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Summary 

This thesis presents and discusses novel design and analysis techniques of compact 

antenna arrays.  A practical design of a bifilar helical compact antenna array with a 

substantial size reduction capability is demonstrated with both theoretical and 

measurement results.  For transmitting compact antenna arrays, a novel method is 

introduced for decoupling the radiation patterns of the arrays elements, leading to the 

straight applicability of the pattern multiplication method to the obtaining of array 

patterns of extremely compact antenna arrays with strongly coupled element radiation 

patterns.  This method is found to be indispensable for compact transmitting antenna 

arrays designs.  For compact receiving antenna arrays, a novel noise modeling method 

is presented for the first time to characterize the effect of noise on the performance of 

the array.  This method is simple and effective in that it seeks to partition the array 

noise into two easily identifiable components, which substantially facilitates both the 

analysis and measurement of array noise in compact receiving antenna arrays.  DOA 

estimation examples help to demonstrate the effectiveness of this method.  Finally, the 

issue of beamforming in wideband compact antenna arrays is investigated in this 

thesis with a suggestion of an effective technique to compensate for the mutual 

coupling effect which inevitably affects the array’s accuracy in beamforming. 

 

Contributions 

1. Novel bifiliar helical antenna element design. 

2. Mutual coupling method to decouple the radiation patterns in compact 

transmitting antenna arrays. 
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3. Novel noise modeling method in compact receiving antenna arrays. 

4. Wideband mutual coupling compensation method for wideband beamforming. 
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Chapter 1. Introduction 

 

1.1. Background 

The development of the ever-decreasing size of electronic devices has attracted a lot 

of recent interest in the design of small-size antenna arrays [1], [2], so-called compact 

antenna arrays.  However, antenna mutual coupling has an adverse effect in many 

antenna array applications [3].  Mutual coupling effect limits the smallest separation 

that array elements can be placed and hence the array size.  In compact antenna 

arrays, antenna mutual coupling has a significant effect on the array performance such 

as gain, bandwidth, impedance matching, and the array beamwidth.  It is well-known 

that the beamforming function of a compact antenna array is particularly affected by 

the existence of strong antenna mutual coupling.  The size of the antenna element 

such a helical antennas [4] can also turn out to be a dimensional restriction for array 

design, especially when compact arrays are preferred due to, for example, space 

limitation for installation in satellites.  The decreasing size of the electronic devices 

and space limitations in many installations such as satellites, along with the 

undesirable effects of mutual coupling, illustrates the importance in designing 

compact antenna arrays for effective antenna array applications such as beamforming, 

beam-steering and direction-of-arrival estimations while developing effective 

techniques in dealing with the effects of mutual coupling present in compact antenna 

arrays.  

  

Size reduction is required if the antenna elements in the antenna array are deemed to 

be too large for compact antenna arrays to be realized, such as helical antennas [4] 

where they are often used in satellite communications.  There are several techniques 
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in reducing the antenna element size. Dielectric loading is one technique where the 

use of suitable dielectric materials helps to reduce the size of the antenna element 

operating at a fixed frequency [5]-[7].  Helical antennas [4] are a simple kind of 

antennas which can provide a relatively high gain in its axial mode operation [8], [9] 

and they are also often used in the constructions of arrays for high-gain satellite 

communications [9]-[11].  In the frequency range of its axial mode operation, the 

circumference-to-wavelength ratio (C/λ) of a helical antenna has to be in the range of 

3/4 < C/λ < 4/3 [4] which restricts the dimension of the compact antenna arrays for 

installation in satellites where space is limited.  As an example, consider the case 

when C/λ = 1.  The element separation of a helical antenna array cannot be smaller 

than about 0.318 λ because the diameter of a helical element is already 0.318 λ.  

Furthermore, an axial-mode helical antenna requires a large ground plane for its 

normal operation.  In the past research of helical antennas, suggestions have been 

made to use dielectric materials to reduce the size of helical antennas [12]-[15].  To 

further reduce the size of a helical antenna, studies in [16], [17] proposed the bifilar 

backfire helical antenna which operates without the ground plane.  It was reported that 

bifilar backfire helical antennas essentially possess similar characteristics as 

monofilar helical antennas but with a relatively larger front-to-back ratio in their 

radiation patterns.  Antenna size reduction using dielectric loading is important for 

compact antenna array design where the size of the antenna elements limits the 

minimum array size that can be achieved.  In this project, the bifilar backfire helical 

antenna is used to demonstrate how it can be designed and its size reduced using 

dielectric loading. The dielectric loaded bifilar backfire helical antenna is also used in 

compact antenna arrays which is crucial in antenna array installation were space 

constraint is an important consideration such as satellites. 
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Besides reducing the antenna size to realize the design of the compact antenna arrays, 

mutual coupling effects must also be overcome. However, the mutual coupling effects 

for a compact antenna array in the transmitting case are different from the receiving 

case due to the difference in the current distributions of the antenna elements in both 

cases [18] and the presence of noise in the receiving case [19], [20].  Hence, the 

techniques to overcome the mutual coupling effects for the transmitting and receiving 

cases would be different.  Previously, decoupling methods [21]-[29] have been 

suggested to overcome the mutual coupling effect in antenna arrays.  However, these 

methods were only considered for the decoupling of the mutual coupling effect in 

receiving arrays [21]-[26] or for decoupling the input ports of the feeding networks 

[27]-[29].  From a signal processing perspective, it is often more important to have 

spatially distinctive signals emanating uniquely from the individual antenna elements, 

i.e., to have isolated element radiation patterns from an antenna array even if there is 

strong mutual coupling.  This characteristic is crucial to many array signal-processing 

algorithms such as beamforming and beam-steering.  Conventional port-decoupling 

methods cannot lead to the result of isolated element patterns but only achieve no 

coupling between the input ports and guarantee maximum power transfer between the 

source and the array.  

 

To overcome the limitations in the port-decoupling techniques, a simple method is 

proposed to compensate for the mutual coupling effects in compact transmitting 

antenna arrays so that the radiation patterns of the individual antenna element (the 

element patterns) effectively appear as isolated element patterns.  For a transmitting 

compact array, it is sufficient to know the mutual impedances of the antenna elements 

using conventional methods [30] in order to design a compensation feeding network 
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that is able to restore the isolated element patterns from the coupled element patterns 

so that the total array radiation pattern can be predicted using the principle of pattern 

multiplication [31].   

 

The conventional methods of obtaining the mutual impedances [30] to compensate for 

the mutual coupling effects in compact transmitting antenna arrays cannot be applied 

in compact receiving antenna arrays as the current distribution of the receiving case is 

different from the transmitting case [18].  The other difference is that the signals in 

the compact receiving antenna arrays are subjected to external and internal noises 

which may affect the compact antenna array performance.  Accurate noise modeling 

for compact antenna arrays in the receiving case is crucial especially in high-

resolution Direction-of-Arrival (DOA) estimation algorithms such as MUSIC which 

exploit the orthogonality of the signal subspace and the noise subspace to determine 

the signal directions.  This places a stringent requirement on the accurate knowledge 

of the array manifold and the noise correlation among the antenna elements.  The 

original MUSIC algorithm [32], [33] assumed the existence of an ideal array manifold 

as well as uncorrelated noise.  Later studies [23], [34] modified the original MUSIC 

algorithm to account for the existence of the antenna mutual coupling which affects 

the array manifold, but the noise was still treated as uncorrelated.  Yet, more recent 

studies [19], [20], [35], [36] have shown that under practical situations, array noise 

tends to be colored (correlated), even at a moderate antenna element separation such 

as half-wavelength.  Because of this, many modified DOA estimation methods have 

been proposed to tackle the problem of correlated noise [26], [37]-[41].  In [26] and 

[37], a covariance differencing method was developed to remove the correlated noise 

covariance matrix which was characterized as a symmetric Toeplitz matrix.  In [39] 
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and [41], the spatial difference smoothing (SDS) method was developed, relying 

similarly on the Toeplitz nature of the correlated noise covariance matrix to handle 

the correlated noise.  Most of the previous correlated noise handling methods did not 

consider the effect of antenna mutual coupling.  

 

This project introduced a new method for tackling correlated noise in DOA estimation 

in the presence of antenna mutual coupling.  Unlike the previous methods in [19] and 

[20] which consider noise as an internal and an external part, in this method, the array 

noise is divided into a coupled and an uncoupled component whose origins can be 

traced into the array environment and the internal circuitry of the antenna elements, 

respectively.  Through this division, the coupled and uncoupled noise components can 

be handled separately.  More importantly, it is shown that the antenna mutual 

coupling effect in the coupled noise component can be compensated in the same way 

as the signals, leading to a simple but very effective MUSIC DOA estimation 

algorithm.   

 

Besides the use of compact receiving antenna arrays for DOA estimation, they can 

also be applied to beamforming over a wide bandwidth.  Wideband beamforming has 

gained increasing importance in some applications, such as radar detection, mobile 

communications, and medical imaging, due to its ability to steer the main beam 

towards desired directions over a wide frequency bandwidth.  Several very effective 

wideband beamforming techniques have been proposed recently.  A wideband 

beamspace adaptive array that uses FIR fan filters to construct a multibeam forming 

network was proposed which can suppress interference signals with a wide fractional 
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bandwidth [42].  A beamspace preprocessing structure designed was introduced based 

on the frequency- invariant (FI) beamforming method [43].  It uses the DOA estimator 

in time-domain processing instead of frequency decomposition.  A numerical 

technique for array pattern synthesis was proposed that allows a set of array 

coefficients to be found for steering the main beam in a given direction while meeting 

the sidelobe specification [44].  The beamforming weights using an inverse discrete 

Fourier transform technique were derived while neglecting the mutual coupling 

between the array elements [45].  A broadband digital beamformer which transforms 

the received signals to the phase mode and removes the frequency dependency of the 

individual phase mode through a digital beamforming network was proposed [46].  

More recently, a wideband FI beamformer based on the multiple- input single-output 

(MISO) system identification method was designed [47].  Notwithstanding the 

excellence of these previous studies, they have not considered the effect of mutual 

interaction between the antenna elements.  This problem is unavoidable from a 

practical point view when these wideband beamforming methods are put into real 

applications.  

 

Tackling mutual coupling effect in antenna arrays for beamforming has been 

considered in many previous studies [48]-[51].  However, these studies considered 

applications in the narrowband case only.  The problem of mutual coupling in 

wideband beamforming has not been fully investigated before though its significance 

is rather obvious because of the wide range of frequency change in an array with a 

fixed antenna element separation.  An earlier study in [52] considered the wideband 

mutual coupling effect in antenna arrays but it only calculated the mutual coupling 

effect at a few discrete frequency points over a 200 MHz bandwidth.  The study in 



7 
 

[53] requires additional knowledge on the signals in order to derive a mathematical 

transformation function which compensates the mutual coupling effect over a wide 

frequency range.  More recently, a recursive method to estimate the mutual coupling 

coefficients between the antenna elements in a wideband case was proposed in [54] 

but which is effectively similar to the finding of mutual coupling coefficients at 

discrete frequency points over the bandwidth.  

 

In this project, an effective method is introduced to tackle the mutual coupling effect 

in wideband beamforming.  The system identification method [55] is used to obtain 

the frequency functions of the mutual coupling effect over a wide bandwidth and then 

remove it from the frequency-dependent received signals.  The compensated signals 

are then processed by a wideband beamforming algorithm – the Riblet-Chebyshev 

beamformer, which offers the narrowest beamwidth over a wide frequency 

bandwidth. 

 

1.2. Objectives 

This project aims to develop key concepts in designing compact antenna arrays with 

small element spacing and reduced antenna element size.  A technique of reducing the 

helical antenna element size for compact antenna arrays, and different techniques of 

overcoming the mutual coupling effects in compact antenna arrays in the transmitting 

and receiving cases are proposed.  The concepts are investigated analytically and 

verified with simulations and experimental results. 
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1.3. Organi zation 

This thesis consists of seven chapters in total, including the introductory chapter.  

Chapter 2 provides the theoretical background in the design of compact antenna 

arrays.  Chapter 3 presents the design of a compact bifilar helical antenna array using 

dielectric loading.  Chapter 4 describes the mutual coupling analysis for compact 

transmitting antenna array and how mutual coupling compensation can be achieved.  

Chapter 5 demonstrates a novel noise modeling for compact receiving antenna arrays 

and how it can improve the performance of the MUSIC algorithm.  Chapter 6 shows 

how undistorted beamforming can be achieved for wideband compact antenna arrays 

in the presence of antenna mutual coupling.  Chapter 7 gives some conclusions, 

highlights the limitations in the current project and provides suggestions for future 

study. 
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Chapter 2. Theoretical Background 

 

2.1. Introduction 

This chapter covers the theories in the design of compact antenna arrays.  These 

theories include the design of bifilar backfire helical antenna, principle of pattern 

multiplication, mutual coupling compensation in transmitting case and receiving case, 

spatial smoothing with mutual coupling compensation in MUSIC algorithm, system 

identification method and beamforming using Riblet-Chebyshev weights. 

 

2.2. Design of bifilar backfire helical antenna 

The helical antenna [4] operates in two modes: axial mode and normal mode.  The 

axial mode is more often used because of its directivity, circular polarization and large 

gain over a wide bandwidth.  The main beam is directed along the helical structure 

and away from the feed point. Figure 2.1 shows the Right Hand Circularly Polarized 

(RHCP) helical antenna with a ground plane. The polarization can be changed to Left 

Hand Circularly Polarized (LHCP) by winding the helical structure in the opposite 

direction. 
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Figure 2.1 Helical antenna with a ground plane. 

 

To achieve circular polarization in the axial mode [4], the circumference must be in 

the range 3443 << λC  and spacing S at approximately λ/4.  The circular 

polarization is at its optimum when 1=λC .  The pitch angle is °<<° 1412 α .  The 

ground plane has to be at least λ/2 in diameter. The diameter of the helical antenna is 

about 0.318 λ to achieve circular polarization when 1=λC .  This places a limitation 

in designing compact antenna arrays as the element separation cannot be less than 

0.318 λ.  Due to the large dimensions required for the helical antenna and ground 

plane to achieve circular polarization, designing compact antenna arrays may become 

undesirable. 

 

The bifilar backfire helical antenna [55], [56] eliminates the use of ground plane by 

changing the ground plane into another helical wire, creating two opposing helical 
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wires fed with balanced currents at one end [55].  The main beam radiates towards the 

feed point as opposed to the conventional helical antenna where the main beam 

radiates away from the feed point.  This means that the feed line has to be 

repositioned to ensure that the main beam is not affected by the feed line.  The feed 

line is positioned along the axis of the two opposing helical wires so that the main 

beam can radiate without obstruction.  To support the helical structure, a cylindrical 

core is required.  Studies have suggested introducing a dielectric core into the antenna 

to reduce the antenna size [12]-[15].  A dielectric core for the bifilar backfire helical 

antenna not only provides the necessary support for the helical structure, but it also 

reduces the antenna size without affecting the antenna performance significantly. This 

is a useful feature when designing compact antenna arrays as the element separation 

can become smaller due to the reduced antenna size. The matching strip is required to 

match the feed line to the helical wires.  Figure 2.2 shows a three-turn dielectric 

loaded bifilar backfire helical antenna operating in RHCP. 

 Top view Side view 

Dielectric core 
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Coaxial line 
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Figure 2.2 Dielectric loaded bifilar backfire helical antenna. 

 

Feed line 
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2.3. Principle of pattern multiplication 

The principle of pattern multiplication is used to determine the theoretical radiation 

patterns of the compact antenna array where no mutual coupling exists [31].  In 

reality, mutual coupling exists in practical compact antenna arrays [3].  This allows us 

to design practical compact antenna arrays with mutual coupling compensation such 

that the resultant radiation patterns can match as closely as possible to the principle of 

pattern multiplication where no mutual coupling exists. 

  

Consider a two-element array along the x-axis where φ is the beamforming angle and 

β is the phase excitation between the elements.  The magnitude of each excitation is 

equal.  The Array Factor can be expressed as 

 

 ( )( )



 += βφkd cos
2
1cosFactorArray  (2.1) 

 

where k is the wavenumber and d is the separation between the elements. By adjusting 

the element separation d and phase excitation β, the characteristics of the Array Factor 

and the radiation pattern of the compact antenna array can be controlled [31].  The 

radiation pattern of an antenna array can be expressed as 

 

 ( ) ( )[ ] [ ]factorarraypointreferenceatelementsingletotal ×= EE  (2.2) 
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where ( )pointreferenceatelementsingleE  is the radiation pattern of the single 

element at the reference point, usually at the origin. Equation (2.2) is the pattern 

multiplication used to calculate the radiation pattern of an antenna array. 

 

Consider an N-element compact antenna array along the x-axis where all the elements 

have equal amplitudes but each succeeding element is excited with progressive β as 

compared to the preceding one [31]. The Array Factor of the n-element array can be 

expressed as  

 

 ( )∑
=

−=
N

n

ψnje
1

1FactorArray  (2.3) 

 

where 

 

 ( ) βφkdψ += cos  (2.4). 

 

By using the Array Factor derived in (2.3) into (2.2), we can obtain the pattern 

multiplication for an N-element compact antenna array.  Beamforming can be 

achieved by adjusting the element spacing d and progressive phase excitation β of 

each element. 
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Consider a case where it is desirable to have maximum radiation at the normal to the 

axis (broadside radiation) of the compact antenna array along the x-axis where the 

beamforming angle °±= 90φ .  Using (2.3) and (2.4), it is observed that the maximum 

of the array factor occurs when 0=ψ .  Substituting 0=ψ and °±= 90φ into (2.4), it 

is found that the phase excitation 0=β .  This implies that by exciting all the elements 

at 0=β , a maximum radiation at the normal to the axis of the compact antenna array 

is achieved  [31].  

 

Consider another case where it is desirable to have maximum radiation along the axis 

(end-fire radiation) of the compact antenna array along the x-axis where the 

beamforming angle °°= 180or0φ . For maximum direction towards °= 0φ , 

 

 ( ) kdββkdβφkdψ
φ

−=⇒=+=+=
°=

0cos
0

 (2.5). 

 

For maximum direction towards °=180φ , 

 

 ( ) kdββkdβφkdψ
φ

=⇒=+−=+=
°=

0cos
180

 (2.6). 

 

Thus, end-fire radiation is achieved when kdβ −= for °= 0φ  or  kdβ =  for °=180φ  

[31].  The excitation for each element will be successive, as shown in (2.3).  To 
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ensure that there are no principle maxima in other directions, also referred to as 

grating lobes, the element spacing d should be less than a wavelength [31].  

 

2.4. Mutual coupling compensation in transmitting case 

Antenna mutual coupling has an adverse effect in many antenna array applications 

[3].  Mutual coupling effect limits the smallest separation that array elements can be 

placed and hence the array size.  To achieve spatially distinctive signals emanating 

uniquely from the individual antenna elements, i.e., to have isolated element radiation 

patterns from an antenna array even if there is strong mutual coupling, an effective 

mutual coupling compensation is required.  To achieve isolated and undistorted 

element radiation pattern for each element of the antenna array is crucial to many 

array signal-processing algorithms such as beamforming and beam-steering since 

these algorithms assume ideal isolated element radiation patterns.  However, the 

mutual coupling compensation for the transmitting case is applied differently from the 

receiving case.  This is because the mutual coupling effect for the compact antenna 

arrays in the transmitting case is different from the receiving case due to the 

differences in the current distribution of the antennas [30].  Consider a two-element 

antenna array in the transmitting case.  The voltage-current relationships can be 

expressed in a conventional way using the mutual impedances [30] as 

 

 

1212222

2121111

IZIZV

IZIZV

−=

−=
 (2.7) 

 

where  
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From (2.7), it is shown that 212IZ  and 121IZ  are the coupled voltages caused by 

mutual coupling impedance 12Z and 21Z .  All the impedances can be derived by using 

superposition, as shown in (2.8).  To compensate for the mutual coupling effects in 

the transmitting case, compensation voltages are applied to offset the coupled 

voltages. The compensation voltages '
1V and '

2V can be expressed as 

 

 

11

1
21212122

22

2
12121211

Z
VZVIZVV

Z
VZVIZVV

+=+=

+=+=

'

'

 (2.9) 

 

or in the matrix form 
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For an N-element array, (2.10) can be rewritten as 
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 ZVV'=  (2.12). 

 

2.5. Mutual coupling compensation in receiving case 

For the receiving case where the antennas are terminated with LZ , the voltage-current 

relationships can be expressed using the receiving mutual impedance method [18] as 

 

 
121222

212111

ttttLt

ttttLt

IZUIZV

IZUIZV

−==

−==
 (2.13) 

 

where 1
tV , 2

tV are the coupled voltages, 1
tU , 2

tU are the uncoupled voltages, 1
tI , 2

tI  are 

the currents and 12
tZ , 21

tZ  are the receiving mutual impedances at the terminal ports.  

To compensate for the mutual coupling effects in the receiving case, the uncoupled 

voltages can be obtained by compensating the coupled voltages with the receiving 

mutual impedances as  
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or in the matrix form 
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For an N-element array, (2.15) can be rewritten as 
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 UVZ =T  (2.17). 

 

In the receiving case, compact antenna arrays tend to be susceptible to external noises. 

The noise received by the compact antenna arrays tends to be colored (correlated), 

even at a moderate antenna element separation such as half-wavelength [20], [35], 

[36].  This is due to the noise coupling present in the antenna array.  The accuracy of 

the noise subspace is important as it affects the Direction-Of-Arrival (DOA) 
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estimation performance.  Consider the received array signal vector )x(t at time t  

received by the n-element array as 

 

 )(n)v()x( ttt c+=  (2.18) 

 

where )v(t  is an 1×N  column vector for the coupled signal voltages due to the 

incoming signals and mutual coupling effects and )(n tc  is an 1×N  column vector for 

the coupled noise voltages.  The coupled noise voltages )(n tc  is considered to be 

produced by a large number of external random noise sources in the form of scattered 

electromagnetic (EM) plane waves with random amplitudes and phases.  The coupled 

noise voltages can be expressed as 

 

 )e(Z)(n tt Tc
1−=  (2.19) 

 

where TZ is the receiving mutual impedance matrix and )e(t  is an 1×N  column 

vector of the random noise voltages at the antenna elements when the antenna mutual 

coupling is not considered.  The coupled noise voltages )(n tc can be compensated by 

applying TZ  to obtain )e(t . Similary, the coupled signal voltages )v(t can also be 

compensated by applying TZ  to obtain the uncoupled signal voltages, also shown in 

(2.17). 
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From (2.12), (2.17) and (2.19), it is clear that once the mutual impedances are 

determined, the distorted signals and noises can be compensated in transmitting and 

receiving cases.  This is important especially for signal processing algorithms where 

distortions in the signals and noises will affect the algorithm performance. 

 

2.6. Spatial smoothing with mutual coupling compensation in MUSIC 

Algorithm 

Under the mutual coupling effects, spatial smoothing is required if the signals are 

coherent [34].  Hence, the N-element array can be divided into overlapping arrays 

with p element in each subarray (p < N).  The number of subarrays required is k where 

1+−= pNk . To detect q coherent signals, the array is divided into at least q arrays.  

Using the received array signal vector )x(t at time t received by the n-element array in 

(2.18), the covariance matrix of )x(t can be described as: 

 

 

{ }

{ } { })(n)(n)(v)v(
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H
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H
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+=

=
 (2.20) 

 

To counteract the mutual coupling effects, we apply (2.17) and (2.19) into (2.20) as 
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where { })(u)u( ttE H  is the uncoupled voltage and { })(e)e( ttE H  is the uncoupled noise.  

Both the noise and signal subspaces are compensated by TZ .  This is different from 

[29] where only the signal subspace is compensated.  To account for k subarrays, the 

average covariance matrix can be written as 

 

 ∑
=

=
k

1i
ik

1 R'R'  (2.22). 

 

The generalized eigenvalues and eigenvectors of R' becomes 

 

 k
H
TTkk λ VZZVR' =  (2.23) 

 

where λk and Vk are the generalized eigenvalues and eigenvectors of R' respectively.  

Using the eigenstructures, the MUSIC search function can be written as 

 

 ( ) ( ) ( )
( ) ( )φφ

φφφP HH

H

aWWa
aa

=  (2.24) 

 

where W is )( qpp −×  matrix whose column vectors are the eigenvectors Vk 

corresponding to the noise subspace and a(φ) is the search vector of the dipole array. 

 

2.7. System identification method 

To identify the transfer functions, we can make use of the system identification 

method [47], [55] to fit the following system function (a rational polynomial with real 

coefficients) 
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to the values of the frequency domain data in the identification set.  )(zH  is the 

system function to be determined for various transfer functions such as receiving 

mutual impedance and beamforming weights.  The estimates for the polynomial 

parameters [ ]nm aaabbb ,,,,,,, 1010 =θ  can be determined by solving the following 

optimization problem [62] 

 

 )(θDθ̂
θ

min arg=  (2.26) 
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k
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 fjez
zHfH π=

= 2)()( |  (2.28)

  

 

where )( fT  is the transfer function to be determined, to the values of the frequency-

domain data that covers the entire bandwidth. In the case of little prior knowledge of 

the system characteristics, the least square method is usually the most simple and 

efficient solution and the complex curve fitting method in [56] is used to obtain the 
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optimized parameter estimates.  The lowest order possible was assumed first and then 

the system order was gradually increased until the fitting error was negligibly small.  

These transfer functions can be obtained easily using the curve fitting functions in 

MATLAB [57].  

 

2.8. Beamforming using Riblet-Chebyshev weights 

For an N-element array where 12 += MN is an odd integer and element spacing is d, 

the weights [47] can be expressed as 

 

 [ ]TMMMM wwwwwww ,,,,,,,,W 11011 −−=   (2.29) 

 

where it is symmetric with respect to the centre element. The array pattern can be 

expressed as 
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−
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where 
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 θ
λ
π

= sin2 du  (2.32). 

 

Equation (2.30) can be written in the matrix form as 
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 A)b()( TuuP =  (2.33) 

where 

 [ ]TMuuuu )()()()b( cos2coscos1 =  (2.34) 

 

 [ ]TMaaaa 210=A  (2.35). 

 

The optimum Riblet-Chebshev weights W can be obtained [47] by solving 

 

 eBA 1−=  (2.36) 

 

where 

 

 [ ]TM'u'u'u )b()b()b()b(B 210=  (2.37) 
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r can be obtained using 

 

 2010 Dr −=  (2.39) 
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where D is the equiripple sidelobe in decibel. k'u can be obtained by solving 
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where 
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The optimum Riblet-Chebyshev weights [47] can be expressed as  
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Chapter 3. Design of a Compact Bifilar Helical Antenna Array 

 

3.1. Introduction 

A dielectric-loaded bifilar backfire helical antenna is designed and studied both 

theoretically and experimentally.  By loading the antenna with a dielectric core of two 

different dielectric materials: Teflon with a dielectric constant of 2.1 and Macor with 

a dielectric constant of 5.8, the volume of the antenna can be reduced by 50% and 

70%, respectively.  The bandwidth and the maximum gain of the antenna are shown 

to be not severely affected.  Making use of the significant reduction in antenna size 

and the bifilar helical structure without the ground plane, it is demonstrated that the 

dielectric-loaded bifilar backfire helical antenna can be used to construct very 

compact helical antenna arrays for high-gain satellite communications. 

 

3.2. Design of the antenna 

The dielectric- loaded bifilar backfire helical antenna is shown in Figure 3.1.  It is 

designed to be Right Hand Circularly Polarized (RHCP) and operate in the axial mode 

at a center frequency of 2.4 GHz.  The two helices are wound around a cylindrical 

dielectric core with a diameter of d and a length l.  The center of the dielectric core is 

drilled through along its axis for placing the feeding coaxial line whose characteristic 

impedance is 50 Ω.  The diameter of this empty core is b. The two helices have a 

diameter d + a where a is the diameter of the helical wire.  The pitch angle of the 

helices is measured by α and the number of turns is denoted by N.  The two helices 

are connected to the inner and the outer conductors of the coaxial line, respectively, at 

one end of the dielectric core.  Two matching strips of copper metal with dimensions s 
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× t are attached to the helices near the feeding point for matching the helices to the 

coaxial line.  The matching method using these matching strips is proposed after 

considering a number of designs to match the antenna over a wide bandwidth.  The 

dimensions s × t are derived based on trial-and-error procedures with software 

assistance using HFSS [58]. 

 
 Top view Side view 
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Figure 3.1 The dielectric- loaded bifilar backfire helical antenna. 

 

The use of bifilar design removes the necessity of a large ground plane.  The purpose 

of the dielectric core is to reduce the size of the antenna for axial mode operation. 

Two dielectric materials are used for the fabrication of the dielectric core: Teflon with 

an εr = 2.1 and Macor with an εr = 5.8.  They provide different degrees of size 

reduction and operation bandwidth.  The antenna dimensions are optimized by 

computer simulation using the software HFSS [58].  The results are shown below in 

Table 3.1.  The fabricated antenna prototype is shown in Figure 3.2. 
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Table 3.1 Optimized antenna dimensions. 

Antenna 

Parameter 

Optimized dimension 

With Teflon (εr = 2.1) With Macor (εr = 5.8) 

N 3 (chosen) 3 (chosen) 

α 13.76° 17.7° 

d 25 mm 19 mm 

l 60 mm 60 mm 

a 1 mm 1 mm 

b 6 mm 6 mm 

s 20 mm 20 mm 

t 10 mm 5 mm 

 

 

 

Figure 3.2 The image of the dielectric- loaded bifilar backfire helical antenna. 
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3.3. Measurement and simulation results 

With the optimized dimensions in Table 3.1, the antenna is found to have a main 

radiation direction along the positive z axis (see the coordinate system in Figure 3.1).  

The measured and simulated return losses of the antenna are shown in Figure 3.3 

using the Teflon dielectric core (εr = 2.1).   
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Figure 3.3 The measured and simulated return losses of the antenna loaded with a 

Teflon dielectric core (εr = 2.1). 

 

It can be seen that the typical broadband characteristic of axial mode helical antennas 

[4] can still be observed.  For the frequency range shown, the measured return loss is 

above 10 dB from 2.2 GHz to 4.2 GHz.  The return loss of the antenna using the 

Macor dielectric core (εr = 5.8) is shown in Figure 3.4.  
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Figure 3.4 The measured and simulated return losses of the antenna loaded with a 

Macor dielectric core (εr = 5.8). 

 

It can be seen that the change of return loss with frequency is much faster than the 

case with the Teflon dielectric core.  Two frequency ranges (bandwidths with a return 

loss > 10 dB) can be roughly identified in the measured return loss in Figure 3.4, i.e., 

from 2.22 GHz to 2.44 GHz and from 2.57 GHz to 3 GHz, respectively from the 

measured data.  This shows that a larger dielectric constant affects the bandwidth of a 

bifilar backfire helical antenna.  The discrepancies between the measured and the 

computed results in Figures 3.3 and 3.4 are mainly due to the errors and imperfections 

in the fabrication process of the antenna prototype.  The measured and simulated 

radiation patterns of the antenna at 2.4 GHz with the Teflon dielectric core and the 

Macor dielectric core are shown in Figures 3.5 and 3.6, respectively.  These patterns 

are obtained on the x-z plane. 
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Figure 3.5 The measured and simulated radiation patterns of the antenna at 2.4 GHz 

loaded with a Teflon dielectric core (εr = 2.1), radial scale in decibel and angular scale 

in degree. 
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Figure 3.6 The measured and simulated radiation patterns of the antenna at 2.4 GHz 

loaded with a Macor dielectric core (εr = 5.8), radial scale in decibel and angular scale 

in degree. 
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The backfire characteristic of the radiation patterns can be observed more clearly in 

Figure 3.5 but not so obvious in Figure 3.6.  The half-power beamwidth (HPBW) of 

the measured pattern in Figure 3.5 is about 65° and for the measured pattern in Figure 

3.6, the HPBW is about 80°.  The front-to-back ratios are 8 dB and 6 dB, respectively, 

for the two measured patterns in Figures 3.5 and 3.6.  The antenna with the Macor 

dielectric core has a higher front-to-back ratio due to the effects of loading with 

higher dielectric constant, causing the front lobe power to reduce. 

 

Co-polarization [31], [59] is the measure of the desired polarization.  For circular 

polarization, it defined as 

 

 
2

yx

co

EE
E

+
=  (3.1) 

 

where xE and yE  are the E-fields at the x-z plane and y-z plane respectively.  Cross-

polarization [31], [59] is the measure of the undesired polarization.  For circular 

polarization, it defined as 

 
2

EE
E yx

cross

−
=  (3.2). 

 

In this case, we designed the antenna to achieve RHCP which is the desired 

polarization.  The measured co-polarization and cross-polarization radiation patterns 
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of the antenna at 2.4 GHz loaded with the Teflon dielectric core and the Macor 

dielectric core are shown in Figures 3.8 and 3.9, respectively.   
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Figure 3.7 The measured co-polarization and cross-polarization radiation patterns of 

the antenna at 2.4 GHz loaded with a Teflon dielectric core (εr = 2.1), radial scale in 

decibel and angular scale in degree. 

 

Figure 3.7 shows that the cross-polarization performance of the antenna with the 

Teflon dielectric core is rather good (about -20 dB) in the main-beam direction.  

However, when replaced with a Macor dielectric core, the cross-polarization 

performance deteriorates quite significantly in the main-beam direction as shown in 

Figure 3.8, suggesting again the adverse effect of a large dielectric constant for the 

dielectric core which affects the circular polarization of the antenna.   
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Figure 3.8 The measured co-polarization and cross-polarization radiation patterns of 

the antenna at 2.4 GHz loaded with a Macor dielectric core (εr = 5.8), radial scale in 

decibel and angular scale in degree. 

 

Axial ratio is the ratio of the orthogonal components of an E-field.  If the axial ratio is 

0 dB, it means the antenna has a pure circular polarization.  The polarization becomes 

elliptical as the axial ratio increases.  A good circularly polarized antenna should have 

an axial ratio of 3 dB or less.  The normalized gains and axial ratios (at θ = 0°) with 

frequency are shown in Figures 3.9 and 3.10 for the Teflon dielectric core antenna and 

the Macor dielectric core antenna, respectively.  The normalized gains are the power 

gains relative to the peak gains, which are attained at 2.6 GHz from the measured data 

for the both the Teflon- loaded and Macor- loaded antennas.   
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Figure 3.9 The normalized gain and axial ratio of the antenna loaded with a Teflon 

dielectric core (εr = 2.1). 
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Figure 3.10 The normalized gain and axial ratio of the antenna loaded with a Macor 

dielectric core (εr = 5.8). 
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From Figures 3.9 and 3.10, it can be observed that the Teflon- loaded antenna 

demonstrates a more stable gain compared to the gain of the Macor- loaded antenna.  

From our measured data, it is found that the absolute gain of the Teflon- loaded 

antenna at 2.4 GHz is 3.27 dBic whereas for the Macor- loaded antenna, the gain at 2.4 

GHz is 2.6 dBic.  This can be compared with the gain of a three-turn conventional 

monofilar helical antenna with an equal size as the Teflon- loaded antenna at 2.4 GHz.  

Its gain is 3.95 dBic, somewhat greater than that of the Teflon- loaded antenna at 2.4 

GHz.  Note that although the equal-size conventional monofilar helical antenna gives 

a higher gain, its axial ratio (operating at a C/λ ratio of 0.65) is somewhat greater than 

13 dB.  This means that the conventional helical cannot operate at such a low C/λ  

ratio (with such a small electric size) to still produce good circular polarization as the 

Teflon dielectric core antenna does.  For the Teflon- loaded antenna, the 3 dB axial 

ratio bandwidth is 650 MHz while that for the Macor- loaded antenna is about 400 

MHz.  Inside the axial ratio bandwidths, the axial ratio of the Teflon-loaded antenna is 

lower than that of the Macor- loaded antenna.  These results show that higher 

dielectric constant has an effect on the gain and axial ratio bandwidths.  Lastly, we 

compare the % reduction in antenna size (the volume of the helices) that can be 

achieved with the two dielectric materials.  The results are tabulated in Table 3.2.  

Comparisons are made with an empty core 3-turn bifilar helical antenna whose 

dimensions are also optimized to operate at 2.4 GHz. 
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Table 3.2 Dimensions of the bifilar backfire helical antenna loaded with different 

dielectric materials. 

Dielectric 

material 
εr 

Helix 

Diameter 
Helix 
height 

Size 
reduction (in 

terms of 
volume) 

Air 1 32 mm 75 mm 0 % 

Teflon 2.1 26 mm 60 mm 47 % 

Macor 5.8 20 mm 60 mm 69 % 

 

From Table 3.2, it can be seen that loading the bifilar helical antenna with Teflon and 

Macor dielectric cores, the size of the antenna can be reduced by about 50% and 70%, 

respectively.  This reduction factor can be compared with those achieved previously 

in dielectric loaded monofilar cylindrical and square helical antennas [12], [13].  In 

[12], the reduction in antenna volume of a five-turn dielectric- loaded monofilar 

cylindrical helical antenna can be calculated to be about 23 % only while in [13], the 

reduction of a three-turn dielectric- loaded square helical antenna is around 24 %.  The 

substantial increase in the reduction factor in our antenna is attributable to the bifilar 

structure of the antenna which tends to confine the electromagnetic field more tightly 

around its central core region where the dielectric material is found.  This can be seen 

from the computer simulated electric field distributions in Figures 3.11 to 3.13 using 

HFSS [58].   
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Figure 3.11 The near- field distribution (electric field) of a conventional monofilar 

helical antenna. 

 

Figure 3.12 The near- field distribution (electric field) of a bifilar helical antenna 

without a dielectric core. 
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Figure 3.13 The near- field distribution (electric field) of a bifilar helical antenna with 

a Teflon dielectric core (εr = 2.1). 

 

Figure 3.11 shows the near-field distribution of a conventional monopfilar helical 

antenna.  It can be seen that the electric field spreads out into a larger region around 

the helix compared with the electric field distributions in Figures 3.12 and 3.13, which 

are for the bifilar helical antennas without and with a dielectric core (Teflon), 

respectively.  When Figures 3.12 and 3.13 are compared further, it can be seen that 

the amount of electric field outside the central core region in the dielectric loaded 

bifilar helical antenna (Figure 3.13) is much less than that of the bifilar helical 

antenna without a dielectric core (Figure 3.12).  Figure 3.13 clearly shows the strong 

confinement effect of the bifilar helix in combination with the dielectric core.  It also 

shows that higher dielectric constant can result in stronger electric field confinement 

effect.  The combined effect of the large reduction in antenna size and the absence of 
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a ground plane provide an important advantage in designing smaller-size compact 

helical antenna arrays for high-gain satellite signal reception. 

3.4. A 2 × 1 array design 

For satellite communications, the gain of a single dielectric- loaded bifilar helical 

antenna is not sufficient.  We study an example array constructed using two Macor-

loaded bifilar backfire helical antennas, as shown in Figure 3.14 and Figure 3.15.  

 

0.2λ 

x 

y 

Antenna 1 Antenna 2 

 

Figure 3.14 The 2 × 1 bifilar backfire helical antenna array with its antenna elements 

loaded with a Macor dielectric core. 

 

Figure 3.15 HFSS model of the 2 × 1 bifilar backfire helical antenna array with its 

antenna elements loaded with a Macor dielectric core. 
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The separation between the two antennas is 0.2 λ where λ is the free-space 

wavelength at 2.4 GHz.  Note that this antenna separation (25 mm) is impossible for 

empty core helical antennas as the diameter of a single empty core helical antenna is 

already 32 mm (see Table 3.1) but it is completely possible for Macor- loaded bifilar 

backfire helical antenna elements whose diameter is only 20 mm.  Computed array 

radiation patterns obtained at two vertical planes at 2.4 GHz are shown in Figure 3.16.   
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Figure 3.16 The simulated array radiation patterns of the 2 × 1 helical antenna array 

on the x-z and y-z planes respectively, radial scale in decibel and angular scale in 

degree. 

 

The HPBWs of the array pattern is 30° on the x-z plane and about 70° on the y-z 

plane.  This indicates a substantial increase in directivity compared to the radiation 

pattern of a single Macor- loaded antenna whose HPBW is 80°.  Furthermore, the 

front-to-back ratio now increases to 12 dB.  The actual gain of the Macor loaded 



43 
 

antenna array is 7.7 dBic which is higher than single antenna element of 2.6 dBic.  

The variation of axial ratio with observation angle is shown in Figure 3.17.   
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Figure 3.17 The variation of the axial ratio of the 2 × 1 helical antenna array with 

observation angle in comparison with a single antenna. 

 

We see that in both the x-z and y-z planes, the axial ratio beamwidths improve in 

comparison with those of a single antenna though the smallest axial ratio values are 

not as good as those of a single antenna.  Due to the strong mutual coupling effect 

resulting from the small element separation of the array, it is expected that input 

characteristics such as the return loss of the array may be affected.  Figure 3.18 shows 

the return losses of the two elements of the array in comparison with a single antenna.   
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Figure 3.18 The return losses of the elements of the axial ratio of the 2 × 1 helical 

antenna array in comparison with a single antenna. 

 

It can be seen that the changes of the return losses of the elements are not so 

significant near the central operation frequency of 2.4 GHz but more obvious away 

from 2.4 GHz. 
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Chapter 4. Mutual Coupling Analysis For Compact Transmitting 

Antenna Arrays 

 

4.1. Introduction 

An effective method is suggested to compensate for the mutual coupling in the 

coupled array patterns of compact antenna arrays.  By using the mutual impedances of 

the antenna elements, we showed that it is possible to design compensation networks 

that can remove the distortion on array patterns due to the mutual coupling effect.  

The compensated array patterns enable us to predict the radiation characteristics of 

compact antenna arrays using the principle of pattern multiplication based on their 

ideal and isolated element patterns.  Equations for the construction of such 

compensation networks are obtained and the realization method is discussed.  With 

these compensation networks, further conventional port-decoupling and matching 

circuits can be designed and connected to their inputs to achieve maximum power 

transfer from the source to the antenna array.  Numerical examples on dipole and 

monopole arrays demonstrate the validity and accuracy of the method. 

 

4.2. The compensation method 

Consider a transmitting antenna array which consists of two closely spaced 

interacting antennas shown in Figure 4.1.   
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#1                                                     #2 

 
Figure 4.1 A transmitting antenna array consisted of two closely spaced antennas. 

 

Antenna #1 is excited by a voltage source (signal to be transmitted) Vs1 and antenna 

#2 is excited by Vs2.  The internal impedances of the two voltage sources are Zg1 and 

Zg2, respectively.  Accounting for the mutual coupling effect, the two antennas can be 

represented by their equivalent circuits shown in Figure 4.2, in which V12 and V21 are 

the coupled voltages at antenna #1 and antenna #2, respectively, and 1inZ  and 2inZ  are 

the input impedances looking from the antenna terminals into the antennas.   

 
 

    
  
                                        #1                                                              #2 

Figure 4.2 The equivalent circuits of the two antennas in Figure 4.1. 

 

 

The distortion of the radiation pattern of the array is caused by the coupled voltage 

sources V12 and V21, which can be expressed using the mutual impedances Z12 and Z21 
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[30] of the array as 

 

 
12121

21212

IZV

IZV

=

=
 (4.1) 

 

where I1 and I2 are the currents on antennas.  Hence to restore the isolated radiation 

patterns of the array, the coupled voltages V12 and V21 have to be offset (or 

compensated) from the feeding voltages to the antennas.  That means the feeding 

circuits of the antennas have to be modified as shown in Figure 4.3 with two 

controlled voltage sources added to the excitation voltages Vs1 and Vs2 in order to 

compensate the coupled voltages V12 and V21.  

 

 
 

                                               #1                                                                 #2 

Figure 4.3 The decoupling feeding networks of the array in Figure 4.1. 

 

For the compensated array in Figure 4.3, it is easy to obtain its radiation pattern and 

verify it to be same as that of an array with two completely isolated antennas.  For 

theoretical analysis, it is useful to obtain the net excitation voltages (the compensated 

voltages) to the antennas in Figure 4.3.  These compensated voltages are required in 

the design of a compensation feeding network.  Let these be 1SV ′  and 2SV ′ , which can 
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be expressed as: 
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and can be expressed in a matrix form as 
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 (4.3) 

 

where 1 1 1A g inZ Z Z= +  and 2 2 2A g inZ Z Z= + .  Equation (4.3) means that if the antennas 

are excited with the compensated voltages 1SV ′  and 2SV ′  instead of the excitation 

voltages VS1 and VS2, the two antenna elements will produce the isolated radiation 

patterns as if they were produced by the two excitation voltages VS1 and VS2 without 

the effect of mutual coupling.  Such desirable results would mean that the radiation 

pattern of the array can now be predicted accurately by using the principle of pattern 

multiplication [31] where the radiation pattern of a single element at the reference 

point is multiplied with the Array Factor of the array.  For an N−element array, the 

Array Factor is  

 

 ( )∑
=

−=
N

n

ψnje
1

1FactorArray  (4.4) 
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where 

 

 ( ) βφkdψ += cos  (4.5).  

 

k is the wavenumber, φ is the beamforming angle and β is the phase excitation 

between the elements. Practically, in order to feed the array using 1SV ′  and 2SV ′ , the 

compensation feeding network designed based on (4.3) can be connected between the 

original feeding sources VS1 and VS2 and the antenna terminals, as shown in Figure 

4.4.   

 

     
 
Figure 4.4 The compensation feeding network for a two-element transmitting antenna 

array. 

 

Looking from (4.3), the compensation feeding network designed based on Figure 4.3 

is independent of the excitation sources VS1 and VS2.  It only depends on the antenna 

array dimensions and the array configuration.  The two-antenna array in (4.3) can be 

easily generalized to that of an N−antenna array which can be expressed as 
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 (4.6). 

 

Although (4.6) is simple, it has not been explicitly derived before.  This expression is 

important in the analysis of mutual coupling in transmitting antenna arrays and the 

design of array feeding networks.  From (4.3), it is clear that the proposed 

compensation method can accommodate another matching circuit in the feeding 

network such as a conventional port-decoupling network.  This can be accomplished 

by changing the impedances of gNgg ZZZ and,,, 21    so as to match the antenna 

impedances inNinin ZZZ and,,, 21  .  

 

4.3. Numerical Results and Discussions 

Consider a two-element dipole array.  The length of the dipoles is λ/2 (where λ is the 

wavelength corresponding to the operating frequency of the excitation sources) and 

their radius is 1/100 of their length.  The antenna separation between the two dipoles 

is varied from 0.1λ to 0.5λ.  The input impedances and the mutual impedances with 

the different antenna separations are calculated using FEKO [60].  The source internal 

impedances 1 2 and  g gZ Z  are 50 Ω and the excitation voltage sources are set to 

1 21 V and 1 135  Vs sV V= = ∠ ° .  Equation (4.3) is used to calculate the compensation 

voltages 1 2 and s sV V′ ′  that will produce the isolated radiation patterns for the array.  

The results are shown in Table 4.1 with the antenna separation varying from 0.1λ to 
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0.5λ.   

 

Table 4.1 The compensation voltages 1sV ′  and 2sV ′  of the two-element dipole array at 

different antenna separations. 

 
Antenna separation d (λ) 1sV ′  (V) 2sV ′  (V) 

0.1 0.723∠32.36° 0.722∠102.85° 

0.2 0.959∠25.87° 0.588∠121.2° 

0.3 1.121∠19.83° 0.641∠141.75° 

0.4 1.231∠10.63° 0.811∠150.65° 

0.5 1.272∠9.09° 0.959∠150.25° 

 

 

It can be seen that the values of the compensation voltages are very different from the 

excitation voltages.  The differences between 1 2 and s sV V  is to allow beam steering at 

a particular angle with mutual coupling compensation.  Next, the array patterns are 

obtained when the antenna array is excited by the compensation voltages for five 

cases with antenna separations from 0.1λ to 0.5λ.  The results are shown in Figures 

4.5 to 4.9 (at a plane perpendicular to the dipole axes).  The results are compared with 

array patterns obtained (i) using the direct excitation voltages 1 2 and s sV V  and (ii) 

using the principle of pattern multiplication [31].   
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Figure 4.5 The normalized array radiation patterns at d = 0.1λ for the two-element 

dipole array obtained by different feeding voltages (radial scale in dB and angular 

scale in degree). 

 

Figure 4.6 The normalized array radiation patterns at d = 0.2λ for the two-element 

dipole array obtained by different feeding voltages (radial scale in dB and angular 

scale in degree). 

           Compensation voltages, V’S1 and V’S2 
           Direct excitation voltages, VS1 and VS2 
           Pattern multiplication method 

           Compensation voltages, V’S1 and V’S2 
           Direct excitation voltages, VS1 and VS2 
           Pattern multiplication method 
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Figure 4.7 The normalized array radiation patterns at d = 0.3λ for the two-element 

dipole array obtained by different feeding voltages (radial scale in dB and angular 

scale in degree). 

 

 
 

Figure 4.8 The normalized array radiation patterns at d = 0.4λ for the two-element 

dipole array obtained by different feeding voltages (radial scale in dB and angular 

scale in degree). 

           Compensation voltages, V’S1 and V’S2 
           Direct excitation voltages, VS1 and VS2 
           Pattern multiplication method 

           Compensation voltages, V’S1 and V’S2 
           Direct excitation voltages, VS1 and VS2 
           Pattern multiplication method 
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Figure 4.9 The normalized array radiation patterns at d = 0.5λ for the two-element 

dipole array obtained by different feeding voltages (radial scale in dB and angular 

scale in degree). 

 

From these figures, it is observed that the array patterns obtained using the 

compensation voltages are almost exactly the same as the array patterns obtained 

using the principle of pattern multiplication [31].  The main beam and the side lobes 

are also accurately restored using the compensation method. This indicates that our 

compensation method is valid and effective.  It is also observed that the mutual 

coupling effect becomes stronger as the antenna separation is smaller. Also, the 

coupled array pattern in Figure 4.9 with the antenna separation of 0.5λ is very similar 

to the decoupled pattern or the pattern obtained by the principle of pattern 

multiplication.  This seems to suggest that the conventional practice of ignoring 

mutual coupling effect for arrays with element separations greater than or equal to 

half wavelength is applicable. 

           Compensation voltages, V’S1 and V’S2 
           Direct excitation voltages, VS1 and VS2 
           Pattern multiplication method 
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Next, a five-element dipole ULA is studied using two different cases to demonstrate 

the effectiveness of our compensation method as shown in (4.4).  Similar to the two-

element dipole array, the length of the dipoles is λ/2 and their radius is 1/100 of their 

length.  The source internal impedances 1gZ  to 5gZ  are 50 Ω.  The antenna separation 

d and the beam angle φ are varied for two cases: ϕ = 45°, d = 0.5λ and ϕ = 60°, d = 

0.3λ. In Table 4.2, the compensation voltages of the dipole elements are calculated 

when the array main-beam is formed towards two different directions at different 

antenna separations.  The direct excitation voltages are shown in Table 4.3 for 

comparison.  The excitation voltages can be derived using (4.5) and set 0=ψ  to 

determine β for different φ. The compensation voltages can also be derived using 

(4.5) and set 0=ψ followed by (4.6) to determine the amplitude and phase excitations 

between the elements. 

 

Table 4.2 The compensation voltages of the five-element dipole array at different 

antenna separations and main-beam directions. 

 ϕ = 45°, d=0.5λ ϕ = 60°, d=0.3λ 

V’S1 0.821∠17.93° 1.015∠-17.87° 

V’S2 1.105∠-112.236° 1.42∠-69.66° 

V’S3 1.153∠113.68° 1.612∠-125.51° 

V’S4 1.14∠-19.06° 1.442∠173° 

V’S5 1.189∠-156.65° 1.36∠138.27° 
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Table 4.3 The excitation voltages of the five-element dipole array at different antenna 

separations and main-beam directions. 

 ϕ = 45°, d=0.5λ ϕ = 60°, d=0.3λ 

VS1 1∠0° 1∠0° 

VS2 1∠-127.28° 1∠-54° 

VS3 1∠-254.56° 1∠-108° 

VS4 1∠-381.84° 1∠-162° 

VS5 1∠-509.12° 1∠-216° 

 

 

A comparison of Tables 4.2 and 4.3 shows that the mutual coupling effect is stronger 

at d = 0.3λ as the differences between compensation and the direct excitation voltages 

are greater than those at d = 0.5λ.  The compensated array patterns are also calculated 

for the two cases as shown in Figures 4.10 and 4.11.  They are compared with the 

array patterns obtained using the direct excitation voltages and the principle of pattern 

multiplication method [31]. 
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Figure 4.10 The normalized array radiation patterns for the five-element dipole array 

at d = 0.5λ when the main beam direction is excited at φ = 45° (radial scale in dB and 

angular scale in degree). 

 

 

Figure 4.11 The normalized array radiation patterns for the five-element dipole array 

at d = 0.3λ when the main beam direction is excited at φ = 60° (radial scale in dB and 

angular scale in degree). 

           Compensation voltages, V’S1 and V’S2 
           Direct excitation voltages, VS1 and VS2 
           Pattern multiplication method 

           Compensation voltages, V’S1 and V’S2 
           Direct excitation voltages, VS1 and VS2 
           Pattern multiplication method 
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The uncompensated array pattern in Figure 4.10 shows a slightly different beam 

direction instead of the desired direction of 45°.  On the other hand, the compensated 

array pattern correctly restores the beam direction to 45° and is almost exactly the 

same as that predicted by the principle of pattern multiplication [31]. 

 

Finally, consider an even greater number of elements, a seven-element compact 

monopole ULA, for beamforming.  The length of the monopoles is λ/4 and their 

radius is 1/100 of their length.  The separation d between adjacent monopoles is 0.15 

λ.  The monopoles are parallel to the z axis and an infinite ground plane is at the xy-

plane.  In Table 4.4, the compensation voltages of the monopole elements are 

calculated when a single beam is formed towards four different directions.  The direct 

excitation voltages are shown in Table 4.5 for comparison.   

 

Table 4.4 The compensation voltages of the seven-element monopole array for 

forming different main-beam directions. 

 ϕ = 0° ϕ = 30° ϕ = 60° ϕ = 90° 

V’S1 1.088∠-10.35° 1.101∠-11.29° 1.169∠-11.9° 1.28∠-6.99° 

V’S2 1.332∠-49.44° 1.361∠-45.48° 1.53∠-28.83° 1.618∠-4.9° 

V’S3 1.421∠-104.27° 1.495∠-90.87° 1.626∠-56.45° 1.656∠-11.2° 

V’S4 1.551∠-151.62° 1.583∠-133.99° 1.638∠-85.57° 1.647∠-12.74° 

V’S5 1.487∠154.06° 1.587∠176.55° 1.702∠-117.4° 1.656∠-11.2° 

V’S6 1.676∠95.42° 1.751∠127.84° 1.767∠-141.76° 1.618∠-4.9° 

V’S7 1.606∠48.53° 1.654∠85.43° 1.419∠-167.34° 1.28∠-6.99° 
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Table 4.5 The excitation voltages of the seven-element monopole array for forming 

different main-beaming directions. 

 ϕ = 0° ϕ = 30° ϕ = 60° ϕ = 90° 

VS1 1∠0° 1∠0° 1∠0° 1∠0° 

VS2 1∠-54° 1∠-46.8° 1∠-27° 1∠0° 

VS3 1∠-108° 1∠-93.5° 1∠-54° 1∠0° 

VS4 1∠-162° 1∠-140.3° 1∠-81° 1∠0° 

VS5 1∠-216° 1∠-187.1° 1∠-108° 1∠0° 

VS6 1∠-270° 1∠-233.8° 1∠-135° 1∠0° 

VS7 1∠-324° 1∠-280.6° 1∠-162° 1∠0° 

 
 
 

A comparison of Tables 4.4 and 4.5 shows that the mutual coupling effect is very 

strong as the compensation and the direct excitation voltages are very different.  The 

compensated array patterns for all the cases are calculated and as shown in Figures 

4.12 to 4.15.  They are also compared with the array patterns obtained using the direct 

excitation voltages and the principle of pattern multiplication method [31].   
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Figure 4.12 The normalized array radiation patterns for the seven-element monopole 

array at d = 0.15λ when the main beam direction is excited at φ = 0°. 

 
 

 
 

Figure 4.13 The normalized array radiation patterns for the seven-element monopole 

array at d = 0.15λ when the main beam direction is excited at φ = 30°. 

 

           Compensation voltages, V’S1 and V’S2 
           Direct excitation voltages, VS1 and VS2 
           Pattern multiplication method 

           Compensation voltages, V’S1 and V’S2 
           Direct excitation voltages, VS1 and VS2 
           Pattern multiplication method 
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Figure 4.14 The normalized array radiation patterns for the seven-element monopole 

array at d = 0.15λ when the main beam direction is excited at φ = 60°. 

 

 

Figure 4.15 The normalized array radiation patterns for the seven-element monopole 

array at d = 0.15λ when the main beam direction is excited at φ = 90°. 

 
 

           Compensation voltages, V’S1 and V’S2 
           Direct excitation voltages, VS1 and VS2 
           Pattern multiplication method 

           Compensation voltages, V’S1 and V’S2 
           Direct excitation voltages, VS1 and VS2 
           Pattern multiplication method 
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From these figures, it is clear that mutual coupling has a significant effect on the 

radiation patterns.  However, comparing the array patterns for the seven-element 

array with those for the two-element array in Figures 4.5 to 4.9, it shows that mutual 

coupling seems to have a smaller effect on the array patterns for an array with a larger 

number of elements.  Nevertheless, it is observed from Figures 4.12 to 4.15 that the 

array patterns obtained using the compensation voltages are almost exactly the same 

as the array patterns obtained using the principle of pattern multiplication. 

 

The above studies show the importance of compensation for the mutual coupling 

effect in array beamforming.  Note that conventional port-decoupling methods cannot 

restore the coupled array patterns to their uncoupled or isolated array patterns which 

are used in the array beamforming algorithms.  These studies are mainly theoretical 

using simple antenna elements.  Measurement studies will be conducted when the 

facilities are available. 
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Chapter 5. A Novel Noise Model For Compact Receiving Antenna 

Arrays 

 

5.1. Introduction 

A novel method for modeling correlated noise in receiving antenna arrays for 

direction-of-arrival (DOA) estimation is introduced.  The array noise is divided into a 

coupled and an uncoupled components which originate from the array environment 

and the internal circuitry of the antenna elements, respectively.  While the uncoupled 

noise power can be determined a priori and be removed from the array received 

power, the antenna mutual coupling in the coupled noise component can be decoupled 

in the same way as the antenna mutual coupling in the signals.  This results in a very 

simple but effective MUSIC DOA estimation algorithm.  Simulation results are 

presented to validate and demonstrate the performance of the new method. 

 

5.2. Improved Noise Modeling 

Consider an antenna array with N elements employed in DOA estimation in the 

presence of both external and internal noise. The external noise is the noise that 

comes from the environment of the array while the internal noise is the noise 

generated inside the antenna elements.  The received array signal vector )x(t  at time t  

is given by: 

 

 )(n)(n)v()x( tttt uc ++=   (5.1) 
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where )v(t  is an 1×N  column vector for the signal voltages due to the incoming 

signals, )(n tc is an 1×N  column vector for the coupled noise voltages, and )(n tu  is 

an 1×N  column vector of the uncoupled noise voltages. )v(t , )(n tc , and )(n tu  are 

assumed to be mutually uncorrelated.  Note that all the signals and noise are 

expressed in their analytic forms unless stated otherwise.  Here the division of noise 

into the coupled and uncoupled components has an advantage for the MUSIC DOA 

estimation algorithm, especially when compensation for antenna mutual coupling 

effect is required. 

 

For an antenna array, noise mainly comes from two physical sources: external 

environment and the internal circuitries [19].  The external environmental noise 

source induces the coupled noise currents in the antenna elements and generates the 

coupled noise voltages )(n tc .  The internal circuit noise sources (the input stages of 

the low-noise amplifiers (LNAs) or the resistive terminals of the antennas) produce 

the noise currents in the antenna elements which consist of two parts: the uncoupled 

and the coupled noise currents.  For example, in the kth antenna, its internal circuit 

noise source excites an uncoupled noise current )(ti kku ,  on itself as when it is in the 

isolation mode.  The radiation from this current in turn induces coupled noise currents 

)(ti pkc ,  ( N,,,p ,kp 21and =≠ ) on all the other antenna elements.  The coupled and 

uncoupled currents excited by the internal noise source of a particular antenna are 

assumed to be weakly correlated as they appear at different antennas. Furthermore, 

the internal noise currents of different antennas are uncorrelated.  When all the 

internal circuit noise sources of the antenna array are considered in this way, the 

uncoupled noise currents )(ti kku ,  ( N,,,k 21= ) give rise to the uncoupled noise 
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voltages )(n tu  in (5.1) while the coupled noise currents )(ti pkc ,  contribute to the 

coupled noise voltages )(n tc .  In this study, the noise voltages induced by the coupled 

noise currents )(ti pkc ,  will be considered as part of the environmental noise and be 

modeled into the coupled noise voltages )(n tc . 

 

To model the coupled noise coming from outside the antenna elements, a scattering 

field model is adopted as shown in Figure 5.1. The coupled noise voltages )(n tc  is 

considered to be produced by a large number of external random noise sources in the 

form of scattered electromagnetic (EM) plane waves with random amplitudes and 

phases.   

 

 

Figure 5.1 The scattering field model for the generation of coupled noise with s plane 

EM waves coming from random directions to an antenna array. 
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These random EM plane waves give rise to )(n tc  through the antenna mutual 

impedance matrix Z  as, 

 

 )e(Z)(n ttc
1−=  (5.2) 

 

where )e(t  is an 1×N  column vector of the random noise voltages at the antenna 

elements when the antenna mutual coupling is not considered.  The reason to express 

the coupled noise voltages in the form of (5.2) is that both Z and )e(t  can be 

calculated and measured separately.  As the antenna array is in the receiving mode, 

the elements of the antenna mutual impedance matrix Z in (5.2) are the receiving 

mutual impedances of the array which can be obtained by calculation or measurement 

[18], [23].  The form of Z is given by: 
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where ij
tZ  are the receiving mutual impedances between the antenna elements and ZL 

is the terminal load of the antennas.  As shown in the previous theoretical and 

experimental studies [61], [62], the receiving mutual impedances are more accurate 

parameters to characterize the mutual coupling effect between antenna elements in a 

receiving antenna array than the conventional mutual impedances.  The detailed 

formulation and the advantages of using the receiving mutual impedance can be found 
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from the previous reports [61], [62].  In (5.2), the noise voltage vector )e(t  without 

mutual coupling can be calculated using a standard numerical method such as MoM 

[63].  Based on the couple noise model in Figure 5.1, consider s narrow-band plane 

EM waves impinging on the N-element antenna array from directions φk (k = 1, 2,… 

s) at time ti (i = 1, 2,…).  The amplitudes and phases of these plane waves are random 

Gaussian variables, which are both independently generated for each direction and 

each time instance [20].  Assuming each antenna (considering dipole antennas here 

for ease of illustration) is divided into m segments in the MoM procedure, then the 

element )( ij te  of the noise voltage vector )e( it  at time instant itt =  can be calculated 

as follows: 
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 (5.4) 

 

 Likjij ZtIte )()( ,=  (5.5) 

 

where the first matrix on the left-hand side of (5.4) is the MoM impedance matrix for 

the jth antenna and the second vector on the left-hand side of (5.4) is the current 

distribution vector for the jth antenna.  The vector on the right-hand side of (5.4) is the 

voltage vector due to the s noise source plane waves impinging on each segment of 

the jth antenna.  Equation (5.5) simply calculates the noise voltage of the jth antenna 

by multiplying the current on the terminal segment (kth segment) with the antenna 

terminal load ZL.  Once )e(t  is known, the covariance matrix cN  of the coupled noise 
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voltage vector can be expressed as: 

 

 { } { } HH
cc

H
ccc ttEttE −−== Z)(e)(eZ)(n)(nN 1  (5.6) 

 

where the noise correlation matrix { })(e)e( i
H

i ttE  represents only the spatial 

correlation and its elements are known for many typical wave distributions, such as 

the Bessel function for a uniform incident wave distribution [64] in a uniform linear 

array (ULA). 

 

To model the uncoupled noise voltages )(n tu , the equivalent circuit of an antenna 

element is considered and as shown in Figure 5.2, where Zant is the input impedance 

of the antenna and Zin is the impedance looking into the input terminal of the LNA, 

which is connected to the antenna terminal.  The two sources, VN and IN, are the 

equivalent noise voltage and current generated by the noise resistance of the LNA.  

The uncoupled noise voltage generated by VN and IN is the noise voltage dropped 

across the input impedance Zin of the LNA when this antenna element is receiving in 

an isolation mode.   

 

 

 

Figure 5.2 The circuit noise model for the pth antenna element connected to an LNA 

with an input impedance of Zin and noise sources VN and IN. 

+ − 

↑ Zant Zin IN 

VN 

nu,p 
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For example, for the pth antenna element, 

 

 
inant

inantN

inant

inN
pu ZZ

ZZI
ZZ

ZVn
+

+
+

=,  (5.7). 

 

Since nu,p represents the uncoupled noise components, the covariance matrix of )(n tu  

is a diagonal matrix whose diagonal elements are all the same and can be calculated 

from the following equation (cf. eq. (19) in [19]): 
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where Bk  is the Boltzmann’s constant, 0T  is the 290 K standard noise temperature, B 

is the instantaneous bandwidth of observation, and NN×I  is the NN ×  identity matrix.  

The other symbols NR , NG , and γY  in (5.8) are the noise resistance, conductance, and 

admittance, respectively of the LNA whose values can be obtained from the date sheet 

of the LNA.  The uncoupled noise power  2
uσ  dissipated in the respective LNAs can 

be calculated by dividing the diagonal elements of (5.8) with inZ  and taking the real 

part.  The advantage of formulating the uncoupled noise covariance matrix in (5.8) is 

that it can be determined beforehand by calculation using known parameters in (5.8) 

or by a direct measurement on an LNA.  This is an important observation which 

enables us to subtract the uncoupled noise covariance matrix uN from the received 

signal-plus-noise covariance matrix. 
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5.3. The MUSIC DOA Estimation Algorithm 

Using the noise covariance matrices in (5.6) and (5.8), the covariance matrix of the 

received signal with noise is: 

 

 { } { } uc
HH ttEttE NN)(v)v()(x)x(R ++==  (5.9). 

 

The uncoupled noise covariance matrix uN can be determined beforehand.  Hence 

after the signal-plus-noise covariance matrix is obtained, the following difference 

covariance matrix can be immediately calculated: 
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ZttEZttE

ttE
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)(e)e()(v)v(

N)(v)v(

NRR

1

 (5.10). 

 

 

Now the noise covariance matrix in (5.10) contains only the coupled noise.  This is a 

great advantage as the signal covariance matrix and noise covariance matrix can be 

decoupled together.  Furthermore, as the signals )v(t  are subjected to the same 

coupling mechanism as the coupled noise )(n tc , the coupled signal voltage vector can 

also be expressed in terms of the mutual impedance matrix Z as (cf. (5.2)): 

 

 )u(Z)v( tt 1−=  (5.11) 

 

where )u(t  is the uncoupled signal voltage vector. By applying (5.11) into (5.10) and 



71 
 

multiplying (5.10) on the left and right-hand sides with Z and HZ  respectively, the 

following decoupled signal-plus-noise covariance matrix is obtained: 

 

 
{ } { }( ) { })(s)s()(u)u(

ZZRR'

ttEZttE H
inc

H

H
dd

1Re2σ+=

=
 (5.12) 

 

where 

 { }( )inc
HH Ztttt 1Re2σ= )(e)e()(s)s(  (5.13) 

 

is the normalized spatial noise correlation matrix and 2
cσ  is the power of the coupled 

noise at each element when there is no spatial correlation.  Note that (5.12) is an 

important new result in array signal theory for DOA estimation.  In (5.12), the correct 

uncoupled array manifold has been restored in )u(t .  The decoupled noise covariance 

matrix { })(e)e( ttE H   is not uncorrelated as previous studies assumed.  Instead, noise is 

still spatially correlated though the antenna mutual coupling effect has been removed.  

This is due to the random distribution of the incoming directions.  The exact noise 

correlation structure of { })(e)e( ttE H  depends on the signal environment.  

Furthermore, for the MUSIC DOA estimation algorithm, the method used in [34] (see 

eq. (13) in [34]) can be directly used for either non-coherent or coherent signals by the 

following changes: 
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5.4. Numerical Examples 

To investigate the correlation of the coupled noise, the magnitude of the noise current 

correlation coefficient [20] between two center-fed half-wavelength dipole antennas 

at different antenna separations, d are calculated.  The dipole wire radius is λ/500 

(where λ is the wavelength in free space) and the two dipoles are shorted through their 

terminals, i.e., ZL = zero.  In the numerical calculation, an MoM computer simulation 

tool, FEKO [60], is used and each dipole is discretized into 63 segments of length 

λ/125.  To simulate the coupled noise, 50 plane waves are used to excite the array.  

These plane waves have random amplitudes and phases and are vertically polarized.  

They come uniformly from the horizontal directions along the plane 2θ π= .  This 

number of plane waves is obtained after a convergence test.  The results are shown in 

Figure 5.3 and compared with the result obtained in [20].  It can be seen that the 

results are almost the same as that in [20]. 
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Figure 5.3 The magnitude of the noise current correlation coefficient between two 

dipole antennas at different antenna separations. 

 

For the normalized spatial noise correlation matrix in (5.13), it is well known that its 

elements follow the variation of the Bessel function )(kdJ 0  across the array if the 

noise comes uniformly form the horizontal plane.  The numerical method can be used 

to demonstrate this result.  Shown in Figure 5.4 is the calculated spatial correlation 

coefficient of the coupled noise of different elements with respect to the first element 

of a ten-element dipole antenna array with the element separation d fixed at 0.5λ.  The 

variation of the Bessel function is also shown for comparison.  The dipole antennas 

are same as the two dipole antennas studied in Figure 5.3 but now all of them are each 

connected to a 50 Ω terminal load.  The same numerical scheme is used and the 

coupled noise is generated in the same way as in Figure 5.3.  Once the noise voltages 

are obtained, they are decoupled as in (5.12) using the receiving mutual impedance 

[20] 
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matrices Z and HZ .  From the result in Figure 5.4, it can be seen that the noise spatial 

correlation of the antenna elements follows almost exactly as the Bessel function. 
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Figure 5.4 The normalized spatial correlation of the coupled noise for a ten-element 

dipole array with element separation d = 0.5λ. 

 

To illustrate the variation of the noise power across the elements of an antenna array 

due to antenna mutual coupling, the noise powers of a seven-element dipole array 

with different element separations are calculated.  The dipoles are same as the dipoles 

in Figure 5.3 and the coupled noise is generated in the same way.  The results are 

shown in Figure 5.5 with the powers being normalized to those of the edge elements.   
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Figure 5.5 The normalized noise power for a seven-element dipole array at different 

element separation. 

 

It can be seen that when the element separation is decreased, the element noise 

powers differ significantly.  At an element separation of d = 0.2λ, the power 

difference between the central element and the edge elements is more than 3 dB.  On 

the other hand, when the element separation is increased, the element noise powers 

tend to be equalized.  The results in this figure indicate the importance of the antenna 

mutual coupling on the distribution of the noise power across an antenna array. 

 

In the first DOA estimation experiment, the seven-element array studied in Figure 5.5 

is used to detect two coherent signals in the presence of coupled and uncoupled noise.  

The terminal voltages of the dipoles are calculated by FEKO and processed by the 

MUSIC DOA algorithm.  In the literature, Yeh et al. [34] have provided a DOA study 

on such a dipole array before.  But they considered only the uncoupled noise.  In this 
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simulation of the signal environment, the coupled noise is generated as shown 

previously.  To determine the uncoupled noise, the parameters in (5.8) used in this 

experiment obtained are Ω== 50Lin ZZ , Ω−= 7380570 .. jZant , K2900 =T , 

Ω= 50NR , 0=NG , and 0=γY .  That is, the antenna terminal loads, ZL, are treated as 

a single-port network.  With these noise parameters, the uncoupled noise power 

dissipated at each antenna terminal load Zin is HzW10762 212 /. −×=σu  which is 

equivalent to an effective noise temperature of 200 K.  For illustration purpose, it is 

also assumed that the coupled noise power (when there is no antenna mutual 

coupling) has this value, i.e., HzW10762 212 /. −×=σu at a 1 Hz bandwidth.  Table 5.1 

shows the coupled and uncoupled noise powers in each element at different element 

separations under this situation.  

 

Table 5.1 Noise powers in each element of the seven-element dipole array. 

Element 
Uncoupled noise power 

2
uσ  (W/Hz) 

Coupled noise power      
at d = 0.2λ (W/Hz) 

Coupled noise power            
at d = 0.5λ (W/Hz) 

1 21
10762

−
×.  

21
10991

−
×.  

21
10412

−
×.  

2 21
10762

−
×.  

21
10161

−
×.  

21
10262

−
×.  

3 21
10762

−
×.  

21
10051

−
×.  

21
10232

−
×.  

4 21
10762

−
×.  

22
10589

−
×.  

21
10232

−
×.  

5 21
10762

−
×.  

21
10051

−
×.  

21
10232

−
×.  

6 21
10762

−
×.  

21
10161

−
×.  

21
10262

−
×.  

7 21
10762

−
×.  

21
10991

−
×.  

21
10412

−
×.   
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The coupled noise powers in the third and the fourth columns of Table 5.1 are the 

diagonal elements of the matrix cN  (5.5).  The detection results are shown in Figures 

5.6 and 5.7 for element separations of d = 0.5 λ and d = 0.2 λ, respectively.  The 

MUSIC spectra in these two figures are produced with two cases of noise: (i) coupled 

noise (with the uncoupled noise removed as in (5.10)), (ii) uncoupled noise only (the 

conventional case).  In these two cases, the average noise powers are made equal for 

the sake of comparison and the SNR is specified at 3 dB with respect to the average 

coupled noise power 2
cσ .  The two signals are coming from the directions of 

°°= 15and0φ  and both are on the horizontal plane ( °= 90θ ).  In Figure 5.6, the 

result obtained in [29] is also shown.   
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Figure 5.6 The MUSIC spectra for the detection of two coherent signals from 

°°= 15and0φ  using coupled noise and uncoupled noise with a seven-element dipole 

array at an SNR = 3 dB with d = 0.5λ. 

[34] 
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Figure 5.7 The MUSIC spectra for the detection of two coherent signals from 

°°= 15and0φ  using coupled noise and uncoupled noise with a seven-element dipole 

array at an SNR = 3 dB with d = 0.2λ. 

 

It can be seen that in both Figures 5.6 and 5.7, the results using the coupled noise (see 

equation (5.12)) are more accurate and have much higher peaks than the results using 

the uncoupled noise.  Furthermore, in Figure 5.6, both of the simulation cases produce 

results more accurate than the result in [34].  The reason is due to the receiving 

mutual impedances used in the mutual coupling compensation whereas the results in 

[34] were obtained using the conventional mutual impedances for the mutual coupling 

compensation. 
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In the second experiment, the sensitivity of the MUSIC DOA estimation algorithm to 

the error in the subtraction of the uncoupled noise in (5.10) is investigated.  As 

explained in Section 5.3, the current method relies on the removal of the uncoupled 

noise covariance matrix uN from the covariance matrix R.  The coupled noise power 

at each element with no spatial correlation 2
cσ  can be obtained by measuring the noise 

power of a single isolated antenna element.  Whereas uN can be either calculated or 

measured beforehand, its accurate value may be subjected to errors, leading to the 

uncoupled noise power being over or under estimated.  The effect of this is shown in 

Figures 5.8 and 5.9, where Figure 5.8 is for the case when the uncoupled noise power 

is over-estimated and Figure 5.9 is for the case when the uncoupled noise is under-

estimated.  The dipole array and the signal environment are the same as those in the 

first DOA estimation experiment and the element separation is 0.5 λ.   
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Figure 5.8 The MUSIC spectra for the detection of two coherent signals from 

°°= 15and0φ  at an SNR = 3 dB with uncoupled noise power being over-estimated. 

Dipole array is same as that in Figures 5.6 and 5.7. 
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Figure 5.9 The MUSIC spectra for the detection of two coherent signals from 

°°= 15and0φ  at an SNR = 3 dB with uncoupled noise power being under-estimated. 

Dipole array is same as that in Figures 5.6 and 5.7. 

From Figure 5.8, it can be seen that if the uncoupled noise is over-estimated, it will 

have a rather significant effect on the detection results.  There are a number of 

secondary peaks in the MUSIC spectra which indicate wrong signal directions.  The 

heights of these secondary peaks decrease with the increase in the uncoupled noise 

power over-estimation (represented by an increasing percentage of the uncoupled 

noise power being subtracted from the coupled noise power).  From Figure 5.9, it is 

seen that an under-estimation of the uncoupled noise power has the same significant 

effect as for the over-estimation case.  But the secondary peaks tend to move away 

from the two signal peaks.  From these two figures, it can be inferred that an accurate 

determination of the uncoupled noise power is very important in the proposed 

method. 
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Chapter 6. Beamforming For Wideband Compact Antenna Arrays 

in the Presence of Antenna Mutual Coupling 

 

6.1. Introduction 

A practical wideband beamforming method with a consideration of compensation for 

the mutual coupling effect between the antenna elements is introduced for uniform 

linear arrays.  It relies on the use of the system identification technique to obtain 

mathematical functions to model the variations of the mutual coupling effect and the 

beamforming weights with frequency over a wide bandwidth.  Application of this 

method to the Riblet-Chebyshev frequency- invariant beamformer, which comes with 

strong mutual coupling effect, demonstrates the importance of the mutual coupling 

consideration in wideband beamforming and the effectiveness of this method.  

 

6.2. The Method of Wideband Beamforming in the Presence of Antenna 

Mutual Coupling 

Consider an N-element uniform linear array (ULA) where N is an odd integer 1

 

 and the 

element spacing is d.  In the presence of antenna mutual coupling, the wideband 

beamforming process consists of two procedures: wideband mutual coupling 

compensation and the wideband beamforming, as shown in Figure 6.1.   

 

                                                 
1  Here the odd number of elements is required by the wideband beamforming algorithm, Riblet-
Chebyshev, to be discussed later. 
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Figure 6.1 The proposed wideband beamforming method for an N-element ULA in 

the presence of frequency-dependent antenna mutual coupling. 

 

In the wideband mutual coupling compensation procedure, the frequency-dependent 

coupled received signal voltages )()( NifVi ,,2,1, =  are compensated for the 

mutual coupling effect to produce the uncoupled signal voltages 

)()( NifU i ,,2,1, = .  To achieve this, the technique of system identification method 

in [55] is used. In essence, the method is to first calculate the receiving mutual 

impedances )( k
ij
t fZ N,,,ji, 21( =  and )ji ≠  [18], [61] between the antenna 

elements at some discrete frequency points )( Pkfk ,,2,1 =  over a target bandwidth 

B.  Then the system identification method is used to identify a group of system 

functions )(zGij  whose values are same as those of the receiving mutual impedances 

over the target bandwidth B at the discrete frequency points kf , i.e., 

 

 ),,2,1;,,2,1,()()( 2 PkNjizGfZ
kfjezijk

ij
t  === π=

,  (6.1). 

)(1 fV  )(2 fV
 

)( fVN  
 

θ  

)W()U( ff T  

Incident 
 

)(1 fU  )(2 fU  )( fU N    

)( fP  

d  

2( ) ( ) ( )j fz e
z f fπ=

=G V U

Incident Signal 
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Then the wideband mutual coupling compensation is done by the following 

transformation: 
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 (6.2) 

 

or in a matrix form: 

 

 )U()V()G( ffz fjez
=π= 2  (6.3). 

 

This is the frequency-dependent formulation corresponding to the single-frequency 

formulation for the mutual coupling compensation given in [62, eq. (5)].  It should be 

noted that in real- time beamforming, the procedure of identifying the system 

functions )(zGij  for a particular array can be done beforehand.  The identified 

functions (the coefficients of two polynomials in [55, eq. (3)]) can be stored up so that 

the real-time processing time comes from the matrix multiplication in (6.2) only.  This 

eliminates the possibility that the time-consuming system identification procedure 

would slow down the real-time beamforming operation. 

 

The uncoupled signal voltages output )()( NifUi ,,2,1, = , ideally coupling free, of 

the above compensation procedure will be processed in the second stage – the 

wideband beamforming.  Two problems have to be solved in practical wideband 
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beamforming.  The first is the change of beam pattern with frequency and the second 

is the increasing mutual coupling effect as frequency decreases, especially when the 

antenna separation is small.  The second problem has been solved with the proposed 

wideband mutual coupling procedure described above.  To solve the first problem, the 

Riblet-Chebyshev beamformer [65] which can provide a frequency- invariant (FI) 

beam pattern over a wide bandwidth is used.  More importantly, the Riblet-Chebyshev 

beamformer is specifically designed such that the antenna element separation d is 

smaller than half wavelength (λ/2) for all frequencies inside the target bandwidth B.  

This so-called compact array beamforming design avoids the possibility of grating 

lobes at the high-frequency end of the bandwidth.  Yet this design obviously leads to a 

strong mutual coupling effect between the antenna elements in practical 

implementations, especially at the low-frequency end of the bandwidth.  This strong 

mutual coupling effect can be almost totally removed so that the Riblet-Chebyshev 

beamforming method can be applied in a real antenna array. 

 

6.3. Numerical Examples and Discussions 

To demonstration this proposed wideband beamforming method, consider an antenna 

array consisting of nine (N = 9) half-wave dipole elements.  The antenna element 

separation d is fixed at 0.2 0λ where 0λ  is the wavelength at the centre frequency 0f  

( 00 fcλ = ) of the target bandwidth B.  The target bandwidth B is to be from 050 f. to 

051 f. , i.e., a 100% bandwidth with respect to the central frequency 0f .  The 

corresponding change of the antenna element separation d over the target bandwidth B 

is then from 0.1 0λ  to 0.3 0λ .  With this range of antenna element separations, the 

mutual coupling is very strong.  Using the system identification method in [55], the 
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system functions in (6.2) are identified as follows:  

 

 
1 2 3 4

12 1 2 3 4

4.33 2.404 9.682 5.906( )
1 0.1121 0.2199 0.8027 0.09934

z z z zG z
z z z z

− − − −

− − − −

− − − −
=

− − + −
 (6.4) 

 

 
1 2 3 4

13 1 2 3 4

0.697 4.135 5.042 1.701( )
1 1.305 1.338 0.493 0.1969

z z z zG z
z z z z

− − − −

− − − −

− + −
=

− + − +
 (6.5) 

 

 
1 2 3 4 5

14 1 2 3 4 5

0.2831 1.355 4.191 5.137 2.183( )
1 1.802 1.94 1.155 0.472 0.1308

z z z z zG z
z z z z z

− − − − −

− − − − −

− + − + −
=

− + − + −
 (6.6) 

 

 54321

54321

15 0.1731 0.1422  0.3157  0.6305  0.7477  1
3.032  4.869  3.395  1.526  0.4532)( −−−−−

−−−−−

+−++−
+−+−

=
zzzzz

zzzzzzG  (6.7) 

 

 
654321

654321

16 0.1372  0.4137  1.104  1.609  2.222  1.642  1
1.052  1.307 0.3694  0.1391  0.1539  0.06923)( −−−−−−

−−−−−−

+−+−+−
+−++−

=
zzzzzz
zzzzzzzG (6.8) 

 

7654321

7654321

17 0.1381  0.3875  0.9631  1.094  1.095  0.2776  0.6998  1
2.651  5.74 6.098  4.487  2.423  0.8677  0.1904)( −−−−−−−

−−−−−−−

+−+−++−
+−+−+−

=
zzzzzzz

zzzzzzzzG  (6.9) 

 

7654321
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18 0.06339  0.3757  1.116 2.295  3.258  3.484  2.327  1
1.256  3.242  4.096  3.346  1.899  0.6946  0.1424)(

−−−−−−−

−−−−−−−

−+−+−+−
+−+−+−

=
zzzzzzz
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1 2 3 4 5 6 7 8

19 1 2 3 4 5 6 7 8

0.02331 0.2041 0.7653 1.778 2.852 3.231 2.404 0.8609( )
1 2.599 4.351 4.749 4.009 2.494 1.193 0.3782 0.07641

z z z z z z z zG z
z z z z z z z z

− − − − − − − −

− − − − − − − −

− + − + − + − +
=
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(6.11) 

 

The remaining systems functions in (6.2) are generated from those in (6.4)-(6.11) by 

using the following method: 
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 . (6.12) 

 

Note that the equalities in (6.4) hold only for dipole antenna elements but not a 

general result.  From (6.4) to (6.11), it can be seen that the larger the antenna element 

separation, the higher is the power of the polynomials in the identified system 

function.  This is due to the more rapid variation of the corresponding receiving 

mutual impedance with frequency for two farther separated antenna elements.  The 

convergence of the system function )(zG12  to 19 ( )G z  with respect to the power of its 

polynomials is shown in Figures 6.2 to 6.17.   

 

In Figure 6.2 to 6.5, it can be seen that the real part and the imaginary part of )(12 zG  

and )(13 zG converge very quickly and a power of 4 is sufficient to produce the system 

functions with negligible errors compared to the data points (21 data points).  

However, as the elements are separated further, higher power is needed to produce the 

system functions with negligible errors, as shown in Figure 6.6 to 6.15.  In Figure 

6.16 and 6.17, it can be seen that both real part and the imaginary part of 19 ( )G z  have 

to converge at a power of 8 to produce almost negligible errors.  Once all the system 

functions are identified, the frequency-dependent mutual coupling effect can be 

compensated as in (6.2).  Figures 6.18 to 6.25 show the frequency responses of the 
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transfer functions )(zG12  to )(zG18 . 
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Figure 6.2 The frequency response of the real part of fjez
zG π2)(12 =

from 050 f.  to 051 f. . 
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Figure 6.3 The frequency response of the imaginary part of fjez
zG π2)(12 =

from 050 f.  to 

051 f. . 
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Figure 6.4 The frequency response of the real part of fjez
zG π2)(13 =

from 050 f.  to 051 f. . 
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Figure 6.5 The frequency response of the imaginary part of fjez
zG π2)(13 =

from 050 f.  to 

051 f. . 
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Figure 6.6 The frequency response of the real part of fjez
zG π2)(14 =

from 050 f.  to 051 f. . 
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Figure 6.7 The frequency response of the imaginary part of fjez
zG π2)(14 =

from 050 f.  to 

051 f. . 
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Figure 6.8 The frequency response of the real part of fjez
zG π2)(15 =

from 050 f.  to 051 f. . 
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Figure 6.9 The frequency response of the imaginary part of fjez
zG π2)(15 =

from 050 f.  to 

051 f. . 
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Figure 6.10 The frequency response of the real part of fjez
zG π2)(16 =

from 050 f.  to 

051 f. . 
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Figure 6.11 The frequency response of the imaginary part of fjez
zG π2)(16 =

from 050 f.  
to 051 f. . 
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Figure 6.12 The frequency response of the real part of fjez
zG π2)(17 =

from 050 f.  to 

051 f. . 
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Figure 6.13 The frequency response of the imaginary part of fjez
zG π2)(17 =

from 050 f.  
to 051 f. . 
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Figure 6.14 The frequency response of the real part of fjez
zG π2)(18 =

from 050 f.  to 

051 f. . 
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Figure 6.15 The frequency response of the imaginary part of fjez
zG π2)(18 =

from 050 f.  
to 051 f. . 
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Figure 6.16 The frequency response of the real part of 219 ( ) j fz e
G z π=

 from 050 f.  to 

051 f. . 
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Figure 6.17 The frequency response of the imaginary part of 219 ( ) j fz e
G z π=

 from 050 f.  
to 051 f. . 
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Figure 6.18 The frequency response of )(zG12 from 050 f.  to 051 f. . 
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Figure 6.19 The frequency response of )(zG13 from 050 f.  to 051 f. . 
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Figure 6.20 The frequency response of )(zG14 from 050 f.  to 051 f. . 
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Figure 6.21 The frequency response of )(zG15 from 050 f.  to 051 f. . 
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Figure 6.22 The frequency response of )(zG16 from 050 f.  to 051 f. . 
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Figure 6.23 The frequency response of )(zG17 from 050 f.  to 051 f. . 
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Figure 6.24 The frequency response of )(zG18 from 050 f.  to 051 f. . 
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Figure 6.25 The frequency response of )(19 zG from 050 f.  to 051 f. . 

 

The uncoupled signal voltages ( ),  ( 1, 2, , )iU f i N=   output from the wideband 

mutual coupling compensation procedure are now passed to the next step of wideband 
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beamforming by finding the weights of the Riblet-Chebyshev beamformer.  This step 

can also be accomplished by using the system identification method as illustrated in 

[55].  The Riblet-Chebyshev beamformer is known to provide the narrowest 

beamwidth over a wide frequency bandwidth.  For the nine-element dipole antenna 

array, the Riblet-Chebyshev weights at discrete frequency points, kf , with a sidelobe 

level of −30 dB are obtained as shown in Table 6.1.  These weights are symmetrical 

with respect to the central element of the antenna array and the weights in Table 6.1 

are thus normalized with respect to 5w .   
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Table 6.1 Riblet-Chebyshev weights over the bandwidth 050 f.  to 051 f. . 

0( )kf f  91 ww =  82 ww =  73 ww =  64 ww =  5w  

0.50 -0.8135 0.4278 -0.1332 0.0189 1 

0.55 -0.8162 0.4337 -0.1375 0.02 1 

0.60 -0.8192 0.4402 -0.1423 0.0213 1 

0.65 -0.8223 0.4472 -0.1476 0.0229 1 

0.70 -0.8257 0.4548 -0.1535 0.0247 1 

0.75 -0.8293 0.4631 -0.16 0.0268 1 

0.80 -0.8329 0.4719 -0.1672 0.0292 1 

0.85 -0.8367 0.4813 -0.175 0.0321 1 

0.90 -0.841 0.491 -0.184 0.0354 1 

0.95 -0.8442 0.502 -0.1927 0.0393 1 

1.00 -0.8476 0.5133 -0.2025 0.0439 1 

1.05 -0.8506 0.5253 -0.213 0.0494 1 

1.10 -0.8528 0.5381 -0.2239 0.0558 1 

1.15 -0.8537 0.5517 -0.2352 0.0634 1 

1.20 -0.8526 0.566 -0.2464 0.0725 1 

1.25 -0.8486 0.5813 -0.2572 0.0832 1 

1.30 -0.8402 0.5976 -0.267 0.0959 1 

1.35 -0.8256 0.6149 -0.2747 0.1109 1 

1.40 -0.8023 0.6332 -0.2792 0.1285 1 

1.45 -0.7673 0.6524 -0.2787 0.1489 1 

1.50 -0.7169 0.6724 -0.2712 0.1721 1 

 

 

With the weights in Table 6.1 as data points, the system functions for Riblet-

Chebyshev weights are identified as follows: 
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Figures 6.26 to 6.29 show the frequency responses of the transfer functions )(zW1  to 

)(zW4 . 
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Figure 6.26 The frequency response of )(zW1 from 050 f.  to 051 f.  where 

)()( zWzW 91 = . 
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Figure 6.27 The frequency response of )(zW2 from 050 f.  to 051 f.  where 

)()( zWzW 82 = . 
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Figure 6.28 The frequency response of )(zW3 from 050 f.  to 051 f.  where 

)()( zWzW 73 = . 
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Figure 6.29 The frequency response of )(zW4 from 050 f.  to 051 f.  where 

)()( zWzW 64 = . 

 

The Riblet-Chebyshev beamformer output is then: 

 

 2( ) ( ) j f
T

z e
f z π=

U W  (6.17). 

 

Based on (6.17), the Riblet-Chebyshev beam patterns for a signal incident at an angle 

0θ = °  is shown in Figure 6.30 over the target bandwidth B.  The corresponding beam 

patterns without compensation for the mutual coupling effect is shown in Figure 6.31.   
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Figure 6.30 The mutual-coupling-effect compensated Riblet-Chebyshev beam 

patterns over the normalized frequency band of 050 f. to 051 f.  with the signal incident 

at 0θ = ° . 
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Figure 6.31 The corresponding Riblet-Chebyshev beam patterns to Figure 6.15 but 

without mutual coupling effect compensation. 
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It can be seen the serious effect of the mutual coupling and the importance of the 

compensation procedure.  Figures 6.30 and 6.31 show that with a small antenna 

element separation (0.1λ0 to 0.3λ0) over the bandwidth B, only mutual-coupling-effect 

compensated signals can produce the correct frequency-invariant (FI) beam patterns.  

A further illustration is demonstrated in Figures 6.32 to 6.35 which show that the 

Riblet-Chebyshev beam patterns with and without mutual coupling compensation for 

signals incident at angles of °= 30θ  and °60  respectively. 
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Figure 6.32 The mutual-coupling-effect compensated Riblet-Chebyshev beam 

patterns over the normalized frequency band of 050 f. to 051 f.  with the signal incident 

at °= 30θ . 
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Figure 6.33 The corresponding Riblet-Chebyshev beam patterns to Figure 6.17 but 

without mutual coupling effect compensation.  
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Figure 6.34 The mutual-coupling-effect compensated Riblet-Chebyshev beam 

patterns over the normalized frequency band of 050 f. to 051 f.  with the signal incident 

at 60θ = ° . 
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Figure 6.35 The corresponding Riblet-Chebyshev beam patterns to Figure 6.19 but 

without mutual coupling effect compensation. 

 

Figures 6.33 and 6.35 depict that the mutual coupling effect is even more detrimental 

than the situation in Figure 6.31.  However, Figure 6.32 and 6.34 indicate that the 

mutual coupling effect is almost completely removed, resulting in normal and well-

behaved Riblet-Chebyshev beam patterns over the target bandwidth. 
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Chapter 7. Conclusion and Discussions 
 

7.1. Conclusion 

A dielectric- loaded bifilar backfire helical antenna is proposed which has been 

designed and studied both theoretically and experimentally.  By using two different 

dielectric materials: Teflon with a dielectric constant of 2.1 and Macor with a 

dielectric constant of 5.8, the volume of the antenna could be reduced by 50% and 

70%, respectively.  The bandwidth and the maximum gain of the antenna were shown 

to be not severely affected as the dielectric constants are relatively small.  Making use 

of the significant reduction in antenna size and the bifilar structure without the ground 

plane, it was demonstrated that the dielectric- loaded bifilar backfire helical antenna 

could be used to construct very compact helical antenna arrays for high-gain satellite 

communications. 

 

The problem of mutual coupling in transmitting compact antenna arrays was also 

investigated and an effective method was suggested to compensate for the mutual 

coupling in the coupled array patterns.  By using the mutual impedances of the 

antenna elements, it is possible to design compensation networks that can remove the 

distortion on array patterns due to the mutual coupling effect.  The compensated array 

patterns enable us to predict the radiation characteristics of compact antenna arrays 

using the principle of pattern multiplication based on their ideal and isolated element 

patterns.  The equations for the construction of such compensation networks are 

clearly stated.  With these compensation networks, further conventional port-

decoupling and matching circuits can be designed and connected to their inputs to 

achieve maximum power transfer from the source to the antennas.  Numerical 
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examples on the dipole and monopole arrays have demonstrated the validity and 

accuracy of the method. 

 

A novel method for modeling correlated noise in receiving antenna arrays for DOA 

estimation in the presence of antenna mutual coupling is also introduced.  By dividing 

the array noise into a coupled and an uncoupled component, it significantly simplifies 

the treatment of noise in DOA estimation.  While the uncoupled noise power can be 

determined from the terminal circuitry of the antenna elements, the antenna mutual 

coupling in the coupled noise component can be decoupled in the same way as the 

signals.  This results in a very simple but effective MUSIC DOA estimation 

algorithm. Simulation results have confirmed the validity and effectiveness of this 

new method. 

 

An effective method of wideband beamforming in the presence of mutual coupling for 

compact antenna arrays is also demonstrated.  It relies on the use of the system 

identification technique to obtain mathematical functions to model the variations of 

the mutual coupling effect and the beamforming weights with frequency over a wide 

bandwidth.  The results reveal the importance of the consideration of the mutual 

coupling effect in wideband beamforming and demonstrate the effectiveness of this 

method in tackling this effect. 

 

7.2. Limitations on current studies and proposed future works 

The construction of the compensation networks and design of real time processing of 

beamforming operation for compact antenna arrays are not in the scope of this 
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research as they require extensive work and experimentation. Hence, published works 

are extensively relied upon to ensure that these designs are practically possible for 

compact antenna array applications. For future works, it would be useful to 

investigate the effectiveness of the compensation networks and real time processing 

of beamforming operation for compact antenna arrays. 

 

The improved noise modeling which achieved a simple and effective MUSIC DOA 

estimation algorithm is also suggested. However, it is not possible to verify the 

improved noise modeling experimentally due to the lack of advanced noise measuring 

facilities in our university labs. Therefore, this project relies on results in the existing 

publications and comparisons of the results in the project to those in the published 

papers extensively. For future works, it would be worthwhile to verify the improved 

noise modeling experimentally once such facilities are available in our university labs. 
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