)},
(8)

and it is illustrated in Figure 6.
The only robust solution involving a plastic pot is the traditional one using 100% peat

(t00, 0). In contrast, there are three robust solutions involving a biodegradable pot, denoted
by the dashed lines in Figure 6. Replacing peat with compost works best if combined with
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a biodegradable pot, that is, replacing both traditional choices of growth media and pot is
better than replacing only one of them. The solution (t15, 1) is only slightly worse with respect
to the additional costs adC, but it is significantly better with respect to the environmental
objective. Hence, the solution (t15, 1) is a good alternative to (t00, 0).
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Figure 6: Outcome sets of the robust solutions. The traditional solution t00 of 100% peat
is the only robust solution involving a plastic pot and there are three robust solutions t15 −
zmax, t16 − zmax, t17 − zmax involving a biodegradable pot.

6.3 Comparison of the deterministic and robust solutions

We now compare the outcomes of the deterministic efficient solutions to the outcomes of the
robust solutions.

Taking into account that realizations of the deterministic efficient solutions t16, t
1
7 ∈ D

may deviate from their intended values by ±10%, we see, by Table 2, that there are possible
realizations of t16 and t17 with a quality level that is not suitable for selling. Because the choice
of t16 or t17 might lead to plants that are not sellable, these options are not robust and are
excluded from the set of robust feasible solutions.

The outcome sets of the remaining deterministic efficient solutions t05, t
1
5 ∈ D are illustrated

by the gray lines in Figure 7. The solution t05 is dominated by the solutions t15 − zmax and
t16− zmax, since the outcome sets of the latter are contained in the outcome set of the former
minus the nonnegative orthant. Hence, the solution t05 is not robust. The outcome of solution
t15 is partly contained in the outcome set of the robust solution t17 − zmax and the rest of this
outcome set is close to the outcome set of t16 − zmax. It can be verified that the solution t15 is
dominated by the solution t17 − zmax and is therefore also not robust.

One may conclude that the robust solutions in E are preferable to the deterministic effi-
cient solutions in D. Including uncertainty in the problem leads to solutions that are robust
against deviations in parameters and decision variables. An important difference between the
deterministic and robust solutions is the safety margin between the robust solutions and the
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Figure 7: Comparison of the outcomes of the deterministic and robust solutions. The gray
lines illustrate the outcomes of the two robust feasible deterministic efficient solution t05 and
t15 evaluated with up to ±10% more or less compost than expected. The lines reflect that
the whole outcome sets of the solutions are compared by the order of the Pareto cone. The
solutions for the plastic (β = 0) and biodegradable pots (β = 1) are displayed with dotted
and dashed lines, respectively.

right-hand interval bounds of the quality function. A safety margin to the left-hand interval
bounds is not necessary. Happily, the complete set of robust solutions can be computed with
low computational effort by following the steps in Section 5.

Another important observation is that the robust solutions can be grouped into two classes:
those that retain the traditional solution, and those that replace both pots and growth media
by their environmentally-friendly alternatives while retaining a safety margin to the right
hand interval bound.

7 Summary and outlook

Peat mining alters the ecosystem and releases significant amounts of greenhouse gases into
the atmosphere. Horticulture uses enormous quantities of peat as a growth medium, and its
partial replacement with compost therefore greatly improves resource efficiency.

Our analysis of the horticultural production of potted plants has highlighted various as-
pects of uncertainty. Carbon-based growth media decompose over time, thus contributing
greenhouse gases to the atmosphere. Modeling these contributions is complicated due to the
varying of fractions of organic content and differences in the properties of peat and compost.
Although oxidation rates could be obtained via laboratory analysis of the specific growth me-
dia components, they are often taken from the literature. Generally speaking, the quality of
emissions modeling depends on the input data. In this paper, we therefore take into account
measurement errors, fluctuations in conditions for preparing growth substrate, and imprecise
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horticultural data by using value intervals rather than exact values. This paper also addresses
decision uncertainty in optimizing the share of input materials for horticultural growth sub-
strate. Using a case study, we model an optimization problem with parameter and decision
uncertainty and solve the model. After first finding deterministic solutions, we then determine
robust solutions, while accounting for parameter and decision uncertainty.

A novel, robust multiobjective optimization approach has been applied to determine the
robust solutions in presence of uncertainty. Moreover, this paper deals with quality levels in
horticulture–a difficult task with uncertain inputs. Our results show that the robust solutions
are preferable to the deterministic ones whenever solutions cannot be implemented exactly
as planned, but only within a range of the targeted values. In our case study, the imprecise
mixing practices currently used in horticultural settings bring uncertainty regarding the exact
share of compost in the growth media. Thus, this share can only be estimated.

As a simplified rule of thumb derived from the results of this paper, only the rightmost
point of each feasible interval of the quality function should be considered (subtracting the
maximum deviation from the solutions in the pots), and for each quality level, the rightmost
point of this and all higher quality levels is chosen. If all of these solutions are larger than the
maximum deviation, any of them is a robust solution. However, solutions near zero are less
influenced by deviations, since realizations below zero percent can not happen. In particular,
the robust approach leads to solutions in which the number of plants of marketable quality is
maximized. The final outcome of our study, which was not predictable before the modeling,
highlights that using plastic pots in combination with compost is not an efficient solution.
Instead, robust solutions involving compost also necessarily involve a biodegradable pot. A
rule of thumb for robust planning is therefore to combine composted growth media with
biodegradable pots.

This paper raises the question whether a scale-up of the results for a single potted plant
might yield a drastic reduction in environmental impacts in the horticulture sector. What
might happen if the whole Pistoia district, with its 5000 nurseries, were to modify their
potting practices in favor of the more sustainable alternatives illustrated here? What would
be the consequences on the carbon sink effect of the peatlands?

Future research into horticulture with uncertainty could include combining different pot
capacities, varying resources (both growth medium and pot), investigating different safety
margins, and solving the problem for various plant species while simultaneously taking into
account that the supply of compost is ultimately limited. Including these parameters would
help promote a strategic managerial perspective in horticulture, which is currently managed
on the basis of tradition. And what would be the impact if the food industry (which can
be affected by uncertainty in the exact recipe of ingredients) were to switch all products at
the same time to more sustainable alternatives (e.g., biodegradable packaging) by modifying
current supply chains? This study implies that the used approach might be applicable to
other fields having a broader class of uncertain biobjective optimization problems.

As final remark, decision robust efficiency is demonstrated in this paper to be a suitable
approach whenever the implemented solutions deviate from the computed solutions. Address-
ing further applications of decision uncertainty in multiobjective optimization is of interest
in the horticultural sector and in other areas where mixing problems are relevant.
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M. Ehrgott, J. Ide, and A. Schöbel. Minmax robustness for multi-objective optimization
problems. European Journal of Operational Research, 239:17–31, 2014.
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J. Geldermann, L. M. Kolbe, A. Schöbel, and M. Schumann. Ressourceneffizienz in un-
ternehmensnetzwerken – methoden zur betrieblichen und überbetrieblichen planung für
die nutzung erneuerbarer rohstoffe. In Heinz Ahn, Marcel Clermont, and Rainer Souren,
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Abstract

Robust multiobjective optimization is used to solve an uncertain biobjective mixing
problem arising in the commercial cultivation of potted plants. The so-called peat-and-
pots problem is to search a mixture of two types of growth substrate and a planter pot
such that two objectives, one economic and one ecological, are minimized. The economic
objective function is the sum of a linear function and a piecewise constant function while
the ecological objective function is linear. In practice, the problem is affected by two
types of uncertainty, parameter and decision uncertainty. Parameter uncertainty means
that the problem data varies within a fixed set, e.g., the emissions of the growth substrate
are known to fall in a certain interval. Decision uncertainty means that solutions can not
be implemented exactly as targeted, e.g., the mixing of growth substrate is performed
roughly which leads to different mixtures in different pots. The peat-and-pots problem
is considered first as a deterministic problem and the deterministic efficient solutions are
determined. Second, the two types of uncertainty are taken into account and the problem
is addressed by means of robust multiobjective optimization. Analytical descriptions of
the set of solutions to the deterministic and to the uncertain problem are given. The
deterministic and robust solution approaches are then extended to further cases of biob-
jective problems with one objective function being the sum of a linear and a piecewise
constant function and the second objective function being linear.

1 Introduction

Robust multiobjective optimization is a research area that has recently been developed to
address uncertain multiobjective optimization problems, that is, problems with two or more
conflicting objective functions that are affected by uncertainty. Two types of uncertainty
are generally distinguished. When the problem parameters are not known exactly we speak
of parameter uncertainty. Parameter uncertainty can result from by fluctuations of costs
or imprecisions of experimental data. The second type of uncertainty, decision uncertainty,
occurs whenever solutions are not put into practice exactly as planned but within a range of
the intended value.

Robustness is particularly useful as an approach to address uncertainty if the uncertainty
set (i.e., the set of scenarios) is known and if there is no information on the distribution
of the scenarios. Various concepts of robustness for multiobjective optimization have been
proposed in the literature, see [17, 27] for recent surveys, and many multiobjective robustness
concepts are based on single-objective robustness concepts. One of the most studied robust-
ness concepts is minmax robustness. Robust optimization searches solutions that are feasible
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for all scenarios in the uncertainty set and robust optimal solutions are those that perform
best with respect to worst case scenarios. In multiobjective optimization, there are several
ideas of a worst-case scenario and various multiobjective minmax robustness concepts have
been proposed and researched in the literature, e.g., see [19, 9] for minmax robustness for
parameter uncertainty, and see [10] for minmax robustness for decision uncertainty.

Robust multiobjective optimization has many applications and it is of particular interest
for agricultural decision problems. A review of approaches to uncertain problems in agricul-
ture is given in [6] and robust optimization has been applied to various optimization problems
in agriculture, see, e.g., [4, 8]. While these studies have taken into account a single objec-
tive function, multiobjective optimization is more appropriate for many agricultural decision
problems and a survey on multiobjective optimization in agriculture is given in [15]. Two
frequently combined types of objective functions are economic objective functions such as
costs or profit, and environmental objective functions such as the global warming potential
or greenhouse gas emissions, see e.g., [14].

The uncerain multiobjective problem from agriculture considered in this paper is a biob-
jective mixing problem that is called the peat-and-pots problem and it is given as follows: A
plant nursery aims to simultaneously minimize the costs and the environmental impacts of
potted plant cultivation. To this end, the nursery selects the growth substrate and the planter
pots required for the cultivation of potted plants. The growth substrate can be chosen as
any mixture of peat and compost, and traditionally, 100% peat is used. Planter pots can be
chosen as plastic pots, which are used traditionally, or biodegradable pots.

In the economic objective, the additional costs, the costs of the input materials and the
selling price of the plant are considered, and the impact of the plant’s quality on its selling
price is taken into account. The corresponding quality function that maps the choice of
growth substrate and pot to the quality level of the plant is piecewise constant and upper
semicontinuous. The peat-and-pots problem is affected by two types of uncertainty, parameter
uncertainty and decision uncertainty. Parameter uncertainty is present, since the parameters
for the costs and emissions are not known in advance but they are known to fall in given
intervals and decision uncertainty affects the mixing of the growth substrate since the different
ingredients are mixed roughly.

In this work, robust multiobjective optimization is used to determine solutions to the
uncertain bi-objective peat-and-pots problem, which are subsequently called decision robust
efficient solutions. This multiobjective robustness concept is introduced and studied in [10]
and decision robust efficient solutions are defined as solutions to the robust counterpart that
is a deterministic problem associated with this robustness concept. The major difficulty of
determining decision robust efficient solutions therefore lies in solving the robust counterpart
that is a set-valued optimization problem here. In the literature, applications of minmax
robust multiobjective optimization to problems with one monetary and one environmental
objective function are so far restricted to robustness concepts where the robust counterpart
is considered a deterministic multiobjective problem, see, e.g., [16, 21]. To the best of our
knowledge, this is the first application of a multiobjective robustness concept with a set-
valued robust counterpart to such a problem. The presented results may serve as a guidance
for managers of the horticulture sector before the beginning of horticultural seasonal activities,
and the findings can be extended to further applications of uncertain mixing problems. Also
note that this research is motivated by and applied to a case study in [18], where it is found
that the robust solutions are preferable over the deterministic ones.

The paper is structured as follows: In Section 2, the peat-and-pots problem is motivated
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from a practical viewpoint and the problem is introduced in its deterministic form and its
two objective functions are described in detail. In Section 3, an analytical description of the
deterministic efficient solutions to the peat-and-pots problem is given. In Section 4, parameter
uncertainty and decision uncertainty in the peat-and-pots problem are taken into account and
an analytical description of the decision robust efficient solutions to the uncertain peat-and-
pots problem is presented. In Section 5, the presented results are extended to related decision
problems that involve one objective function that is the sum of a piecewise constant and a
linear function and one linear objective function. In Section 6, a summary and an outlook
for further research is given.

2 Problem description

The following decision problem is motivated by a case study on potted plant production for
the species Photinia x Fraseri that is explained in detail in [18]. Note that the description
of the problem, its two objective functions and the uncertainty therein corresponds in large
parts to the description in the former publication, since the present work is meant to provide
solution approaches for the case study in the former publication.

A major environmental problem in European horticulture is the greenhouse gas (GHG)
emissions caused by potted plant cultivation using peat and plastics [20]. Peat is a very
flexible material that can be adapted for most plants, see [24]. However, peatlands (or bogs)
are important carbon sinks, and peat mining and extraction result in significant emissions
of the GHGs carbon dioxide, methane, and nitrous oxide [26]. Peatland protection is also
considered vital for maintaining biodiversity. To reduce the environmental impacts of potted
plant production, alternative growth media made of renewable resources or by-products can
be used to replace peat such as compost, bark, wood, rice hulls or animal manures.

In horticulture settings, peat could be best replaced by compost. Beyond a certain replace-
ment percentage, however, the agronomic quality of the potted plant becomes unacceptable
[22]. Agricultural supply chains generate a great variety and quantity of waste and by-
products that could be used as compost, including the by-products from the olive oil industry
[23]. The latter is also considered in the horticultural case study in [18] that motivates this
investigation

In horticulture, plastic pots are widely used because of their low cost, durability, and
versatility. Since they cannot be recycled easily due to soil and vegetable matter contamina-
tion, agrochemical residues, and additives, they are generally landfilled after one usage [25].
Here, biodegradable pots, which can be embedded in the soil with the plant or disposed of in
composting facilities, represent a viable alternative to plastic pots.

From a responsible management perspective, it makes sent to consider both peat substi-
tution and the replacement of plastic pots with biodegradable ones. The resulting reduction
in GHG emissions can be determined by a Life Cycle Assessment (LCA), which looks at
environmental impacts from all stages of a product’s life, including raw material extraction,
materials processing, manufacturing, distribution, use, repair, maintenance, and disposal or
recycling, see, e.g., [12, 7]

In addition to the minimization of GHG-emissions, the minimization of the additional
costs caused by the substitution of peat and plastic pots has to be taken into account. The
additional costs are considered here as the difference between the costs of the decision rele-
vant input materials and the selling price of the potted plant. This leads to a bi-objective
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optimization problem, which is subsequently called the peat-and-pots problem.

Modelling the Peat-and-Pots Problem

The aim of the peat-and-pots problem is to chose a share of compost to substitute peat and to
chose either plastic or biodegradable pots for plant cultivation such that the additional costs
(adC) and the global warming potential (GWP ) are minimized. The peat-and-pots problem
is hence modelled as a bi-objective problem. We let one potted plant be the functional unit
of the problem and assume it is representative of all plants of the same species cultivated in
a given nursery. For each potted plant, we must decide on

• the share of compost γ ∈ [0, 1] to use for replacing peat,

• which of the two possible types of pots to use. This decision is modeled by introducing

the pot variable β ∈ {0, 1}, where β =

{
1 if bio-pot chosen

0 if plastic pot chosen
.

The peat-and-pots problem for each species is a bi-objective minimization problem with
two constraints that is given as follows:

(P) min

(
adC(γ, β)

GWP (γ, β)

)

s.t. Q(γ, β) ≥ α

γ ≤ vcomp

γ ∈ [0, 1]

β ∈ {0, 1}.
In the first constraint, plants that fail to meet the aesthetic requirements for sale are excluded.
The function Q denotes the quality of a potted plant and a minimum quality of α ∈ N is
mandatory for the market. In the second constraint, we require that the quantity of compost
γ does not exceed the available quantity of compost per pot vcomp.

The feasible set of P is given as

F := {(γ, β) ∈ [0, 1]× {0, 1} |0 ≤ γ ≤ min {1, vcomp} , Q(γ, β) ≥ α} . (1)

The first objective function represents the additional costs (adC), which are to be mini-
mized. The second objective function represents the global warming potential (GWP ), which
is also to be minimized. We first describe both objectives in detail before we solve the deter-
ministic biobjective peat-and-pots problem.

2.1 The economic objective: additional costs

The first objective, the additional costs, has two parts: the purchase costs of the input
materials (growth media and pot) and the selling price of the potted plant. All other costs
can be neglected, since they are independent of the decision problem being considered here.

As a part of the additional costs function, we hence obtain the function costs : [0, 1] ×
{0, 1} → R

costs(γ, β) = cpeat · (1− γ) + ccomp · γ + cplas · (1− β) + cbio · β
= cpeat + cplas + γ · (ccomp − cpeat) + β · (cbio − cplas),
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where the parameters cpeat, ccomp, cplas, cbio denote the costs of one functional unit of peat,
one functional unit of compost, a plastic pot, and a biodegradable pot, respectively. Because
this study aims to model and solve the peat-and-pots problem such that it meets the specific
requirements of the case study in [18], we subsequently describe these requirements in specific
assumptions. This case study yields the observation cpeat > ccomp, which is reflected by the
following assumption.

Assumption 1. The cost of compost is strictly smaller than the cost of peat, i.e.,

cpeat > ccomp.

As a consequence, we get that the cost function costs is strictly decreasing in γ for every
β ∈ {0, 1}.

The selling price of a potted plant depends on its quality, and each potted plant is assigned
one out of a fixed number of specific quality levels. The lower the quality level, the lower is
the selling price of the potted plant. Replacing peat with compost changes the agronomic
quality of the plant, see [22]. We assume that the quality function Q assigns one out of ν
quality levels to each decision, i.e.,

Q : [0, 1]× {0, 1} → {1, . . . , ν},

where ν is the maximum possible quality level. The quality function Q is piecewise constant
for each β ∈ {0, 1}, where the bounds of the constant parts of the quality function are

0 = tβ0 < tβ1 < tβ2 < · · · < tβω = 1.

For every 1 ≤ i ≤ ω, where ω is the number of constant intervals, we have qi ∈ {0, . . . , ν}
such that Q(γ, β) = qi for all γ ∈ (tβi−1, t

β
i ). The quality function Q is then given as

Q(γ, β) =

{
qi, if γ ∈ (tβi−1, t

β
i ), for i = 1, . . . , ω

max{qi, qi+1} if γ = tβi for i = 1, . . . , ω − 1.

The solutions tβ0 = 0 and tβω = 1 are boundary points for only one interval and their quality

is defined as Q(tβ0 , β) = q1 and Q(tβω, β) = qω, repectively. Hence, by definition, the quality
function Q is not continuous but upper semicontinuous for every given pot variable β ∈ {0, 1}.
Figure 1 illustrates the dependence of the quality on the share of compost for the species
Photinia in the case study given in [18], where ν = 5 quality levels are distinguished.

Dashed and straight lines in Figure 1 demonstrate how the quality function Q depends
on the choice of planter pots. It is assumed that plants raised in biodegradable pots (straight
lines) are of better or equal quality than plants raised in plastic pots (dashed lines).

Each quality level can be associated to a selling price. We assume that a given number
of quality levels can be attained, but that only levels high enough are suitable for selling.
The minimum quality level for sale is denoted as α ∈ {0, . . . , ν}. We furthermore assume that
plants that are raised on the traditional growth media (100% peat, i.e., γ = 0) can be sold
in general, and hence, we have α ≤ Q(0, β) for every β. The relationship between the quality
and the price (in [AC]) of a potted plant depends on the species and is defined by the function
price,

price : {1, . . . , ν} → R, q 7→ price(q).
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Figure 1: Quality function for the species Photinia x Fraseri. Dashed black lines indicate a
plastic pot (β = 0) and straight lines indicate a biodegradable pot (β = 1).

The first objective adC is obtained by combining the selling price and the costs

adC(γ, β) := costs(γ, β)− price(Q(γ, β)). (2)

For general quality functions, we can without loss of generality assume that the price of a
salable product increases with its quality, since the quality function can always be chosen
accordingly. We hence have for every (γi, βi), (γj , βj) ∈ F such that Q(γi, βi) < Q(γj , βj),

price(Q(γi, βi)) < price(Q(γj , βj)). (3)

This implies that the first objective adC is strictly decreasing on each of the intervals (tβi−1, t
β
i ]

for i = 1, . . . , ω, as shown in Lemma 1.

Lemma 1. (i) Let (γi, β), (γj , β) ∈ F be such that γi < γj and Q(γi, β) ≤ Q(γj , β), then
we have

adC(γi, β) > adC(γj , β).

(ii) For every β ∈ {0, 1}, the objective function, adC is monotonically strictly decreasing on

each of the intervals (tβi−1, t
β
i ] for i = 1, . . . , ω.

Proof. We first prove (i). Using (2) and (3), we obtain

adC(γi, β)− adC(γj , β) = (γj − γi)︸ ︷︷ ︸
>0

· (cpeat − ccomp)︸ ︷︷ ︸
>0

+ (β − β)︸ ︷︷ ︸
=0

·(cplas − cbio)

+ price(Q(γj , β))− price(Q(γi, β))︸ ︷︷ ︸
≥0

> 0,

where 0 < cpeat − ccomp by Assumption 1. Claim (ii) follows from (i) because the quality

function Q is constant on (tβi−1, t
β
i ) and upper semicontinuous on (tβi−1, t

β
i ] by definition.
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Based on the data for the species Photinia in [18], we observe that the differences between
the costs of the input materials are small when compared to the differences of the selling
prices between different quality levels. Hence, for the remainder of this study, we pose the
following assumption.

Assumption 2. For all (γi, βi), (γj , βj) ∈ F such that Q(γi, βi) < Q(γj , βj), it holds

|costs(γj , βj)− costs(γi, βi)| < price(Q(γj , βj))− price(Q(γi, βi)).

This directly implies that a loss of quality causes an increase of the additional costs, as
stated in the next lemma.

Lemma 2. Let (γi, βi), (γj , βj) ∈ F be such that Q(γi, βi) < Q(γj , βj), then we have

adC(γi, βi) > adC(γj , βj).

2.2 The environmental objective: global warming potential

The second objective function GWP considers the decision-relevant emissions of a potted
plant. For each feasible share of compost γ, the GWP is the linear combination of the
corresponding values for 100% peat and 100% compost:

GWP (γ, β) = empeat · (1− γ) + emcomp · γ + emplas · (1− β) + embio · β
= empeat + emplas + γ · (emcomp − empeat) + β · (embio − emplas),

(4)

where empeat, emcomp, emplas, embio denote the GWP of one functional unit of peat or compost
and the GWP of a plastic or biodegradable pot. By means of the data provided by the case
study in [18],we observe that the GWP of compost and biodegradable pots is smaller than
the GWP of peat and plastic pots (with respect to the functional unit that is one potted
plant) and we pose this as the following assumption.

Assumption 3. The GWP of compost is strictly smaller than the GWP of peat, and the
GWP of a biodegradable pot is strictly smaller than the GWP of a plastic pot, i.e.,

emcomp < empeat and embio < emplas.

We directly conclude that GWP is strongly decreasing in (γ, β) as shown in Lemma 3.

Lemma 3. Let (γi, βi), (γj , βj) ∈ F be such that γi ≤ γj , βi ≤ βj and (γi, βi) 6= (γj , βj). Then
we have

GWP (γj , βj) < GWP (γi, βi).

Proof. By Assumption 3, we have

GWP (γ, β) = empeat · (1− γ) + emcomp · γ + emplas · (1− β) + embio · β
= empeat + emplas

︸ ︷︷ ︸
const.

+γ · (emcomp − empeat)︸ ︷︷ ︸
<0

+β · (embio − emplas)︸ ︷︷ ︸
<0

.

The claim follows immediately.
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3 Deterministic efficient solutions to the peat-and-pots prob-
lem

We use the well-known classical optimality concept (Pareto-)efficiency to define optimal solu-
tions to the bi-objective problem P. For all y, z ∈ R2 the Pareto order relations are given by
y 5 z ⇔ y1 ≤ z1 and y2 ≤ z2; y ≤ z ⇔ y 5 z and y 6= z; and y < z ⇔ y1 < z1 and y2 < z2.

Definition 4. A solution x∗ ∈ F is called [weakly/ · /strictly] (Pareto-)efficient for P if there
exists no solution x ∈ F\{x∗} such that

(adC(x), GWP (x))T [</≤/5] (adC(x∗), GWP (x∗))T .

The peat-and-pots problem is a mixed integer problem and the basic idea for solving it is to
solve it separately for β = 0 and for β = 1. The efficient solutions can then be determined by a
pairwise comparison of the efficient solutions for the two values of the pot variable β ∈ {0, 1}.
As the results of this section show, the number of efficient solutions for each β ∈ {0, 1} is
small, and hence, the comparison of the efficient solutions for different pot variables can be
performed with low computational effort. We next determine analytical descriptions of the
[weakly/ · /strictly] efficient solutions to the deterministic peat-and-pots problem for fixed β.

As a first result we show that the weakly efficient solutions coincide with the strictly
efficient solutions of P.
Proposition 5. Let (γi, β), (γj , β) ∈ F with γi 6= γj be two different solutions. Then

(
adC(γi, β)

GWP (γi, β)

)
<

(
adC(γj , β)

GWP (γj , β)

)

⇔
(

adC(γi, β)

GWP (γi, β)

)
5
(

adC(γj , β)

GWP (γj , β)

)
.

Proof. It is sufficient to show that the second inequality implies the first. Let the second
inequality be valid. Applying Lemma 3 and the assumption γi 6= γj , we obtain γj < γi. We
also have Q(γj , β) ≤ Q(γi, β), because otherwise adC(γj , β) < adC(γi, β) by Lemma 2. The
strict inequality then follows from Lemma 1.

The set of feasible solutions with respect to the fixed pot variable β is denoted as

F(β) := {γ | (γ, β) ∈ F}.

The set F(β) is a compact set because the quality function Q is upper semicontinuous. Hence,

the maximum element of F(β) exists and we denote it as tβmax := maxγ∈F(β) γ. The quality

level of tβmax is denoted as νmin := Q(tβmax, β).
In the next theorem, an analytical description of the set of efficient solutions to the

deterministic problem for the fixed pot variable β is given.

Theorem 6. For each fixed pot variable β ∈ {0, 1}, the set

D(β) :=
ν⋃

j=νmin

{max{γ ∈ F(β) | Q(γ, β) ≥ j}} , (5)

is the set of efficient solutions.
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Proof. We first show that the set D(β) is well-defined. Because of the upper semicontinuity
of the quality function Q, the set {γ ∈ F(β) | Q(γ, β) ≥ j} is closed for every j = νmin, . . . , ν,
and hence, it is compact as a subset of a compact interval. Therefore, the maximum of the
set exists whenever it is not empty and D(β) is well-defined.

We next show that the set of efficient solutions is a subset of D(β) by showing that every
solution in F(β)\D(β) is not efficient. For every γ′ ∈ F(β)\D(β) with j′ := Q(γ′, β), we define

γ† :=

{
max{t ∈ F(β) | Q(t, β) ≥ j′} if νmin ≤ j′
tβmax if νmin > j′

.

We have γ† ∈ D(β) by definition and γ† satisfies γ′ ≤ γ† and Q(γ†, β) ≥ j′. Because γ′ ≤ γ†

and γ′ 6∈ D(β), we obtain γ′ < γ†, and, according to Lemma 1, γ′ is dominated by γ†, and
hence, γ′ is not efficient.

We finally show that every element of D(β) is efficient. For every γ̄ ∈ D(β), there exists
j ∈ {νmin, . . . , ν} such that

γ̄ = max{γ ∈ F(β) | Q(γ, β) ≥ j}

by the definition of D(β). For a contradiction, we assume that there exists γ◦ ∈ F(β)\γ̄ that
dominates γ̄. By Lemma 3, we directly obtain γ̄ < γ◦ and hence, Q(γ◦, β) < j = Q(γ̄, β) by
definition of γ̄. According to Lemma 2 we then have adC(γ̄, β) < adC(γ◦, β) in contradiction
to the assumption that γ◦ dominates γ̄.

By Theorem 6, there exists at most one efficient solution for each quality i = νmin, . . . , ν.
Because the set D(β) is finite and nonempty for every β ∈ {0, 1}, we directly obtain the
existence of efficient solutions to the deterministic peat-and-pots problem.

Corollary 7. There always exists a (deterministic) efficient solution to (P).

Theorem 6 confirms the intuitive approach of taking the maximum share of compost in
a plant nursery: for every quality level, we consider all intervals of the quality function that
have a higher or equal quality level and we choose the maximum share of compost therein.
Therefore, the set of deterministic efficient solutions is easily computable by comparing the
boundary points of the quality function’s constant intervals.

4 Uncertainty in the peat-and-pots problem

Most decision problems involving natural resources are affected by uncertainty. In practice,
the peat-and-pots problem is affected by parameter uncertainty and decision uncertainty.
Parameter uncertainty means that a part of the problem data is uncertain. In the case
study that motivates this work, the costs and emissions are known to fall in intervals, rather
than being known as exact numbers. Decision uncertainty concerns the variations in the
implementation of the calculated solution. In the case study, the targeted share of compost
can not be implemented exactly, because the mixing of peat and compost is performed only
roughly.

In the literature, parameter uncertainty is also known as data uncertainty and decision
uncertainty is often referred to as the implementation error, see, e.g., [2, 1, 3].
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4.1 Parameter uncertainty in the peat-and-pots problem

Various robustness concepts for parameter uncertainty in bi-objective or multiobjective prob-
lems have been introduced in the literature. In each case, it is assumed that there is a
so-called uncertainty set containing all possible values of the data. Each element of the un-
certainty set is called a scenario. In the case study, each parameter cpeat, ccomp, cplas, cbio and
empeat, emcomp, emplas, embio falls within an interval, for example cpeat ∈ [cpeat, cpeat], and
the intervals are independent of each other, see [18]. We hence consider the uncertainty set

U =
{

(c, em) | cpeat ∈ [cpeat, cpeat], · · · , embio ∈ [embio, embio]
}
.

The first objective function adC is affected only by the cost parameters (c) while the second
objective function (GWP ) is affected only by the emission parameters. This is a special
situation in uncertain multiobjective optimization that is called objective-wise uncertainty. In
this case, two frequently studied concepts of minmax robustness for multiobjective problems
coincide. These two are point-based minmax robust efficiency, see, e.g., [19, 11, 13], and set-
based minmax robust efficiency, see, e.g., [9, 5]. The peat-and-pots problem has the property
that there exists the worst-case parameter scenario (c, em) ∈ U , such that for every feasible
solution (γ, β) and for all parameter values (c, em) ∈ U it holds

adC(γ, β, c) ≤ adC(γ, β, c) and GWP (γ, β, em) ≤ GWP (γ, β, em).

As a consequence of this property and due to the nature of robust optimization to take into
account the worst-case scenarios, it can be shown that a solution (γ∗, β∗) is point-based or
set-based minmax robust efficient, if and only if it is an efficient solution to the biobjective
peat-and-pots problem for the scenario (c, em) ∈ U . The robust efficient solutions can there-
fore be determined by solving the peat-and-pots problem for the worst-case scenario, which is
a deterministic bi-objective problem. The peat-and-pots problem can then be treated as un-
affected by parameter uncertainty, since the uncertainty is included in the problem’s objective
functions.

4.2 Decision uncertainty in the peat-and-pots problem

Since, for our problem, it is reasonable to assume that a worker uses exactly the chosen type
of pot, the only decision uncertainty is the share of compost in the substrate. In horticulture,
growth substrate is prepared for many potted plants at one time, and the mixing is done
roughly in big heaps using skid-steer loaders. The maximum and minimum deviation in
compost share γ that can be expected in a single pot can be estimated by the plant nursery
based on experience (e.g., 10% lower or 10% higher than intended).

For our problem, we assume that both a minimum deviation zmin ≤ 0 and a maximum
deviation 0 ≤ zmax are given. The actual values of γ are expected to fall within [γ+zmin, γ+
zmax]. However, this is not correct for values γ < −zmin or γ > 1− zmax, since a share below
0% or above 100% is not permitted. The uncertainty when implementing a decision hence
depends on the values of γ. It is defined as

zmin(γ) :=

{
max

{
zmin,−γ

}
for γ ∈ (0, 1)

0 for γ ∈ {0, 1}

zmax(γ) :=

{
min {zmax, 1− γ} for γ ∈ (0, 1)

0 for γ ∈ {0, 1}

(6)
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to yield the deviation set Z(γ) of γ ∈ [0, 1] as

Z(γ) :=
[
zmin(γ), zmax(γ)

]
. (7)

The realized values for every γ ∈ (0, 1) are finally obtained in

{γ}+ Z(γ) =
[
max

{
γ + zmin, 0

}
, min{γ + zmax, 1}

]
. (8)

The cases in which no mixing is needed (γ = 0 and γ = 1) can be realized exactly.
In the deterministic case, every solution (γ, β) is realized exactly. In in case of decision

uncertainty, however, there are many possible outcomes of the solution (γ, β), one for each
realization γ+z with z ∈ Z(γ). The plant nursery would like to avoid realizations in intervals
that lead to low quality. That is, we only consider solutions γ, for which the plant can be
sold in every realization. This is required in the next definition.

Definition 8. A feasible solution (γ, β) ∈ F is called decision robust feasible if Q(γ+z, β) ≥ α
for all z ∈ Z(γ).

The set of all decision robust feasible solutions is subsequently denoted as

XRC = {(γ, β) ∈ [0, 1]× {0, 1} | γ ≤ vcomp, Q(γ + z, β) ≥ α ∀z ∈ Z(γ)} . (9)

For every solution γ, we consider the set of its realizations and hence, in the objective
space, the outcome of its realizations is a set rather than a point. As an optimality concept,
we use the definition of decision robust efficiency by [10, Def.3] in an equivalent reformulation
(given in [10, Eq.(3)]).

Definition 9. An element (γ∗, β∗) ∈ XRC is called a decision robust [weakly/ · /strictly]
efficient solution if there is no (γ, β) ∈ XRC\{(γ∗, β∗)} with the property

∀z ∈ Z(γ) ∃z′ ∈ Z(γ∗) :

(
adC(γ + z, β)

GWP (γ + z, β)

)
[</≤/5]

(
adC(γ∗ + z′, β∗)

GWP (γ∗ + z′, β∗)

)
.

Note that, in contrast to the deterministic case, in the robust case the weakly and the
strictly robust efficient solutions to the peat-and-pots problem do not coincide. In the re-
mainder, the sets of decision robust [weakly/ · /strictly] efficient solutions are denoted as
[wE/E/sE ] and the decision robust [weakly/ · /strictly] efficient solutions for the fixed pot
variable β ∈ {0, 1} are denoted as [wE(β)/E(β)/sE(β)], respectively. Note that we have by
Definition 9

sE ⊆ E ⊆ wE and sE(β) ⊆ E(β) ⊆ wE(β).

The sets wE and sE are also used to determine the set E in the next section.

4.3 Decision robust efficient solutions to the peat-and-pots problem

In order to determine the decision robust [weakly/ · /strictly] efficient solutions to the peat-
and-pots problem with decision uncertainty we again split the problem into two and solve
it for β = 0 (plastic pot) and for β = 1 (biodegradable pot). The set of decision robust
[weakly/ · /strictly] efficient solutions can then be derived by a pairwise comparison of the
robust [weakly/ · /strictly] efficient sets of the two values of β.
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In the remainder of this section, we therefore assume that the pot variable β ∈ {0, 1} is
fixed and we determine the decision robust [weakly/ ·/strictly] efficient solutions with respect
to each β. Applying Definition 8, we define the decision robust feasible set for the fixed pot
variable β ∈ {0, 1} as

XRC
β := {γ | (γ, β) ∈ XRC}.

A specific property of the solutions of the peat-and-pots problem with decision uncertainty
is presented in Proposition 10: For all γ ∈ XRC

β , with γ > |zmin|, there is no need to distinguish
between decision robust weakly and strictly efficiency.

Proposition 10. Let β ∈ {0, 1} be fixed and let γ̄ ∈ XRC
β be a solution with |zmin| < γ̄. Then

the solution γ̄ is decision robust weakly efficient for the peat and pots problem with decision
uncertainty if and only if it is decision robust efficient and if and only if it is decision robust
strictly efficient.

Proof. By Definition 8, every decision robust strictly efficient solution is also decision robust
efficient and decision robust weakly efficient.

In order to show the reverse direction, we assume that γ̄ ∈ XRC
β with |zmin| < γ̄ is not

decision robust strictly efficient and we show that it is not decision robust weakly efficient.
Because γ̄ is not decision robust strictly efficient, there exists γ† ∈ XRC

β \{γ̄} such that for

every z† ∈ Z(γ†) there exists z̄ ∈ Z(γ̄) such that

adC(γ† + z†, β) ≤ adC(γ̄ + z̄, β) and GWP (γ† + z†, β) ≤ GWP (γ̄ + z̄, β). (10)

By assumption, we have 0 ≤ −zmin < γ̄ and, using (6), we obtain

zmin(γ̄) = zmin. (11)

We distinguish the two cases γ† ∈ [0, γ̄) ∩ XRC
β and γ† ∈ (γ̄, 1] ∩ XRC

β .

In the first case, γ† ∈ [0, γ̄)∩XRC
β , we use (8) to obtain γ†+ zmin(γ†) < γ̄ + zmin ≤ γ̄ + z̄

for all z̄ ∈ Z(γ̄), and, by Lemma 3, it holds

GWP (γ̄ + z̄, β) < GWP
(
γ† + zmin(γ†), β

)

for all z̄ ∈ Z(γ̄) in contradiction to (10).
In the second case, γ† ∈ (γ̄, 1], we consider an arbitrary element z† ∈ Z(γ†). By (10),

there exists z̄ ∈ Z(γ̄) such that adC(γ† + z†, β) ≤ adC(γ̄ + z̄, β) and GWP (γ† + z†, β) ≤
GWP (γ̄ + z̄, β). We distinguish the two cases γ† + z† 6= γ̄ + z̄ and γ† + z† = γ̄ + z̄.

In Case 2.1, γ† + z† 6= γ̄ + z̄, using Proposition 5, we directly obtain adC(γ† + z†, β) <
adC(γ̄ + z̄, β) and GWP (γ† + z†, β) < GWP (γ̄ + z̄, β).

In Case 2.2, γ† + z† = γ̄ + z̄, we have 0 ≤ −zmin < γ̄ < γ† by assumption and, by (8), we
obtain

0 < γ̄ + zmin < γ† + zmin ≤ γ† + z† = γ̄ + z̄.

Moreover, there exists i ∈ {1, . . . , ω} such that γ† + z† ∈ (tβi−1, t
β
i ] and hence, we have

γ† + z† ∈ (γ̄ + zmin, γ̄ + z̄] ∩ (tβi−1, t
β
i ].

Therefore, there exists z′ ∈ [zmin, z̄] ⊆ Z(γ̄) such that γ̄ + z′ ∈ (γ̄ + zmin, γ̄ + z̄) ∩ (tβi−1, t
β
i ].

We then have γ̄ + z′ < γ† + z† and Q(γ̄ + z′, β) ≤ Q(γ† + z†, β) by definition of Q. Applying
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Lemma 1, we obtain adC(γ†+z†, β) < adC(γ̄+z′, β) and GWP (γ†+z†, β) < GWP (γ̄+z′, β).
This then implies that γ̄ is not decision robust weakly efficient according to Definition 8 in
contradiction to our assumption.

We next present an analytical description of the set of decision robust [weakly/ · /strictly]
efficient solutions. To this end, a candidate set is constructed. We first define the set of
shifted interval bounds

R(β) :=
{
tβi − zmax | 1 ≤ i ≤ ω

}
∪ {0,min{vcomp, 1}}

and we restrict this set to its decision robust feasible elements and we define

S(β) := R(β) ∩ XRC
β

=
{
s ∈ R(β) | 0 ≤ s ≤ vcomp, α ≤ minz∈Z(s)Q(s+ z, β)

}
,

where the second equality follows from (9). We also use the notation

δβmax := max
s∈S(β)

s and jβmax := min
z∈Z(δβmax)

Q(δβmax + z, β).

In order to determine the set of decision robust [weakly/ · /strictly] solutions, we then
define the candidate set

W(β) :=

ν⋃

j=jβmax

{
max

{
s ∈ S(β)

∣∣∣∣ j ≤ min
z∈Z(s)

Q(s+ z, β)

}}
.

Note that W(β) ⊆ S(β) by definition and hence, W(β) is a finite set that can easily be
calculated by comparing the elements of the finite set S(β) with respect to the minimum
quality in their realization sets.

The choice of W(β) as the candidate set is next motivated by showing that each solution
is dominated by one solution of W(β) with respect to the minimum quality of the realization
set.

Lemma 11. For every γ ∈ XRC
β , there exists δ ∈ W(β) such that γ ≤ δ and

min
z∈Z(γ)

Q(γ + z, β) ≤ min
z∈Z(δ)

Q(δ + z, β).

Proof. It is sufficient to show the claim for γ ∈ XRC
β with 0 6= γ, since 0 ∈ S(β). For every

γ ∈ XRC
β \{0}, there exists i ∈ {1, . . . , ω} such that γ + zmax ∈ (tβi−1, t

β
i ], and we define

d :=

{
min{tβi − zmax, vcomp} if γ < 1− zmax
min{1, vcomp}, if γ ≥ 1− zmax

.

We then have 0 < γ ≤ d, and by (8), we have {d}+ Z(d) ⊆ ({γ}+ Z(γ)) ∪ (tβi−1, t
β
i ], and we

hence obtain
α ≤ min

z∈Z(γ)
Q(γ + z, β) ≤ min

z∈Z(d)
Q(d+ z, β).
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This implies d ∈ XRC
β and hence, we have d ∈ S(β). Denoting j := minz∈Z(γ)Q(γ + z, β), we

directly obtain

γ ≤ d ≤ max{s ∈ S(β) | j ≤ min
z∈Z(s)

Q(s+ z, β)} ≤ δβmax.

We then define

δ :=

{
max{s ∈ S(β) | j ≤ minz∈Z(s)Q(s+ z, β)}, if jβmax < j

δβmax, if j ≤ jβmax

and we obtain δ ∈ W(β), and γ ≤ d ≤ δ.

The next result relates the set W(β) to the sets of decision robust weakly and strictly
efficient solutions. The sets of decision robust weakly and strictly efficient solutions bound
the set of decision robust efficient solutions, i.e., sE(β) ⊆ E(β) ⊆ wE(β), and, as shown next,
these also bound the candidate set, i.e., sE(β) ⊆ W(β) ⊆ wE(β).

Proposition 12. The following are true.

a) Every element of the set W(β) is decision robust weakly efficient, i.e., W(β) ⊆ wE(β).

b) Every strictly robust efficient solution is an element of W(β), i.e., sE(β) ⊆ W(β).

Proof. We first show that all elements of W(β) are decision robust weakly efficient. We
consider γ̄ ∈ W(β) and we show that for every decision robust feasible solution γ† ∈ XRC

β \{γ̄}
there exists z† ∈ Z(γ†) such that for all z ∈ Z(γ̄) it holds adC(γ̄ + z, β) ≤ adC(γ† + z†, β) or
GWP (γ̄ + z†, β) ≤ GWP (γ† + z, β).

We consider an arbitrary γ† ∈ XRC
β \{γ̄} and we distinguish the two cases γ† ∈ [0, γ̄)∩XRC

β

and γ† ∈ (γ̄, 1] ∩ XRC
β .

In the first case, γ† ∈ [0, γ̄)∩XRC
β , we have 0 ≤ γ† + zmin(γ†) ≤ γ̄ + z for all z ∈ Z(γ̄) by

(8). According to Lemma 3, we then obtain GWP (γ̄ + z, β) ≤ GWP (γ† + zmin(γ†), β) for all
z ∈ Z(γ̄).

In the second case, γ† ∈ (γ̄, 1] ∩ XRC
β , we have γ̄ < γ† and we consider

z† ∈ arg min
z∈Z(γ†)

Q(γ† + z, β).

By Lemma 11, there exists δ† ∈ W(β) such that γ† ≤ δ† and

Q(γ† + z†, β) ≤ min
z∈Z(δ†)

Q(δ† + z, β) < min
z∈Z(γ̄)

Q(γ̄ + z, β),

where the last inequality follows from the definition of the set W(β). According to Lemma 2,
we then have adC(γ̄ + z, β) < adC(γ† + z†, β) for all z ∈ Z(γ̄).

It remains to show that every solution in XRC
β \W(β) is not decision robust strictly efficient

in the sense of Definition 8. For every γ′ ∈ XRC
β \W(β) we consider j := minz∈Z(γ′)Q(γ′+z, β)

and by Lemma 11, the solution

δ := max

{
s ∈ W(β)

∣∣∣∣j ≤ min
z∈Z(s)

Q(s+ z, β)}
}
,
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satisfies γ′ < δ.
We show that for every z̃ ∈ Z(δ), there exists z′ ∈ Z(γ′) with the property adC(δ+ z̃, β) ≤

adC(γ′ + z′, β) and GWP (δ + z̃, β) ≤ GWP (γ′ + z′, β).
By (8), we have {δ}+ Z(δ) ⊆ [γ′ + zmin(γ′), δ + zmax(δ)] and for every element z̃ ∈ Z(δ)

we distinguish the two cases δ + z̃ ∈ {γ′}+ Z(γ′) and δ + z̃ ∈ (γ′ + zmax(γ′), δ + zmax(δ)].
In the first case, δ + z̃ ∈ {γ′} + Z(γ′), there exists z′ ∈ Z(γ′) such that δ + z̃ = γ′ + z′.

Consequently, we have adC(δ+ z̃, β) ≤ adC(γ′+z′, β) and GWP (δ+ z̃, β) ≤ GWP (γ′+z′, β).
In the second case, δ+z̃ ∈ (γ′+zmax(γ′), δ+zmax(δ)], we consider z′ ∈ arg min{Q(γ′+z, β) |

z ∈ Z(γ′)}. By the choice of δ, we have Q(γ′ + z′, β) ≤ Q(δ + z̃, β) and, applying Lemma 1,
we obtain adC(δ + z̃, β) < adC(γ′ + z′, β) and GWP (δ + z̃, β) < GWP (γ′ + z′, β).

The set of decision robust efficient solutions can be determined through the set W(β) as
the next two main results show. If the sets of decision robust weakly and strictly efficient
solutions coincide, cf. Proposition 10, then W(β) is the set of robust efficient solutions, see
Theorem 13. However, if these sets do not coincide, they can be determined by Theorem 14.

In Theorem 13, the set of decision robust [weakly/ · /strictly] efficient solutions are de-
termined for the case that all candidates in W(β) are bigger than |zmin|. The results of
Proposition 10 and Proposition 12 are combined to prove that W(β) is the set of decision
robust efficient solutions in this case.

Theorem 13. If W(β) satisfies W(β) ∩ [0, |zmin|] = ∅, then the set

E(β) = sE(β) = wE(β) =W(β)

is the set of decision robust [weakly/ · /strictly] efficient solutions.

Proof. We first show that every solution γ′ ∈ [0, |zmin|] is not decision robust weakly efficient.
By assumption, we have 0 6∈ W(β) and, for j0 := Q(0, β), there exists d ∈ W(β) such that
0 < d and j0 ≤ Q(d + z, β) for all z ∈ Z(d) according to Lemma 11. By (8), we then have
γ′ + zmin(γ′) = 0 < d+ z and

Q(γ′ + zmin(γ′), β) = j0 ≤ Q(d+ z, β)

for all z ∈ Z(d). Applying Lemma 1, we obtain that for every z ∈ Z(d), there is zmin(γ′) ∈
Z(γ′) such that adC(d + z, β) < adC(γ′ + zmin(γ′), β) and GWP (d + z, β) < GWP (γ′ +
zmin(γ′), β) and hence, the solution γ′ is not decision robust weakly efficient. As a conse-
quence, the set of decision robust weakly efficient efficient solutions is a subset of (−zmin, 1]∩
XRC
β and, by Proposition 10, the decision robust weakly efficient solutions and the decision

robust strictly efficient solutions coincide. The claim then follows directly from Proposi-
tion 12.

The factor that determines whether weakly and strictly decision robust efficiency coincide
is a solution’s closeness to 0, i.e., the two coincide if a solution γ satisfies γ > |zmin| by
Proposition 10. Note that, since less than 0% compost can never occur, the realization sets of
the solutions smaller than |zmin| are nested within in each other which makes their outcomes
hard to distinguish, leading to weakly decision robust efficient solutions. This is shown in
Theorem 14.

Those elements of W(β) that are larger than |zmin| are decision robust strictly efficient
which can be shown by using Proposition 10, similarly to the proof of Theorem 13. However,
since Proposition 10 only refers to solutions γ > |zmin|, the case of solutions smaller than
|zmin| has to be investigated seperately and different arguments have to be used.
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Theorem 14. If W(β) satisfies W(β) ∩ [0, |zmin|] 6= ∅, the following are true.

a) The set of decision robust [weakly/·] efficient solutions is given as

E(β) = wE(β) = [0, γβW ] ∪W(β),

where γβW := max
{
γ
∣∣ γ ∈ W(β) ∩ [0, |zmin|]

}
.

b) The set of decision robust strictly efficient solutions is given as

sE(β) =W(β)\(0, |zmin|].

Note that the solution 0 is a special case, since it can always be put into practice exactly
as planned and, to prepare the proof of Theorem 14, we investigate the solution 0 seperately
in the next lemma.

Lemma 15. If we have 0 ∈ W(β) then 0 is decision robust strictly efficient.

Proof. Because 0 ∈ W(β) by assumption, we have for j := Q(0, β)

0 = max

{
γ ∈ XRC

β

∣∣∣∣ j ≤ min
z∈Z(γ)

Q(γ + z, β)

}

and hence, for every γ′ ∈ XRC
β \{0}, there exists z′ ∈ Z(γ′) such that Q(γ′ + z′, β) < j =

Q(0, β) = Q(0 + z, β) for all z ∈ Z(0) = {0}. By Lemma 2, we hence obtain adC(0 + z, β) <
adC(γ′ + z′, β) for all z ∈ Z(0), and 0 is decision robust strictly efficient.

The following lemma is also used in the proof of Theorem 14. The aim is to determine
the decision robust efficient solutions within the set [0, |zmin|] and the next lemma shows that

the solutions in (γβW , |zmin|] can be neglected.

Lemma 16. Let W(β) ∩ [0, |zmin|] 6= ∅, and let γβW := max
{
γ
∣∣ γ ∈ W(β) ∩ [0, |zmin|]

}
. If

γβW < |zmin|, then the elements of the set (γβW , |zmin|] are not decision robust weakly efficient.

Proof. By Lemma 11, for every γ′ ∈ (γβW , |zmin|], there exists δ ∈ W(β) such that γ′ ≤ δ and

j := min
z∈Z(γ′)

Q(γ′ + z, β) ≤ min
z∈Z(δ)

Q(δ + z, β)

and by the assumption γ′ 6∈ W(β), we even have 0 < γ′ < δ.We consider an arbitrary z̃ ∈ Z(δ),
and we show that there exists z′ ∈ Z(γ′) such that γ′+z′ < δ+z̃ and Q(γ′+z′, β) ≤ Q(δ+z̃, β).
Applying Lemma 1, we then obtain that the solution γ′ is not decision robust weakly efficient.

Because −zmin < δ by assumption, we have 0 < δ+ z̃ and there exists i ∈ {1, . . . , ω} such

that δ + z̃ ∈ (tβi−1, t
β
i ]. We distinguish the two cases γ′ + zmax ≤ tβi−1 and γ′ + zmax > tβi−1.

In the first case, γ′ + zmax ≤ tβi−1, we consider any z′ ∈ Z(γ′) with Q(γ′ + z′, β) = j and

we directly obtain γ′ + z′ ≤ γ′ + zmax ≤ tβi−1 < δ + z̃ and Q(γ′ + z′, β) = j ≤ Q(δ + z̃, β).

In the second case, tβi−1 < γ′+zmax, we have (tβi−1, γ
′+zmax) ⊆ [0, γ′+zmax) ⊆ {γ′}+Z(γ′)

and hence, there exists z′ ∈ Z(γ′) such that tβi−1 < γ′ + z′ < δ + z̃. Because of γ′ + z′ ∈
(tβi−1, δ+ z̃) ⊆ (tβi−1, t

β
i ], we have Q(γ′+ z′, β) = Q(δ+ z̃, β) by the definition of the piecewise

constant quality function Q(·, β).
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In the following lemma, it is shown that the remaining solutions in [0, |zmin|], i.e., those
that remain unconsidered in Lemma 16, are decision robust efficient.

Lemma 17. Let W(β) ∩ [0, |zmin|] 6= ∅, and let γβW := max
{
γ
∣∣ γ ∈ W(β) ∩ [0, zmin]

}
. If

γβW < −zmin, then the elements of the set [0, γβW ] are decision robust efficient.

Proof. We consider γ̄ ∈ [0, γβW ] and we show that γ̄ is decision robust efficient. The solution γ̄

satisfies {γ̄}+Z(γ̄) ⊆ {γβW}+Z(γβW) by (8), and we obtain γ̄ ∈ XRC
β , since γβW ∈ W(β) ⊆ XRC

β .

To show that γ̄ is decision robust efficient, we consider any other γ† ∈ XRC
β \{γ̄} and we

distinguish the two cases γ† ∈ [0, γβW ] ∩ XRC
β and γ† ∈ (γβW , 1] ∩ XRC

β .

In the first case, γ† ∈ [0, γβW ] ∩ XRC
β , we have γ† ≤ γβW ≤ −zmin and by (8) we

have γ† + zmin(γ†) = 0 < γ̄ + z for all z ∈ Z(γ̄)\{zmin(γ̄)}. Because the function GWP
is monotonically decreasing, there is exactly one z̄ ∈ Z(γ̄), i.e., z̃ := zmin(γ̄), such that
GWP (γ† + zmin(γ†), β) ≤ GWP (γ̄ + z̃, β) and then γ† + zmin(γ†) = 0 = γ̄ + z̃.

