637 research outputs found

    Adaptive beamforming for uniform linear arrays with unknown mutual coupling

    Get PDF
    This letter proposes a new adaptive beamforming algorithm for uniform linear arrays (ULAs) with unknown mutual coupling. It is based on the fact that the mutual coupling matrix (MCM) of a ULA can be approximated as a banded symmetric Toeplitz matrix as the mutual coupling between two sensor elements is inversely related to their separation, and hence it is negligible when they are separated by a few wavelengths. Taking advantage of this specific structure of the MCM, a new approach to calibrate the signal steering vector is proposed. By incorporating this improved steering vector estimate with a diagonally loaded robust beamformer, a new adaptive beamformer for ULA with unknown mutual coupling is obtained. Simulation results show that the proposed steering vector estimate considerably improves the robustness of the beamformer in the presence of unknown mutual coupling. Moreover, with appropriate diagonal loading, it is found that the proposed beamformer can achieve nearly optimal performance at all signal-to-noise ratio (SNR) levels. © 2002-2011 IEEE.published_or_final_versio

    Enhanced Direction of Arrival Estimation through Electromagnetic Modeling

    Get PDF
    Engineering is a high art that balances modeling the physical world and designing meaningful solutions based on those models. Array signal processing is no exception, and many innovative and creative solutions have come from the field of array processing. However, many of the innovative algorithms that permeate the field are based on a very simple signal model of an array. This simple, although powerful, model is at times a pale reflection of the complexities inherent in the physical world, and this model mismatch opens the door to the performance degradation of any solution for which the model underpins. This dissertation seeks to explore the impact of model mismatch upon common array processing algorithms. To that end, this dissertation brings together the disparate topics of electromagnetics and signal processing. Electromagnetics brings a singular focus on the physical interactions of electromagnetic waves and physical array structures, while signal processing brings modern computational power to solve difficult problems. We delve into model mismatch in two ways; first, by developing a blind array calibration routine that estimates model mismatch and incorporates that knowledge into the reiterative superresoluiton (RISR) direction of arrival estimation algorithm; second, by examining model mismatch between a transmitting and receiving array, and assessing the impact of this mismatch on prolific direction of arrival estimation algorithms. In both of these studies we show that engineers have traded algorithm performance for model simplicity, and that if we are willing to deal with the added complexity we can recapture that lost performance

    Mutual Coupling in Phased Arrays: A Review

    Get PDF
    The mutual coupling between antenna elements affects the antenna parameters like terminal impedances, reflection coefficients and hence the antenna array performance in terms of radiation characteristics, output signal-to-interference noise ratio (SINR), and radar cross section (RCS). This coupling effect is also known to directly or indirectly influence the steady state and transient response, the resolution capability, interference rejection, and direction-of-arrival (DOA) estimation competence of the array. Researchers have proposed several techniques and designs for optimal performance of phased array in a given signal environment, counteracting the coupling effect. This paper presents a comprehensive review of the methods that model and mitigate the mutual coupling effect for different types of arrays. The parameters that get affected due to the presence of coupling thereby degrading the array performance are discussed. The techniques for optimization of the antenna characteristics in the presence of coupling are also included

    Aperture-Level Simultaneous Transmit and Receive (STAR) with Digital Phased Arrays

