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Abstract

In the signal processing community, it has long been assumed that transmitting and

receiving useful signals at the same time in the same frequency band at the same

physical location was impossible. A number of insights in antenna design, analog

hardware, and digital signal processing have allowed researchers to achieve simulta-

neous transmit and receive (STAR) capability, sometimes also referred to as in-band

full-duplex (IBFD).

All STAR systems must mitigate the interference in the receive channel caused by

the signals emitted by the system. This poses a significant challenge because of

the immense disparity in the power of the transmitted and received signals. As an

analogy, imagine a person that wanted to be able to hear a whisper from across the

room while screaming at the top of their lungs. The sound of their own voice would

completely drown out the whisper.

Approaches to increasing the isolation between the transmit and receive channels of a

system attempt to successively reduce the magnitude of the transmitted interference

at various points in the received signal processing chain. Many researchers believe

that STAR cannot be achieved practically without some combination of modified an-

tennas, analog self-interference cancellation hardware, digital adaptive beamforming,

xxxix



and digital self-interference cancellation. The aperture-level simultaneous transmit

and receive (ALSTAR) paradigm confronts that assumption by creating isolation be-

tween transmit and receive subarrays in a phased array using only digital adaptive

transmit and receive beamforming and digital self-interference cancellation.

This dissertation explores the boundaries of performance for the ALSTAR architec-

ture both in terms of isolation and in terms of spatial imaging resolution. It also

makes significant strides towards practical ALSTAR implementation by determining

the performance capabilities and computational costs of an adaptive beamforming and

self-interference cancellation implementation inspired by the mathematical structure

of the isolation performance limits and designed for real-time operation.
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Chapter 1

Introduction

Over the last several decades, a great deal of research effort has been directed at

achieving the goal of transmitting and receiving meaningful signals from the same

physical location, in the same frequency band, at the same time. This technology

is often referred to as simultaneous transmit and receive (STAR) or in-band full-

duplex (IBFD) operation, and it has been pursued so heavily because it offers a

number of advantages and capabilities that address critical needs and shortcomings

in a wide range of wireless sensing and communications tasks. Perhaps the most

frequently cited benefit of STAR is that it could potentially double the bandwidth

efficiency of communications links by allowing a single band to be allocated for up-

link and downlink. Additionally, STAR could reduce the overhead required by some

time-division multiplexing arbitration schemes. STAR also makes interesting radar
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paradigms possible. While continuous wave (CW) and frequency-modulated contin-

uous wave (FMCW) radars have been transmitting and receiving simultaneously in

the same frequency band for quite some time, they have done so with limited sys-

tem flexibility and high costs in terms of size, weight, and power. Achieving STAR

in a radar platform could enable continuous target illumination during sensing and

significantly reduce a radar’s visibility to other sensors by allowing for long-period

illumination with low-power waveforms.

1.1 Problem Context

The key challenge in successfully implementing STAR is mitigating the interference

and noise that appears in the received signal due to the co-located transmitter. If

all of the components in the system were noiseless and we could perfectly estimate

the coupling from the transmit channel to the receive channel, then the interference

component could simply be subtracted out. However, real components do have noise,

so the simple subtraction approach will not perfectly cancel all the interference. Ad-

ditionally, the extreme difference in transmitted and received signal power is often

on the order of 100 dB [3], which means that the limited dynamic range of physical

components becomes a significant factor.

The many techniques for isolating the transmit and receive channels from one another
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are best classified by the domain in which they operate: the electromagnetic domain,

the analog domain, or the digital domain. The electromagnetic domain encompasses

approaches that use the properties of electromagnetic wave propagation through solid

media and free space to achieve transmit/receive isolation. This includes transmitting

and receiving on opposite polarizations, building antennas and antenna arrays with

reduced mutual coupling between transmit and receive antennas or ports, and us-

ing ferromagnetic circulators to partially isolate the transmitted and received signals

within a single antenna. However, electromagnetic domain approaches are often band-

width limited, bulky, heavy, or work well only for a particular application. Analog

domain approaches fall between the antenna ports and the analog-to-digital or digital-

to-analog converters (ADCs and DACs, respectively). In general, these approaches

couple the transmitted signal and noise through some sort of filter and add it to the

received signal to cancel out self-interference. However, analog domain approaches

are often power intensive, expensive, and physically large. Techniques in the digi-

tal domain include digital transmit and receive beamforming, digital self-interference

cancellation, and nonlinear equalization. Digital transmit and receive beamforming

in phased arrays can be used to place near-field nulls on the receiving and trans-

mitting elements, respectively. Note that transmit beamforming is grouped with the

digital techniques instead of the electromagnetic techniques because its effect is often

used in a similar manner to receive beamforming within the context of STAR. Digital

self-interference cancellation is similar to the analog domain approaches in that it
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uses either the ideal transmitted signal or a measured copy of the transmitted signal

and noise and an estimate of the transmit/receive coupling channel to approximate

and cancel out the self-interference in the receive channel. Nonlinear equalization

attempts to digitally pre-distort the transmitted signal in order to reduce the non-

linear effects of the power amplifier. Digital approaches are constrained by the fact

that ADCs and DACs have limited dynamic range, and so care must be taken to

avoid burying the received signal of interest beneath the receiver noise after all noise,

interference, and cancellation effects are taken into account. A number of researchers

have used techniques from more than one domain at the same time in order to achieve

higher isolation than was possible with techniques from just one domain. A number

of examples of techniques from all three domains, as well as examples of cross-domain

approaches can be found in Section 2.1. Additionally, [3, 4, 5] provide broad surveys

of the state of the art across the domains.

This dissertation studies the Aperture-Level STAR (ALSTAR) digital phased array

architecture originally proposed in [1] and demonstrated in [6]. The approach is

referred to as ALSTAR because it seeks to create isolation between the transmit

and receive apertures of a single phased array. It leverages adaptive digital transmit

and receive beamforming as well as digital self-interference cancellation to achieve

high transmit/receive isolation, which places this approach within the digital domain.

Remaining within the digital domain allows the ALSTAR architecture to support a
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wide number of communications and sensing tasks while remaining lightweight, low-

cost, and space efficient.

1.2 Dissertation Outline and Contributions

1.2.1 Chapter 2

Chapter 2 describes the ALSTAR digital phased array architecture in detail and pro-

poses a novel method of optimizing the transmit and receive beamformers in order

to maximize the effective isotropic isolation (EII) achieved by the array. EII is calcu-

lated and the beamformers are optimized based on a sophisticated statistical signal

model of the array that accounts for the limited dynamic range of the transmit and

receive channels and the mutual coupling between them. Results are also presented

for regularized beamforming techniques that allow for trade-offs between EII and

transmit/receive gain.
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1.2.2 Chapter 3

In Chapter 3, bounds for narrowband direction of arrival (DOA) estimation perfor-

mance are presented for an ALSTAR array. Adaptive beamforming and transmit/re-

ceive aperture partition optimization methods are explored that seek to minimize

those error bounds. Specifically, the Fisher Information of the estimated DOA is cal-

culated given a statistical signal model similar to the one presented in Chapter 2. The

Fisher Information is optimized in terms of the transmit and receive beamformers for

each look angle using an iterative technique similar to the technique given in Chapter

2. The Bayesian Information (i.e. the Fisher Information averaged across scan points)

is calculated as a performance metric for the transmit/receive aperture partitioning.

The task of aperture partitioning is performed with a genetic algorithm, which is

shown empirically to significantly reduce the required computation over exhaustive

partition searching.

1.2.3 Chapter 4

While the adaptive beamforming algorithm presented in Chapter 2 promises excel-

lent EII performance, it would be difficult to implement in real-time due to its high

computational complexity and iterative nature. Furthermore, it is formulated for a
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narrowband signal model, it assumes perfect knowledge of the mutual coupling chan-

nel, and it is not designed to handle external sources of interference. Inspired by the

structure of the adaptive beamforming technique presented in Chapter 2, the adaptive

beamforming techniques presented in this work seek similar goals while operating only

on the observable signals available on the array, only assuming an imperfect knowl-

edge of the mutual coupling channel provided by a practical mutual coupling channel

estimation technique, and with knowledge of the DOA of the signal of interest.

1.2.4 Chapter 5

Chapter 5 concludes this dissertation by discussing the implications of fully digi-

tal ALSTAR technology, and highlighting the contributions of this work in terms of

theoretical and practical adaptive beamforming methods, DOA performance bounds,

ALSTAR transmit/receive aperture partition optimization via genetic algorithm. Ad-

ditionally, future directions of potential research based on this material will be ex-

plored.
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Chapter 2

Aperture-Level Simultaneous

Transmit and Receive with Digital

Phased Arrays

2.1 Introduction

Recently, interest has increased in the possibility of transmitting and receiving at the

same time over the same channel. Traditionally, multiple users access a single wire-

less channel by dividing the resources of that channel between the users [7]. Multiple
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access schemes can be broadly categorized as time-division multiple access, frequency-

division multiple access, code-division multiple access, spatial-division multiple access

(e.g. beamforming), or some combination of several techniques. Each one makes

trades in terms of complexity of implementation, bandwidth requirement, and conti-

nuity of access for any given user. This makes certain schemes more or less appropriate

for specific applications. In this work we consider the problem of achieving in-band

full-duplex (FD) operation with a digital phased array, also referred to as simultane-

ous transmit and receive (STAR). Many STAR applications involve non-cooperative

users, and code-division multiple access schemes are therefore not considered. Never-

theless, the techniques developed here could be combined with other multiple access

schemes, improving the overall throughput of a particular channel given a specific

application. While it is natural to discuss STAR from a communications point of

view, the techniques detailed in this paper enable applications in communications,

radar, imaging, and multi-function systems.

The problem that must be solved in order to implement STAR is mitigating the self-

interference and mutual coupling between the transmit and receive channels. The

mutual coupling is often strong enough to saturate receiver hardware if not properly

handled. We classify the approaches to this challenge into three categories: electro-

magnetic, analog, and digital self-interference mitigation techniques. Electromagnetic

techniques include the effort to design antennas and antenna arrays with high direc-

tionality, spatial nulls, or polarization diversity to enable STAR [8, 9, 10, 11, 12, 13,
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14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

These antennas often suffer performance losses in phased arrays or require different

polarizations on transmit and receive, limiting performance and relevance for many

applications. Also included in electromagnetic techniques, ferrite circulators (and

other non-ferrite circulators) can be used to create transmit/receive isolation within

a single antenna [38, 39]. However, the isolation achieved is often limited and may

have a high cost in terms of size and weight. Analog techniques include approaches

that attempt to match and cancel the mutual coupling from transmit to receive chan-

nels by introducing analog cancellation filters into the front end of the transceiver

[40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. However, both electromagnetic and

analog approaches often introduce significant costs to the system in terms of size,

weight, complexity, and/or power consumption. This becomes especially important

in the case of a phased array, because the number of self-interference channels to

be canceled grows with the number of unique transmit/receive antenna pairs [53].

This can make solutions that involve fully-connected analog cancellation networks or

bulky RF hardware near the antennas impractical, especially given the tight space

constraints typical of phased arrays. Furthermore, analog cancellation hardware can

introduce constraints on transmit power and new sources of receiver noise.

The ALSTAR digital phased array studied in this paper—first proposed in [1] and

[6]—uses only digital self-interference mitigation techniques, which include adaptive

digital beamforming and digital self-interference cancellation (SIC). It is important to
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note that the ALSTAR phased array architecture retains the operational capabilities

of a fully-digital phased array and does not rely on analog cancellation techniques

that increase array cost and complexity and reduce power efficiency. While both [3]

and [5] mention adaptive transmit and receive beamforming and digital SIC as viable

self-interference reduction methods, they both assume that digital techniques must

be complimented by additional electromagnetic and/or analog mitigation schemes,

as in [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

73, 74, 75]. However, [1] and [6] demonstrated that in the context of the ALSTAR

architecture, digital methods may be sufficient. Where many approaches focus on

canceling the signal component of the self-interference, the ALSTAR architecture

cancels the signal, noise, and distortion components of the self-interference signal by

implementing SIC with digital observations of the noisy and distorted transmit signal.

The work presented in this paper improves upon [1] by exploiting the interdependence

of the transmit and receive beamformers in creating isolation between transmit and

receive channels with limited dynamic range, at the cost of a more complex adaptive

beamforming process. The adaptive transmit beamformer creates nulls to reduce

the incident transmitted signal and noise on the receivers in order to avoid receiver

saturation, thereby lowering the noise floors of the limited dynamic range receive

channels, while still achieving high transmit gain in the direction of interest. At

the same time, the adaptive receive beamformer rejects the remaining interference

and noise (after SIC) passing through the mutual coupling channel while maintaining
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relatively high gain in the direction of interest. The details of how the adaptive

beamforming method achieves these goals can be found in Section 2.2.3 and Section

2.3. We present simulated results that suggest that very high isolation levels are

possible across the scan space of the digital phased array being studied. We also

discuss how effective isotropic isolation (EII) may be traded for transmit/receive gain

via a regularization technique. The remaining discussion of previous work by others

focuses on digital techniques aimed at solving similar problems. It should be noted

that while many of the references discussed involve multiple-input multiple-output

(MIMO) arrays, this work only considers single-input single-output phased arrays.

2.1.1 Digital Adaptive Beamforming for STAR

Forming near-field nulls on the receivers in an array is an effective method to reduce

the effects of mutual coupling in phased arrays. In this way, adaptive digital beam-

forming can prevent the receivers from becoming saturated, making further digital

SIC possible. Everett et al. demonstrated the use of digital transmit beamforming

to reduce the self-interference present at the receive antennas in a MIMO array while

reserving a specified number of multiplexing degrees of freedom (DOF) for the desired

transmitted signals [76]. They explored the performance of their beamforming scheme

in terms of FD sum-rate as a function of reserved DOF. Placing near-field nulls re-

quires a good estimate of the mutual coupling channel in the phased array. To solve
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this problem, Johnston and Fiore developed a wideband MIMO least-mean-squares

channel estimation procedure and used the resulting channel model in a null-space

projection adaptive beamforming algorithm [77]. Masmoudi and Le-Ngoc developed

a maximum-likelihood estimator for the mutual coupling in an FD MIMO system

[78].

2.1.2 Digital SIC for STAR

In addition to adaptive beamforming, digital SIC can provide a significant increase

in isolation between the transmit and receive channels. Ahmed and Eltawil demon-

strated a single-channel digital SIC scheme using an auxiliary receive channel to mea-

sure the transmitted signal (including distortion and noise) [79]. Our work extends

their proposed technique to a phased array system. The authors in [80] used an aux-

iliary receive channel to observe the distorted and noisy transmit signal, which they

fed into an independent components analysis algorithm to isolate the desired received

signal. Li et al. presented a digital SIC model that accounted for the non-ideal nature

of the physical components in the transmit and receive signal processing chains [81].

Komatsu et al. explored a non-linear frequency-domain digital SIC technique [82].

Liang et al. presented an approach that implements adaptive transmit beamform-

ing in concert with digital SIC [83]. Their signal-to-leakage-plus-noise-ratio (SLNR)

based precoding technique is similar to the one proposed in this work. However, our
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objective function also accounts for the noise injected into the receive channel by

the digital SIC process and the limited dynamic range of the transmit and receive

channels. Furthermore, they do not consider the interaction between the transmit

and receive beamformers.

2.1.3 Advanced Digital Techniques for STAR

A great deal of work has been done in developing optimal and practical transmit and

receive beamforming schemes that mitigate self-interference in FD MIMO networks.

Some works have explored minimizing the mean-squared-error (MSE) of the signals

at the receivers in FD MIMO networks, accounting for interference [84, 85, 86, 87,

88, 89]. A number of papers have considered bit-rate maximization (e.g. sum-rate,

weighted-sum-rate) methods for FD MIMO networks experiencing self-interference

[90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101]. Lin et al. present two methods for

beamformer design in an amplify and forward FD MIMO relay scenario that minimize

symbol vector error rate [102]. Still others have considered signal-to-interference-plus-

noise ratio (SINR) or SLNR based objective functions or constraints [103, 104, 105,

106, 107, 108, 109]. Several authors have written about methods for beamforming in

FD MIMO networks referred to as zero-forcing, null-space-projection, or interference

alignment [110, 111, 112, 113, 114, 115, 116]. Interference alignment extends the

concept of zero-forcing beamforming to include null-space constraints on inter-user
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interference.

The following discussion highlights the similarities and differences between the work

presented in this paper and related previous works by other authors. Hwang et

al. described an alternating optimization method for SINR maximization in amplify

and forward MIMO relays by beamforming [117]. However, their SINR metric is

structurally different than EII and their work assumed the use of analog SIC where

we assume that only digital beamforming and SIC are implemented. Xiao et al. ad-

dressed the concept of interference mitigation via beamforming (in concert with other

techniques) in FD millimeter wave communications scenarios, but they focused on

constant-amplitude (i.e. phase-only) and zero-forcing beamforming techniques [118].

Xia et al. described an FD MIMO relay model that accounts for limited dynamic

range in the transmit and receive channels [119]. They optimized the beamformers at

the relay to minimize the self-interference power via a combined minimum eigenvalue

and zero-forcing procedure, while assuming no SIC is performed. Shen et al. ex-

plored an iterative rate maximization approach for the beamformers in an FD MIMO

one-way relay link (including the source and the destination) [120]. Their approach

is similar to the one presented in this paper in that it models the limited dynamic

range of the transmit and receive channels. However, their work does not consider

the possibility of canceling the noise component of the self-interference as is done in

this work.
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Riihonen et al. discussed the problem of mitigating loopback interference in FD

MIMO relays [121]. They considered SIC and adaptive beamforming techniques sep-

arately and together. They also considered the distortion of the transmitted and re-

ceived signals due to beamforming, and extended their minimum interference beam-

forming techniques to jointly minimize the MSE of the transmitted and received

signals. However, the joint beamforming techniques that were presented reduce to

separate optimizations that do not take advantage of the interdependence between

transmit and receive beamformers.

Day et al. proposed a combination of pilot-based self-interference channel estima-

tion, transmit and receive precoding, and digital SIC for FD MIMO applications

[122]. Both [122] and this work model the effects of limited transmitter and receiver

dynamic range and use both transmit and receive beamforming and SIC to mitigate

self-interference. Day et al. optimized MIMO sum-rate across a pair of communicat-

ing nodes, which is a function of the link SINRs in both directions in the full-duplex

link, whereas the EII objective function considered in this work describes the isolation

between the transmit and receive channels in a single phased array system. Further-

more, because link SINR is quantified prior to receive beamforming in [122], the

mutual interdependence of the transmit and receive beamformers was not exploited

in maximizing the MIMO sum-rate. This work takes advantage of the beamformer

interdependence in order to maximize the transmit/receive isolation in the ALSTAR

phased array architecture.
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Antonio-Rodŕıguez et al. discussed a phased array system very similar to the AL-

STAR architecture, operating as a decode-and-forward full-duplex relay [123]. They

optimized the SINR at the relay after cancellation and receive beamforming, in terms

of the relay transmit and receive beamformers. However, their optimization used

constraints to obtain non-trivial transmit filters, where this work incorporates the

transmit gain directly into the objective function. Furthermore, they decoupled their

transmit filter optimization step from the receive filter optimization by suboptimally

substituting the SINR incident on the relay as their transmit filter objective function.

In a later paper, Antonio-Rodŕıguez et al. updated their approach by first minimizing

the noise power at the relay after cancellation and receive filtering in terms of the

transmit filter, while guaranteeing a minimum signal power at the destination via a

null-space projection step in the transmit filter optimization [124]. The receive filter

optimization step remained unchanged, but they also iterated between the transmit

and receive filter optimizations to allow for the coupled nature of the transmit and

receive filter optimization problems. The main difference between [124] and this work

is that we incorporate transmit gain into the EII metric instead of introducing a signal

power constraint.