In the second case, γ† ∈ (γβW , 1] ∩ XRC
β , we use again {γ̄} + Z(γ̄) ⊆ {γβW} + Z(γβW) to

obtain for every z̄ ∈ Z(γ̄)

Q(γ̄ + z̄, β) ≥ min
z∈Z(γ̄)

Q(γ̄ + z, β) ≥ min
z∈Z(γβW )

Q(γβW + z, β) > min
z∈Z(γ†)

Q(γ† + z, β),

where the last inequality follows from γβW ∈ W(β) and Lemma 11. By Lemma 2 we obtain
for z† ∈ arg minz∈Z(γ†)Q(γ†+ z, β) that adC(γ̄+ z, β) < adC(γ†+ z†, β) for all z ∈ Z(γ̄).

The results of the previous Lemma 15, Lemma 16 and Lemma 17 are next used to prove
Theorem 14, i.e., to determine the set of decision robust [weakly/ ·/strictly] efficient solutions
for the case that there is a candidate smaller than |zmin|.

Proof of Theorem 14. We first show a). We consider γ ∈ XRC
β and we distinguish the three

cases γ ∈ [0, γβW ], γ ∈ (γβW , |zmin|] and γ ∈ (|zmin|, 1].

In the first case, γ ∈ [0, γβW ], γ̄ is decision robust efficient according to Lemma 17. In the

second case, γ ∈ XRC
β ∩ (γβW , |zmin|], γ is not decision robust weakly efficient according to

Lemma 16 and hence, it is not decision robust efficient. In the third case, γ̄ ∈ XRC
β ∩(|zmin|, 1],

Proposition 10 applies and every γ̄ ∈ XRC
β ∩ (|zmin|, 1] is decision robust weakly efficient if

and only if it is decision robust strictly efficient. By Proposition 12, we then obtain that
γ̄ ∈ XRC

β ∩ (|zmin|, 1] is decision robust [weakly/·] efficient if and only if γ̄ ∈ W(β).

We next show b). By a), every element of W(β)\[0, |zmin|] is decision robust weakly
efficient and it hence is decision robust strictly efficient according to Proposition 10. Moreover,
by Proposition 12 and Lemma 15, the solution 0 ∈ XRC

β is decision robust strictly efficient if
and only if 0 ∈ W(β).

It remains to show that any γ′ ∈ (0, |zmin|] is not decision robust strictly efficient. Because
γ′ ≤ −zmin, we have γ′ + zmin(γ′) = 0 by (8), and hence, we have adC(0 + z, β) ≤ adC(γ′ +
zmin(γ′), β) and GWP (0 + z, β) ≤ GWP (γ′+ zmin(γ′), β) for all z ∈ Z(0) = {0} and γ′ is not
decision robust strictly efficient by Definition 9.

The results of this section can directly be used to determine the decision robust [weakly/ ·
/strictly] efficient solutions to the peat-and-pots problem in two steps. In a first step, the
candidate set W(β) can be calculated for each β ∈ {0, 1} from the small finite set that is
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the set of interval bounds of the quality function Q minus the maximum perturbation zmax.
By Theorem 13 and Theorem 14, the candidates only have to be compared with respect to
their size and their realization’s minimum quality to determine the decision robust [weakly/ ·
/strictly] efficient solutions. In a second step, the resulting sets can then be compared pairwise
with respect to the two objective functions.

5 Generalization of the results

The presented solution approaches for the deterministic and the uncertain peat-and-pots
problem can be generalized to a wider class of problems. There are various products in the
market whose selling price depends on the quality of the products. Discrete quality levels are
a natural approach to relate a product’s quality and its price because they are easy to under-
stand for customers. An option to decrease the environmental impacts of production processes
is to replace the input matrials with eco-friendly alternatives. Therefore, a generalization of
the solution approaches to the peat-and-pots problem is of interest for further applications
that involve biobjective mixing problems where one objective function depends on the quality
level of the final product and the costs of the input materials and where the second objective
function is a measure for the environmental impact of the production process.

In order to generalize our results, we neglect the three specific properties inherent to the
peat-and-pots problem that were introduced as three assumptions in Section 2. It can be
assumed without loss of generality that the alternative input materials have a better GWP
than the traditional materials, since this is part of the motivation for the problem, and hence,
Assumption 3 can be neglected.

5.1 Solutions in the absence of Assumption 1

Products that are considered eco-friendly are often more expensive than the alternatives. Cor-
respondingly, the case that the traditional input material of a production process is cheaper
than its eco-friendly substitute has to be considered, which implies the opposite of Assump-
tion 1. In this case, the first objective function is strictly increasing on every constant interval
of the quality function, while the second objective function is strictly decreasing. The resulting
sets of deterministic and decision robust efficient solutions are then finite unions of intervals
rather than finite unions of points. For the deterministic solutions, this is due to a well-known
classical result and a suitable result for decision robust solutions is proven in [10].

Algorithm 1 yields the set of [weakly/ · /strictly] efficient solutions to the deterministic
problem. The sets of [weakly/ ·/strictly] efficient solutions coincide, because the two objective
functions adC and GWP are injective if Assumption 1 does not hold while Assumption 2 holds.
It is well-known in deterministic multiobjective optimization that an interval is efficient if the
first objective function is strictly increasing and the second objective function is strictly
decreasing. This also applies to the intervals of the quality function and such a constant
interval is hence efficient if and only if one of its interior points is efficient. Algorithm 1 works
as follows. Every quality level is considered, starting from the highest level and finishing with
the level of the rightmost feasible solution. Because a higher quality level results in a higher
selling price, all solutions in intervals with the highest quality level are efficient and they are
first selected by the algorithm. Lower quality levels can only result in worse additional costs
than the previously considered quality levels, but solutions larger than the previously selected
solutions perform better in the second objective GWP. Therefore, for each quality level all
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intervals of this quality that lie on the right hand side of the intervals selected in the previous
step of the algorithm are selected. The algorithm terminates after the quality level of the
rightmost feasible solution tβmax has been considered.

Algorithm 1 Deterministic [weakly/ · /strictly] efficient set if Assumption 1 does not hold

1: procedure Intervals Deterministic(Q,F(β), tβmax, νmin, ν)

2: k ← 1, T ← {tβ0 , tβ1 , . . . , tβω | t ∈ F(β)}, kmax ← max{i = 0, . . . , ω | tβi ≤ t
β
max}

3: D(β)← [tβkmax , t
β
max]

4: if kmax ≥ 1 then
5: for j = ν, . . . , νmin do . Check the highest quality levels
6: for i = k, . . . , kmax do
7: if qi = j then
8: D(β)← D(β) ∪ [tβi−1, t

β
i ]

9: k ← i
10: return D(β) . deterministic efficient set

Algorithm 2 yields the set of decision robust [weakly/·] efficient solutions to the uncertain
problem. The sets of decision robust [weakly/·] efficient solutions coincide because both
objective functions are injective and hence, if a solution’s outcome is strictly smaller than
another solution’s outcome with respect to one objective function, it is also strictly smaller
with respect to the other objective function. The set of decision robust strictly efficient
solutions generally does not coincide with this set.

In order to determine the set of decision robust [weakly/·] efficient solutions, a result on
decision robustness for problems with at least one increasing and one decreasing objective
function is used, see [10, Th. 27, Cor. 28], and it is adjusted to fit our problem. There are
two differences between our problem and the problem addressed in the latter publication.
First, in contrast to this work, the perturbation set Z(γ) is considered as constant for all
γ ∈ XRC

β and therefore, the cases where the set Z(γ) differs from [zmin, zmax], i.e., γ ∈
[0, |zmin|] ∪ [1 − zmax, 1], have to be considered as special cases. These special cases are
covered in lines 6,18 and 20 of Algorithm 2 and it is noted that the case γ ∈ (0, |zmin|) is
covered by the general part of the algorithm in lines 8 to 17. Second, the objective functions in
that publication are assumed to be monotonic on the whole set of feasible solutions, while the
objective functions in our problem are monotonic only on the constant intervals of the quality
function. Due to these differences, the adjusted version of the result is that all solutions of
a specific interval (see line 16 in Algorithm 2) are decision robust efficient if and only if the
rightmost point of that interval is decision robust efficient. These specific intervals are related
to the intervals of the quality function but a safety margin is added to obtain robust solutions
and this safety margin corresponds to the maximum perturbation |zmax| on the rightmost
point of each interval and the minimum perturbation |zmin| at the leftmost point. Moreover,
if two intervals of this kind overlap, the interval that is the union of the two is also entirely
decision robust efficient, which is taken into account in line 12 of the algorithm. In summary,
Algorithm 2 consists of a general case and three special cases of solutions that have different
perturbation sets than the other solutions.
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Algorithm 2 Decision Robust Efficient Solutions if Assumption 1 does not hold

1: procedure Intervals Robust(Q,S(β), νmin, ν, z
min, zmax)

2: function f(γ) . Worst case quality

3: f(γ) = min
{
Q(γ + zmin, β),min

i : tβi−1∈{γ}+Z(γ)
qi

}

4: a← 0, q0 ← Q(0, β), S ← S(β)\{0, 1}, E(β)← ∅
5: T ← {−1, tβ0 , . . . , t

β
ω−1}, νmax ← maxs∈S f(s)

6: if νmax < q0 then . Special case γ = 0
7: E(β)← E(β) ∪ [0, 0]

8: for j = νmax, . . . , νmin do . General case
9: for s ∈ S do

10: if a < s and f(s) = j then
11: l← max{t ∈ T | t ≤ s+ zmin}
12: if l ≤ a then
13: l← a
14: else
15: l← l + |zmin|
16: E(β)← E(β) ∪ [l, s]
17: a← s
18: if maxs∈S(β) s = 1 then . Special case γ = 1
19: E(β)← E(β) ∪ [1, 1]

20: if f(1− zmax) ≥ νmin then . Special case γ ∈ [1− zmax, 1]
21: E(β)← E(β) ∪ [1− zmax, 1]

22: return E(β) . decision robust efficient set
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5.2 Solutions in the absence of Assumption 2

In the peat-and-pots problem, the first objective function is more affected by the selling price
of the final product than the costs of the input matrials. Saving costs by chosing cheaper
input matrials is then only sensible if the quality level can be maintained or raised. However,
for other products the input materials are expensive enough to justify a reduction of costs at
the expense of quality. In this case, Assumption 2 does not hold. As a consequence, solutions
have to be compared directly by their additional costs rather than by their quality level.
Furthermore, solutions can still be compared by their size since the objective function GWP
is monotonically strictly decreasing.