    Get PDF
    In the signal processing community, it has long been assumed that transmitting and receiving useful signals at the same time in the same frequency band at the same physical location was impossible. A number of insights in antenna design, analog hardware, and digital signal processing have allowed researchers to achieve simultaneous transmit and receive (STAR) capability, sometimes also referred to as in-band full-duplex (IBFD). All STAR systems must mitigate the interference in the receive channel caused by the signals emitted by the system. This poses a significant challenge because of the immense disparity in the power of the transmitted and received signals. As an analogy, imagine a person that wanted to be able to hear a whisper from across the room while screaming at the top of their lungs. The sound of their own voice would completely drown out the whisper. Approaches to increasing the isolation between the transmit and receive channels of a system attempt to successively reduce the magnitude of the transmitted interference at various points in the received signal processing chain. Many researchers believe that STAR cannot be achieved practically without some combination of modified antennas, analog self-interference cancellation hardware, digital adaptive beamforming, and digital self-interference cancellation. The aperture-level simultaneous transmit and receive (ALSTAR) paradigm confronts that assumption by creating isolation between transmit and receive subarrays in a phased array using only digital adaptive transmit and receive beamforming and digital self-interference cancellation. This dissertation explores the boundaries of performance for the ALSTAR architecture both in terms of isolation and in terms of spatial imaging resolution. It also makes significant strides towards practical ALSTAR implementation by determining the performance capabilities and computational costs of an adaptive beamforming and self-interference cancellation implementation inspired by the mathematical structure of the isolation performance limits and designed for real-time operation

    Sparse Linear Antenna Arrays: A Review

    Get PDF
    Linear sparse antenna arrays have been widely studied in array processing literature. They belong to the general class of non-uniform linear arrays (NULAs). Sparse arrays need fewer sensor elements than uniform linear arrays (ULAs) to realize a given aperture. Alternately, for a given number of sensors, sparse arrays provide larger apertures and higher degrees of freedom than full arrays (ability to detect more source signals through direction-of-arrival (DOA) estimation). Another advantage of sparse arrays is that they are less affected by mutual coupling compared to ULAs. Different types of linear sparse arrays have been studied in the past. While minimum redundancy arrays (MRAs) and minimum hole arrays (MHAs) existed for more than five decades, other sparse arrays such as nested arrays, co-prime arrays and super-nested arrays have been introduced in the past decade. Subsequent to the introduction of co-prime and nested arrays in the past decade, many modifications, improvements and alternate sensor array configurations have been presented in the literature in the past five years (2015–2020). The use of sparse arrays in future communication systems is promising as they operate with little or no degradation in performance compared to ULAs. In this chapter, various linear sparse arrays have been compared with respect to parameters such as the aperture provided for a given number of sensors, ability to provide large hole-free co-arrays, higher degrees of freedom (DOFs), sharp angular resolutions and susceptibility to mutual coupling. The chapter concludes with a few recommendations and possible future research directions

    Sensor array signal processing : two decades later

    Get PDF
    Caption title.Includes bibliographical references (p. 55-65).Supported by Army Research Office. DAAL03-92-G-115 Supported by the Air Force Office of Scientific Research. F49620-92-J-2002 Supported by the National Science Foundation. MIP-9015281 Supported by the ONR. N00014-91-J-1967 Supported by the AFOSR. F49620-93-1-0102Hamid Krim, Mats Viberg

    Estimation of DOAs of Acoustic Sources in the Presence of Sensors with Uncertainties

    Get PDF
    Direction of Arrival (DOA) estimation finds its practical importance in sophisticated video conferencing by audio visual means, locating underwater bodies, removing unwanted interferences from desired signals etc. Some efficient algorithms for DOA estimation are already developed by the researchers . The performance of these algorithms is limited by the fact that the receiving antenna array is affected by some uncertainties like mutual coupling, antenna gain and phase error etc. So considerable attention is there in recent research on this area. In this research work the effect of mutual coupling and the effect of antenna gain and phase error in uniform linear array (ULA) on the direction finding of acoustic sources is studied. Also this effect for different source spacing is compared. For that, estimates of the directions of arrival of all uncorrelated acoustic signals in the presence of unknown mutual coupling has been found using conventional Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT). Also DOAs are computed after knowing the coupling coefficients so that we can compare the two results. Simulation results have shown the fact that the degradation in performance of the algorithm due to mutual coupling becomes more if the sources become closer to each other. Also we have estimated DOAs in the presence of unknown sensor gain and phase errors and we have compared this results with the results we got by considering ideal array. Finally in this case also the effect of gain and phase error as the source spacing varies has been tested. Simulation results verify that performance degradation is more if the sources become closer

    Analysis and Design of Compact Antenna Arrays

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore