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Abstract

Engineering is a high art that balances modeling the physical world and design-

ing meaningful solutions based on those models. Array signal processing is no

exception, and many innovative and creative solutions have come from the field

of array processing. However, many of the innovative algorithms that perme-

ate the field are based on a very simple signal model of an array. This simple,

although powerful, model is at times a pale reflection of the complexities in-

herent in the physical world, and this model mismatch opens the door to the

performance degradation of any solution for which the model underpins. This

dissertation seeks to explore the impact of model mismatch upon common array

processing algorithms. To that end, this dissertation brings together the dis-

parate topics of electromagnetics and signal processing. Electromagnetics brings

a singular focus on the physical interactions of electromagnetic waves and physi-

cal array structures, while signal processing brings modern computational power

to solve difficult problems. We delve into model mismatch in two ways; first, by

developing a blind array calibration routine that estimates model mismatch and

incorporates that knowledge into the reiterative superresoluiton (RISR) direction

of arrival estimation algorithm; second, by examining model mismatch between

a transmitting and receiving array, and assessing the impact of this mismatch

on prolific direction of arrival estimation algorithms. In both of these studies we

show that engineers have traded algorithm performance for model simplicity, and

that if we are willing to deal with the added complexity we can recapture that

lost performance.
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Chapter 1

Introduction

Modern microwave systems are remarkably capable, and much of that capability comes

from innovation in array processing. But this innovation is precariously underpinned by a

simplified model of reality that at times poorly reflects the world in which a real system must

operate. This body of work explores the models upon which many processing algorithms

are built and seeks to quantify the impacts when these models fail to adequately describe

the intricacies of the real world. This work develops a unique enhancement for the RISR

algorithm that estimates model mismatch and reincorporates this knowledge into RISR to

improve performance. It also brings fresh perspective to the area of array mutual coupling

by considering the effect microwave hardware has on mutual coupling and explores how this

can perturb the common array model. We will show that the impacts of model mismatch

are wide ranging and the principals explored in this work are relevant to any application

that involves an array of antennas. We start in Section 1.1 by surveying the impact of model

mismatch in array processing before focusing in on Direction of Arrival (DoA) estimators, in

Section 1.2. Section 1.3 brings together model mismatch and DoA estimation and presents

a high level explanation of the methodology used in this dissertation. Finally, Section 1.4

outlines this body of work and provides a quick reference to each chapter.
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1.1 Model Mismatch

An array processing algorithm is only as good as its underlying model. As we will see many

array processing methods are based on idealized array models and are adversely impacted

when this idealized model fails to materialize in real systems. Once a system is implemented

it is subject to a number of forces that cause the true array response to deviate from the

ideal array response. This includes, but is not limited to, factors such as channel gain/phase

mismatch, mutual coupling and sensor placement uncertainty. Other effects such as man-

ufacturing tolerances in producing the individual array elements and even environmental

factors can also play a role in perturbing the true array manifold. In this section we examine

common array processing algorithms and their response to model mismatch. We will specif-

ically look at beamforming, direction of arrival estimation, as well as, take a closer look at

some of these perturbing factors and the array calibration processes that attempt to quantify

and remove these effects.

One of the most fundamental roles array processing plays is to produce a desired ra-

diation pattern directed in a particular direction, commonly refereed to as beamforming.

Beamforming can be accomplished by viewing an array as a sampling of a continuous aper-

ture distribution either in a classical sense with a prescribed pattern[1, Chap. 3] or in an

adaptive sense where the pattern is modified based on the signal environment [1, Chap. 6]. In

either sense, the efficacy of beamforming is generally evaluated by the ability of the beam-

former to produce a desired pattern, accurately place nulls, and cancel interference. The

performance of a beamformer, either classical or adaptive, is going to be degraded if the

model of the array’s performance does not match its true performance. The impact of model

mismatch has been studied in circular arrays [2], often within the context of cellular base

stations [3, 4], as well as for linear arrays [5, 6]. In addition to studying the impact of model

mismatch, a number of works have strived to compensate for mismatch. Many methods first

seek to quantify the model mismatch before using this information to improve beamforming

[7, 8]. Some have attempted to create model mismatch robust beamformers that leverage the
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regular structure inherent to mutual coupling [9, 10], while others have worked on optimal

beamforming once the mutual coupling is known[11]. As fundamental as beamforming is, it

is not the only facet of array processing that is impacted by model mismatch.

Direction of arrival estimation is another predominant area within array processing. In

general, direction of arrival estimation algorithms attempt to ascertain the number and

angle of incidence of a set of spatially diverse signals. There are a number of existing DoA

estimation techniques. Following directly from beamforming, a common method known as

beamscanning uses beamforming techniques to scan a desired range of spatial angles [1,

p. 1140–1155]. Eigen-methods such as MUSIC and ESPRIT leverage the eigen-structure

of a Sample Covariance Matrix (SCM) to produce a DoA estimate [1, p.1155–1189]. More

recent work makes use of a recursive minimum mean-squared error framework to estimate

the DoA [12, 13]. Classic beamformers are susceptible to model mismatch [1, p.66–70] as are

many adaptive beamformers [14]. While the options to mitigate model mismatch are limited

for classic beamformers, adaptive beamformers such as the Minimum Variance Distortionless

Response (MVDR) beamformer commonly search over a constrained array performance curve

to minimize the received signal variance [15, 16, 17]. Eigen-methods that require explicit

knowledge of the array model, such as MUSIC, are greatly impacted when the true array

response deviates from the assumed model [18, 19]. To overcome this sensitivity to model

mismatch some works attempt to estimate the model mismatch [20, 21]. Eigen-methods that

do not require explicit knowledge of the array model, such as ESPRIT, are also impacted

by model mismatch if the mismatch undermines their underlying assumptions [22]. Like

the MUSIC-based methods, compensation for model mismatch for ESPRIT often involves

modeling and quantifying the mismatch [23, 24]. The Reiterative Superresolution (RISR)

algorithm was designed to be robust to model mismatch and explicitly attempts to leverage

model uncertainty within the algorithm [13, p. 336]. Clearly, model mismatch can degrade

the performance of many direction of arrival estimation algorithms, and much research has

been devoted to designing algorithms that estimate, compensate or otherwise be made robust
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to the effects of model mismatch.

The last array processing category we will examine is array calibration. Unlike beam-

forming and direction of arrival estimation for whom model mismatch is often a secondary

consideration, calibration algorithms are principally focused on quantifying model mismatch.

Much of the model mismatch in antenna arrays comes from sources such as device non-

uniformities resulting channel gain/phase variations [1, p. 67], sensor placement tolerances

[1, p.67–70] and mutual coupling between elements [25, p. 396–397]. Although some mis-

match can be attributed to thermal effects [26, 27]. Almost ironically, many calibration

methods attempt to model the model mismatch by making assumptions about the form of

the solution and derive parameters from this model. Such techniques have been developed

that focus on channel gain/phase variations [28, 29] as well as mutual coupling [30, 31] and

sensor placement [32]. Some works have also focused on joint estimation of these effects

[33] while others have developed methods that are model independent [34]. Model mismatch

affects every aspect of array processing and care must be taken to understand the limits of

our knowledge of an array or else we will often find the array is not performing up to our

expectations.

1.2 Direction of Arrival Estimation

Direction of arrival estimation algorithms play an important role in many modern systems.

The trend in communication systems is away from sector antennas that illuminate a large

coverage swath, which results in a large percentage of the transmitted power being wasted,

towards adaptive beamforming to individually illuminate users. This requires specific knowl-

edge of the user’s location or an estimation of the direction of arrival of each user’s signal,

which is typically not known. On the other hand, radars typically know the direction of

arrival of its intended target, as they measure the range to a target by transmitting a signal

in a specific direction and measure the return echo from that same angle. However, DoA
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estimation algorithms play an important role in mitigating interference sources such as jam-

mers and clutter who are not limited to the mainbeam and thus the DoA is unknown. In

this section we take a high level look at several classes of DoA algorithms and highlight the

different methodology of some well known algorithms.

The first, and probably most intuitive, class of DoA estimation algorithms we will ex-

amine can loosely be described as beamscanning methods. These methods essentially use

beamforming techniques to sweep a beam over a desired set of angles and records the re-

ceived signal variance as a function of angle. A decision is then made to pick the DoA of

the incident signals, typically either by some detection threshold or by picking a number of

peaks based on the expected number of incident signals. While any method can be used to

do the beamforming step, the Capon beamforming method [35] is very widely used [36, 37].

While beamscan techniques are relatively intuitive and have a low computational cost, they

generally do not perform as well other techniques.

The next group of DoA estimators we will examine leverage the eigen-structure of a

sample covariance matrix. Eigen-method DoA estimators include both MUSIC [38] and

ESPRIT [39]. MUSIC takes advantage of the orthogonality between a signal vector and a

noise subspace eigenvector to estimate the direction of arrival. In contrast, ESPRIT leverages

the phase shift between two identical subarrays to do the same. Both of these methods show

performance improvement over beamscan methods[40, 41], but require the number of incident

signals to be known to perform properly.

The last DoA estimator we examine is RISR [12, 13]. The RISR algorithm is a recursive

minimum mean-squared error DoA estimator that does not use a sample covariance matrix

in part by leveraging knowledge of the array response. This allows RISR to avoid the sample

support issues in forming a sample covariance matrix that limits eigen-method algorithm’s

performance when sample support is low. RISR is much younger then the DoA methods

mentioned thus far, but it is already seeing use in radar system applications [42]. Regardless

of the method, direction of arrival estimators play an important role in modern systems and
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their performance will be examined in detail as part of this dissertation.

1.3 Proposed Approach

This dissertation delves into the realm of array model mismatch within the context of direc-

tion of arrival estimation in an effort to show how traditional simplifying assumptions are

limiting the performance of array processing algorithms. Engineers are virtually surrounded

by models of the physical world and they use these models to develop useful and meaningful

systems. For better, or for worse, the world is very complex and difficult to model. In the

few cases that engineering models capture all, or even most, of the intricacies of the real

world, working with these models can be difficult and intractable. Engineers therefore de-

velop simplifying assumptions that remove complexity in exchange for tractability. However,

when they make this trade-off, engineers are also giving up performance for tractability, as

any design decisions based on the simplified model is no longer firmly rooted in the physical

world, but rather a pale facsimile of the real world. This body of work seeks to illustrate this

performance trade-off and to develop techniques to deal with the added complexity necessary

to recapture some of that lost performance. This will be accomplished first by developing

a blind array calibration technique paired with the RISR DoA estimation algorithm that is

capable of estimating the individual channel gain/phase mismatch and the mutual coupling

between elements. In estimating these model mismatch parameters the performance of RISR

can be enhanced. Subsequently, model mismatch is examined in the context of transmit ar-

ray performance verses receive array performance, and how substituting one for the other

can degrade the performance of DoA estimators.

Blind array calibration sits firmly at the intersection of model mismatch and direction of

arrival estimation. Array calibration, in general, attempts to quantify some of the physical

realities that arise from implementing an array, and pairing this process with a direction

of arrival estimator can be mutually beneficial. The calibration process requires accurate
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knowledge of the location of the signals of incidence, while the DoA algorithm can be im-

proved by incorporating the calibration estimates into a signal model that is aligned more

closely with reality. The calibration method developed herein uniquely builds upon RISR’s

current model mismatch robustness and is unique in that other blind calibration methods

require the use of a sample covariance matrix. By avoiding a SCM dependence our cali-

bration method can operate in low sample support environments, making it relevant and a

principal choice for such environments. We will also show that the new calibration enhance-

ment has some robustness to coherent sources, and so is of interest to systems that frequency

encounter multipath. After developing the method we will show that it is effective both at

improving RISR’s DoA estimates, as well as, estimating the channel gain/phase variations

and array mutual coupling. We will also explore the convergence region of the calibration

method using Monte Carlo trials and propose several methods to extend the convergence

region by incorporating prior calibration data.

Model mismatch is not always caused by physical realities that calibration can measure.

Sometimes model mismatch is caused by the misapplication of theory on the part of engineers.

We study this type of mismatch by examining how the performance of a transmitting array

can differ from the same array’s receive performance. We will show that this mismatch is

caused by interactions within front-end transceiver hardware that results in mode dependent

loading on the array elements. This approach is unique in its consideration of hardware

effects as existing literature simplifies the hardware down to Thévenin circuit approximations

that masks this nuance. This new approach is interesting as it highlights this model over-

simplification and is relevant anywhere that such an approximation has been made. In

addition to identifying the cause of this type of model mismatch, this work shows that the

mismatch can degrade the performance of some DoA estimation algorithms.
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1.4 Document Overview

The rest of this body of work is divided into four main chapters. In Chapter 2 we delve

into the theory and practice of direction of arrival estimation. Many of the estimation

algorithms review Chapter 2 will reemerge throughout the rest of this work and they form

the foundation of much of this dissertation. In Chapter 3 we review array calibration in depth

before developing the RISR Array Calibration Enhancement (RACE) algorithm. RACE is a

blind array calibration routine that pairs with RISR to simultaneously produce the direction

of arrival of incident signals and an estimation of the mutual coupling and channel gain/phase

variations. Chapter 4 investigates the impact of substituting the transmit array manifold

in place of the receive array manifold on direction of arrival estimation algorithms. Finally

Chapter 5 draws conclusions and maps out future work.
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Chapter 2

Radar Array Processing

Array processing plays an ever growing role in modern radar systems, and in this chapter

we examine some common direction of arrival estimators. While the topic of radar array

processing is much more expansive than direction of arrival estimation, much of the work

in the following chapters examines the impact of array model mismatch within the context

of direction of arrival estimators. But before we can explore these intricacies it’s impor-

tant to have a grasp of these fundamental algorithms. To that end we will look at the

MUSIC algorithm in Section 2.1.1, the ESPRIT algorithm in Section 2.1.2 and finally the

RISR algorithm in Section 2.1.3. The first two algorithms are eigen-methods that leverage

the eigen-structure of a sample covariance matrix, while the final algorithm is a recursive

minimum mean-squared error. All three methods are based on an array signal model for Q

signals incident upon an N element array

y �Ax�v, (2.1)

where x is a Q length vector of incident signals, A is an N �Q array manifold and v is

additive noise. The array manifold composed of Q N -length steering vectors

A � �a�ψ1� a�ψ2� � a�ψQ�� (2.2)
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that describe each element’s response to the ith signal arriving from direction ψi. Each

algorithm is then unique in how it derives ψi from the sampled array response y.

2.1 Direction of Arrival Estimation

In this section we consider the basis of operation for three DoA estimation algorithms. In

Sections 2.1.1 and 2.1.2 we examine some eigen-based DoA estimation methods by reviewing

the MUSIC and ESPRIT algorithms. Section 2.1.3 then delves into the RISR recursive

minimum mean-squared error DoA estimator. These algorithms form a foundation for much

of this dissertation and this section servers as an introduction to the respective algorithms.

2.1.1 MUSIC

The first direction of arrival estimator we consider is the Multiple Signal Classification (MU-

SIC) algorithm. MUSIC is an eigen-based DoA estimator that leverages orthogonality of the

signal and noise subspaces of the sample covariance matrix. We start by forming a covariance

matrix for each term in (2.1) where

Rx �
Q

Q
i�1
αia�ψi�aH�ψi�, (2.3)

where αi is the amplitude of the ith signal, Rv is then

Rv �QvvH . (2.4)

Rewriting (2.1) in terms of the covariance matrix then defines the sample covariance matrix

Ry �Rx�Rv. (2.5)
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Taking the eigendecomposition of the sample covariance matrix produces a set of eigenvalues

and eigenvectors such that

Ry �
Q

Q
i�1
λiuiuHi �

N

Q
i�1
σ2
i uiu

H
i , (2.6)

where it has been assumed that v is additive white noise with noise variance σ2. Rearranging

the summation limits to be non-overlapping brings us to your final format

Ry �
Q

Q
i�1
�λi�σ2

i �uiuHi � N

Q
i�Q�1

σ2
i uiu

H
i . (2.7)

From (2.7) we can see the sample covariance matrix is spanned by two orthogonal subspaces,

a signal subspace spanned by

Us � �u1 u2 � uQ� (2.8)

and a noise subspace spanned by

Un � �uQ�1 uQ�2 � uN� (2.9)

These orthogonal subspaces make up the crux of the MUSIC algorithm.

MUSIC leverages the orthogonality of the sample covariance matrix by recognizing that

the projection of a signal vector into the noise subspace will be identically zero

aH�ψi�Un � 01�N�Q. (2.10)

where 01�N�Q is a vector of zeros. Since ψi is the unknown we seek to find, MUSIC forms a

test signal vector a�ψ� defined over all ψ to project into the noise subspace

J�ψ�MUSIC �

N

Q
i�Q�1

SaH�ψ�uiS2. (2.11)

Q minima of (2.11) can then be found, or conversely a pseudo-spectrum of 1~J�ψ�MUSIC can

be plotted against ψ and Q maximums can be found.
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2.1.2 ESPRIT

The Estimation of Signal Parameter Via Rotational Invariance Techniques (ESPRIT) is the

second DoA estimation algorithm we consider. ESPRIT, like MUSIC, is an eigen-based

method, but unlike MUSIC ESPRIT does not explicitly depend on knowledge of the array

manifold. It does this in part by leveraging the fact that two arrays, separated by a small

distance, incident upon by the same signal will see phase shift in the incident signal that is

dependent on the arrival angle. ESPRIT fundamentally divides an array into two subarrays

and looks for this phase shift between the signals received by each array. We start by

examining this subarray geometry, before delving into the ESPRIT methodology.

While there are many ways to subdivde an array, for the sake of brevity we will consider

the N element array in Figure 2.1 that has been subdivided into two Ns � N � 1 length

subarrays that are offset by a single element spacing. We define a pair of selection matrices

Js1 � �INs�Ns S 0Ns�1� (2.12)

and

Js2 � �0Ns�1 S INs�Ns� (2.13)

that can be used to relate the array manifold of the full array to the array manifold of either

subarray as

As1 � Js1A (2.14)

and

As2 � Js2A. (2.15)

We can now express the phase shift relationship between the two subarrays as

As1 �As2Φ, (2.16)
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where Φ is the phase shift at each angle such that

Φ � diag�ejdψ1 ejdψ2 � ejdψQ ,� (2.17)

We pause here to note that this phase shift relationship is present not only for the array man-

ifolds but also for the eigenvectors of the signal subspace. The signal subspace eigenvectors

can be related as

Us1Ψ �Us2, (2.18)

where the elements of Φ are the eigenvalues of Ψ. It should also be noted that the signal

subspace eigenvectors Us1 and Us2 are related to the array signal subspace eigenvectors by

the same selection matrices Js1 and Js2 used earlier to relate the array manifolds.

With all the basic concepts in place we can now examine the ESPRIT algorithm. ES-

PRITS starts by forming a sample covariance matrix and performing an eigendecompostion,

dividing the resulting eigenvectors into a signal and noise subspace as seen in (2.7). It then

projects the signal subspace onto the subarrays using (2.12) and (2.13) to form (2.18). Ma-

trix Ψ in Equation (2.18) can then be solved in a number of ways, although least-squares

and total least-squares are predominant. Once Ψ is known, an eigendecompostion is per-

formed to obtain the eigenvalues, which are the complex values seen in (2.17), and the DoA

estimates are derived from the argument of each eigenvalue.

ESPRIT produces a direction of arrival estimate without explicit knowledge of the array

manifold, by assuming the two subarrays have identical manifolds. Like MUSIC it is based

on the eigen-structure of a sample covariance matrix. And in practice one must know the

number of incident signals to correctly form the signal subspace.

2.1.3 RISR

The ReIterative Super Resolution (RISR) algorithm [12, 13] may be applied to a wide variety

of antenna array geometries and unlike MUSIC and ESPRIT does not depend on the eigen-
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Figure 2.1: ESPRIT subarray geometry

structure of a sample covariance matrix. MUSIC and ESPRIT also need to know the number

of incident signals Q, in practice Q is estimated prior to the beginning of MUSIC or ESPRIT.

Rather than relay on knowledge of Q, RISR forms an N �M array manifold withM steering

vectors

A � �a�0�,a�ψ∆�, . . . ,a��M �1�ψ∆��. (2.19)

The matrix A contains M steering vectors denoted by a�mψ∆� that are equally spaced over

2π at increments of ψ∆ � 2π~M . The vector x is M �1 and contains complex amplitudes

representing the underlying source signals and the additive noise v is an N �1 vector. Using

this method M AAQ and x is typically sparse. The RISR algorithm calculates an M �N

adaptive filter bank W by minimizing the cost function

JRISR �E�Yx�WHyY2� (2.20)

that has a well known Minimum Mean-Square Error (MMSE) solution

W � �E�yyH���1E�yxH�. (2.21)

By relying on an assumed model of the array response Â, (2.21) can be simplified by

substituting (2.1) into (2.21) resulting in

W � �ÂE�xxH�ÂH
�R��1ÂE�xxH�, (2.22)
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where R � E�vvH�. The derivation of RISR [13] then assumes no temporal correlations

between incident signals, subsequently enforcing this assumption by defining a spectral power

distribution matrix

P �E�xxH�bIM�M , (2.23)

where IM�M is an M �M identity matrix and b is the Hadamard product. The assumption

of no temporal correlation was made in [13] to facilitate a mathematically tractable solution.

However, it was also shown in [13] that RISR still performs well when temporal correlation

between sources is present.

RISR can be extended to L time samples by letting

Y � �y�0�,y�1�, ...,y�L�1�� (2.24)

with associated

X � �x�0�,x�1�, ...,x�L�1��, (2.25)

and thus implementing (2.23) as

P �

<@@@@>
1
L

L�1
Q
τ�0

X�τ�XH�τ�=AAAA?bIM�M . (2.26)

Substituting (2.23) and (2.26) into (2.22) then yields

W � �ÂPÂH
�R��1ÂP. (2.27)

RISR also has a build in tolerance for model uncertainty. This is accomplished by the

addition of a model noise loading factor

Rz � σ
2
zIM�M b�APAH� , (2.28)
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where σz is the model noise variance. It was shown by Blunt [13] that this additional signal

dependent regularization term to the matrix inversion in (2.27) allows for R to be reduced,

improving the sensitivity of the RISR algorithm. Including (2.28) in (2.27) yields

W � �ÂPÂH
�αR�Rz��1ÂP. (2.29)

Where 0 @ α @ 1 is the scaling factor on the noise covariance matrix. The spatial spec-

trum x and the MMSE filter bank W are thus estimated in an alternating manner [13].

RISR initially estimates the array input x̂ using a matched filter bank as x̂ � ÂHy then

sequentially estimates the spectral power distribution P̂ by replacing X with X̂ in (2.26),

and subsequently the MMSE filter bank W by using (2.27). This process is repeated until

convergence is reached.

2.2 Summary

In this chapter we explored three different direction of arrival estimators. These estimators

included MUSIC, ESPRIT and RISR. In each case it was assumed that the estimation

algorithm was operating on a common idealized array signal model. Much of the following

chapters involve the impacts of a non-ideal array manifold on these algorithms.
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Chapter 3

RISR Array Calibration Estimation

Adaptive array processing is only as good as its underlying model, and inaccuracies in the

array model can degrade the performance of almost any algorithm. In this chapter we develop

the RISR Array Calibration Enhancement (RACE) to simultaneously estimate the direction

of arrival of incident signals and the effects of mutual coupling and channel imbalances. In

addition, we will show that RACE enhances RISR’s built-in robustness to model mismatch,

and improve RISR’s DoA estimates in the presence of channel gain/phase mismatch and

array mutual coupling. We will also show that RACE is effective for a wide range of channel

gain mismatch, but a narrower range of channel phase mismatch. This limitation is overcome

by developing two methods to integrate prior calibration data into RACE. This is unique

as existing works consider either traditional calibration problem or the blind-calibration

problem without considering how to incorporate knowledge from one to the other. Before

we can derive the RACE algorithm we examine the physical realities inherent in building

an array as well as methods to incorporate these realities into our array model in Section

3.1. We then present the RACE algorithm in Section 3.2 and evaluate its performance on

simulated data in Section 3.3.
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3.1 Background

Before developing the RACE blind array calibration routine it is beneficial to take a high level

look at the adaptive array signal model and understand how array geometry and the physical

realities of building a system can effect the model. Real arrays are subject to a number of

confounding factors such as channel gain/phase mismatch, mutual coupling between array

elements and sensor position uncertainty. If left unaccounted for these confounding factors

can significantly degrade the performance of the array. Calibration at its core attempts to

measure, and the degree possible, remove these confounding factors. Section 3.1.1 starts by

developing an idealized array signal model for arbitrary array geometry, before giving specific

examples using a uniform linear array and a uniform circular array. It then examines the

effect of channel gain/phase fluctuations, mutual coupling and sensor placement uncertainty.

Section 3.1.2 then surveys existing calibration methods and examines the difference between

traditional calibration and blind calibration methods.

3.1.1 Array Model

The foundation of any array processing technique is the underlying signal model that is

firmly rooted in a physical reality. Consider an array of N sensors with Q incident signals.

The combined signal present at the nth sensor can be written

yn�t� � Q

Q
q�1

xq�t�τnq��νn�t� (3.1)

where xq is the qth signal, τnq is the delay between signal q and sensor n, and νn is additive

noise. Under the narrowband assumption (3.1) can be expressed in terms of its Fourier

transform.

Yn�f� � Q

Q
q�1

e�jω0τnqXq �Vn (3.2)

18



where Y , X, and V are the Fourier transforms of y, x, and ν, respectively. Generally, the

absolute time delay between a distant source a each sensor is unknown and (3.2) recast using

the relative positions of each sensor to a central origin

τn � �
1
c
�bx �pxn�by �pyn�bz �pzn�, (3.3)

where

b �

<@@@@@@@@@>

bx

by

bz

=AAAAAAAAA?
(3.4)

are orthogonal unit vectors in cartesian coordinate system, and

pn �

<@@@@@@@@@>

pxn

pyn

pzn

=AAAAAAAAA?
(3.5)

describes the position of the nth sensor. Substituting (3.4) and (3.5) into (3.3) yields

τn � �
bTpn
c

(3.6)

Plane wave propagation is often described in terms of wavenumber k such that

k � �ω
c

b � �
2π
λ

b. (3.7)

By letting τn replace τnq and substituting (3.7) into (3.2) produces

Yn�f� � Q

Q
q�1

e�jk
TpnXq �Vn. (3.8)
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This formulation leads to the familiar array manifold [1, p. 23–32]

y �Ax�v, (3.9)

where A is an N �Q matrix referred to the array manifold such that

A �

<@@@@@@@@@@@@@>

e�jk
T
1 p0 e�jk

T
2 p0 � e�jk

T
Qp0

e�jk
T
1 p1 e�jk

T
2 p1 � e�jk

T
Qp1

� � � �

e�jk
T
1 pN�1 e�jk

T
2 pN�1 � e�jk

T
QpN�1

=AAAAAAAAAAAAA?
, (3.10)

where kq refers to the wavenumber of the qth incident signal. Each column of A describes

the induced response of each element in the array to a single incident signal and is referred

to as a steering vector.

In general, the number of sources and their angles of arrival is not known and matrix A

as presented in (3.10) cannot be formed. Instead, A is formed as an N �M matrix such that

A � �a0�0�,a1�ψ∆�, . . . ,aM�1��M �1�ψ∆��. (3.11)

contains M steering vectors denoted by a�mψ∆� that are equally spaced over 2π at incre-

ments of ψ∆ � 2π~M . The vector x is then expanded to anM �1 vector that contains complex

amplitudes representing the underlying source signals and is referred to as the incident spatial

spectrum. As M AAQ A, as defined in (3.11), subsumes the previous definition.

We now turn our attention to the steering vectors of some common array geometries by

examining a uniform linear array and a uniform circular array. For the uniform linear array
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in Figure 3.1 the position vector for the nth element can be written

pn �

<@@@@@@@@@>

0

0

�n� N�1
2 �d

=AAAAAAAAA?
. (3.12)

Then by using the conventional definition for orthogonal unit vectors in a spherical coordinate

systems

b �

<@@@@@@@@@>

sinθcosφ

sinθ sinφ

cosθ

=AAAAAAAAA?
(3.13)

the mth steering vector becomes

am � �e�jkTmp1 ,e�jk
T
mp2 , . . . ,e�jk

T
mpN �T (3.14)

� �ej�n�N�1
2 �kmdcosθ,ej�n�

N�1
2 �1�kmdcosθ, . . . ,e�j�n�

N�1
2 �kmdcosθ� . (3.15)

Similarly, from the uniform circular array seen in Figure 3.2 the position vector of the

φnth element becomes

pφn �R

<@@@@@@@@@>

cosφn

sinφn

0

=AAAAAAAAA?
(3.16)

where φn is the angle to the nth element. Thus,

kTmpφn � �
2π
λ
Rsinθ�cos�φ�φn�� (3.17)

and the mth steering vector becomes

am � �e�j 2π
λ Rsinθ�cos�φ�φ1���,e�j

2π
λ Rsinθ�cos�φ�φ2���, . . . ,e�j

2π
λ Rsinθ�cos�φ�φN ����T . (3.18)
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Figure 3.1: Z-directed uniform linear array

The array signal model thus far considered is an idealistic representation of the physical

world, and a number of confounding factors such as gain or phase fluctuation, mutual cou-

pling and sensor placement uncertainty can perturb the model. The rest of this section is

devoted to modeling these perturbations, as well as, laying the groundwork for calibration.

3.1.1.1 Channel Gain/Phase Mismatch

The gain and phase of each receive element channel can vary due to passive components

such as small variations in signal routing paths or active components due to differences

between the channel amplifiers and phase shifters. Regardless of the cause, amplitude and

phase imbalances can be imparted. These imbalances modify (3.8) by adding a complex

exponential to represent the channel gain and phase offset

Yn�f� � Q

Q
q�1

αne
�jω0ζne�jk

TpnXq �Vn. (3.19)
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Figure 3.2: Uniform circular array geometry

where αn and ζn are the nth channel gain and phase respectively. Examining (3.19) it is

apparent that gain and phase perturbations are unique to each sensor and can be cast into

an N �N diagonal matrix

S �ΓA (3.20)

Γ � diag�α1e
�jω0ζ1 ,α2e

�jω0ζ2 , . . . ,αNe
�jω0ζN � (3.21)

where S represents the true array manifold and A is the ideal manifold from (3.10).

Substituting (3.20) into (3.9) produces a signal model that includes the effects of gain/phase

fluctuations

y �ΓAx�v. (3.22)

It is possible to estimate Γ from y provide the spatial spectrum vector x is know. Friedlander
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estimated the N unknowns in Γ by extracting them an placing them in a N �1 vector as [20]

y �Γ�Ax��v (3.23)

�Q1�Ax�γ �v

where γ is an N �1 vector of complex gain/phase unknowns

γi �Γii for i = 1, 2, . . . , N (3.24)

and transformation function Q1�z� is defined as

�Q1�z��ij � zi Yδij i,j= 1, 2, . . . , N. (3.25)

This allows the channel gain and phase terms to be estimated using a least squares method-

ology

γ � �Q1�Ax���1y. (3.26)

3.1.1.2 Mutual Coupling

Signal energy incident on an element of an antenna array is not always completely absorbed

by that element. Some of this energy can be reflected and reradiated only to be received by

the other elements in the array. The reception of this reradiated energy mutually couples

elements in the array together. Thus, mutual coupling causes the signal received at each

array element to no longer simply be the direct incident signal, but the sum of the direct

incident signal and the signals reradiated by the other elements in the array. This phenomena

modifies the discrete idealized array manifold A by adding a N �N Mutual Coupling Matrix

(MCM) as

S �CA. (3.27)
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Under ideal conditions C reduces to an identity matrix and the true array manifold is equal

to the ideal array manifold.

The structure of the mutual coupling matrix C is highly dependent on the physical

structure of the array. Noting that mutual coupling tends to be reciprocal and dependent

on the distance between elements allows the loose characterization of some common array

geometries. For example, uniform linear arrays have a regular fixed separation between

elements. Due to the mutual coupling’s dependence on element separation, the ith and

�i� 1�th elements will have the same mutual coupling for any value of i, resulting in a

banded Toeplitz mutual coupling matrix [20]. In addition to linear arrays, this regular

element spacing also holds true for circular arrays and likewise results in a banded structure

for the MCM. However, unlike linear arrays, circular arrays wrap back around to the starting

element giving the MCM additional bands in the upper-right and lower left corners.

In general the mutual coupling matrix C contains N !
2�N�2�! unknowns as each element

has a unique, but reciprocal mutual coupling term to each of the other N � 1 elements.

However, most arrays have a regular structure that reduces the number of unknowns. This

work considers Uniform Linear Arrays (ULA) and Uniform Circular Arrays (UCA), both

of which have a regular structure that reduces the number of unique terms. A ULA has a

banded complex symmetric Toeplitz structure for C while the MCM for a UCA is a complex

symmetric circulant matrix [20]. In both cases the number of unknowns is reduced to N �1.

Similar to estimating the gain/phase matrix, the estimation process for the mutual cou-

pling matrix leverages the structure of C and a matrix transformation to extract the unknown

values from C and places them into an N �1 vector. Both the mutual coupling model and

the transformation methods were developed in [20] for a MUSIC based blind calibration

algorithm, and are used here with RISR. For a ULA and the accompanying banded complex
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symmetric Toepliz matrix C this transformation takes the form

y �C�Ax��v (3.28)

�Q2�Ax�c�v

� �B1�B2�c�v

where c is the N �1 vector containing the unknown mutual coupling terms and the function

Q2�z� is defined [20] as the sum of two N �N matrices B1 and B2

�B1�pq �
¢̈̈̈̈̈
¦̈̈̈̈
¤̈
zp�q�1 for p�q�1 BN �1

0 otherwise
(3.29)

�B2�pq �
¢̈̈̈̈̈
¦̈̈̈̈
¤̈
zp�q�1 p C q C 2

0 otherwise.
(3.30)

The indices p and q index the rows and columns of B1 and B2 as well as the complex vector

z �Ax. This form allows the mutual coupling matrix to be decomposed from a matrix of

N2 redundant values into a vector of N �1 unique values.

Similarly, the mutual coupling matrix for a circular array has structured redundancy that

can be leveraged. Now instead of being banded Toeplitz, the mutual coupling matrix is a

banded circulant matrix [20], but still only has N unique values. Again these N �1 unique

values can be extracted as

y �C�Ax��v (3.31)

�Q3�Ax�c�v

� �B1�B2�B3�B4�c�v
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where the function Q3�z� is defined [20] as the sum of four N �N matrices

�B1�pq �
¢̈̈̈̈̈
¦̈̈̈̈
¤̈
zp�q�1 for p�q�1 BN �1

0 otherwise
(3.32)

�B2�pq �
¢̈̈̈̈̈
¦̈̈̈̈
¤̈
zp�q�1 p C q C 2

0 otherwise
(3.33)

�B3�pq �
¢̈̈̈̈̈
¦̈̈̈̈
¤̈
zM�1�p�q p @ q B l

0 otherwise
(3.34)

�B4�pq �
¢̈̈̈̈̈
¦̈̈̈̈
¤̈
zp�q�M�1 2 B q B l,p�q BN �2

0 otherwise.
(3.35)

Equations (3.28) and (3.31) can now be solved using a least squares method to estimate

the mutual coupling terms in c.

3.1.1.3 Sensor Placement

Mechanical tolerances limit the ability to accurately place antenna elements in their desired

location and can perturb the array manifold. This uncertainty in sensor placement is best

described with a perturbation in the delay from radiator m to element n as

Yn�f� � Q

Q
q�1

e�jω0∆ne�jk
TpnXq �Vn. (3.36)

where ∆n represents the location perturbation for the nth sensor from the ideal position.

Unlike gain/phase mismatch, sensor position uncertainty is unique for each mn combination

and cannot be represented by a diagonal matrix. Rather a delta position matrix will have
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the same dimensionality as A and can be integrated using a Hadamard product

S � �∆bA� (3.37)

where ∆ is the sensor position uncertainty matrix.

3.1.1.4 Array Manifold Perturbation Model

Taking into account the effects of gain/phase mismatch, sensor position uncertainty, and

mutual coupling, the full array manifold perturbation model [20] can be written as

S �CΓ�∆bA�. (3.38)

Examining (3.38) under ideal conditions, one sees that bothC and Γ reduce toN �N identity

matrices, ∆ becomes an N �M matrix with every entry equal to unity, and the true array

manifold, S simplifies to the ideal array manifold, A. It is also worth noting that if the

sensor position tolerances can be controlled adequately and ∆ neglected, then the N �N

matrix combination of C and Γ represents a calibration matrix that relates the true and

ideal array manifolds as

D �CΓ (3.39)

so

S �DA. (3.40)

3.1.2 Array Calibration

Many modern radar and communication systems rely on an array of elements to radiate

and collect electromagnetic energy. Often these systems include some “down stream” signal

processing that depends on accurate knowledge of the array’s structure which is captured in

a set of steering vectors known as the array manifold. These steering vectors can be directly
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measured but are often derived from a presumed array model. However, if the true array

manifold deviates from the assumed model the performance of any subsequent signal pro-

cessing can be degraded. This deviation can be due to the affects of mutual coupling, channel

gain/phase mismatch, and array element placement uncertainty. Array calibration attempts

to measure these effects and bring the array’s true and assumed responses into alignment.

In a broad sense calibration processes can be broken into two categories, traditional meth-

ods that use a set of known sources in known locations and blind calibration methods that

use sources in unknown locations. Traditional methods were typically developed for use in

benign environments where the number, strength and location of the calibration sources can

be controlled. On the other hand, blind calibration methods were generally developed to

be used in the field making use of “sources of opportunity”. Before we introduce the RACE

calibration methods we will take a look at some common calibration techniques from each

categories to better appreciate RACE’s unique features.

3.1.2.1 Off-line Calibration

Traditional methods of calibration generally determine the array’s response by applying a

known signal to the array and measuring the response of each array element. This can be

done by individually illuminating the elements [43, 44, 45] or by illuminating the entire array

simultaneously [46, 47, 48]. There is also a diverse set of methods for measuring element

placement tolerances. Classic examples include leveraging the narrow-band assumption and

examining the phase at each sensor location [49], taking advantage of the signal subspace

structure of a sample covariance matrix [50, 51] and statistically estimating locations from

near [52] and far-field sources [53]. Attempts have been made to derive mutual coupling

from direct measurements of S-parameters [54] with limited success, while signal processing

methods have also been applied that leverage the structure of a sample covariance matrix

[51, 20, 30, 31] and searching over a constrained array manifold uncertainty bound [15, 17].

In many cases array calibration is performed once at the beginning of a system’s lifetime,
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though as a system ages the need arises to recalibrate the array periodically.

3.1.2.2 Blind-Calibration

Calibrating an array with known sources is practical for the initial calibration at the begin-

ning of a system’s lifetime, but is impractical once a system is deployed. This limitation

led to the development of calibration methods using unknown or blind sources. Most blind

calibration methods start by estimating the Direction of Arrival (DoA) of a set of unknown

sources, then assume the estimated source location is the true source location, and perform a

calibration process, updating the estimated array manifold. The process is then repeated un-

til subsequent DoA estimations deviate from each other by only a small value. This iterative

blind calibration process intimately links DoA estimation and array calibration.

A search of the literature reveals blind calibration for many of the classic DoA estimators.

For the MUSIC estimator, calibration methods leverage the fact that its cost function is

minimized only when the true array manifold is projected into the noise subspace [20, 30, 31].

Likewise, calibration methods have also been developed for the ESPRIT algorithm [55, 56, 57]

and the Capon beamformer [17, 16].

3.2 RACE Algorithm

At its most basic level, the blind calibration problem is a joint estimation of the array mani-

fold S and DoA of an unknown number of incident signals. However, to separately estimate

all NM values of S is a very challenging problem. For the sake of tractability, this work

leverages the array manifold perturbation model developed in [20] to estimate the struc-

tured gain/phase matrix, Γ, and mutual coupling matrix, C. This approach greatly reduces

the number of unknowns and simplifies the problem considerably. The RACE algorithm

proceeds in two steps. First the DoA of the incident signals is estimated by the RISR algo-

rithm using the most current model of S. Then the gain/phase matrix Γ and the mutual
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coupling matrix C are estimated to subsequently update S. The process then repeats until

a convergence criteria is met.

While the array perturbation model and the transformation methods developed by Fried-

lander were intended for a MUSIC based blind calibration routine they can leveraged here

for the RISR based method. Friedlander’s core assertion was that the MUSIC cost function

J�ψ�MUSIC �

N

Q
i�Q�1

SuHi s�ψ�S2 (3.41)

is minimized only when s�θ� is a true steering vector for the array. Here uk represents the

eigenvectors of the noise subspace. Substituting (3.39) and (3.40) into (3.41) produces

J�ψ�MUSIC �

N

Q
i�Q�1

Sui
HCΓa�ψ�S2 (3.42)

with unknowns Γ and C that Friedlander estimated by minimizing the overall cost function.

In contrast, the RACE algorithm will estimate the values of Γ and C from the array observa-

tion vector y and the estimate of the spatial spectrum x produced by RISR. This estimation

will use the manifold perturbation model and transformations in (3.25) and (3.29)–(3.35) de-

veloped by Friedlande, but in a slightly different context. With the basic method to estimate

both Γ and C established a full calibration routine can be developed.

A high level system block diagram of the RACE algorithm can be seen in Figure 3.3. y

and an initial array manifold, S0 serve as inputs to the RISR algorithm, which produces an

estimate of x̂. This estimation along with the current estimate of the array manifold act as

inputs to the calibration process which produces an updated estimate of the array manifold

Ŝ that is fed back to the RISR algorithm and the process repeated.

The RISR algorithm has a built in tolerance for model mismatch that is leveraged for

the RACE algorithm. The model noise term

Rz � σ
2
zIM�M b�SPSH� , (3.43)
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along with the noise loading term, help regularize the matrix inversion when calculating the

adaptive filter bank W and suppress spurious peaks. At the start of a calibration cycle,

when uncertainty about the array manifold is high, this model noise loading term can be set

to large value, to help suppress model mismatched induced spurious signals. Then as the

calibration cycle progresses, and the uncertainty about the array manifold decreases, this

loading term can be tapered to increase the sensitivity of the DoA estimation. This model

noise loading profile effect is accomplished with addition of a model mismatch scaling term

βRz where 0 @ β @ 1, and (2.29) becomes

W � �ŜPŜH �αR�βRz��1ŜP. (3.44)

A number of model noise loading profiles for β are possible,both in starting/final value of

β, and the taper rate as function of the number of calibration cycles. It was however noted

by Blunt that values of σ2
z less than -30 dB tended to induce false peaks in RISR, so care

should be taken in selecting the final value of β [58, p. 336].

The estimation processes for Γ and C previously outlined estimated each perturbation

matrix in isolation. This can be seen by the lack of a mutual coupling matrix in (3.23)

and the absence of Γ from (3.28) and (3.31). Real systems however will likely have both

perturbations and the RACE algorithm estimates each matrix sequentially while using the

most recent estimate of the other perturbation. Thus (3.23) becomes

y �CΓ�Ax��v (3.45)

�CQ1�Ax�γ �v
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while (3.28 ) and (3.31) become

y �C�ΓAx��v (3.46)

�Q2S3�ΓAx�c�v.

In each calibration cycle, RACE estimates c and γ using a least squares methodology, and

can then either recombine them with the ideal array manifold A to produce an estimation

of S or output them separably. For the first iteration of the calibration cycle ideal values of

Γ and C can be used to bootstrap the process. While this is necessary for the efficacy of the

RACE calibration process, it also provides an opportunity to incorporate prior estimates of

Γ and C from an independent calibration process.

System architects have more flexibility if prior estimates of the array manifold can be

incorporated into the calibration process. For example a system may be calibrated using

traditional, non-blind method prior to deployment, but once in the field be unable to tol-

erate downtime for periodic recalibration. Being able to leverage this prior calibration can

potentially improve RACE and help system architects to avoid downtime. There are two

distinct ways that prior calibration information can be incorporated into the RACE algo-

rithm, 1) by seeding the calibration process with an estimate of the mutual coupling matrix

and gain/phase matrix rather then initializing the algorithm with idealized values or 2) by

replacing the ideal array manifold with the prior estimate of the array manifold.

If prior calibration data is available the initial values of Γ and C can be seeded from

the earlier calibration. This starts the routine with a good estimate of both Γ and C

but otherwise does not restrict the final solution. In contrast, prior calibration can be

incorporated into RACE by replacing the ideal array manifold A with the calibrated array

manifold. Since the value of A is not updated by the calibration process this method keeps

the calibration process rooted in the solution neighborhood near the prior calibration. This

manifold replacement method also transforms Γ and C into channel gain/phase and mutual
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Figure 3.3: RACE Blind Calibration Process Model

coupling perturbation matrices relative to the measured array manifold rather then full

estimates of their respective confounding effects.

3.3 RACE Performance

In this section we will evaluate the performance of the RACE algorithm. We will start

by showing the performance of the RACE algorithm for a typical scenario before exploring

the convergence region of this iterative method. The RACE algorithm is first shown to be

robust over a wide range of channel gain variation, and over a smaller range of channel

phase variation. We then find that RACE is effective for low SNR if the number of sources

is limited, and requires a greater SNR as the number of sources increases. However, there

are diminishing returns as RACE struggles when the number of sources is greater than 8

even for very high SNR scenarios. We will also show that the performance of RACE for low

SNR can be improved by correctly scaling the RISR model mismatch loading term. Several

model noise loading profiles are considered for the model mismatch loading term. Next,

we find that RACE’s performance is suppressed for coherent sources as the probability of

convergence is reduced significantly. Finally, we evaluate the ability of RACE to integrate

prior calibration data by implementing manifold replacement and show that this method

can significantly extend RACE’s convergence region.
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To evaluate the performance of the RACE algorithm an array was constructed in sim-

ulation. The array was simulated as a 25 element ULA of half-wavelength dipoles with

half-wavelength spacing. Spatial sampling was set to 161 samples, making the array mani-

fold a 25x161 matrix. Mutual coupling between elements was modeled using a dipole mutual

coupling model [59, p. 472] while channel gain/phase errors were modeled as normal distri-

butions with independent gain and phase variances.

With the simulated array in place the RISR algorithm was implemented as described

in Section 2.1.3 using non-coherent integration. The calibration process was implemented

using (3.45) and (3.46). The RISR algorithm was configured to run for 10 iterations while the

calibration loop seen in Figure 3.3 was set for 10 cycles. Over the course of those 10 cycles the

value of β was decreased from 1 to 0.1 using a linear progression, while α was set to constant

value of 1~8. Unless otherwise specified these settings were used to produce the simulation

results presented in this section. A testing regimen was then undertaken to quantify the

performance of the RACE algorithm. First, typical pre and post calibration spectrums are

presented, along with RMS error in Γ and C as a function of calibration cycles, to show the

effect of array perturbations and the improvement that can be made through calibration.