Guo and Wang presented an alternating optimization algorithm to find the transmit

and receive beamformers that maximize the SINR at the destination in an FD MIMO

link using either Dinkelbach’s algorithm or a closed-form suboptimal solution at each

iteration [125]. The alternating optimization of an SINR metric is similar to the
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approach presented in this paper. However, their SINR metric specifically describes

an amplify and forward MIMO relay, and they included a recursive self-interference

component not present in our model because we assume that the received signal of

interest and self-interference signals are uncorrelated.

Taghizadeh et al. considered FD amplify and forward relays with a realistic model for

transmit and receive RF hardware and a general model for SIC [126]. Additionally,

their proposed AltMuStR1 algorithm and objective functions are similar to the ones

presented in this work. However, their signal model and optimization techniques do

not account for the effect of the coupled transmitter noise on the noise in the limited

dynamic range receive channels. The work presented in this paper specifically models

digital SIC and adaptive beamforming techniques that mitigate the transmitted noise

component in addition to the transmitted signal component in the self-interference

present at the receiver. Additionally, we present isolation results across the scan space

of the array and a regularization method that allows for trade-offs between array gain

and self-interference reduction, where [126] does not.

2.1.4 Previous Work, Contributions, & Organization

The work presented in this paper is based on the ALSTAR architecture originally

presented in [1], where the EII metric was also presented. An 8-element uniform
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linear ALSTAR array was demonstrated in [6], achieving 140.5 dB of EII across a

100 MHz bandwidth centered at 2.45 GHz. We simulated the performance of the

ALSTAR architecture under a simplified signal model in a narrowband imaging sce-

nario [127] and explored transmit/receive aperture partition optimization via genetic

algorithm for the same architecture [128]. Additionally, we explored optimizing the

beamformers and aperture partition in a narrowband FD communication link between

two ALSTAR arrays, also with a simplified signal model [129].

In this paper, we calculate EII for a digital phased array with limited dynamic range

transmit/receive channels and propose a novel method to optimize the transmit and

receive beamformers to maximize EII. We then simulate the performance of the ar-

chitecture and our proposed optimization method for a 5 × 10 ALSTAR array with

two unique aperture partitions.

Section 2.2 describes the ALSTAR array architecture in detail and develops the cor-

responding statistical signal model. Section 2.3 motivates the definition of EII from

a self-interference mitigation perspective, derives the EII metric for the signal model

developed previously, and proposes an iterative technique to find the beamformers

that maximize EII. While the work presented in this paper considers beamformer op-

timization after estimating the channels involved, an iterative adaptive method that

updates both the estimated channel matrices and beamformers could be more prac-

tical and will be considered in future work. However, the methods presented in this
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Table 2.1
Acronyms

Acronym Definition
STAR Simultaneous Transmit and Receive

ALSTAR Aperture-Level Simultaneous Transmit and Receive
EII Effective Isotropic Isolation
DOF Degrees of Freedom
SIC Self-Interference Cancellation

MIMO Multiple-Input Multiple-Output
FD Full-Duplex

SLNR Signal-to-Leakage-Plus-Noise Ratio
MSE Mean-Squared-Error
SINR Signal-to-Interference-Plus-Noise Ratio
RF Radio Frequency
SNR Signal-to-Noise Ratio

AWGN Additive White Gaussian Noise
EIRP Effective Isotropic Radiated Power
EIS Effective Isotropic Sensitivity
ENF Effective Noise Figure

work highlight the factors that affect the performance of the ALSTAR architecture

and illustrate its potential performance. Section 2.4 details the simulated perfor-

mance of an ALSTAR array with two transmit/receive aperture partitions using the

proposed optimization technique. Section 2.5 describes a regularization technique

that makes it possible to trade EII for total array gain and presents results. Section

2.6 draws conclusions from the results of the simulation and discusses anticipated

extensions and applications of the architecture, performance metric, and techniques

discussed in this work. Table 2.1 lists the acronyms used in this work.
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2.2 Aperture-Level Simultaneous Transmit and

Receive (ALSTAR) Array

The ALSTAR architecture is implemented on a fully digital array with digital

transceivers at each element [130]. Rather than require each element in the array

to simultaneously transmit and receive, we partition the aperture into a transmitting

subarray and an adjacent receiving subarray, e.g., as in Fig. 2.1. We therefore refer

to this approach as Aperture-Level Simultaneous Transmit and Receive (ALSTAR),

to distinguish it from other architectures which might support STAR at the element

level. All elements in the array are physically identical and can be dynamically as-

signed to either transmit or receive. The size and geometry of the transmit and

receive subarrays can thus be dynamically modified to support various patterns and

functions as needed by the overall system. In the degenerate case that all elements are

transmitting or receiving, the array may operate in the typical (half-duplex) manner

without performance degradation, which is an uncommon advantage of the ALSTAR

architecture among STAR systems.

The architecture proposed in [1] for digital SIC in a phased array with J transmitting

elements and K receiving elements is depicted in Fig. 2.2. In this work we consider

a narrowband signal model for notational and analytical clarity, but the model could

24



x →

y
↑

⊗z
(a) Partition A

x →

y
↑

⊗z
(b) Partition B

Figure 2.1: Example configurations of a 5×10 ALSTAR array, with trans-
mitting elements black and receiving elements gray. Elements are physically
identical and can be dynamically reassigned depending on overall system
requirements.

be converted to a wideband model by extending the channel models, beamforming

vectors, and SIC filter to multitap finite impulse response filters. The transmitted

signal vector t(n) ∈ C
J×1 at time index n is

t(n) = btx(n) + nt(n), (2.1)

where x(n) is the desired signal to be transmitted with E [|x(n)|2] = 1, bt ∈ C
J×1

is the vector of transmit beamforming coefficients, and nt(n) is zero-mean, complex

additive white Gaussian noise (AWGN) transmitted noise with covariance matrix

Nt = E[ntn
H

t ] = Diag(btb
H

t )/ηt where ηt is the signal-to-noise ratio (SNR) of each

transmitter. The received signal vector r(n) ∈ C
K×1 is

r(n) = s(n) +Mt(n), (2.2)

where s(n) ∈ C
K×1 represents the external signal(s) of interest, with Rss = E[ssH],
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(a)

Symbol Definition
x Transmitted Signal
bt Transmit Beamformer
nt Transmitter Noise
t Transmitted Signal + Noise
no Observation Noise
Ho Observation Channel
o Observed Transmit Signals
bc Cancellation Filter
M Mutual Coupling Channel
s Signal of Interest
nr Receiver Noise
r Received Signals
br Receive Beamformer
y Received Beamformed Signal
y′ Received Canceled Signal

(b)

Figure 2.2: (a) Signal flow diagram of the ALSTAR phased array with
multi-channel observation receivers providing access to the distorted and
noisy transmitted signals for SIC [1]. (b) Table of symbols and corresponding
definitions.
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and M ∈ C
K×J describes the mutual coupling channel between transmitting and

receiving elements. The received signals are combined by a receive beamformer,

y(n) = bH

r [s(n) +Mt(n) + nr(n)] , (2.3)

where br ∈ C
K×1 is the vector of receive beamforming coefficients and nr(n) is zero-

mean complex Gaussian receiver noise with Nr = E[nrn
H

r ] = Diag(E[rrH])/ηr + σ2
rI.

ηr is the SNR of each receiver and σ2
r is the receiver thermal noise power. Note that our

model for the receive channels is linear AWGN with two noise components. The first

noise component models the limited dynamic range of the channel. This component

dominates under strong self-interference. The second term represents the absolute

thermal noise figure of the receive channels themselves under low-power excitation.
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2.2.1 System SINR

Assuming x(n), s(n), nt(n), and nr(n) are all mutually independent and uncorrelated,

we obtain the following receive power terms,

P s
y = bH

r Rssbr, (2.4)

P x
y = bH

r Mbtb
H

t M
Hbr, (2.5)

P nt
y = bH

r MNtM
Hbr, (2.6)

P nr
y = bH

r Nrbr, (2.7)

where P s
y is the received signal of interest power, P x

y is the self-interference power due

to the transmitted signal, P nt
y is the self-interference power due to the transmitted

noise, and P nr
y is the receiver noise power in the received beam. Without SIC, the

resulting SINR of the received beam would be

SINR =
P s
y

P x
y + P nt

y + P nr
y

. (2.8)

Note that the presence of self-interference not only introduces the terms P x
y and P nt

y

but may also result in a significant increase in P nr
y due to limited receiver dynamic

range under high-power excitation. During active transmission, the coupled trans-

mitted signal power P x
y , coupled transmitted noise power P nt

y , and receiver noise P nr
y
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will generally overwhelm the desired signal power P s
y and prevent effective STAR

operation. Techniques to mitigate or cancel self-interference and noise are discussed

next.

2.2.2 Mitigation of Transmitted Signal and Noise

Consider a typical digital SIC scheme, depicted in Fig. 2.3, which removes self-

interference from the received signal y(n) by subtracting a filtered copy of the trans-

mitted signal x(n),

y′(n) = y(n) + cx(n). (2.9)

If the coupling environment M has been estimated by an array self-calibration or

channel sounding technique (e.g. [77, 78, 131]), then setting c = −bH

r Mbt results in

y′(n) = bH

r [s(n) +Mnt(n) + nr(n)] . (2.10)

Provided that the mutual coupling channel model is sufficiently accurate, this sim-

ple method may effectively eliminate the interference term P x
y . Unfortunately, this

approach alone is not generally sufficient to support effective STAR operation in a

phased array, as the residual noise terms may still overwhelm the desired signal power,

i.e., P nt
y + P nr

y ≫ P s
y .
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Figure 2.3: Signal flow diagram of a digital phased array with signal-only
digital SIC.

Rather than only using knowledge of the signal x(n) for SIC, the actual radiated

waveform at each transmitting element t(n) may be measured as shown in the ar-

chitecture depicted in Fig. 2.2(a). In this way, not only the transmitted signal but

also the transmitted noise and distortion may be canceled. To accomplish this, ob-

servation receivers have been included at each transmit channel, whose signals are

combined with a multi-channel cancellation filter bc. The observation channels are

simply standard receive channels that have been coupled to the transmitter output

while the element is transmitting. Because each element in a fully digital array has

a dedicated digital receive channel with independent hardware, and these receivers

are otherwise unused while the element is transmitting, implementing observation

channels in a fully digital array does not significantly impact cost or complexity. An
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Transmitter Receiver

Figure 2.4: Example front end of a T/R module that supports ALSTAR
signal, noise, and distortion cancellation. In transmit mode (shown) the
receiver measures the transmitted signal and noise through an attenuator.
In receive mode (arrows) the receiver is connected to the antenna through a
low noise amplifier and the transmitter is disabled [1].

example transmit/receive (T/R) module configuration for realizing the coupled obser-

vation path is shown in Fig. 2.4. The observed transmitted signal vector o(n) ∈ C
J×1

is

o(n) = Ho [t+ no(n)] , (2.11)

where Ho ∈ C
J×J is a diagonal matrix which represents the fixed attenuator between

each transmit channel and its corresponding observation receive channel as shown in

Fig. 2.4. Like M, Ho must be estimated in practice by a channel sounding technique.

The attenuators represented byHo are used to prevent observation channel saturation.

The observation channel is AWGN with no(n) ∼ CN (0,No) where No = E[non
H

o ] =

Diag(btb
H

t )/ηr. The observation signals o(n) are combined via multi-channel filter
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bc and added to y(n) to obtain the isolated received signal

y′(n) = y(n) + bH

c o(n). (2.12)

Setting bH

c = −bH

r MH−1
o , the resulting signal is

y′(n) = bH

r [s(n)−Mno(n) + nr(n)] . (2.13)

We see that (2.13) is identical to (2.10) except that the transmit noise nt has been

replaced with the observation noise no, effectively reducing the residual transmitter

noise power by a factor of ηr/ηt. In many cases this represents a substantial improve-

ment, as it is typical for ηr ≫ ηt, especially under high transmit power. Furthermore,

although our model assumes linear AWGN channels, this technique will also effectively

cancel transmitter nonlinearities and distortion products which in practice may be

significantly above the transmitter noise floor, so long as they are also above the ob-

servation noise floor and can be measured by the observation receivers. The resulting

SINR for y′(n) assuming full channel knowledge and corresponding optimization of

bc is

SINR′ =
P s
y

P no
y + P nr

y

, (2.14)

where

P no
y = bH

r MNoM
Hbr (2.15)

32



is the noise power in the received canceled signal due to performing SIC with observed

signals.

2.2.3 Mitigation of Observation and Receive Noise

The remaining noise terms P no
y and P nr

y may still significantly degrade the sensitiv-

ity of the array during transmission. The receive noise correlation matrix can be

expanded as

Nr = η−1
r Diag (Rss) (2.16)

+ η−1
r Diag

(
Mbtb

H

t M
H
)

+ η−1
r η−1

t Diag
[
MDiag

(
btb

H

t

)
MH

]

+ σ2
rI.

Under STAR operation, self-interference power may be assumed to dominate the

incident power at each receive channel, yielding

Nr ≈ η−1
r Diag

(
Mbtb

H

t M
H
)

(2.17)

+ η−1
r η−1

t Diag
[
MDiag

(
btb

H

t

)
MH

]

+ σ2
rI.
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The total residual noise in the receive beam Pn = P no
y + P nr

y can then be expressed

as a quadratic form of the receive beamformer br,

Pn = bH

r Mbrbr, (2.18)

where

Mbr = η−1
r MDiag

(
btb

H

t

)
MH (2.19)

+ η−1
r Diag

(
Mbtb

H

t M
H
)

+ η−1
r η−1

t Diag
[
MDiag

(
btb

H

t

)
MH

]

+ σ2
rI.

Using the fact that aHDiag(bbH)a = bHDiag(aaH)b for a,b ∈ C
N,1, (2.18) may also

be refactored as a quadratic form of the transmit beamformer bt,

Pn = bH

t Mbtbt, (2.20)
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where

Mbt = η−1
r Diag(MHbrb

H

r M) (2.21)

+ η−1
r MHDiag

(
brb

H

r

)
M

+ η−1
r η−1

t Diag
[
MHDiag

(
brb

H

r

)
M
]

+
σ2
r

Pt

I,

In (2.21) we have set ||bt||
2 = Pt and ||br||

2 = 1. Expressions (2.18) and (2.20) high-

light the fact that optimizing the transmit and receive beamformers can both reduce

residual noise in the receive beam due to self-interference. Indeed, the symmetry of

(2.19) and (2.21) suggests that transmit and receive beamforming are equally impor-

tant and that both ought to be optimized in order to realize high-isolation sufficient

for effective STAR operation of a phased array.

Specifically, optimization of the receive beamformer can dramatically reduce the con-

tribution of the observation noise, which is represented by the first line of (2.19).

This receive beamforming optimization problem is diagonally loaded by the elevated

receive noise floor due to high-power self-interference and limited receiver dynamic

range, which is represented in the second and third lines of (2.19), and by the receiver

thermal noise power, given in the last line of (2.19).

In turn, optimization of the transmit beamformer provides a method to mitigate
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receiver noise by reducing the incident power at each receive channel, thus improving

receiver sensitivity and preventing saturation. This is represented in the second line

of (2.21). The transmit beamforming optimization problem is likewise diagonally

loaded by the observation noise and the elevated receiver noise floor due to the coupled

transmitter noise, represented in the first and third lines of (2.21), and by the receiver

thermal noise power, given in the last line of (2.21). Optimizing the transmit and

receive beamformers to minimize noise while forming the desired beam in the far field

is discussed in the next section.

2.3 Effective Isotropic Isolation

For STAR systems, transmit/receive isolation is often used as a critical metric. Iso-

lation is defined as the ratio of transmitted power Pt to residual noise in the receiver

Pn,

I =
Pt

Pn

. (2.22)

However, for directional systems, this definition must be expanded to account for the

gains achievable via beamforming across the transmitting and receiving antennas.

Therefore, we use the EII metric, which is the ratio of Effective Isotropic Radiated
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Power (EIRP) to Effective Isotropic Sensitivity (EIS) [1],

EII =
EIRP

EIS
. (2.23)

EIRP—the power required by a theoretical isotropic transmitter to provide equivalent

illumination in the desired direction—may be defined for a phased array as

EIRP(φ, θ,bt) = g(φ, θ)bH

t qt(φ, θ)q
H

t (φ, θ)bt, (2.24)

where

qt(φ, θ) = e−j 2π
λ
(xt cos(φ) sin(θ)+yt sin(φ) sin(θ)) (2.25)

is the steering vector for a beam φ rad from the positive x-axis in the array plane

and θ rad from the positive z-axis (into the page) as given in Fig. 2.1(a). xt and yt

are the x and y positions of each transmitting antenna element in the array plane.

g(φ, θ) is the embedded element gain of the array. EIS—the noise floor of a theoretical

isotropic receiver with equivalent sensitivity in the desired direction—may be defined

for a phased array as

EIS =
Pn

Gr

, (2.26)

where Pn is defined in (2.18) and (2.20) and Gr is the received signal gain,

Gr(φ, θ,br) = g(φ, θ)bH

r qr(φ, θ)q
H

r (φ, θ)br, (2.27)
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where qr(φ, θ) is defined in the same way as its transmit equivalent in (2.25), except

that the sign of the complex exponent in qr(φ, θ) is positive. The difference between

the transmit and receive steering vectors accounts for the fact that the receive beam-

former is applied with the Hermitian transpose. Assembling terms we arrive at two

equivalent expressions for EII in an ALSTAR array

EII = Gr(φ, θ,br)g(φ, θ)
bH

t qt(φ, θ)q
H

t (φ, θ)bt

bH
t Mbtbt

, (2.28a)

= EIRP(φ, θ,bt)g(φ, θ)
bH

r qr(φ, θ)q
H

r (φ, θ)br

bH
r Mbrbr

. (2.28b)

Note that (2.28a) is a generalized Rayleigh quotient in bt (holding br constant) and

(2.28b) is a generalized Rayleigh quotient in br (holding bt constant). Given estimates

of M and Ho, each of these quotients can be maximized individually, allowing us to

iterate toward an optimal solution for bt and br. Specifically, we alternate between

solving the following,

bt = αM−1
bt qt(φ, θ), s.t. ||bt||

2 = Pt, (2.29)

br = βM−1
br qr(φ, θ), s.t. ||br||

2 = 1, (2.30)

where α and β are arbitrary scale factors chosen to satisfy the magnitude constraints

[132]. Note that Mbt and Mbr are recalculated at each iteration, and the iterations

continue until bt and br converge. This approach is guaranteed to converge because

each evaluation of (2.29) and (2.30) is non-decreasing in EII, which is bounded above
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by

EIImax =
PtJKg2(φ, θ)

σ2
r

. (2.31)

Alternating optimization over the transmit and receive beamformers does not neces-

sarily find a unique globally optimal solution because the objective function (i.e., EII)

is non-convex in bt and br. The non-convex nature of the beamformer optimization

problem means that the initialization of the algorithm may cause it to converge to

different local optima. Therefore, in order to increase the likelihood of finding a solu-

tion nearer the globally optimal solution and in order to determine the difference in

performance achieved at the various local optima, the iterative procedure described

above was initialized with the non-adaptive transmit and receive beamformers

bt,na =
√

Pt/J · qt(φ, θ), (2.32)

br,na =
√

1/K · qr(φ, θ), (2.33)

as well as 100 randomly generated transmit and receive beamformers scaled to meet

the transmit power and receive gain constraints in (2.29) and (2.30). Note that the

non-adaptive transmit and receive beamformers—(2.32) and (2.33)—maximize EIRP

and receive array gain. We will show empirically that alternating optimization is

generally effective at obtaining near-optimal solutions.

In Section 2.4, we compare the performance of the ALSTAR array in three differ-

ent configurations in order to clarify the relative contributions of SIC and adaptive
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beamforming. We consider the non-adaptive beamformers without SIC, the non-

adaptive beamformers with SIC, and the adaptive beamformers with SIC. The dif-

ference between the first and second configurations demonstrates the contribution to

EII made by SIC alone. The difference between the second and third configurations

demonstrates the gain in EII made possible by adaptive beamforming. If the con-

figuration uses the non-adaptive beamformers, no optimization is performed and the

non-adaptive beamformers—(2.32) and (2.33)—are substituted into the expression

for EII. Without SIC, the interference and noise covariance matrices Mbr and Mbt

become

M̃br = Mbtb
H

t M
H + η−1

t MDiag
(
btb

H

t

)
MH (2.34)

+ η−1
r Diag

(
Mbtb

H

t M
H
)

+ η−1
r η−1

t Diag
[
MDiag

(
btb

H

t

)
MH

]

+ σ2
rI.

M̃bt = MHbrb
H

r M+ η−1
t Diag(MHbrb

H

r M) (2.35)

+ η−1
r MHDiag

(
brb

H

r

)
M

+ η−1
r η−1

t Diag
[
MH Diag

(
brb

H

r

)
M
]

+
σ2
r

Pt

I,

The first two terms account for the transmitted signal and noise that is coupled

through the mutual coupling channel. Also note that the first term in (2.19) and (2.21)
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does not appear in (2.34) and (2.35) because that term describes the observation noise

effectively coupled through the mutual coupling channel due to performing SIC with

observation channel signals.

2.3.1 Properties of the Mutual Coupling Channel

Before presenting the simulation results, we pause to discuss the nature of the mutual

coupling channel in an ALSTAR array. Given the prominent presence of M in (2.19)

and (2.21), the nature of the coupling channel strongly affects the achievable EII. If we

assume that M is full-rank, then min (K, J) DOF would be required to create perfect

nulls at all of the receive antennas. Given that the transmit beamformer has J − 1

DOF, forming perfect transmit nulls at each receiver requires more transmitters than

receivers (i.e., J > K). As seen in Section 2.2.3 and earlier in Section 2.3, the receive

beamformer can also reject the observation noise via null placement. Perfect nulls to

reject the observation noise would require more receivers than transmitters (i.e., K >

J). These conditions cannot be simultaneously satisfied, suggesting that simultaneous

perfect mutual null placement is not possible. Because (2.31) is maximized when

J = K for a fixed number of antennas, and because the first and second terms

of (2.19) and (2.21) have similar contributions to Pn, choosing an equal number of

transmitters and receivers is a prudent strategy. The strongest possible mutual null

placement with J = K would consume every available DOF, leaving none available
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to form the transmit and receive beams for the signal of interest.

However, several practical considerations mitigate this concern. First, perfect mutual

coupling information is unavailable in practice, so perfect nulls become impossible

even when the necessary DOF are available. Second, perfect nulls are unnecessary

in this scenario [76]. The receive beamformer needs only to suppress the observation

noise beneath the receive channel noise due to limited dynamic range and receive

channel thermal noise. Likewise, the transmit beamformer needs only to suppress

the limited dynamic range receive noise beneath the observation noise and receive

channel thermal noise. This can be seen in (2.19) and (2.21), where the non-diagonal

component represents the noise to be nulled and the diagonal components act as reg-

ularization terms that reduce the distortion in the desired main transmit and receive

beams. Finally, antennas are often laid out in very regular patterns in phased arrays,

which implies strong similarities between the coupling channels across antennas. This

often leads to a coupling matrix with a few dominant modes and a high condition

number, reducing the number of DOF required to achieve strong mutual nulls. For

example, in the case of a linear ALSTAR array that has a contiguous transmit sub-

array and a contiguous receive subarray, a single end-fire null aimed at the other

subarray in the transmit and receive beam would be all that is required to minimize

the noise. Fig. 2.5 shows the singular value spectra of the simulated coupling matrices

for the aperture partitions shown in Fig. 2.1(a) and Fig. 2.1(b). It appears that the

mutual coupling channel for Partition A has approximately 10 dominant directional
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Figure 2.5: The singular value spectra of the coupling matrix M simulated
in Ansys HFSS for the configurations shown in Fig. 2.1(a) and Fig. 2.1(b),
respectively.

modes while the singular value spectrum of Partition B is greater than the spectrum

of Partition A and has no clear break point between dominant and weak modes. For

these reasons, we expect that Partition A will be able to achieve higher EII because

the adaptive beamformers will have to use fewer adaptive DOF for noise reduction,

increasing the number of DOF that can be dedicated to transmit or receive gain.

The coupling model used in the simulations in this work does not explicitly address a

multipath coupling environment. However, the methods proposed in this work do not

preclude the consideration of multipath coupling environments. If the modes inM due
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to multipath do not dominate the direct coupling modes (e.g., in the case of far-field

multipath) and thus do not significantly increase the receiver noise, then there will

be little effect on the optimal beamformers. Yet, in strong multipath environments,

the effective rank of M will be increased, more DOF will be required for nulls in the

transmit and receive beams, resulting in reduced transmit gain, receive gain, and EII.

2.4 Simulation Results

A 5×10 element ALSTAR array of U-slot patch antennas (similar to those described

in [133]) was modeled in Ansys HFSS, as discussed in [1] with an element spacing of

λ/2 = 62 mm when operated at 2.42 GHz. The embedded element gain was modeled

as g(φ, θ) = π cos(θ). The array beams were scanned up to 60° from array normal.

The transmit channel dynamic range was ηt = 45 dB and the receive channel dynamic

range was ηr = 70 dB. The receive channels had thermal noise power σ2
r = −91 dBm,

which simulates the thermal noise for a 100 MHz bandwidth channel with a 3 dB

noise figure. We present results for Pt = 2.5 W, 25 W, 250 W, and 2500 W, and for

both partitions in Fig. 2.1.
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2.4.1 Partition A

The array was partitioned as shown in Fig. 2.1(a) into 25 transmit elements (black)

and 25 receive elements (gray). Fig. 2.6 shows the EII achieved across scan angles

for non-adaptive beamformers without SIC, non-adaptive beamformers with SIC, and

adaptive beamformers with SIC at each power level. For the adaptive beamformer

results, the median EII across all initializations is plotted with error bars representing

the maximum and minimum EII achieved at each scan angle. Non-adaptive beam-

former results are only shown for Pt = 2500 W as increasing the transmitted power

does not significantly change the EII of the non-adaptive beamformers (with or with-

out SIC) because EIRP scales linearly with Pt as do all the terms in (2.19) except the

thermal noise floor. For Pt = 2500 W at broadside with adaptive transmit and receive

beamformers, a maximum EII of 187.1 dB is found, an improvement of 108.6 dB over

a non-adaptive array without SIC, and an isolation improvement of 40 dB over that

realizable by SIC alone. As shown in Fig. 2.7, the median Pn seen at broadside for

the adaptive beamformers with SIC was only 2.2 dB above the thermal noise floor, an

improvement of 43.6 dB over a non-adaptive array with SIC. Given the demonstrated

improvement in EII and Pn, next we consider the sacrifices made by the adaptive

beamformers in EIRP and Gr. Fig. 2.8 shows the non-adaptive and adaptive EIRP

and Gr for Pt = 2500 W. As before, the median adaptive EIRP and Gr are plotted
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with error bars representing the minimum and maximum achieved across all initial-

izations. Within 30° of broadside, the median reduction in EIRP is 2 dB and the

median Gr loss is 1.7 dB across all initializations. At larger scan angles (out to 60°),

the median EIRP and Gr were both reduced by up to 8.5 dB, when compared with

the EIRP and Gr of the non-adaptive transmit and receive beamformers, respectively.

Fig. 2.9 and 2.10 show the EII realized across the scan space for 2.5 W and 2500

W of transmit power, respectively. These plots show that extremely high isolation

is possible across the majority of the scan space, albeit at some modest reduction in

aperture efficiency. Note that the horizontal scan space coefficient kx = cos(φ)·sin(θ),

and the vertical scan space coefficient ky = sin(φ) · sin(θ). Fig. 2.11 shows the

transmit power at each transmit element and the interference and noise power at

each receive element when the beam is directed toward broadside for 2.11(a) the non-

adaptive transmit beamformer and 2.11(b) the adaptive transmit beamformer. This

plot demonstrates the effectiveness of the adaptive transmit beamformer at reducing

the incident power—and thus reducing the noise power—at the receive elements,

keeping them from becoming saturated or being destroyed at high transmit power

levels.
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2.4.2 Partition B

We also considered the aperture partition shown in Fig. 2.1(b). Fig. 2.12 shows

the EII achieved for Partition B. At broadside for Pt = 2500 W, with adaptive

beamformers and SIC, the ALSTAR array produced 182 dB of EII at broadside,

a gain of 34.4 dB over the non-adaptive beamformers with SIC and 110.2 dB over

the non-adaptive beamformers without SIC. Fig. 2.13 shows the noise power at the

receiver for the adaptive and non-adaptive beamformers with SIC across the azimuth

scan range. Together, the adaptive beamformers and SIC were able to drive the noise

power within 5 dB of the thermal noise power in the median case across azimuth scan

angles, power levels, and initializations. At broadside for Pt = 2500 W, the adaptive

beamformers decreased the received noise by 40.1 dB. Fig. 2.14 compares the EIRP

and receive gain of the adaptive and non-adaptive beamformers across the azimuth

scan range for Partition B operated at Pt = 2500 W. The adaptive beamformers

incurred a median EIRP loss of 3.4 dB and a median receive gain loss of 5.5 dB within

30° of broadside. Considering the full scan space, the median EIRP loss increased

to 11.1 dB and the median receive gain loss increased to 9.2 dB. Fig. 2.15 shows the

transmitted power at each transmitting element and the interference and noise power

at each receive element. Note that the reduction in interference and noise power at

the receivers between Fig. 2.15(a) and Fig. 2.15(b) is less than the reduction seen

between Fig. 2.11(a) and Fig. 2.11(b) due to the reduced number of transmit DOF
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and the increased magnitude of the coupling matrix singular values for Partition B

as shown in Fig. 2.5.

2.5 Beamformer Regularization

In some applications, array designers and operators may be willing to accept reduced

EII to maintain higher EIRP and Gr. In order to make this possible, we present a

regularization technique for the proposed optimization method given in (2.29) and

(2.30). If diagonal loading with weight γ ∈ [0,∞) is applied to the noise covariance

matrices in the proposed optimization scheme, we obtain

bt = α

(
Mbt +

γ

Pt

I

)−1

qt(φ, θ), s.t. ||bt||
2 = Pt, (2.36)

br = β (Mbr + γI)−1 qr(φ, θ), s.t. ||br||
2 = 1. (2.37)

For small values of the regularization coefficient (γ → 0), the optimization converges

to the results given in Section 2.4. As γ → ∞, the EIRP and Gr of the final solution

will increase toward those of the non-adaptive beamformers, with some loss in EII.

In order to explore the trade-off between EIRP or Gr and EII, we plot the total array

gain Gt · Gr, where Gt = EIRP/Pt. The total array gain accounts for the fact that

some solutions to the optimization described in (2.36) and (2.37) trade Gt for Gr

or vice versa. These plots correspond to the regularized beamformers that obtained
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the maximum EII across initializations for each value of γ. Fig. 2.16(a) shows the

relationship between total array gain and EII at θ = 30° for the ALSTAR array

configuration of Fig. 2.1(a), as γ is varied from −200 dBm to 30 dBm. Fig. 2.16(b)

plots the total array gain against the effective noise figure (ENF) of the array, defined

as the ratio of the noise power to the thermal noise floor, i.e.,

ENF =
Pn

σ2
r

. (2.38)

These results demonstrate that high array gain is achievable with little decrease in

EII or increase in ENF, especially at higher power levels.

2.6 Conclusion

In this paper we studied the ALSTAR architecture for a fully-digital phased array

with digital SIC that can achieve STAR. We explored the EII performance metric

that expands the concept of transmit/receive isolation to account for the directional

gain of the transmit and receive apertures and the noise injected into the receive

channel by digital SIC with measured transmitted signals. This work applied the

definition of EII to a signal model that accounted for the limited dynamic range of

the transmit and receive RF front ends. We proposed a method of optimizing the

transmit and receive beamformers to maximize the EII between the transmit and
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receive channels and presented results for an example 5 × 10 ALSTAR array. The

proposed optimization technique achieved high EII over a large scan region while

retaining sufficient transmit/receive gain and keeping the receive channel noise near

the thermal noise floor. This work demonstrates that adaptive digital beamforming

techniques coupled with digital SIC techniques are capable of creating very high

isolation between transmit and receive apertures in a digital phased array without the

use of electromagnetic isolation techniques or analog SIC hardware. This work also

presented a regularization method for the proposed optimization technique that can

be used to trade EII for EIRP and Gr. In the future, we intend to develop application

specific performance metrics based on this architecture, and develop more practical

and efficient methods for obtaining EII-optimal beamformers.
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Figure 2.6: Effective Isotropic Isolation for the ALSTAR array configu-
ration of Fig. 2.1(a), plotted across azimuth beam angle for non-adaptive
beamformers without SIC at 2500 W, non-adaptive beamformers with SIC
at 2500 W, and adaptive beamformers with SIC at 2.5 W, 25 W, 250 W, and
2500 W of total transmit power. The median EII for the adaptive beam-
formers with SIC was calculated across 100 initializations with randomly
generated beamformers and one initialization with the non-adaptive beam-
formers. The error bars indicate the minimum and maximum EII achieved
across all initializations.
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Figure 2.7: Noise power Pn in the received signal for the ALSTAR array
configuration of Fig. 2.1(a), plotted across azimuthal scan angle. The median
Pn for the adaptive beamformers with SIC is plotted with error bars to
indicate the minimum and maximum Pn achieved across all initializations.
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Figure 2.8: (a) Effective Isotropic Radiated Power (EIRP) and (b) Receive
Gain (Gr) plotted against azimuth beam angle for the non-adaptive and
adaptive beamformers for the ALSTAR array configuration of Fig. 2.1(a).
The adaptive results show the median EIRP and Gr with error bars indicat-
ing the minimum and maximum values across initializations.
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Figure 2.9: EII for the ALSTAR array configuration of Fig. 2.1(a), plotted
across the scan space out to 60° off broadside for the adaptive beamformers
at 2.5 W transmit power. The initial condition for beamformer optimization
was bt = bt,na and br = br,na.
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Figure 2.10: EII for the ALSTAR array configuration of Fig. 2.1(a), plotted
across the scan space out to 60° off broadside for the adaptive beamformers at
2500 W transmit power. The initial condition for beamformer optimization
was bt = bt,na and br = br,na.
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Figure 2.11: Comparison of the transmitted power at each element and the
incident power at each receive element between (a) the non-adaptive trans-
mit beamformer and (b) the adaptive transmit beamformer for the aperture
partition shown in Fig. 2.1(b) with Pt = 2500 W. Significant reduction in
receive element incident power was achieved via the adaptive transmit beam-
former.
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Figure 2.12: Effective Isotropic Isolation for the ALSTAR array configu-
ration of Fig. 2.1(b), plotted across azimuth beam angle for non-adaptive
beamformers without SIC at 2500 W, non-adaptive beamformers with SIC
at 2500 W, and adaptive beamformers with SIC at 2.5 W, 25 W, 250 W,
and 2500 W of total transmit power. The median EII for the adaptive
beamformers with SIC was calculated over 100 initializations with randomly
generated beamformers and one initialization with the non-adaptive beam-
formers. The error bars indicate the minimum and maximum EII achieved
across all initializations.
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Figure 2.13: Noise power Pn in the received signal for the ALSTAR array
configuration of Fig. 2.1(b), plotted across azimuthal scan angle. The median
Pn for the adaptive beamformers with SIC is plotted with error bars to
indicate the minimum and maximum Pn achieved across all initializations.
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Figure 2.14: (a) Effective Isotropic Radiated Power (EIRP) and (b) Re-
ceive Gain (Gr) plotted against azimuth beam angle for the non-adaptive and
adaptive beamformers for the ALSTAR array configuration of Fig. 2.1(b).
The adaptive results show the median EIRP and Gr with error bars indicat-
ing the minimum and maximum values across initializations.
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Figure 2.15: Comparison of the transmitted power at each element and
the incident power at each receive element between (a) the non-adaptive
transmit beamformer and (b) the adaptive transmit beamformer for the
aperture partition shown in Fig. 2.1(b) with Pt = 2500 W.
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Figure 2.16: (a) Total Array Gain versus EII and (b) Total Array Gain
versus ENF, at θ = 30° for the array configuration of Fig. 2.1(a), at Pt = 2.5
W, 25 W, 250 W, and 2500 W. The regularization coefficient γ varied from
−200 to 30 dBm.
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Chapter 3

Narrowband Direction-of-Arrival

Estimation with Aperture-Level

Simultaneous Transmit and

Receive Digital Phased Arrays

3.1 Introduction

Phased arrays have demonstrated incredible flexibility and capability in a wide vari-

ety of sensing and communications tasks, even as implementation size, weight, power,
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and cost have decreased. For these reasons, phased arrays are finding applications in

many challenging scenarios, including self-driving cars, weather radars, joint commu-

nications and sensing apertures, and future cellular networks. Many of these scenarios

could benefit from in-band simultaneous transmit and receive (STAR) (i.e. transmit-

ting and receiving at the same time in the same frequency band). The fundamental

difficulty in achieving STAR is suppressing the effects of the self-interference (SI) be-

tween the transmit and receive channels. Both Sabharwal et al. [134] and Kolodziej

et al. [4] catalog a large number of techniques for mitigating SI in STAR platforms.

While many approaches include specialized antennas, circulators, and analog cancel-

lation hardware, this work studies the Aperture-Level Simultaneous Transmit and

Receive (ALSTAR) phased array architecture which achieves STAR via adaptive dig-

ital beamforming and digital self-interference cancellation (SIC) only [1].

With respect to radar operation, STAR avoids the need to range gate the received

signal, eliminating blind spots near the radar. By extending the coherent integration

interval, STAR enables low-power continuous illumination which can increase the

performance of radar systems operating under strict power constraints. Additionally,

low-power long-integration illumination can be important in scenarios where the radar

system must remain unobserved by other sensors [135].

In this paper we explore the performance of an ALSTAR array in a narrowband

direction-of-arrival (DOA) estimation task. Using the Fisher Information on the
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mean-squared error (MSE) of the estimated DOA as our objective function, we pro-

pose a beamforming technique that maximizes DOA resolution in the presence of SI.

We also explore whether optimizing the partitioning of the phased array aperture

into transmit and receive antennas can significantly improve the Bayesian Informa-

tion, which is the inverse of the Bayesian Cramér-Rao Lower Bound (BCRB) and

bounds the performance of the aray over the scan space.

3.1.1 DOA Related Work

The problem of DOA estimation from array sample data has been thoroughly explored

in the literature, but the traditional DOA estimation problem generally only deals

with the propagation of signals from a source or a reflector that has already been

illuminated. Many algorithms have been developed to solve the DOA estimation

problem, including MUSIC [136], ESPRIT [137, 138], and expectation maximization

(EM) [139].

Stoica and Nehorai present derivations of the maximum-likelihood (ML) DOA estima-

tors and the corresponding Cramér-Rao Lower Bounds (CRLBs) on DOA estimation

error under deterministic and random signal models for the signal-of-interest [140].

Smith presents results for the CRLB on the angular resolution of multiple impinging

signals under the assumption that the complex amplitudes of the signals must also
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be estimated [141]. Li and Compton present ML estimators and the corresponding

CRLBs for DOA estimation for multiple narrowband signals with varying levels of

knowledge about the signals [142]. Pesavento and Gershman propose an ML DOA

estimation algorithm that assumes uncorrelated noise at different powers for the el-

ements of a direction finding array and presents the CRLBs for single and multiple

sources with deterministic and stochastic priors [143].

Nguyen and Van Trees demonstrated via simulation that the Chazan-Ziv-Zakai Bound

on DOA estimation error was tighter than the BCRB and Weiss-Weinstein Bound

(WWB) for the case when only one plane wave impinges on the array. They also

suggested that below the signal-to-noise-ratio (SNR) threshold, an EM algorithm

outperforms MUSIC-type algorithms, while the MUSIC and EM algorithms perform

similarly in the high SNR region [144]. Bell et al. described how the Extended Ziv-

Zakai Bound (EZZB) may be applied to the DOA estimation problem for a receive

array of any geometry [145]. The EZZB better matches the MSE performance of the

ML estimator in low SNR regimes.

Athley applied the Method of Interval Estimation (MIE) technique to predict the

estimated DOA MSE for single- and several-source scenarios with both random and

nonrandom models for the signal-of-interest [146]. Richmond describes how the MIE

may be applied to scenarios where the receiver noise covariance matrix must also be
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estimated for adaptive DOA estimation and how the estimation error on the covari-

ance matrix contributes to overall DOA estimation error [147]. Kantor et al. propose

that the MIE method DOA MSE estimators could be used to make online decisions

between the ML and MAP estimates in the case of a poorly chosen prior [148].

Beyond calculating the fundamental angular resolution limits of arrays, a number

of authors have considered how the placement of antennas in the array affect these

limits. Athley proposed that the threshold between asymptotic and low-SNR per-

formance regions for the WWB on DOA estimation MSE be used as a metric for

the placement of elements in a sparse linear receive array, including both continuous

and discrete antenna positions [149]. Gavish and Weiss proposed an array geometry

optimization technique that minimized a lower bound on the weighted Euclidean dis-

tance between steering vectors in an effort to reduce the large-angle errors common in

low-SNR and low sample size scenarios [150]. Mirkin and Sibul explored the coupling

in the CRLB for simultaneous azimuth and elevation DOA estimation and gave the

conditions on array geometry that provide uncoupled azimuth and elevation estima-

tion [151]. Gazzah and Marcos also discussed how array geometry is incorporated

into the CRLB and explored how the angle between the arms of a V-shaped array af-

fected the CRLB [152]. Dogandzic and Nehorai presented the CRLB for target range,

velocity, and DOA for an array of arbitrary shape that is illuminating the target with

pulses. They then considered the effect of several different array geometries on the

CRLB [153]. Lange and Yang described a method of subarray, amplitude taper, and
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element position optimization that minimizes the CRLB on DOA estimation error

under sidelobe level and minimum element separation constraints [154]. Oktel and

Moses described an approach to array geometry design that minimizes the expected

CRLB or maximizes the expected Fisher Information, similar to the approach in this

work [155]. However, their work considered a receive-only array with element posi-

tions that are continuously variable, where our work considers an aperture that must

simultaneously illuminate the target and sense the reflected wave with antennas at

fixed positions within a grid.

3.1.2 STAR Related Work

In an attempt to achieve STAR, many authors have proposed circulator-like devices

that isolate the transmit and receive channels for a single antenna [156, 157, 158, 159].

Melzer et al. described a method of near-field reflection interference cancellation for

frequency modulated continuous wave (FMCW) radars with one transmit and one

receive channel using a measured copy of the transmitted signal and an analog delay

line [160]. Melzer et al. also extended their work to adaptively calculate least-squares

estimates of the required cancellation parameters [161]. Venkatamuni et al. proposed

an adaptive, digitally-controlled, analog SIC system to supplement the isolation cre-

ated by a circulator in a single antenna FMCW radar [162]. Fitz et al. described
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a method of SI suppression via circulators, analog cancellation, and digital cancel-

lation to enable out-of-band sensing in close proximity to high power radar systems

[57]. They achieved 106 dB of isolation in their narrowband experiment. Ku et al.

demonstrated approximately 50 dB of transmit/receive isolation between separated 8-

element transmit and receive arrays in a FMCW millimeter-wave phased array radar

[163]. The isolation was achieved by separating the transmit and receive antennas,

electronics, power supplies, and ground planes, and by using internal shielding.

The ALSTAR architecture studied in this paper was originally presented in [1], and

the performance of an 8-element linear ALSTAR array was documented in [6]. An

advanced adaptive beamforming technique to maximize effective isotropic isolation

(EII) was proposed and simulated in Chapter 2. Previous work also explored the

performance of the ALSTAR architecture in full-duplex communications [129] and

imaging tasks [127, 128], though the beamforming techniques there were based on

simpler models of the ALSTAR architecture and did not directly optimize the per-

formance metrics defined for the array. Here, we extend the imaging related work

presented in [127] and [128] by applying the iterative optimization approach presented

in Chapter 2 to the Fisher Information of the DOA estimate. We also explore the

impact of the transmit/receive aperture partition, including larger array sizes than

are found in our previous work.
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Section 3.2 outlines the ALSTAR array architecture and corresponding statistical sig-

nal model. Section 3.3 introduces the Fisher Information of the estimated DOA of

a point target in the far-field for an ALSTAR array and proposes a method of op-

timizing the transmit and receive beamformers to maximize the Fisher Information.

Section 3.4 extends the Fisher Information to the Bayesian Information to account

for the fact that a target may appear at any point in the field of view of the array.

In Section 3.5, we apply a Genetic Algorithm to the problem of optimizing the trans-

mit/receive aperture partition. Section 3.6 discusses the results of the beamforming

and aperture partition optimization techniques for a 10-element linear and a 5× 10-

element rectangular ALSTAR array. Sections 3.7 concludes and discusses potential

future directions of inquiry.

3.2 ALSTAR Array Signal Model

This work is based on the ALSTAR phased array architecture as discussed in Chapter

2, which was extended from the original presentation in [1]. Fig. 3.1(a) defines the

symbols involved in the signal flow diagram of the ALSTAR architecture given in

Fig. 3.1(b). In this work we consider an array with J + K antennas that can each

be dynamically reconfigured to transmit or receive. Specifically, we assume that J

antennas are configured to transmit and K antennas are configured to receive. The

array transmits a complex narrowband signal x ∈ C with E[|x|2] = 1. This signal
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Symbol Definition
x Transmitted Signal
bt Transmit Beamformer
nt Transmitter Noise
t Transmitted Signal + Noise
no Observation Noise
Ho Observation Channel
o Observed Signals
bc Cancellation Filter
M Mutual Coupling Channel
s Signal of Interest
nr Receiver Noise
r Received Signals
br Receive Beamformer
y Received Beamformed Signal
y′ Isolated Received Signal

(a)

... ... ...

+ + +

...

+

+

+

nt

no

+ + +nr

1 2 ... J 1 2 ... K

+ +

+

y′
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t o r

Transmit Elements
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Receivers

Receive Elements

M
s

(b)

Figure 3.1: (a) List of symbols and their corresponding definitions. (b)
ALSTAR architecture signal flow diagram, both from [1] and Chapter 2.
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is passed through the transmit beamformer bt ∈ C
J×1 to the transmit antennas.

We assume that each transmit channel is a linear additive white Gaussian noise

(AWGN) channel with fixed dynamic range ηt. Therefore, the signals transmitted by

the antennas are described by

t = btx+ nt, (3.1)

where nt ∼ CN (0, η−1
t Diag

(
btb

H

t

)
).

We model the propagation of the narrowband signal to and from the scene as a phase

shift and a free-space path-loss, assuming that the scene is in the far field of the array,

which implies that the transmitted and reflected waves can be modeled as plane waves.

We assume that the scene is a point target in free space at a distance dmeters from the

array. Mathematically, for the rth receiving element and tth transmitting element,

the propagation is modeled by the (r, t)th element of the matrix

H(φ, θ) =
1

d2
qr(φ, θ)q

H

t (φ, θ), (3.2)

where qt and qr are the transmit and receive array manifold vectors,

qt(φ, θ) = e−j 2π
λ
(xt cosφ sin θ+yt sinφ sin θ), (3.3a)

qr(φ, θ) = ej
2π
λ
(xr cosφ sin θ+yr sinφ sin θ). (3.3b)
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Figure 3.2: Definition of the coordinate system used for element positions
and beam scan angles in this work.

As shown in Fig. 3.2, xt is the x-coordinate of the tth transmitting antenna, yt is the y-

coordinate of the tth transmitting antenna, xr is the x-coordinate of the rth receiving

antenna, yr is the y-coordinate of the rth receiving antenna, φ is the angle of the main

beam in the xy-plane from the positive x-axis, and θ is the angle between the main

beam and array normal (i.e. the positive z-axis). We have chosen to use opposite signs

in the exponents of qt and qr to account for the fact that the receive beamformer is

applied with a Hermitian transpose. In addition to the array-scene-array propagation

path, there is a direct mutual coupling between the transmit and receive antennas

of the array. We model this mutual coupling with matrix M ∈ C
K×J as shown in

Fig. 3.1b, where the (r, t)th element describes the narrowband coupling from the tth
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transmitting antenna to the rth receiving antenna. As in Chapter 2, we use an Ansys

HFSS model of an array of patch antennas similar to those described in [133] with λ/2

spacing when the array is operated at f = 2.42 GHz. In practice, the coupling channel

would have to be estimated using a channel sounding technique [77, 78, 131] in order

to account for mutual coupling caused by reflectors in the environment near the array.

However, because this work is concerned with the calculation of lower bounds on DOA

estimation performance for the ALSTAR architecture and determining optimal array

configurations prior to system deployment, we consider the assumption of perfect

coupling channel knowledge to be reasonable. Given these channel models, the signal

received at each antenna is

r = H (btx+ nt) +M (btx+ nt) . (3.4)

We assume that the transmitted noise power is sufficiently attenuated by the two-way

path loss to and from the scene being imaged that it falls well below the other noise

terms and can be ignored, i.e.

r = Hbtx+M (btx+ nt) . (3.5)

Like with the transmit channels, we assume that each receive channel is a linear

AWGN channel with fixed dynamic range ηr, where the incident power at each element

sets the noise floor. The received signals r and additive receiver noise nr pass through
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the receive beamformer br to obtain the receive beamformed signal,

y = bH

r [Hbtx+M (btx+ nt) + nr] , (3.6)

where nr ∼ CN (0, η−1
r E

[
Diag

(
rrH
)]

+ σ2
rI). σ2

r represents the fixed thermal noise

power of each individual receive channel. The desired signal bH

r Hbtx that contains

information about the scene being imaged is corrupted by the SI and noise terms in y.

Therefore, in order to isolate the desired signal from the SI and noise, the ALSTAR

architecture implements digital SIC. Traditionally, SIC involves using knowledge of

the transmitted signal x and the mutual coupling channel M to cancel the signal

component of the SI bH

r Mbtx. However, the component of the SI due to the trans-

mitted noise nt is also significant. In order to address this difficulty, the ALSTAR

architecture observes the transmitted signal and noise in each transmit channel via

the unused receive channel behind each transmitting element. Recall that each an-

tenna in an ALSTAR array can be reconfigured dynamically as a transmit or receive

element. This is achieved via the switching scheme shown in Fig. 3.3. It is possi-

ble to effectively measure the transmitted noise because the dynamic range of the

transmit channel is typically much smaller than that of the receive channel (e.g.

ηt = 45 dB ≪ ηr = 70 dB) due to high transmit power amplifier noise and distortion.

The model for the observed signals is

o = Ho (t+ no) , (3.7)
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Transmitter Receiver

Figure 3.3: Diagram of the switching system behind each element in an
ALSTAR array [1]. When configured as shown, the antenna is connected to
the transmit RF chain and the receiver is connected to a reference measure-
ment tap near the antenna through an attenuator. In this way, the typically
unused receiver is used to observe the transmitted signal and noise when the
antenna is transmitting. When configured to receive, the switches connect
the antenna to the receive RF chain via a low-noise amplifier.

where Ho is a diagonal channel matrix that accounts for the scaling of the attenuators

and no is the independent AWGN observation receiver noise, which has distribution

no ∼ CN
(
0, η−1

r

(
1 + η−1

t

)
Diag

(
btb

H

t

))

≈ CN
(
0, η−1

r Diag
(
btb

H

t

))
, (3.8)

where we have assumed that ηt is large enough that 1 + η−1
t ≈ 1. Again this noise

represents the fixed dynamic range of the observation channels. From Fig. 3.1b we

see that the final isolated signal is produced by combining the output of the receive

beamformer br and a cancellation filter bc, which combines the observed signals to
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create a SIC signal. Therefore, we model the final isolated received signal

y′ = y + bH

c o

= bH

r [Hbtx+M (btx+ nt) + nr]

+ bH

c Ho (btx+ nt + no) . (3.9)

Notice that choosing

bc = −H−1
o MHbr (3.10)

results in

y′ = bH

r [Hbtx−Mno + nr] . (3.11)

Essentially, digital SIC via the ALSTAR architecture has replaced the SI signal and

noise terms with a virtually coupled observer noise term. This is an improvement over

traditional digital SIC (which would only have canceled the the SI signal bH

r Mbtx)

because the power of the SI noise component bH

r Mnt is much greater than the power

of the observer noise component −bH

r Mno, because ηt ≪ ηr.

We then define the residual noise covariance matrix in the receive channel (after SIC)
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as

Mbr = E
[
(−Mno + nr) (−Mno + nr)

H

]

= ME
[
non

H

o

]
MH + E

[
nrn

H

r

]

= η−1
r MDiag

(
btb

H

t

)
MH

+ η−1
r E

{
Diag

[
M (btx+ nt) (btx+ nt)

H MH

]}

+ σ2
rI

= η−1
r MDiag

(
btb

H

t

)
MH

︸ ︷︷ ︸
SIC Observer Noise

+ η−1
r Diag

(
Mbtb

H

t M
H
)

︸ ︷︷ ︸
Rx Noise due to Tx Signal SI

+ η−1
r η−1

t Diag
[
MDiag

(
btb

H

t

)
MH

]
︸ ︷︷ ︸

Rx Noise due to Tx Noise SI

+ σ2
rI︸︷︷︸

Rx Thermal Noise

. (3.12)

We note that the increase in noise floor due to the presence of the signal reflected from

the scene is negligible, and therefore the signal term in r can be ignored in calculating

the covariance matrix of nr. The total residual noise power in the received signal is

defined

σ2
n = bH

r Mbrbr. (3.13)

It turns out that we can use the vector identity aH Diag
(
bbH

)
a = bHDiag

(
aaH

)
b
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to re-write σ2
n as a quadratic form in bt instead of br,

σ2
n = bH

t Mbtbt, (3.14)

with the corresponding covariance matrix

Mbt = η−1
r Diag

(
MHbrb

H

r M
)

︸ ︷︷ ︸
SIC Observer Noise

+ η−1
r MHDiag

(
brb

H

r

)
M︸ ︷︷ ︸

Rx Noise due to Tx Signal SI

+ η−1
r η−1

t Diag
[
MHDiag

(
brb

H

r

)
M
]

︸ ︷︷ ︸
Rx Noise due to Tx Noise SI

+
σ2
r

Pt

I

︸︷︷︸
Rx Thermal Noise

. (3.15)

3.3 Fisher Information of the Direction of Arrival

Estimate

In this work, the ALSTAR array is faced with the task of illuminating a scene and

locating a single point target that lies within the azimuth scan space of the array. The

performance of the array is measured by the DOA angular resolution limit, quantified

by the Fisher Information of the azimuthal DOA (θt) for a plane wave from the target.
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The Fisher Information is defined as

J (θt) = −Ey′|θt

[
∂2

∂θ2t
ln p (y′|θt)

]
. (3.16)

Given the signal model above, the likelihood function for the measurement y′ given

the true target azimuth direction of arrival θt is circular complex Gaussian,

y′|θt ∼ CN
(
µ(θt), σ

2
n

)
, (3.17)

with

µ(θt) = bH

r H(θt)bt, (3.18)

and σ2
n as defined in (3.13) and (3.14). Therefore, the Fisher Information expands to

J (θt) =2

(
∂µ(θt)
∂θt

)∗ (
∂µ(θt)
∂θt

)

σ2
n

,

=2
bH

r
∂H
∂θt

btb
H

t
∂H
∂θt

H

br

bH
r Mbrbr

. (3.19)

Notice that if bt is held constant (recalling that Mbr is also a function of bt), (3.19)

becomes a generalized Rayleigh quotient in br with a rank-one matrix in the numer-

ator. Given the equivalent definition of σ2
n as a quadratic form in terms of bt, we can

also write the Fisher Information as

J (θt) = 2
bH

t
∂H
∂θt

H

brb
H

r
∂H
∂θt

bt

bH
t Mbtbt

, (3.20)
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which similarly becomes a generalized Rayleigh quotient in bt with a rank-one matrix

in the numerator when br is held constant. In order to choose transmit and receive

beamformers that minimize the uncertainty in estimating the true value of θt, we

must maximize the Fisher Information in terms of bt and br. The structure of

(3.19) and (3.20) intuitively suggests that J (θt) could be maximized by holding br

constant, solving for the bt that maximizes (3.20), and then holding bt constant and

solving for the br that maximizes (3.19), alternately solving for bt and br until they

converge. The generalized Rayleigh quotient with rank-one matrix in the numerator

has a closed-form solution [132]. For (3.19) and (3.20), the solutions are

bt = αM−1
bt

∂H

∂θt

H

br s.t. ||bt|| = Pt, (3.21)

br = βM−1
br

∂H

∂θt
bt s.t. ||br|| = 1, (3.22)

where α and β are arbitrary scale factors chosen to satisfy the magnitude constraints.

Note that the magnitude constraints can be implemented by scaling because solutions

to the generalized Rayleigh quotient are magnitude-invariant. Because the optimal

value for each beamformer depends on the other, we alternate between solving (3.21)

and (3.22) until the solutions for bt and br converge. This approach is similar in form

to the technique for maximizing effective isotropic isolation (EII) in the ALSTAR

architecture presented in Chapter 2. Note that J (θt) is bounded above for two

reasons: first, the magnitude of bt and br are constrained to finite lengths, and second,

the minimum possible eigenvalues of Mbr and Mbt are σ2
r and σ2

r/Pt, respectively,
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which are both greater than 0. Each optimization of br and bt makes a monotonically

non-decreasing change in J (θt). Therefore, the proposed alternating optimization

scheme is guaranteed to converge to at least a local optimum.

3.4 Bayesian Information of the Direction of Ar-

rival Estimate

Recall that the Fisher Information J (θt) is a function of the true azimuth angle of

the target θt. We model θt as a uniformly-distributed random variable with prior

p(θt) =





1
θr−θl

, θt ∈ [θl, θr]

0, else

, (3.23)

where θl and θr are the left and right bounds on the scan range of the array, respec-

tively. The BCRB on our estimate of the DOA is given as

BCRB =

{
Eθt [J (θt)]− Eθt

[
∂2

∂θ2t
p(θt)

]}−1

, (3.24)

according to [164]. In words, the BCRB is a lower bound on MSE for an estimated

quantity when the prior distribution of that quantity is known. In this case the BCRB

bounds the MSE of the estimated azimuthal DOA of a plane wave reflected by a point
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target when illuminated by an ALSTAR array. While the derivatives in the second

term of (3.24) are undefined at the limits of the prior, because the prior is uniform

we assume that it contributes no information to the DOA of the target beyond the

fact that the target lies within the scan space of the array. Therefore, we assume that

the second term in (3.24) is zero, yielding

BCRB = {Eθt [J (θt)]}
−1 . (3.25)

For our purposes, we deal with the inverse of the BCRB, referred to as the Bayesian

Information,

JB = Eθt [J (θt)]

≈
∆θ

θr − θl

N∑

n=1

J (∆θ(n− 1) + θl) + J (∆θn+ θl)

2
, (3.26)

where we numerically evaluate the expectation of the Fisher Information over the

prior using the trapezoidal rule. We choose

∆θ =
θr − θl
N − 1

(3.27)

as the angular sampling resolution for the numerical integration, where N is the

number of angular samples. Practically, we propose that an ALSTAR array could

jointly scan its transmit and receive beams across the field of view of the array using
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the optimal beams obtained via alternately solving (3.21) and (3.22) at each of the

angles sampled in (3.26) and estimate the DOA of a target from those data.

3.5 Partition Optimization

We showed in two previous papers that the partitioning of the array into transmit and

receive elements had a significant effect on the achievable Fisher Information of the

estimated cross-range position of a target [127, 128]. However, that work was done

under a signal model that did not account for limited dynamic range channels and

with a sub-optimal adaptive beamforming technique. In this paper, the metric to be

optimized with respect to the array partition is the Bayesian Information on the esti-

mated azimuth angle, JB. In terms of the Bayesian Information, the partitioning of

the array changes the elements in the propagation matrix H and the coupling matrix

M, which changes the structure of ∂H/∂θt, Mbr, and Mbt. A closed form solution

for the optimal partitioning of the array aperture into transmit and receive elements

is not obvious. However, optimizing the partitioning of the array into transmit and

receive elements can naturally be posed as a binary integer optimization problem,

where each digit in a binary string corresponds to a particular antenna in the array.