Algorithm 3 yields the set of [·/strictly] efficient solutions to the deterministic problem.
The sets of [·/strictly] efficient solutions coincide, because the second objective function GWP
is strictly decreasing. The set of weakly efficient solutions generally does not coincide with
this set. Because Assumption 1 still holds, the function adC is strictly decreasing on each
of the constant intervals of the quality function and hence, only the right hand points of the
intervals can be efficient solutions. The set of [·/strictly] efficient solutions therefore is a finite

union of points. Algorithm 3 works as follows. The rightmost feasible solution tβmax is an
efficient solution because it is the unique solution where GWP attains its minimum over the
feasible set. This solution is selected at the start of the algorithm. Because only interval
bounds can be efficient solutions, these are compared with respect to their outcome in adC
and the maximum solution is chosen among those with a lower adC-value than the solution
selected in the previous step, see line 5 of the algorithm. Proceding in this way, every newly
selected solution has a strictly better adC-value and a stricly worse GWP -value than the
previously selected solution and the resulting set is the set of efficient solutions.

Algorithm 3 Deterministic [·/strictly] efficient set for β without Assumption 2

1: procedure Deterministic min adC steps(adC,F(β))

2: T :=
{
t ∈ {0, tβ1 , . . . , tβω} | t ∈ F(β)

}
, d← tβmax, a← adC(d, β)

3: D(β)← {d} , b← mint∈T adC(t, β)
4: while a > b do
5: d← max {t ∈ T | adC(t, β) < a}
6: D(β)← D(β) ∪ {d}
7: a← adC(d, β)

8: return D(β) . deterministic efficient set

Algorithm 4 yields the set V(β) that can be used to determine the set of decision robust
[·/strictly] efficient solutions to the uncertain problem, by replacing the setW(β) in the results
of Section 4.3. The sets of decision robust [·/strictly] efficient solutions coincide for solutions
γ > |zmin| because the objective function GWP is monotonically strictly decreasing. The set
of decision robust weakly efficient solutions generally does not coincide with this set.

The main difference between the set V(β) and the previously used set W(β) is that a
finite set of solutions is chosen with respect to their adC-value rather than with respect to
their quality level. The rightmost decision robust feasible solution δβmax is always decision
robust efficient because it is the best solution in terms of the maximum GWP -values of its
realizations. Starting with this solution, Algorithm 4 proceeds similar to Algorithm 3 for the
deterministic problem by selecting the rightmost candidate from a finite set that has a better
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GWP -value than the previously selected solution. However, there are two main differences
between the two algorithms. First, the finite set of solutions S(β) that is considered in
Algorithm 4 corresponds to the interval bounds that are shifted by the safety margin zmax

rather than the interval bounds themselves, see line 4 of the algorithm. Second, each candidate
solution is evaluated and compared with respect to the supremum of adC-values over the set
of its realizations. The function that maps a solution to this supremum is defined in line 2
and solutions are selected according to their value with respect to this function in line 6. The
algorithm terminates when the minimum of that function over all decision robust feasible
solutions has been attained.

Algorithm 4 Robust [·/strictly] efficient candidates for β without Assumption 2

1: procedure Robust minmax adC steps(Q, adC, costs, price, S(β), zmin, zmax)
2: function f(γ) . Supremal additional costs

3: f(γ) = max
{
adC(γ + zmin(γ), β),max

i : tβi−1∈{γ}+Z(γ)
(costs(tβi−1, β)− price(qi))

}

4: v ← maxs∈S(β) s, V(β)← {v} , a← f(v), b← mins∈S(β) f(s)
5: while a > b do
6: v ← max {s ∈ S(β) : f(s) < a}
7: V(β)← V(β) ∪ {v}
8: a← f(s)

9: return V(β) . robust [·/strictly] efficient candidate set

In order to determine the set of decision robust [·/strictly] efficient solutions, two cases
are distinguished, as done in Section 4: the case that the sets of decision robust [·/strictly]
efficient solutions coincide, and the case that the sets of decision robust [·/strictly] efficient
solutions differ. For both cases, the sets of decision robust [·/strictly] efficient solutions are
obtained by replacing the set W(β) by the set V(β) in Theorem 13 and in Theorem 14.

6 Summary and outlook

The peat-and-pots problem is a bi-objective optimization problem with one linear objective
function and one objective function that is the sum or a piecewise constant function and a
linear function. The problem is modeled as a deterministic and as an uncertain problem.
Solution approaches for both types of the problem are presented.

The classical solution concept for the deterministic problem is Pareto efficiency and an
analytical description of the Pareto efficient solutions for each type of planter pot is given.

The uncertain peat-and-pots problem is addressed by means of robust multiobjective op-
timization. Two types of uncertainty, parameter and decision uncertainty, are taken into
account and the uncertainty is addressed by the solution concepts robust efficiency and de-
cision robust efficiency. For each type of planter pot, analytical descriptions of the decision
robust efficient solutions are given or an algorithm to compute the set of solutions is developed.

The results of this work provide the theoretical background for applications of the con-
sidered problem such as the commercial cultivation of potted plants. The suggested solution
approaches for both the deterministic and uncertain problem are applied to a case study on
an Italian plant nursery in [18]. This work is particularly motivated by this practical problem
and therefore, the peat-and-pots problem is solved in Section 3 and Section 4.3 for the specific
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case that is required by this application. According to the case study, the robust efficient
solutions a preferable over the deterministic efficient solutions.

Because the deterministic efficient and the decision robust efficient solutions of the peat-
and-pots problem are both investigated in this work, the two sets of solutions can be com-
pared. Under the assumptions that define the practical application in [18], each of the two
solution sets can be computed from a finite union of points. The main difference between the
deterministic and the robust solutions for each fixed pot β is that the deterministic efficient
solutions lie at the right hand sides of the constant intervals of the quality function, while
there exists a safety margin between the robust solutions and the right hand sides of the
intervals. However, a safety margin to the left hand interval bounds is not necessary. More-
over, as shown in this work, if any solution between 0 and the minimal perturbation |zmin|
is decision robust efficient then the whole interval between this point and zero is decision
robust efficient. This is due to the structure of the perturbation sets Z(γ), which are smaller
for solutions lower than |zmin|. The realization sets of the solutions near 0 are hence nested
within each other and if one of them is decision robust efficient, the others are so as well.
The latter property of the decision robust efficient solutions to the peat and pots problem
therefore reflects the difference between decision uncertainty with constant perturbation sets
as considered in [10] and perturbation sets that depend on the solution as considered here.

In Section 5, the results for the deterministic efficient and the decision robust efficient
solutions from the previous sections are extended to the peat-and-pots problem in the absence
of the three assumptions that reflect the setting of the practical application. Accordingly, the
solutions to the deterministic and the uncertain problems can be computed by using the
presented algorithms. Comparing the solution sets for the peat-and-pots problems with and
without the assumptions, it is noted that the solution sets or candidate sets are finite unions
of points if and only if the costs of the decision relevant traditional input materials are higher
than the costs of the eco-friendly alternatives. Conversely, if the eco-friendly alternatives are
more expensive than the traditional input materials, the solution sets and candidate sets are
finite unions of compact intervals.

Further research includes applications of the presented results to different fields of industry.
The results of this work could be extended to account for specific problem characteristics of
further applications. For instance, a consumer’s willingness to pay a higher price for eco-
friendy products could be considered in the problem by adding a bonus to the monetary
objective if the environmental impact of the solution is below a certain threshold. Also, the
peat-and-pots problem could be modelled for two or more different species that require the
same type of compost while the supply of compost is limited. Another option to extend the
model is to consider additional objective functions, e.g., a second environmental objective
function to simulateously assess different environmental aspects.

In summary, this work provides deterministic and robust solution approaches for the
uncertain bi-objective optimization problem that is the peat-and-pots problem. Additionally,
a generalized form of the problem is investigated and algorithms for the computation of the
deterministic and the decision robust efficient solutions for these problems are given. Still,
there are several options of further reasearch on extended versions of the problem that are
relevant for various fields of application.

179



Acknowledgements

This work was supported by DFG RTG 1703 “Resource Efficiency in Interorganizational Net-
works”. The author would like to thank Anita Schöbel for her advice on the decision problem
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