If a given digit is 0, then the corresponding antenna transmits, and if the digit is

1, the corresponding antenna receives. Genetic Algorithms (GAs) are a well-studied

means of solving binary integer optimization problems. The GA is a technique that
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Figure 3.4: This figure illustrates the operation of the genetic algorithm,
modified from [2].

effectively and naturally combines the benefits of exploring the search space and ex-

ploiting high-performance solutions found during previous iterations. As shown in

Fig. 3.4, the GA begins with a randomly initialized population of potential solutions

(i.e., individuals), represented by the bit strings (i.e., chromosomes) described above.

The fitness of each individual is evaluated according to an objective function, which

is JB for this work. Then, pairs of individuals are chosen randomly according to

their fitness to reproduce new candidate solutions. The GA randomly chooses two

points to cross over the two chromosomes to form a new individual. One randomly

chosen position in the resulting chromosome may then be randomly mutated (i.e.,

0 → 1 or 1 → 0). The resulting individual is entered into a new population and

this process is repeated until the new population is full. The algorithm forms new

populations until the maximum fitness in the population converges or a fixed number

of iterations have been reached. The GA can also retain high-performing individuals

from one iteration to the next by copying them directly to the new population. These
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individuals are referred to as elites, and the use of at least one elite ensures that the

maximum fitness of the population is monotonically non-decreasing. The crossover

step of the GA naturally exploits the features in the chromosomes of high-performing

solutions, and the mutation process helps the algorithm explore the breadth of the

search space. The fact that individuals are chosen according to their fitness increases

the likelihood that the resulting individual’s fitness will be high. The implementation

of the GA used in this work was developed with reference to [2, 165, 166]. In order

to evaluate JB, recall that we must perform the beamformer optimization process

across all of the sampled scan angles required by the numerical integration. Also note

that JB is bounded above because J (θt) is bounded above, which implies that JB is

a satisfactory objective function for maximization.

3.6 Results

3.6.1 Beamformer Optimization Results

In order to explore the effectiveness of beamformer optimization with respect to the

Fisher Information metric J , we simulated a 10-element uniform linear array with λ/2

spacing, operated at f = 2.42 GHz. The elements in the array were patch antennas

similar to those described in [133], and the mutual coupling of the array was modeled
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by selecting the middle row from a larger 5 × 10 array coupling model generated in

Ansys HFSS. Fig. 3.5 plots the Fisher Information across the azimuth scan space

from θl = −60° to θr = 60° for the adaptive beamformers, calculated by iteratively

solving (3.21) and (3.22). At each look angle the optimization process was initial-

ized once with the non-adaptive beamformers and 10 times with randomly generated

transmit/receive beamformer pairs scaled to meet the magnitude constraints given in

(3.21) and (3.22). The non-adaptive beamformers are defined as

bt,na =

√
Pt

J
qt(φ, θ), (3.28)

br,na =

√
1

K
qr(φ, θ), (3.29)

where φ is the angle of the main beam from the positive x-axis in the xy-plane and

θ is the angle between the main beam and the positive z-axis, as defined in Fig. 3.2.

Throughout the scan space, the adaptive beamformer optimization process produces

results with reasonably consistent performance in terms of Fisher Information. It

should be noted that the non-adaptive beamformers result in a Fisher Information

equal to zero for the default partition. Focusing on the numerator of the Fisher

Information, it can be shown that

bH

r,na

∂H

∂θ
bt,na = j

[
a1

(
K∑

r=1

J∑

t=1

xt + xr

)
+ a2

(
K∑

r=1

J∑

t=1

yt + yr

)]
, (3.30)
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Figure 3.5: Fisher Information plotted at each scan angle for the adaptive
beamformers given the aperture is in the default configuration, shown in
Fig. 3.9. For the adaptive beamformers, the median Fisher Information
across initializations is plotted with error bars indicating the minimum and
maximum Fisher Information achieved. Results are presented for Pt = 2.5
W, 25 W, 250 W, and 2500 W.

where a1 and a2 are constant with respect to the positions of the elements in the

partitions of both arrays. Note that (3.30) becomes zero when the antennas are

arranged symmetrically (within or across the transmit and receive partitions) about

the x and y axes.

Fig. 3.6 plots the resulting noise power for the adaptive and non-adaptive beam-

formers. While the non-adaptive beamformers produce very high noise powers, the
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Figure 3.6: Noise power plotted at each scan angle for the adaptive and
non-adaptive beamformers with the default aperture partition shown in
Fig. 3.9. The median noise power across initializations is plotted for the
adaptive beamformers with error bars indicating the minimum and maxi-
mum noise power achieved. Results are presented for Pt = 2.5 W, 25 W,
250 W, and 2500 W.

adaptive beamformers are able to drive the noise power to within 1.5 dB of the receiver

thermal noise power σ2
r in the median case across transmit power levels, look angles,

and optimization routine initializations. These results suggest that the optimization

process has successfully maximized the Fisher Information by reducing residual noise

power while selecting beams that still meet the goal of localizing targets.

Fig. 3.7 shows the effective isotropic isolation (EII) achieved by the non-adaptive and
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Figure 3.7: EII plotted across the azimuth scan angles for the 10-element
array with the default aperture partition shown in Fig. 3.9. Results for both
the non-adaptive and adaptive beamformers are presented. For the non-
adaptive beamformers, the EII is almost exactly the same between transmit
power levels because the effective isotropic radiated power (EIRP) scales
linearly with Pt and residual noise scales almost linearly with Pt. For the
adaptive beamformers, the median EII is plotted with error bars indicating
the maximum and minimum achieved across the one non-adaptive initializa-
tion and 10 random initializations of the optimization routine. While max-
imizing EII was not the objective, this plot shows that maximizing Fisher
Information produces beamformers with high isolation that are practical for
STAR. Results are presented for Pt = 2.5 W, 25 W, 250 W, and 2500 W.

adaptive beamformers, calculated according to Chapter 2. EII quantifies the ability

of a STAR system to transmit with high power while maintaining high gain in the

direction of interest and achieving low receiver noise power. Maximizing EII was not

the goal of the optimization procedure proposed in this work. However, EII is an
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important metric in quantifying how well a phased array will perform under STAR

operation. The adaptive beamformers create a high level of isolation when compared

to the non-adaptive beamformers across most of the scan angles, suggesting that the

proposed optimization procedure has arrived at practical solutions.

3.6.2 Partition Optimization Results

We also explored how partitioning the array into transmit and receive apertures af-

fected the Bayesian Information. We began by considering all the 210 − 2 = 1022

possible partitionings of the 10-element array that have at least one transmit and one

receive element. For each of the partitions, the beamformers were optimized across

the scan space and the Bayesian Information was calculated. The cumulative distri-

bution function (CDF) of the resulting Bayesian Information is plotted in Fig. 3.8 for

each total power level, Pt = 2.5 W, 25 W, 250 W, and 2500 W. The Bayesian Infor-

mation of the default partition with adaptive beamformers is indicated by the vertical

black line. The GA partition optimization described in Section 3.5 was run five times

on each power level with a population of 48 individuals, a crossover probability of 0.8,

a mutation probability of 0.04, and one elite. The algorithm was terminated when

90% of the population had the same fitness as the highest performing individual or

when the algorithm had gone through 1000 generations. The Bayesian Information of

the partitions returned by the GA are plotted as vertical red dashed lines in Fig. 3.8.
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Figure 3.8: Bayesian Information distribution of the possible valid trans-
mit/receive partitions for the 10-element array. The performance of the
default partition with adaptive beamformers is plotted as a vertical black
dashed line, and the performance of the GA optimized partitions are plotted
as vertical red dashed lines. Five trials of the GA optimization were run at
each power level.

The default partition and optimal partition for each power level are shown in Fig. 3.9.

Each trial of the GA at a given power level produced the same partition or a partition

of the same geometry with transmit and receive antennas swapped. Therefore, we

have confidence in the effectiveness of the GA as a tool for finding the optimal trans-

mit/receive partitions. The median gain (across GA trials) in Bayesian Information

of the optimized partition was 2.4 dB over the default partition for Pt = 2.5 W. The
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Figure 3.9: Default and optimized transmit/receive aperture partitions
for the 10-element array. Black segments represent transmitting antennas
and white segments represent receiving antennas. Results are presented
for Pt = 2.5 W, 25 W, 250 W, and 2500 W. The GA was run 5 times at
each power level. All the trials produced the partition shown below or the
equivalent partition with transmit and receive elements swapped.

median gain decreased to effectively zero for Pt = 2500 W, as the GA returned the de-

fault partition. A small variance was observed in the Bayesian Information reported

for the same partitions (relative to the average Bayesian Information at each power

level) due to the beamformer optimization technique used in this work. The partition

optimization results for the 10-element array suggest that partition optimization is

more advantageous for lower power arrays and that beamformer optimization using

the default partition may be sufficient for high power arrays. The optimized par-
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titions appear to balance the conflicting goals of maintaining contiguous partitions

(which would intuitively make avoiding SI easier for the beamformers) and having

transmit and receive apertures that are as wide as possible (which leads to narrower

main beams that can better locate targets). As the power level increases, it appears

that the incentive to avoid SI dominates the need for narrow main beams.

Searching through 1022 possible solutions for the best partitioning of the aperture may

be feasible, but phased arrays often have many more than 10 elements. Because the

search space grows exponentially with the number of antennas, it quickly becomes

infeasible to exhaust the search space. For example, even with a relatively small

5 × 10 element phased array, there are approximately 1.13 · 1015 possible partitions.

Fig. 3.10 shows the gain in Bayesian Information created by partition optimization

for a 5 × 10-element ALSTAR array. These results suggest that for larger arrays,

partition optimization may be more fruitful. It is important to note that elements

were added to the array along the y-axis (i.e. orthogonal to the azimuth scan plane).

Like in the 10-element array case, partition optimization yielded greater improvement

in the Bayesian Information metric for the lower transmit power trials. Fig. 3.11

shows the default transmit/receive partition for the 5×10-element array and the GA-

optimized partitions with the highest Bayesian Information across 5 trials for Pt = 2.5

W and 2500 W. As shown in Fig. 3.12 and Fig. 3.13, the partition optimization

generally made sacrifices in receiver noise power in order to achieve greater gains

in the numerator of the Fisher Information. For Pt = 2.5 W, the partition could
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Figure 3.10: Bayesian Information plotted for the default and GA opti-
mized partitions for the 5× 10-element array at Pt = 2.5 W, 25 W, 250 W,
and 2500 W.

prioritize improvements in the numerator of the Fisher Information over the small

increase in σ2
n because the low transmit power made noise reduction by beamforming

less challenging. Note that for Pt = 2500 W, the extra elements in the y-axis allow

for partitions where the baseline of the transmit and receive apertures are much

wider than those in the 10-element array while retaining contiguous partitions that

improve inter-aperture isolation. There was more variation in the partitions returned

by the GA for the 5 × 10-element array trials than seen with the 10-element array.

At the same time, the final performance of these partitions was relatively consistent,

suggesting that there may be many partitions that perform well.
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Figure 3.11: Default and Optimized Partitions returned by the GA for the
5 × 10-element array. Black segments represent transmitting antennas and
white segments represent receiving antennas. The optimized partitions pre-
sented here are the best out of 5 GA runs in terms of Bayesian Information.

Fig. 3.14 compares the number of unique function calls required by the GA and

exhaustive search for both of the array sizes at each transmit power level. The

increase in unique partitions considered by the GA as array size increased was much

smaller than the corresponding increase in search space size, suggesting that the GA

was effective at reducing the computational effort required to find transmit/receive

partitions with significantly improved Bayesian Information.
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Figure 3.12: Fisher Information J (θ) plotted against azimuth scan angle
for the default and optimized partitions of the 5× 10-element array at Pt =
2.5 W and 2500 W.

3.7 Conclusion

In this work, we set out to explore the narrowband DOA estimation performance

of an ALSTAR array that is simultaneously illuminating the scene and measuring

the return. We determined the Fisher Information on azimuth-only DOA estima-

tion for ALSTAR arrays and then proposed an adaptive beamforming technique that

minimized the Fisher Information of the estimated DOA in terms of the transmit
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Figure 3.13: Receiver noise power σ2
n plotted against azimuth scan angle for

the default and optimized partitions of the 5× 10-element array at Pt = 2.5
W and 2500 W.

and receive beamformers. We showed that the adaptive beamformers significantly

increased the Fisher Information and thus improved DOA estimation performance.

The beamformers returned by the adaptive beamforming algorithm also resulted in

high EII and low noise power, which suggests that they are practical for STAR op-

eration. In order to quantify the performance of arrays across the full azimuth scan

space, we extended the Fisher Information into the Bayesian Information, which we

used as a performance metric when optimizing the transmit/receive partition of the

ALSTAR arrays. In order to avoid a computationally intractable exhaustive search
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Figure 3.14: Number of unique transmit/receive partitions considered by
the GA for both array sizes at each power level across 5 GA trials. The
number of partitions that would be considered in an exhaustive search is
also plotted for comparison.

among all the possible transmit/receive partitions, we showed that a GA was an ef-

fective tool for array optimization. We also showed that under certain conditions,

partition optimization (over a default choice of partition) produces worthwhile im-

provements in the Bayesian Information on the DOA estimate. It is unlikely that

the GA described in this work would be suitable for real-time partition optimization

on sensor platforms, but it could be useful for optimizing partitions during the array

design process. In future work on this topic, it would be valuable to experimentally
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determine the fidelity of the model and predicted performance presented in this pa-

per. Additional work could also seek more computationally efficient methods for the

adaptive beamforming and partition optimization tasks presented here, potentially

enabling real-time implementations.
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Chapter 4

Adaptive Beamforming and

Mutual Coupling Estimation

Techniques for Aperture-Level

Simultaneous Transmit and

Receive Phased Arrays
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4.1 Introduction

In the fields of communication theory and signal processing, it was long assumed

that the only means of transmitting and receiving meaningful signals at the same

time was to use separate channels in the time, frequency, code, or space domain.

This requirement for domain-based separation arose because the massive difference

in transmitted and received signal power at a given channel user is so high that the

received signal of interest (SoI) would be unresolvable without some effective means

of signal separation. Recently, a new paradigm of transmit/receive isolation has

developed from the insight that a channel user’s knowledge of its own transmitted

signals could be used to isolate the SoI from other signals arriving at its receiver. This

line of research has been referred to as in-band full-duplex (IBFD) or simultaneous

transmit and receive (STAR) and has lead to a variety of solutions. Several recent

surveys of the range of proposed solutions are available, specifically [3, 4, 5].

In this work, we focus on achieving STAR in a fully digital phased array of the

ALSTAR architecture [1]. In particular, this work compares the performance and

computational complexity of several approaches to the adaptive digital beamform-

ing and adaptive digital filtering problems required by the ALSTAR architecture.

Specifically, we consider sample matrix inversion (SMI), least mean squares (LMS),

and recursive least squares (RLS) channel estimation algorithms. We then describe
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complementary Wiener optimal transmit beamforming and SMI receive beamform-

ing techniques inspired by the narrowband iterative adaptive beamforming proposed

in Chapter 2. Finally, we present LMS and RLS alternatives to the SMI adaptive

receive beamformer. Using Monte-Carlo trials, we compare the performance of the

SMI, LMS, and RLS algorithms for the channel estimation and receive beamform-

ing tasks, respectively. The achievable effective isotropic isolation (EII) and residual

interference and noise power are presented for the SMI, LMS, and RLS adaptive

beamforming methods while using the SMI channel estimation method. The SMI

and RLS adaptive receive beamforming methods achieved 164.6 dB and 162.8 dB of

average EII at broadside over a 100 MHz bandwidth centered at 2.42 GHz. The LMS

adaptive receive beamforming method achieves 151.4 dB of average EII over the same

bandwidth, while reducing the computational complexity of the receive beamforming

such that it no longer forms the dominant component of the overall computational

cost of operating the ALSTAR array. This reduction in computational complexity

is the next step in making ALSTAR technology capable of operating in real-time on

available hardware.
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4.1.1 Algorithms for Channel Estimation and Adaptive

Beamforming

TheWiener optimal, SMI, LMS, and RLS adaptive filtering algorithms are well-known

and well-established in the field of adaptive signal processing. Haykin studied them

all in detail in [167], and presented several example applications. Widrow and McCool

studied the differential steepest descent, LMS, and linear random search algorithms

[168]. They also described a constrained version of the LMS adaptive beamforming

algorithm, but used a different method than the one presented in this work to protect

the SoI. Reed et al. compared the convergence performance and complexity of the

unconstrained LMS algorithm and the maximum signal to noise (MSN) algorithm to

SMI for an adaptive beamforming task [169].

A number of papers have been written about cancelling the self-interference between

a single transmit channel and a single receive channel with LMS, RLS, and similar

adaptive algorithms. Li et al. simulated a system of digital SIC via the LMS algorithm

in a full-duplex (FD) system with a single transmit channel and a single receive

channel [170]. Korpi et al. and AghababaeeTafreshi et al. studied nonlinear digital

SIC systems controlled by an LMS algorithm for single channel FD radios [171, 172].

Ferrand and Duarte proposed an FD radio with a single transmit antenna and a

single receive antenna that used multiple auxiliary receive channels to sample several
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analog delayed versions of the transmitted signal and noise for SIC via a normalized

LMS algorithm [173]. Ryu used the LMS algorithm to estimate the residual self-

interference channel after analog self-interference cancellation in an FD radio with

one transmit antenna and one receive antenna [174]. Kiayani et al. developed a self-

interference cancellation system that used an auxiliary transmit channel to inject a

cancellation signal into the receiver front end before the low-noise amplifier [60]. The

digital filters used to create the cancellation signal were controlled by an adaptive

LMS-like algorithm. Tamminen et al. demonstrated an LMS-controlled analog SIC

system for a single antenna FD radio over several bandwidths up to 80 MHz [175].

Several authors have demonstrated an RF cancellation system controlled by an analog

implementation of an LMS algorithm in an FD radio with a single transmit and receive

channel [176, 177].

Adams and Bhargava described an RLS channel estimation algorithm for an IBFD

system with one transmitting antenna and one receiving antenna [178]. Gebhard et

al. presented two versions of the RLS algorithm used for single channel nonlinear

interference cancellation in a frequency division duplexed system and demonstrated

their performance [179]. Emara et al. proposed an advanced RLS-type algorithm for

nonlinear digital SIC in a single antenna FD radio using nonlinear basis functions

[180].

Ahmed and Eltawil described an FD system similar to the ALSTAR architecture
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except that it only had one transmit antenna and one receive antenna [181]. They

implemented a block-level least-squares self-interference channel estimation protocol

during a training interval. Vogt et al. described a self-interference cancellation tech-

nique for a single-antenna FD system based on a Kalman filter that accounted for

system non-linearities [182]. Enzner described a Bayesian channel estimation algo-

rithm for single time-varying channels built around a simplified Kalman filter [183].

Balatsoukas-Stimming presented a neural network non-linear SIC system for an FD

radio with a single transmit antenna and a single receive antenna [184].

Some research has been done on multi-channel adaptive self-interference channel es-

timation and SIC for antenna arrays. Day et al. described a MIMO adaptive self-

interference channel block-level least squares estimation procedure and associated

block-level adaptive beamforming optimization techniques [122]. Masmoudi and Le-

Ngoc developed block-level closed form and iterative maximum likelihood estimators

for MIMO SoI and self-interference channels [185]. Anttila et al. implemented non-

linear SIC with linear parameters calculated via a block level least squares proce-

dure in an FD MIMO array [186]. Korpi et al. described a least-squares nonlinear

self-interference model coefficient estimation technique for a MIMO array using prin-

ciple component analysis to reduce the rank of the required pseudo-inversion [187].

Antonio-Rodŕıguez et al. simulated the performance of an LMS algorithm at estimat-

ing the self-interference channel in an FD MIMO relay [188]. Johnston and Fiore

proposed an LMS channel estimation technique for the mutual coupling channel in
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an FD antenna array [77]. The LMS channel estimation technique presented in this

work was based on Johnston and Fiore’s presentation of the method. Lemos et al. de-

scribed a mutual coupling channel estimation technique based on the RLS algorithm

which they used for SIC in a MIMO decode and forward relay [189].

To our knowledge, this paper is the first work where adaptive digital SIC and adaptive

digital beamforming controlled by the LMS or RLS algorithm have been applied in

concert to the problem of achieving IBFD or STAR in a fully-digital phased array.

4.1.2 Our Previous Work

The ALSTAR architecture that forms the basis of this work was originally presented

in [1]. An 8-element ALSTAR array was built and evaluated in [6]. Along with

Chapter 3, several of our previous papers discussed the performance bounds of the

ALSTAR architecture in narrowband imaging/direction-finding tasks and how the

beamforming and transmit/receive partitioning of the aperture could be optimized

to minimize those bounds [127, 128]. We also explored optimizing the mean squared

error (MSE) bound on SoI phase estimation in ALSTAR phased arrays in an FD

narrowband communications scenario with regard to the beamformers and aperture

partitions [129]. In [190], we showed that it was possible to perform approximate

narrowband adaptive beamforming for a 10-element ALSTAR array with a shallow
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neural network. The work presented here extends Chapter 2, which set out the

achievable EII for a narrowband ALSTAR array and highlighted the interdependence

of the transmit and receive beamformers in maximizing that isolation. That work

assumed that the exact mutual coupling matrix was known. This work assumes that

the adaptive beamforming and self-interference cancellation methods only have access

to the observable signals in the array model and the direction of arrival of the SoI.

Additionally, this work also accounts for the possible presence of external interference

in the adaptive beamforming process, whereas Chapter 2 did not.

4.1.3 Outline

In Section 4.2 we describe the ALSTAR digital phased array architecture and the cor-

responding signal model in detail. In Section 4.3 we outline the implementations of

the SMI, LMS, and RLS channel estimation algorithms used in this work, present sim-

ulated results, and discuss the relative computational complexity of the algorithms.

Section 4.4 shows how the beamforming concepts presented in Chapter 2 can be ex-

tended to operate on a realistic wideband signal model. It also discusses the LMS and

RLS adaptive receive beamforming methods as alternatives to SMI, and presents the

simulated performance of the adaptive algorithms in terms of isolation and compu-

tational efficiency. Finally, Section 4.5 draws conclusions from the simulation results

and discusses potential avenues of future research.
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4.1.4 Notation

In this work, we use the following notational conventions. Scalar variables are de-

noted with lowercase letters, vector variables with bold lowercase letters, and matrix

variables with bold uppercase letters. (·)∗ indicates conjugation, (·)T indicates trans-

position, and (·)H indicates Hermitian transposition. The Diag(·) operator accepts a

vector argument and places its entries on the diagonal of a square matrix with the

same dimension. Convolution is indicated by the symbol ∗ and circular convolution is

indicated by the symbol ⊛. E{·} denotes the expectation operator, F−1{·} denotes

the inverse Fast Fourier Transform, and O(·) indicates the “big-Oh” computational

complexity of an algorithm. Parenthesized superscripts denote channel indices. In-

dices appearing to the right of a variable in square brackets indicate a time index.

In the case of quantities with a sample index, if no index is provided, the symbol

refers to all of the samples in a row vector or matrix (i.e. a = [a[1], · · · , a[n]] or

a = [a[1], · · · , a[n]]). Indices appearing to the right of a variable in parentheses in-

dicate a specific element or range of elements in the corresponding vector or matrix

variable. For convenience, we define the operator CN(·) which forms a convolution

matrix from its argument by repeating each of its rowsN times after adding incremen-

tal zero-padding to the beginning of each repeated row. We also define the operator

C̃
N
(·) which forms a circular convolution matrix from its argument by repeating each

of its rows N times with a circular shift for each repetition of a given row.

109



4.2 ALSTAR Array Signal Model

The ALSTAR phased array architecture consists of T + R antennas that can be

dynamically configured to transmit or receive, where T antennas have been configured

to transmit and R antennas have been configured to receive. Fig. 4.1(a) depicts

the ALSTAR architecture and Fig. 4.1(b) defines the symbols used to describe the

signals, propagation path models, and filters involved in the architecture. While the

ALSTAR architecture was originally proposed in [1], an extension of that signal model

to account for limited dynamic range transmit and receive channels was presented in

Chapter 2. We further extend the signal model here to account for external sources

of interference and to account for imperfect mutual coupling channel estimation. The

ALSTAR architecture is faced with the task of transmitting a signal xt[n] ∈ C at time

index n in a given direction while simultaneously receiving an SoI, whose components

at each receive antenna are represented by s(k)[n] ∈ C. We assume that the signals

involved are sampled at baseband frequency fs. The signal transmitted by the jth

antenna at time n is given by

t(j)[n] =
(
h
(j)
t ∗ xt

)
[n] + n

(j)
t [n], 1 ≤ j ≤ T, (4.1)
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Figure 4.1: (a) ALSTAR digital phased array architecture signal flow di-
agram, including digital SIC, (b) Symbols and corresponding definitions for
the ALSTAR architecture, modified from [1] and Chapter 2.
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where h
(j)
t ∈ C

Nt×1 is the Nt-tap finite impulse response (FIR) filter for the jth

transmit channel and

n
(j)
t [n] ∼ CN

(
0, η−1

t

∥∥∥h(j)
t

∥∥∥
2
)

(4.2)

is independent additive white Gaussian noise (AWGN) that models the limited trans-

mit channel dynamic range ηt. The signals incident on the kth receive antenna at

time n are modeled by

r(k)[n] = s(k)[n] + i(k)[n]

+
T∑

j=1

(
h(k,j)
m ∗ t(j)

)
[n], 1 ≤ k ≤ R. (4.3)

Here, i(k)[n] ∈ C represents the external interference signal at each antenna, and the

last term describes the self-interference created by the mutual coupling between the

transmit and receive antennas, where h
(k,j)
m ∈ C

Nm×1 describes the Nm-tap mutual

coupling channel from the jth transmit antenna to the kth receive antenna. We

notate the received signals and noise measured at the ADCs by

r(k)m [n] = r(k)[n] + n(k)
r [n], 1 ≤ k ≤ R, (4.4)

where

n(k)
r [n] ∼ CN

(
0, η−1

r E
{∣∣r(k)[n]

∣∣2
}
+ σ2

r

)
(4.5)
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is independent AWGN noise that models the limited dynamic range of the receive

channels ηr, which also have a fixed thermal noise power component σ2
r .

4.2.1 Digital SIC in ALSTAR

In order to achieve STAR, the ALSTAR architecture must sufficiently cancel or sup-

press the interference and noise components in (4.4). In many STAR scenarios, the

self-interference component is the strongest, and is mitigated in part via SIC. The

ALSTAR architecture implements SIC with observed copies of the transmitted sig-

nal, noise, and distortion from each transmit channel. In an ALSTAR phased array,

each antenna can be configured to transmit or receive, as each antenna is connected

to independent transmit and receive hardware via a switching system, as shown in

Fig. 4.2. When the antenna is configured to receive, the transmit hardware is discon-

nected and the receive hardware is connected to the antenna via a low-noise amplifier.

When the antenna is configured to transmit, the transmit RF hardware is connected

directly to the antenna and the receive RF hardware is connected to a reference tap

near the antenna through a fixed attenuator. In this way, the transmitted signal and

noise are observed via the receive hardware behind the transmitting antennas. We

model the observed signals as

o(j)[n] = h(j)
o

(
t(j)[n] + n(j)

o [n]
)
, 1 ≤ j ≤ T, (4.6)
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Transmitter Receiver

Figure 4.2: Schematic of the switching system that enables each antenna to
transmit or receive. When configured to transmit, the antenna is connected
to the transmit RF front end via a power amplifier, and the transmitted
signal, noise, and distortion are measured by the otherwise unused receive
hardware. The receive channel is coupled to the reference tap on the antenna
through a fixed attenuator in order to prevent receiver saturation or damage.
When configured to receive (arrows), the receiver is coupled to the antenna
through a low-noise amplifier, and the transmit channel is disconnected [1].

where h
(j)
o represents the fixed attenuation in the observation channels to prevent

receiver saturation and

n(j)
o [n] ∼ CN

(
0, η−1

r

∥∥∥h(j)
t

∥∥∥
2
)

(4.7)

is independent AWGN noise that models the limited dynamic range of the observation

receivers. In an actual system, the observation channels h
(j)
o , 1 ≤ j ≤ T would be

better modeled by multi-tap FIR filters and would need to be estimated. The obser-

vation filter estimation error could degrade the mutual coupling channel estimation

and SIC performance if the filter estimate was not sufficiently accurate. Because the

increased mathematical complexity of handling multi-tap observation channel models
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would not contribute to demonstrating the performance of the adaptive beamform-

ing and digital SIC methods in the ALSTAR architecture, and because reasonably

accurate channel estimation methods for channels like this are readily available, we

believe that our assumption of single-tap channels with known weights is justified for

the purposes of this work.

In order to cancel the self-interference from the received signal, the ALSTAR archi-

tecture passes the observed signals, noise, and distortion through a bank of SIC filters

h
(k,j)
c ∈ C

Nm×1, 1 ≤ k ≤ R, 1 ≤ j ≤ T , and adds the result to the received signals

r
(k)
m to form the received signals after SIC,

r(k)c [n] =s(k)[n] + i(k)[n] +
T∑

j=1

(
h(k,j)
m ∗ t(j)

)
[n] + n(k)

r [n]

+
T∑

j=1

(
h(k,j)
c ∗ h(j)

o

(
t(j) + n(j)

o

))
[n]. (4.8)

Given perfect knowledge of h
(k,j)
m , 1 ≤ k ≤ R, 1 ≤ j ≤ T , we could set

h(k,j)
c = −

(
h(j)
o

)−1
h(k,j)
m , (4.9)
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and the isolated received signal would become

y[n] =
R∑

k=1

(
h(k)∗
r ∗

(
s(k) + i(k)

−
T∑

j=1

(
h(k,j)
m ∗ n(j)

o

)
+ n(k)

r

))
[n]. (4.10)

Thus, digital SIC using observed signals and knowledge of the mutual coupling chan-

nel can eliminate the signal, noise, and distortion components of the self-interference

at the cost of introducing a virtually-coupled observation noise term (i.e. the first term

on the second line in (4.10)). This additional term will generally have lower power

than the mutually-coupled noise and distortion because the observation channel dy-

namic range is generally much larger than the transmit channel dynamic range—i.e.,

ηr ≫ ηt—for typical transmit and receive hardware.

In practice, the mutual coupling channel must be estimated. The estimate of the

mutual coupling channel ĥ
(k,j)
m will not be exact. Setting

h(k,j)
c = −

(
h(j)
o

)−1
ĥ(k,j)
m (4.11)

implies

y[n] =
R∑

k=1

(
h(k)∗
r ∗ r(k)c

)
[n], (4.12)
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where

r(k)c [n] = s(k)[n] + i(k)[n]

+
T∑

j=1

((
h(k,j)
m − ĥ(k,j)

m

)
∗ t(j)

)
[n]

−
(
ĥ(k,j)
m ∗ n(j)

o

)
[n] + n(k)

r [n]. (4.13)

These equations highlight the importance of obtaining an accurate estimate of h
(k,j)
m .

Practically speaking, the performance of the system will approach the performance

of a system with perfect channel knowledge when the power of the residual self-

interference signal
(
h
(k,j)
m − ĥ

(k,j)
m

)
∗ t(j) falls below the power of the other interference

and noise terms.

4.2.2 Effective Isotropic Isolation

The definition of EII was originally given in [1] and that definition was extended in

Chapter 2 to account for limited dynamic range transmit and receive channels under

the assumption that the mutual coupling channel was known a priori and that there

was no external interference. In this work we do not make these assumptions. EII is

defined as the ratio of effective isotropic radiated power (EIRP) to effective isotropic

sensitivity (EIS),

EII =
EIRP

EIS
. (4.14)
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It will sometimes be convenient to refer to the stacked channel FIR filters as the

transmit beamformer

bt =

[(
h
(1)
t

)T
· · ·
(
h
(j)
t

)T
· · ·
(
h
(T )
t

)T]T
(4.15)

and receive beamformer

br =
[(
h(1)
r

)T
· · ·
(
h(k)
r

)T
· · ·
(
h(R)
r

)T]T
, (4.16)

respectively.

EIRP is the power that an isotropic antenna would have to radiate to match the

power of the main transmit beam of the array, and is calculated by

EIRP(φ, θ) = g(θ)bH

t qt(φ, θ)qt(φ, θ)
Hbt, (4.17)

where φ is the direction of the main beam in the plane of the array measured from

the +x-axis and θ is the angle between the main beam and broadside. We model

the embedded antenna element gain as g(θ) = π cos θ. The transmit array manifold

vector is

qt(φ, θ) =

[(
q
(1)
t

)T
· · ·
(
q
(j)
t

)T
· · ·
(
q
(T )
t

)T]T
, (4.18)
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where

q
(j)
t = F−1




e
−j2πft

(

xt(j) sin θ cosφ+yt(j) sin θ sinφ

c
+

Nt−1
2fs

)

Nt



 . (4.19)

Also, the frequency vector ft is defined as

ft =

[
−
fs
2
,−

fs
2
+

fs
Nt − 1

, · · · ,
fs
2

]T
. (4.20)

Notice that q
(j)
t is simply a fractional delay filter that creates the appropriate delay

in the transmitted signal to form a beam in the desired direction. The last term in

the exponent centers the zero-delay point in the middle of the filter to avoid edge

effects.

EIS is the sensitivity that would be required of an isotropic antenna to match the

sensitivity of the receive array in the direction of the receive beam. Mathematically it

can be expressed as the ratio of interference and noise power in the isolated received

signal to the receive gain,

EIS =
Pi+n

Gr(φ, θ)
. (4.21)

Receive gain is calculated by

Gr(φ, θ) = g(θ)bH

r qr(φ, θ)qr(φ, θ)
Hbr. (4.22)
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The receive array manifold vector is

qr(φ, θ) =
[(
q(1)
r

)T
· · ·
(
q(k)
r

)T
· · ·
(
q(R)
r

)T]T
, (4.23)

where

q(k)
r = F−1

{
ej2πfr(

xr(k) sin θ cosφ+yr(k) sin θ sinφ

c
+Nr−1

2fs
)

Nr

}
. (4.24)

The frequency vector fr is defined similarly to ft except that Nt is replaced with Nr.

The sign of the exponent in the receive array manifold vector is opposite that of the

transmit manifold in order to account for the fact that the receive filters are applied to

the received signals after conjugation. This matches the conventions in our previous

work at narrowband in Chapter 2. The interference and noise power in the isolated

received signal (i.e., after SIC) is

Pi+n = E





∣∣∣∣∣y[n]−
R∑

k=1

(
h(k)∗
r ∗ s(k)

)
[n]

∣∣∣∣∣

2


 . (4.25)

In order to maximize EII and achieve STAR functionality, the ALSTAR architec-

ture is faced with two major tasks: mutual coupling channel estimation and adaptive

beamforming. The adaptive beamforming and SIC methods proposed previously in

Chapter 2 for the ALSTAR architecture made several strong simplifying assumptions.

First, that work assumed perfect knowledge of the coupling channel. Second, the pres-

ence of the SoI and external interference was ignored in the discussion of adaptive
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beamforming. The channel estimation and adaptive beamforming techniques pre-

sented in this work do not make any of those assumptions, and thus represent a

much more practical and realistic approach. The next section will compare the SMI,

LMS, and RLS channel estimation techniques in terms of their computational cost

and accuracy in the ALSTAR architecture.

4.3 Mutual Coupling Channel Estimation

As discussed in the previous section, an accurate estimate of the mutual coupling

channel is critical for high EII. In this section we will compare the performance of

the SMI, LMS, and RLS algorithms for the mutual coupling channel estimation task

in the context of the ALSTAR architecture. For all the algorithms, mutual coupling

channel probing is done prior to the first channel access. Each transmit channel is

excited independently in sequence in order to improve the convergence performance

and final accuracy of the channel estimates.

4.3.1 SMI Channel Estimation

In estimating the mutual coupling channel, the channel output of interest is rm[n] and

the channel input is t(j)[n]. Because we do not have direct access to t(j)[n], we must
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use the measured transmitted signal and noise, given by
(
h
(j)
o

)−1

o(j)[n]. It is helpful

here to stack the individual estimated channels corresponding to the jth transmit

channel into a single channel matrix,

M̂(j)
r =




(
ĥ
(1,j)
m

)T

...

(
ĥ
(R,j)
m

)T



. (4.26)

If we form the time correlation matrix of the channel input over S samples,

R(j)
oo =

((
h(j)
o

)2
· S
)−1

CNm
(
o(j)
)
· CNm

(
o(j)
)H

, (4.27)

and the cross-correlation matrix between the channel input and receive channel taps,

R(j)
ro =

(
h(j)
o · S

)−1
rm · CNm

(
o(j)
)H

, (4.28)

then we can estimate the portion of the mutual coupling channel corresponding to

the jth transmit channel as

M̂(j)
r = R(j)

ro

(
R(j)

oo

)−1
. (4.29)
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4.3.2 LMS Channel Estimation

The LMS algorithm used in this work was based on the presentations found in [77]

and [167]. The key insight behind the LMS algorithm for channel estimation is to

compare the measured and predicted outputs of a channel given some known input.

The product of the channel input and the conjugated error between the predicted

and actual channel outputs forms the update direction of the adaptive method. The

update equation for the channel matrix is

M̂(j)
r [n+ 1] = M̂(j)

r [n] +
µm

‖uo[n]‖
2∆m[n] · u

H

o [n], (4.30)

where n denotes the time index of the estimate within the current block,

∆m[n] = r[n]− M̂(j)
r [n] · uo[n] (4.31)

is the error between the measured and predicted channel outputs, and

uo[n] =
(
h(j)
o

)−1 [
o(j)[n] · · · o(j)[n−Nm + 1]

]T
(4.32)

is the measured channel input. The parameter µm tunes the learning rate, and can

be chosen on the interval µm ∈ (−∞, 3) dB, (i.e. µm ∈ (0, 2)).
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4.3.3 RLS Channel Estimation

The RLS implementation used in this work is based on [167]. The structure of the

RLS channel estimation technique is similar to the LMS technique, except that the

RLS algorithm maintains an estimate of the inverse input correlation matrix Pm and

uses it to calculate a whitened version of the channel inputs

cm[n] = λ−1
m Pm[n]uo[n], (4.33)

where Pm[0] = δ−1
m INm

with regularization parameter δm. The parameter λm ∈ (0, 1]

tunes the aggressiveness of the updates for the RLS algorithm. It is convenient to

define a scaled version of the whitened input vector,

km[n] =
(
1 + uH

o [n]cm[n]
)−1

cm[n]. (4.34)

Now we can write the update equation for the channel model in the RLS algorithm,

M̂(j)
r [n+ 1] = M̂(j)

r [n] +∆m[n]k
H

m[n]. (4.35)

Finally, we must also update the estimated inverse correlation matrix

Pm[n+ 1] = λ−1
m

(
Pm[n]− km[n]u

H

o [n]Pm[n]
)
. (4.36)

124



Figure 4.3: Outline of the operation of the channel estimation and adaptive
beamforming techniques proposed in this work.

4.3.4 Performance Comparison Results

In order to determine the optimal values of µm for the LMS algorithm as well as

λm and δ−1
m for the RLS algorithm, we conducted a parameter search over 1000

independent random trials. Each trial consisted of T = 25 blocks of S = 2000

samples for each parameter value (or parameter value combination). During the jth

block, only the jth transmitter is active and only the channels in M̂
(j)
r are being

updated, as shown in Fig. 4.3.

For all of the parameter studies in Section 4.3, the results are shown for a 5 × 10-

element uniform rectangular array, operating at a center frequency fc = 2.42 GHz

with a 100 MHz bandwidth. The elements were spaced with half-wavelength spacing

at the center frequency, and the array geometry is shown in Fig. 4.4. Each transmit
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Figure 4.4: Layout of the ALSTAR array simulated in this work. Black and
grey elements represent transmitting and receiving antennas, respectively.
Taken from Chapter 2.

channel had a dynamic range of ηt = 45 dB and each receive or reference channel had

a dynamic range of ηr = 70 dB. The fixed thermal noise power of the receive channels

was σ2
r = −91 dBm, which corresponds to the Johnson-Nyquist noise plus a 3 dB

noise figure. Each transmit and receive beamformer channel had Nt = 32 taps and

Nr = 32 taps, respectively. The ideal mutual coupling channel was modeled using

MATLAB’s Antenna Toolbox at Nm = 32 frequencies spanning the frequency range

of interest. For each trial, the ideal mutual coupling model was perturbed by simu-

lating the relative displacement of the antennas as might be caused by manufacturing

tolerances or thermal deformations in the array, and applying the corresponding wide-

band fractional delay filter to each of the individual channels. The displacement of

each antenna was modeled as a zero-mean Gaussian random variable with a stan-

dard deviation of 0.1 mm in both the x and y directions. The transmitted signal

used for probing was a complex Gaussian random waveform with 1 W of transmit
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power. It was assumed that no received SoI was present at the array during mu-

tual coupling channel estimation. In half of the trials, an external interference signal

was directed at the array. Its angle of arrival was drawn uniformly from φ ∈ [0, 2π]

and θ ∈ [−π/3, π/3], and its received power had a log-uniform distribution over the

interval [−101,−61] dBm per antenna.

The parameter search for the LMS channel estimation algorithm considered 34 unique

values of the learning rate µm on the range [−30, 3] dB. The value of the parameter

that produced the smallest MSE was µm = −7 dB. The RLS channel estimation

had slightly better performance than the LMS algorithm in terms of final channel

estimate MSE. While the RLS algorithm proved relatively insensitive to changes in

λm and δ−1
m because the probe input signals for channel sounding were truly white

and independent, the parameter search indicated that the optimal parameter values

for the range of cases presented were λm = 1 and δ−1
m = 1010.

Fig. 4.5 plots the convergence behavior of the SMI, LMS, and RLS channel estimation

algorithms over 1000 trials as described above with the optimal parameter values for

the LMS and RLS algorithms. Each line shows the total squared error of the estimated

mutual coupling channel, having aggregated the channel errors at each sample index

n across all the separate channel estimation blocks. The error bars indicate the

minimum and maximum total squared error across the trials. Although the SMI

calculation is performed once in each block and not at each sample, we have plotted
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Figure 4.5: Results of the convergence performance experiment for the
LMS and RLS algorithms using the optimal parameters identified in the
parameter searches. The final squared error of the SMI method is included
for comparison. The minimum, mean, and maximum squared error of the
channel estimate over the 1000 trials is plotted.

the total aggregated estimation error for the SMI method across time for comparison

with the other methods. As expected, the SMI method sets the performance limit

for the other methods, which are stochastic approximations of the SMI method. The

reduction in error provided by the RLS and SMI algorithms over the LMS algorithm is

worthwhile. The LMS algorithm might find use in cases where the channel estimation

performance requirements might be less stringent.
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Table 4.1
Channel Estimation Algorithm Computational Complexity

Algorithm Computational Complexity (FLOPs per Block)

SMI 4N2
mS+8RNmS+4NmS+4/3N3

m+8RN2
m+10N2

m+12RNm+
38/3Nm + 18

LMS 16RNmS + 8NmS + 6RS + 15S + 11
RLS 35N2

mS + 16RNmS + 26NmS + 6S + 11

Table 4.1 compares the computational complexity of the SMI, LMS, and RLS channel

estimation techniques in real floating point operations (FLOPs) over a single channel

estimation block, because channel estimation is repeated sequentially for all T trans-

mitters as shown in Fig. 4.3. This analysis assumes that each complex addition costs

2 real FLOPs, each complex multiplication costs 6 real FLOPs [191], each complex

division costs 11 real FLOPs [192], and each complex square root costs 15 real FLOPs

[193]. The complexity analysis of the SMI method referenced [194, 195, 196, 197].

This work does not account for the cost of data networking and management between

the transmitters and receivers when comparing algorithms. While the LMS algorithm

has O (RNmS) complexity, the performance advantage of the SMI algorithm is criti-

cal for overall system performance. Therefore, we accept the O (max {N2
mS,RNmS})

complexity of the SMI channel estimation algorithm, which we use in the remainder

of the simulations in this work.
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4.4 Adaptive Beamforming for ALSTAR

With a practical method of accurately estimating the coupling channel in hand, the

task that remains is to further isolate the transmit and receive channels via adaptive

transmit and receive beamforming. In Chapter 2, we demonstrated how transmit and

receive adaptive beamforming are coupled problems and both contribute to EII for

narrowband ALSTAR arrays. Here, we must formulate the adaptive beamforming

problems to account for imperfect mutual coupling channel knowledge and potential

external interference. Considering (4.12) and (4.13), the adaptive receive beamformer

must maintain high gain on the SoI while suppressing the remaining interference

and noise terms. The transmit beamformer can similarly contribute to the isolation

by reducing the incident power on the receive antennas in order to improve their

sensitivity, while maintaining high gain in the direction of interest.

4.4.1 SMI Receive Beamformer & Wiener Optimal Transmit

Beamformer

Extending the adaptive transmit and receive beamforming concepts from Chapter 2

is not mathematically trivial, but it is conceptually straightforward. The work in

Chapter 2 showed that alternately updating the transmit and receive beamformer
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using the Wiener optimal filter equations provided a means of maximizing EII. First

let us consider the receive beamformer. The covariance matrix in the formulation of

the Wiener optimal filter for the receive beamformer was the covariance matrix of the

residual interference and noise after SIC. In that work, the receive covariance matrix

was calculated using knowledge of the coupling matrix and system parameters, which

made it impossible to account for the presence of external interference. However,

because we have access to the received signals after SIC, it is simple to estimate the

residual interference and noise covariance matrix as

Rrr =
1

S
CNr (rc) C

Nr (rc)
H . (4.37)

Using our wideband definition of the receive steering vector, we can formulate our

SMI receive beamformer,

br = αR−1
rr qr, s.t. ||br||

2 = 1, (4.38)

which is the best approximation of the Wiener optimal receive beamformer from

Chapter 2. Note that α is an arbitrary constant that allows us to meet the magnitude

constraint. As any potential external interference is present in rc and these signals

only depend on an estimate of the mutual coupling matrix, (4.38) addresses all of the

weaknesses of the adaptive beamforming formulation in the previous work.
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Next, we consider how we might approach the transmit beamforming problem. One

of the key insights presented in Chapter 2 was that the residual noise and interference

power could be expressed as a quadratic form with respect to the receive beamformer

or the transmit beamformer. When factored as a quadratic form with respect to

the transmit beamformer, the covariance matrix quantifies the contribution of each

transmit channel to the received noise and residual SIC noise due to the observation

channel noise. By updating based on this calculated covariance matrix, the adaptive

transmit beamformer can reduce the components of the noise in the isolated received

signal y[n] that are effected by the transmit beamformer. Extending the definition of
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the transmit covariance matrix from narrowband to wideband, we obtain

Rtt = η−1
r M̃∗

t




∥∥∥h(1)
r

∥∥∥
2

INm
0

. . .

0
∥∥∥h(R)

r

∥∥∥
2

INm



M̃T

t

︸ ︷︷ ︸
Rx Noise due to Tx Signal Self-Interference

+ η−1
r Diag







∑R
k=1

∥∥∥h(k)
r ⊛ h

(k,1)
m

∥∥∥
2

1Nt

...

∑R
k=1

∥∥∥h(k)
r ⊛ h

(k,T )
m

∥∥∥
2

1Nt







︸ ︷︷ ︸
SIC Observer Noise

+ η−1
r η−1

t Diag







∑R
k=1

∥∥∥h(k)
r

∥∥∥
2 ∥∥∥h(k,1)

m

∥∥∥
2

1Nt

...

∑R
k=1

∥∥∥h(k)
r

∥∥∥
2 ∥∥∥h(k,T )

m

∥∥∥
2

1Nt







︸ ︷︷ ︸
Rx Noise due to Tx Noise Self-Interference

+
σ2
r

Pt

IT ·Nt

︸ ︷︷ ︸
Rx Thermal Noise

, (4.39)

where

M̃t =




C̃
Nt

((
ĥ
(1,1)
m

)T)
· · · C̃

Nt

((
ĥ
(1,R)
m

)T)

...
. . .

...

C̃
Nt

((
ĥ
(T,1)
m

)T)
· · · C̃

Nt

((
ĥ
(T,R)
m

)T)




(4.40)

is the estimated mutual coupling matrix that has been expanded to account for the

Nt taps per transmit channel. Note that Pt is the total transmitted signal power from
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the array. With this definition for the transmit covariance matrix, we can calculate

the Wiener optimal transmit beamformer,

bt = βR−1
tt qt, s.t. ||bt||

2 = Pt, (4.41)

where β is an arbitrary constant that allows us to meet the total transmitted signal

power constraint.

As shown in Fig. 4.3, by repeatedly calculating the SMI adaptive receive beamformer

over a block of samples via (4.37) and (4.38) and then using the resulting receive

beamformer in updating the transmit beamformer via (4.39) and (4.41), we success-

fully mimic the alternating optimization procedure described in Chapter 2, while

accounting for the possibility of external interference. The matrix inversions required

for these adaptive beamforming schemes present potential implementation difficulties

as they are computationally expensive. In the search for more computationally effi-

cient adaptive beamforming solutions, we propose LMS and RLS implementations of

the linearly-constrained minimum variance (LCMV) beamformer for adaptive receive

beamforming. We use the Wiener optimal adaptive transmit beamformer throughout

the rest of the work because generating an artificial signal with the correct statistics

for an LMS or RLS adaptive transmit beamformer would be prohibitively expen-

sive. At the end of this section we will compare the computational complexity and

convergence performance of all of these adaptive techniques.
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4.4.2 LMS LCMV Receive Beamformer

The LMS LCMV beamformer implemented in this work was extended from the pre-

sentations in Chapters 2 and 6 of [167]. The challenge in adaptive beamforming

within the LMS paradigm is to constrain the algorithm to avoid nulling out the SoI

along with the noise and interference. To accomplish this, the LCMV beamformer

consists of a default beamformer component that has maximum gain on the SoI and

an adaptive beamformer component that operates on the received signals after they

have been projected into the null-space of the default beamformer. For the receive

beamformer, the null-space signal projection matrix Kr ∈ C
R·Nr×R·Nr−1 is the last

R ·Nr − 1 columns of a Householder reflection matrix [198, 199, 200], such that

Kr = −
q∗r(1)

|qr(1)|






0T
R·Nr−1

IR·Nr−1


− 2vr · v

H

r (2 : R ·Nr)


 , (4.42)

where

vr =
qr + ‖qr‖ e

j∠qr(1) [1, 0, · · · , 0]T∥∥∥qr + ‖qr‖ ej∠qr(1) [1, 0, · · · , 0]
T
∥∥∥
. (4.43)

Given this projection matrix, the adaptive beamformer becomes

br[n] = γ

(
1

‖qr‖
qr −Krbr,a[n]

)
, s.t. ||br||

2 = 1, (4.44)
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where br,a[n] ∈ C
R·Nr−1 is the portion of the beamformer that is updated by the adap-

tive algorithm and γ is an arbitrary constant that allows us to enforce the magnitude

constraint. The error signal is simply the output of the receive beamformer,

er[n] = y[n]. (4.45)

The receive beamformer operates on the signals after SIC, r
(k)
c , and so the update

equation for the adaptive portion of the receive beamformer is

br,a[n+ 1] = br,a[n] +
µr

‖ur[n]‖
2ur[n]e

∗
r[n], (4.46)

where

ur[n] = KH

r C
Nr (rc) [n]. (4.47)

4.4.3 RLS LCMV Receive Beamformer

The adaptive LMS LCMV receive beamforming scheme described above can be ex-

tended to the RLS paradigm as well. The whitened input vector, after the received

signals have been projected into the null space of the SoI steering vector, is

cr[n] = λ−1
r Pr[n]ur[n]. (4.48)
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The initial input inverse correlation matrix Pr[0] = δ−1
r IR·Nr−1, and the tuning pa-

rameter λr ∈ (0, 1]. We define a scaled version of the whitened input vector for

convenience,

kr[n] =
(
1 + uH

r [n]cr[n]
)−1

cr[n]. (4.49)

Thus, the update equation for the adaptive portion of the receive beamformer is

br,a[n+ 1] = br,a[n] + kr[n]e
∗
r[n], (4.50)

where er[n] is defined in (4.45) and the full receive beamformer is calculated as in

(4.44). Finally, the inverse correlation matrix update equation becomes

Pr[n+ 1] = λ−1
r

(
Pr[n]− kr[n]u

H

r [n]Pr[n]
)
. (4.51)

4.4.4 Performance Comparison Results

All of the adaptive beamforming techniques were evaluated under experimental con-

ditions similar to those described in Section 4.3.4. In these simulations, both a trans-

mitted and received SoI were present. The received SoI was an independent random

QPSK waveform with a random received power that had a log-uniform distribution

over the interval [−101,−61] dBm per antenna. The transmitted signal was also an

independent random QPSK waveform with total transmitted power Pt = 25 W. The
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transmitted signal and received SoI had the same angle of departure or angle of ar-

rival, in order to simulate an FD communications link. Unless otherwise noted, the

angles φ and θ were drawn uniformly from the ranges [0, 2π] and [−π/3, π/3], respec-

tively. 100 trials of each parameter value or parameter value pair were run for the

beamformer parameter tuning. The LMS receive beamformer was relatively insensi-

tive to changes in the convergence parameter. The optimal convergence parameter

value was found to be µr = 2.5 dB. The RLS beamformer was relatively insensitive to

the memory parameter λr, but it was sensitive to the regularization parameter δ−1
r .

The optimal parameter values were δ−1
r = 1013 and λr = 0.999.

Fig. 4.6(a) plots the EII achieved using the SMI, LMS, and RLS adaptive receive

beamforming algorithms in concert with the Wiener optimal transmit beamformer

over 10 trials at broadside (i.e. φ = 0 and θ = 0) with the simulation parameters

described above. The performance of the array is plotted over 5 blocks during the

channel access and adaptive beamforming period shown in Fig. 4.3 in order to show

how the transmit and receive beamformers work together to create isolation. On

average in the final block, the SMI, LMS, and RLS beamforming methods were able

to achieve an EII of 164.6 dB, 151.4 dB, and 162.8 dB, respectively. The EII per-

formance of the RLS beamformer matched the SMI beamformer closely. While the

LMS beamformer did not match the EII performance of the SMI and RLS receive

beamformers, the LMS beamformer still performed well. For comparison, the ideal

narrowband EII at broadside calculated according to the methods in Chapter 2 was
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Figure 4.6: (a) Average EII and (b) Pi+n at broadside plotted across 5
blocks for SMI, LMS, and RLS adaptive receive beamforming, respectively.
The adaptive transmit beamformer in (4.41) was used with all the adaptive
receive beamforming methods. The EII achieved at broadside by the ideal
narrowband (NB) beamforming technique described in Chapter 2 and the
thermal noise power σ2

r are plotted for comparison.

171.8 dB with an ideal mutual coupling channel.

Fig. 4.6(b) plots the residual interference and noise power Pi+n at broadside achieved

using the SMI, LMS, and RLS adaptive receive beamforming algorithms with the
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Wiener optimal transmit beamformer. In the last block, the SMI, LMS, and RLS

receive beamforming algorithms were able to reduce the average residual interference

and noise power Pi+n to −90.0 dBm, −79.5 dBm, and −89.4 dBm, respectively. As

the average minimum noise power was σ2
r = −91 dBm and the ideal narrowband noise

power at broadside achieved in Chapter 2 was −90.8 dBm, it appears that the SMI

adaptive receive beamformer most closely achieved the ideal performance as expected.

Fig. 4.7(a) plots the average EII achieved by the SMI, LMS, and RLS beamformers

in the last block over 101 evenly spaced look angles that span the azimuth scan space

(i.e. φ = 0 and θ ∈ [−π/3, π/3]). The ideal narrowband EII achieved by the method

described in Chapter 2 is also plotted for comparison. Like at broadside, the SMI

and RLS methods match closely in terms of EII, while the LMS beamforming method

achieved approximately 10.1 dB less EII than the SMI method across the azimuth

scan space. Fig. 4.7(b) plots the average Pi+n at the same azimuth scan angles

as shown for EII. The SMI beamformer reduced the residual interference and noise

power essentially to the thermal noise power of the receive channels. The LMS and

RLS receive beamformers achieved approximately 9.1 dB and 0.7 dB higher residual

interference and noise powers than the SMI receive beamformer when averaged across

the azimuth scan space.

Fig. 4.8(a) and Fig. 4.8(b) plots the EII and Pi+n performance of the ALSTAR array

when an external interference QPSK signal was directed at the array. In each trial,
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Figure 4.7: (a) Average EII and (b) Pi+n plotted across 101 evenly spaced
azimuth scan angles (φ = 0 and θ ∈ [−π/3, π/3]) for the SMI, LMS, and
RLS receive beamformers in concert with the Wiener optimal transmit beam-
former. External interference was absent from these trials. 10 trials were
conducted at each scan angle.

its angle of arrival was drawn uniformly from φ ∈ [0, 2π] and θ ∈ [−π/3, π/3], and its

received power had a log-uniform distribution over the interval [−101,−61] dBm per

antenna. While both the EII and Pi+n performance does suffer under the presence of

external interference, the adaptive beamforming algorithms still perform admirably

in isolating the transmit and receive channels.
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Figure 4.8: (a) Average EII and (b) Pi+n plotted across 101 evenly spaced
azimuth scan angles (φ = 0 and θ ∈ [−π/3, π/3]) for the SMI, LMS, and RLS
receive beamformers in concert with the Wiener optimal transmit beam-
former. External interference was present in these trials. 10 trials were
conducted at each scan angle.

Fig. 4.9 compares the computational complexity of the ALSTAR system during the

channel access and adaptive beamforming period shown in Fig. 4.3 when implemented

with the SMI, LMS, and RLS adaptive receive beamforming algorithms. In this

analysis, we have amortized the cost of the transmit beamforming operations and

other operations not repeated with each received sample across the period of a single
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Figure 4.9: Computational complexity of the solutions based on the (a)
SMI, (b) LMS and (c) RLS adaptive receive beamforming algorithms. The
total computational complexity is given and it is also broken down into
receive beamforming, transmit beamforming, and SIC complexities. For
reference, the maximum computational output of a single Intel Stratix 10
FPGA and the Summit supercomputer at Oak Ridge National Laboratory
are also plotted.

receive beamformer update block. Like in Section 4.3.4, the complexity analysis of

the SMI and Wiener optimal methods referenced [194, 195, 196, 197]. In order to

place the complexity of the proposed algorithms in context, we have also plotted the

maximum computational capacity of the Intel Stratix 10 FPGA (one of the highest

performance FPGAs currently available) [201] and Oak Ridge National Laboratory’s

Summit supercomputer which was the most powerful supercomputer in the world

as of November 2019 according to Top500.org [202]. The first thing to note from

these plots is the substantial computational complexity of the proposed algorithms.
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Fig. 4.9(a) plots the computational requirements of the ALSTAR architecture when

the SMI adaptive receive beamformer is used, and shows that the receive beamformer

dominates the cost. As shown in Fig. 4.9(b), when the LMS beamforming algorithm is

used, transmit beamforming and SIC dominate the complexity. In Fig. 4.9(c), the cost

of the RLS beamforming algorithm dominates. Although LMS adaptive beamforming

does not perform as well as the SMI or RLS methods, the reduced computational

complexity it offers may make implementing ALSTAR feasible with the available

computational hardware. For example, according to Fig. 4.9(b) an ALSTAR system

with 10 transmit and receive antennas could theoretically be implemented using 2

Intel Stratix 10 FPGAs. Reducing the bandwidth of interest would also reduce the

computational complexity and may make slightly larger arrays more feasible.

4.5 Conclusion

This work presented several mutual coupling channel estimation and adaptive beam-

forming techniques and analyzed their ability to work in concert to create isolation

in an ALSTAR array. This work represents the most realistic signal model for the

ALSTAR array to date, in that it includes the effects of the presence of the SoI and

external interference in the received signals. We considered methods that could po-

tentially enable an ALSTAR array to operate in real-time, achieving STAR on a fully

digital and highly reconfigurable platform.
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There are a number of avenues for extending the work presented here. The largest

drivers of computational complexity in the proposed architecture are adaptive trans-

mit beamforming and SIC. Exploring methods for reducing the computational com-

plexity of these parts of the architecture could be the key to reducing the compu-

tational load to more realistic levels. Additionally, subarray adaptive beamforming

methods could offer a significant reduction in computational complexity without sig-

nificant reduction in EII, enabling much larger ALSTAR arrays. Extending the AL-

STAR architecture to MIMO operation would make the ALSTAR technology relevant

to an imporant and rapidly expanding portion of the wireless communications and

sensing market. Finally, implementation and validation of the proposed techniques

on hardware remains a critical step in the development of the ALSTAR architecture.
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Chapter 5

Conclusion

STAR and IBFD are widely studied problems in the fields of wireless communica-

tions and sensing. There have been many different systems proposed in order to

transmit and receive meaningful signals in the same time slot and frequency band.

This dissertation focused on the ALSTAR architecture, proposed by Doane et al. in

[1].

Chapter 2 presented an idealized adaptive digital beamforming and self-interference

cancellation technique for the ALSTAR array architecture that optimized the EII met-

ric. The signal model and resulting beamformer optimization method accounted for

the limited dynamic range of the transmit and receive channels of the array and arose

naturally out of the structure of the expression for EII. The results strongly suggested
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that adaptive digital beamforming and self-interference cancellation could provide in-

credibly high transmit/receive isolation in the ALSTAR architecture by exploiting

the coupled nature of the adaptive transmit and receive beamforming problems.

Chapter 3 considered the narrowband imaging performance of the ALSTAR architec-

ture in terms of the CRLB and BCRB on the direction of arrival estimation error for

a return from a point target. That scenario was then used to motivate an adaptive

beamforming technique that maximized the CRLB at a sampled set of look angles

within the scan space of the array. The BCRB was used to quantify the total perfor-

mance of the array across the scan space so that an optimal transmit/receive aperture

partition could be found using a GA.

Chapter 4 presented SMI, LMS, and RLS mutual coupling channel estimation and

adaptive beamforming methods that are better suited to practical implementation

than the results presented in Chapter 2. The proposed methods produced high EII in

realistic simulations, bolstering the claim that the ALSTAR architecture is a strong

approach to achieving STAR. Furthermore, the computational complexity of the var-

ious components of the proposed algorithms are highlighted in order to direct future

efforts at increasing algorithmic efficiency.

Together, this dissertation represents a significant contribution to the understanding
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of the capabilities of the ALSTAR architecture in terms of EII and imaging perfor-

mance. This work has paved the way forward for continued development by explor-

ing the fundamental limitations of the ALSTAR architecture. This work also takes

steps towards practical implementations of the ALSTAR architecture by making the

transmit/receive aperture partition optimization feasible during array design and by

leveraging practical adaptive beamforming and mutual coupling channel estimation

methods for the ALSTAR problem.

5.1 Future Work

There is a great deal of work that remains in the development of the ALSTAR archi-

tecture. Continuing to improve the isolation performance and algorithmic efficiency

of the adaptive beamforming and mutual coupling estimation techniques will be a

critical part of practical ALSTAR implementations. Extending the DOA estimation

results of Chapter 3 to wideband signal models would be important for many practical

applications. As the ALSTAR technology continues to develop, it will be important

to implement the architecture and verify its performance beyond the work done by

Doane et al. in [6]. While this work will start in a laboratory setting, it will be impor-

tant to integrate this technology into actual radar and communications systems for

field testing in order to discover and overcome issues that arise with practical deploy-

ment. In order to facilitate ALSTAR development and testing across the community,
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it might be worthwhile to develop a well-documented, modular, extendable ALSTAR

array using commonly available software-defined radios. This would significantly re-

duce the barrier to entry for those interested in the ALSTAR technology for their

own applications.
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Appendix A

Beamforming

Generally speaking, beamforming is the process of using the known spatial relation-

ships between measured data points to filter them in a way that amplifies the response

of the system in a particular direction or directions of interest, and nulls the response

in other directions.

The simplest form of beamforming uses knowledge of the relative positioning of the

antennas in an array to calculate the required phase shifts that will create a plane wave

propagating in the desired direction with respect to the antenna array. The process of

calculating these phase shifts is best illustrated with an example. Assume that there

areN antennas spaced ∆m apart, as shown in Fig. A.1. This arrangement of antennas

is referred to as a uniform linear array (ULA). In order to generate a narrowband
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Figure A.1: Geometry of the basic beamforming problem for a uniform
linear array.

plane wave propagating at azimuth angle θ from array broadside, all that is required is

to shift the phase of the signal at each antenna so that the wavefronts will align along

a plane perpendicular to the desired direction of propagation. The perpendicular

distance to that planar wavefront (i.e. the distance parallel to the blue-dashed arrow)

from antenna n is

dn = −∆(n− 1) sin θ, (A.1)

where we have assumed that the phase at the first antenna is 0 (i.e. φ1 = 0) and the

negative sign indicates that the distance to the wavefront is opposite the direction of

propagation. Therefore, the equivalent phase shift for the nth antenna is

φn = −
2π

λ
∆(n− 1) sin θ. (A.2)
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The vector of complex weights that can be applied to the complex baseband signal

at each antenna is

q = exp

(
−j

2π

λ
∆ [0 1 · · ·N − 1] sin θ

)
, (A.3)

and is often referred to as a beamforming vector or beamformer. The symbol q

is used here because this beamformer is the default beamformer in a quiescent (or

interference-free) environment. These phase shifts will create a plane wave in the

direction of interest when used to shift transmitted signals, and they will also properly

align signals received at the same antennas to create maximum gain in the direction

of interest θ.

Up to this point, the discussion has focused on determining the beamformer that will

produce the highest transmit or receive gain in the direction of interest. It is also

possible for beamformers to reduce the effects of interference (i.e. unwanted signals)

and noise while still achieving high gain in the direction of interest. It is most natural

to discuss these concepts in terms of a receive beamformer, but the same formulation

and concepts apply directly to the equivalent expressions for a transmit beamformer.

The performance of a beamformer that is trying to focus on a desired signal and

reject interference and noise is measured by the signal-to-interference-plus-noise-ratio

(SINR), given as

SINR =
Ps

Pi+n

. (A.4)
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Ps is the power of the signal component in the receive beamformed signal and Pi+n is

the power of the interference and noise components in the receive beamformed signal.

For a given beamformer b, the SINR can be written

SINR =
bHqqHb

bHRi+nb
, (A.5)

where Ri+n is the correlation matrix of the interference and noise signals at the

antennas. Given this formulation, the problem of choosing a beamformer b that

maximizes SINR becomes an optimization problem. In this case, the expression for

SINR is a Generalized Rayleigh Quotient in terms of the beamformer b, which can

be converted to a Rayleigh Quotient. First, the eigendecomposition of Ri+n must be

calculated,

Ri+n = UΛUH. (A.6)

Because Ri+n is a correlation matrix, it is necessarily positive semidefinite and all the

entries of the diagonal eigenvalue matrix Λ are non-negative, so it can be factored

into its square root by simply taking the square root of the diagonal entries,

Ri+n = UΛ1/2Λ1/2UH. (A.7)

Plugging this representation of Ri+n into our expression for SINR, we obtain

SINR =
bHqqHb

bHUΛ1/2Λ1/2UHb
. (A.8)
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Note that if we choose

a = Λ1/2UHb, (A.9)

we can rewrite (A.8) as

SINR =
aHΛ−1/2UHqqHUΛ−1/2a

aHa

=
aHccHa

aHa
, s.t. c = Λ−1/2UHq (A.10)

which is the Rayleigh Quotient we sought. By inspecting (A.10), we can see that this

expression is maximized when we pick

â = αc = αΛ−1/2UHq, (A.11)

where α is an arbitrary scale factor. This becomes clear when we recognize that

(A.10) is the magnitude squared of the dot product of a with the vector c normalized

by the squared magnitude of a. The dot product of a and c is maximized when a is

parallel to c, and our choice of magnitude for a is arbitrary. Then, solving (A.9) for

b and substituting in â, we get

b̂ =UΛ−1/2â

=αUΛ−1/2Λ−1/2UHq

=αR−1
i+nq, (A.12)
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which is the expression for the beamformer that maximizes the SINR of the received

signal. The technique of calculating a beamformer that optimizes some chosen perfor-

mance metric is often referred to as adaptive beamforming. This particular adaptive

beamforming technique is often referred to as the Wiener optimal beamformer. It is

widely used, and several more detailed descriptions and motivations for it are available

in [203, 204].
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Appendix B

The Cramér-Rao Lower Bound and

The Bayesian Cramér-Rao Lower

Bound

In many signal processing problems, we are faced with estimating some parameter θ

given some vector of data samples x. The Cramér-Rao Lower Bound (CRLB) and

the Bayesian Cramér-Rao Lower Bound (BCRB) give us insight into the fundamental

limits on how well we can estimate θ given our models for the data and the parame-

ter. Within the context of the estimation problem, there are two broad categories of

problems, based on whether the parameter θ is deterministic (but unknown) or ran-

dom. In the first case (deterministic θ), the only probabilistic information we have

193



that relates the variables is the likelihood of the data given the parameter, p(x|θ).

Consider the structure of Bayes’ Theorem,

p(θ|x) =
p(x|θ)p(θ)

p(x)
.

Note that the posterior distribution p(θ|x) fully describes the probability of any value

of the parameter θ being the true value given some specific data set x. If we had

access to this distribution, we could simply plug in x and find the value of θ that

maximized p(θ|x). However, in typical scenarios, there is no good way to model p(x).

In the first case (deterministic θ), we do not have a definition for p(θ), and the CRLB

sets the lower limit for the estimation accuracy of any signal processing technique. In

the second case (random θ), we have a meaningful prior p(θ) which can be used to

inform our estimate of θ from x, and the BCRB sets the lower limit for the estimation

accuracy of any signal processing technique. Note that the presence of a prior brings

our probabilistic model closer to the ideal posterior distribution.
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B.1 Intuitive Derivation of the CRLB

The basic approach to bounding the estimation error for both cases relies on the

Cauchy-Schwarz Inquality, which for two random variables can be stated simply as

Var[X] · Var[Y ] ≥ (Cov[X, Y ])2 .

For the first (nonrandom parameter) case, let X = θ̂(x) − θ be the error of the

parameter estimate, which is a function of the data random data x. We assume that

the expected value of θ̂(x) is θ, which implies that the estimator is unbiased and that

Var[X] is the mean squared error (MSE) of the estimator. Let Y = g(x|θ) be some

arbitrary function of the data and parameter, which is necessarily a random variable

because it is a function of at least one random variable. Note that in the case of

nonrandom θ, g(x|θ) still contains θ as a variable, but it is not random. With these

choices for X and Y , let us rearrange the inequality into a slightly more useful form

for our purposes,

Var[X] ≥
(Cov[X, Y ])2

Var[Y ]
.

In words, this equation states that we can calculate a lower bound on the variance

of a random variable by the following procedure: calculate the covariance of the first

random variable with a second random variable (which may be easier to calculate),

195



square the result, and then “divide out” or normalize by the variance of the second

random variable. Specifically for our problem, we can lower bound the estimation

error of an estimator by calculating the covariance-squared of the estimator with

some function of the data, normalized by the variance of that function. What’s left

is to choose a function g(x|θ). In order to determine a satisfactory choice for g(x|θ),

we start by considering the following expression,

∂

∂θ
Ex|θ

[
θ̂(x)− θ

]
= 0, (B.1)

which describes how the average estimation error changes with respect to the value

of the actual parameter. If we bring the derivative inside the integral (expectation),

we obtain
∫

x

θ̂(x)
∂

∂θ
p(x|θ)dx−

∫

x

p(x|θ)dx = 0.

Note that the second term goes to 1, which we can move to the right-hand side,

∫

x

θ̂(x)
∂

∂θ
p(x|θ)dx = 1.

Multiplying and dividing by p(x|θ) inside the integral (so that we can turn the ex-

pression back into an expectation), we obtain

∫

x

θ̂(x)
1

p(x|θ)

∂

∂θ
p(x|θ)p(x|θ)dx = 1,

196



which is equivalent to

Ex|θ

[
θ̂(x)

∂

∂θ
ln p(x|θ)

]
= 1, (B.2)

when we realize that 1
p(x|θ)

∂
∂θ
p(x|θ) = ∂

∂θ
ln p(x|θ). Taking another look at (B.2), we

realize that it is the covariance between the estimator and the function ∂
∂θ

ln p(x|θ),

noting that Ex|θ

[
∂
∂θ

ln p(x|θ)
]
= 0. For this reason, we choose g(x|θ) = ∂

∂θ
ln p(x|θ).

Plugging these results into our rearranged Cauchy-Schwarz Inequality, we obtain the

Cramér-Rao Lower Bound (CRLB) for the MSE of an estimator for a nonrandom

parameter,

CRLB = Varx|θ

[
θ̂(x)− θ

]
≥

1

Varx|θ

[
∂ ln p(x|θ)

∂θ

] . (B.3)

This more intuitive derivation of the CRLB follows the derivations presented in [205]

(found via [206]) and [207].

B.1.1 CRLB Example

As a brief example, consider the problem of estimating the mean µ of a Gaussian

random variable x from K independent and identically distributed (iid) samples.

The likelihood for the vector of samples given the mean is

p(x|µ) =
1

(2πσ2)N/2
exp

(
−

∑K−1
k=0 (xk − µ)2

2σ2

)
. (B.4)
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The partial of the log-likelihood is given by

∂ ln p(x|µ)

∂µ
=

1

σ2

K−1∑

k=0

xk − µ (B.5)

Evaluating the variance of the partial of the log-likelihood (note that it has zero

mean), we have

Varx|µ

[
∂ ln p(x|µ)

∂µ

]
=Ex|µ

[
1

σ4

K−1∑

k=0

K−1∑

l=0

(xk − µ)(xl − µ)

]

=
K

σ2
. (B.6)

Inverting the result, we obtain the CRLB on the estimation error for the nonrandom

mean of K samples of a Gaussian random variable with variance σ2

CRLB =
σ2

K
. (B.7)

This equation is intuitively satisfying, as it states that the accuracy to which we can

estimate the mean is proportional to the power of the noise in the measurements and

inversely proportional to the number of samples we take.
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B.2 Intuitive Derivation of the BCRB

Now let’s consider the second case, where the parameter θ is random and we have

a distribution p(θ) that describes the randomness of the parameter. The question

becomes, how does this extra information affect how well we can estimate the true

value of the mean? To explore that question, we must extend our definition for

the CRLB to account for the presence of the prior p(θ). Because the prior encodes

information about the most probable value for the parameter, including the prior

inherently biases our estimator θ̂(x). Recall that the joint probability density function

is equal to the product of the likelihood and the prior, p(x, θ) = p(x|θ)p(θ). It turns

out that the intuition used in the derivation of the CRLB also applies to the random

parameter case, and we can simply replace p(x|θ) in (B.2) with p(x, θ), yielding

Ex,θ

[
θ̂(x)

∂

∂θ
ln p(x, θ)

]
= 1. (B.8)

This leads us to choose g(x, θ) = ∂
∂θ

ln p(x, θ), which leads to a similar final form

for the bound. We refer to this bound as the Bayesian Cramér-Rao Bound (BCRB)

because it accounts for the prior, and it is given by

BCRB = Varx,θ

[
θ̂(x)− θ

]
≥

1

Varx,θ

[
∂ ln p(x,θ)

∂θ

] . (B.9)
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B.2.1 BCRB Example

We now extend the mean estimation example above by including a prior on the mean,

p(µ) =
1√
2πσ2

m

exp

(
−
(µ−m)2

2σ2
m

)
. (B.10)

The derivative of the log-joint probability density function is given by

∂ ln p(x, µ)

∂µ
= −

1

σ2

K−1∑

k=0

(xk − µ)−
1

σ2
m

(µ−m),

and the variance of the derivative of the log-joint probability density function is

Varx,θ

[
∂ ln p(x, θ)

∂θ

]
=

K

σ2
+

1

σ2
m

. (B.11)

Therefore, the BCRB for the given example problem is

BCRB =
1

K
σ2 +

1
σ2
m

.

Intuitively this is a satisfying result, because as the measurement noise approaches

∞, the information in the prior dominates the lower bound on the uncertainty in the

estimate of µ. Furthermore, as the measurement noise σ2 decreases or the number

of samples K increases, the measurement noise dominates the lower bound. In other
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words, this result is equivalent to the previous example in the high signal-to-noise ratio

(SNR) region, but approaches the variance in the prior as SNR decreases. This makes

sense, because in the low SNR region the measurements contain little information

about the location of µ, and therefore any estimator must begin to rely more strongly

on the information provided by the prior p(µ).
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Appendix C

Genetic Algorithms

Genetic Algorithms (GAs) are a class of optimization technique from the field of

computational intelligence. There are many scenarios where traditional gradient-

based optimization techniques might fail, especially with highly non-convex objective

functions or integer input spaces. In order to overcome this limitation, the GA was

designed to mimic a simplified version of the theoretical process of evolution or adap-

tation. The space of potential solutions to the optimization problem must first be

encoded into a binary string. Then an objective function that can convert that in-

put into a single score or performance metric must be developed. In some cases,

the input encoding and/or the objective function arise naturally out of the problem.

For example, the optimization problem may be over a binary- or integer-vector input

space. The choice of input encoding must be done carefully to avoid obscuring the
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Figure C.1: Illustration of the key elements of the GA. Figure taken from
Chapter 3, based on a figure found in [2].

optimal solution. For example, if a continuous input is not discretized at a sufficient

resolution to capture the nature of the solution space accurately, the GA may fail to

find a near-optimal solution. Additionally, using Gray code ordering to encode dis-

cretizations of continuous inputs can make 1-bit genetic mutations more meaningful

and local in the input space.

Fig. C.1 illustrates how the GA operates. To begin, a population of randomly gen-

erated individuals are created as potential solutions and their fitness is evaluated via

the input encoding and fitness function created previously. Then pairs of individu-

als are selected to reproduce randomly with probability that is a function of their

fitness. The reproduction process consists of a crossover and a mutation stage. Dur-

ing crossover, two random points in the binary string are selected, and the elements

between or outside the points are exchanged with the reproduction partner to form

a new individual. Then, the new individual is subjected to potential mutation at
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random, typically at a small number of locations and with low probability (e.g. 1-bit

is mutated if any). The crossover operation allows successful input features (referred

to as schema) from the high performing offspring of the previous population to be

recombined into related individuals in the new population. This behavior in the GA

is referred to as exploitation because the GA exploits the successes of previous indi-

viduals. The mutation operation allows the GA to explore the input space around

successful individuals for as yet unseen high-performing schema, and thus is referred

to as exploration. The relative strengths of exploration and exploitation in the GA

can be tuned by changing the relative crossover and mutation probabilities. It is

often considered prudent to carry over the best solution (or several top solutions)

directly to the next generation without crossover or mutation. These individuals are

referred to as elites, and keep the GA from losing sight of good solutions. Several

books [2, 165, 166] provide a much more detailed explanation of the GA and the many

design choices available to the user.
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