Next, the conveyance region of RACE is explored by examining the probability of converging

to the correct solution over various ranges of SNR, number of sources and amount of channel

gain/phase mismatch. Then, the effect of different tapper profiles is explored as the effect of

coherent incident sources. Finally, RACE’s ability to integrate prior calibration data will be

explored by modifying the array model and partially calibrating the array prior to starting

RACE.

A typical example of the output spatial spectrum can be seen in Figure 3.4. In the first

iteration the array is uncalibrated and three incident signals plus several spurious signals are

visible. As the RACE calibration cycle progresses the spurious signals are suppressed and

eventually removed entirely. This spurious signal suppression can be seen in Figure 3.5 as

the RMS error of the spatial spectrum decreases over the 10 calibration cycles. Where RMS
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Figure 3.4: RISR spatial spectrum before, during, and after calibration. True signals at
�115.5X, �22.5X and 0X

error is defined as

RMS Error in P̂ �

¿ÁÁÀ 1
M

M

Q
m�1

�P̂�P�2. (3.47)

A similar reduction in the RMS error of the mutual coupling and channel gain/phase can be

seen in Figures 3.6 and 3.7, where the RMS error is calculated using

RMS Error in ĉ �

¿ÁÁÀ 1
N

N

Q
n�1

�ĉ�c�2, (3.48)

and

RMS Error in γ̂ �

¿ÁÁÀ 1
N

N

Q
n�1

�γ̂ �γ�2, (3.49)

respectively. While this set of results shows the RACE algorithm converging to a correct

solution, it is possible for the algorithm to diverge, and we now turn our attention to the

convergence region of RACE.

Since RACE is dependent on the starting DoA estimate of RISR being “close enough”
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Figure 3.5: RISR spatial spectrum RMS error over calibration cycle

Figure 3.6: Mutual coupling RMS error over calibration cycle
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Figure 3.7: Channel gain/phase RMS error over calibration cycle

it is possible for RACE to diverge. To help quantify this convergence region a set of Monte

Carlo simulations were undertaken. From these Monte Carlo simulations the probability

of convergence could be examined as a function of different variables. It should be noted

that convergence is used here in a loose sense, as a simulation is said to be converged if the

RMS error in the spatial spectrum estimation is less then 1/3. This value was selected as it

was found that below this level spurious signals were almost always suppressed, above it the

spurious signals grew rapidly obscuring the true signals. This is in contrast to convergence

in the sense that an iterative process has reached a solution and does not deviate from it

with additional iterations. This convergence method was used so that the probability of

convergence would relate to the probability that RACE reached the correct solution, rather

than reaching a fixed, but not necessarily correct solution.

Figures 3.8 and 3.9 examine the probability of convergence as functions of channel gain

and phase standard deviations. As the variations in channel gain and phase directly degrades

RISR’s ability to estimate the DoA of incident signals excessive variation can push the
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calibration routine out of the convergence region. In both plots, three signals are incident

upon the array, with a Signal to Noise Ratio (SNR) of 20 dB. The signals are uncorrelated

and placed at an independent random incident angle for each of the 1000 Monte Carlo trials.

Figure 3.8 plots the of probability of convergence as the standard deviation of channel gain

increases, and includes example curves for various channel phase deviations. Predictably as

the channel gain mismatch increases, the probability of convergence rolls off. This roll off

appears linear on this scale with all traces converging to zero near a value of 1.6 dB with

the amount of phase variation determining the slope and y-axis intercept points. Figure 3.9

presents a different cut of the data where the probability of convergence is plotted against

increasing channel phase deviation. It appears that the probability of convergence slowly

declines until around 15X after which it rapidly declines to less then a one in five chance of

convergence above 20X. Taking the plots together it appears that RACE is more sensitive to

channel phase variation as we see a rapid drop off in convergence once the phase standard

deviations exceeds 15X. In practice it is much more challenging to construct systems with

small channel phase deviation than small channel gain variations. This is an area where

integrating prior calibration data into RACE is beneficial and will be explored in depth later

in this section.

The signal to noise ratio of signals incident upon the array will have a strong effect on

RISR’s DoA estimation performance and Figure 3.10 examines the probability of convergence

as a function of SNR. For three or more sources there is a sharp rise in the probability of

convergence from -5 dB to 5 dB before the slope of the convergence rate begins to level off and

rise much slower. This likely corresponds with SNR region in which RISR’s DoA estimates

become reliable. The probability of convergence for a single source and for two sources are

outliers. There is nearly a unity convergence rate for a single source over the entire SNR

range, and this is likely due to the trivial nature of the single source problem. In contrast,

the convergence rate for two sources is significantly suppressed compared to the other test

cases. It is not evident why the convergence rate for the two source test case rises such
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Figure 3.8: RACE convergence vs Γ amplitude variation, X : std��Γ� � 2.5X, j : std��Γ� �
5.0X, l : std��Γ� � 10X, Q : std��Γ� � 15.0X, S : std��Γ� � 20.0X

Figure 3.9: RACE convergence vs Γ phase variation, X : std�SΓS� � 0.22dB, j : std�SΓS� �
0.42dB, l : std�SΓS� � 0.80dB, Q : std�SΓS� � 1.14dB, S : std�SΓS� � 1.50dB
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Figure 3.10: RACE convergence vs SNR, X : 1 Source, j : 2 Sources, l : 3 Sources,
Q : 5 Sources, S : 7 Sources

much slower the then other test cases, but it does appear to be on a trajectory to eventually

have a comparable convergence rate as the other test case, just at a significantly higher

SNR. This trend can also be seen in Figure 3.11 which plots the probability of convergence

verse the number of incident signals. The anomaly for two sources is evident in a large

dip in the convergence probability for all SNR traces. Beyond two sources it appears the

RACE algorithm degrades gracefully with a slow roll off in the convergence probability as

the number of sources grow large.

The role of β profiles on convergence rates was also investigated. Six different profiles

were created and can be seen in Figure 3.12. Three profiles are constant value around the

top, middle and bottom of the possible values. The remaining three taper in value using

a linear, logarithmic and sinusoidal progression. The affect of the different loading profiles

can be seen in Figure 3.13 where the probability of convergence is plotted verse SNR for all

six profiles. This plot was created from the results of a 500 trial Monte Carlo simulation

that used three randomly located, non-coherent sources. The constant β � 0.1 profile has
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Figure 3.11: RACE convergence vs number of sources,X : 1 dB SNR, j : 9 dB SNR,
l : 17 dB SNR, Q : 25 dB SNR

the poorest performance, presumable because RISR is over estimating its knowledge of the

array manifold. Interestingly though all three of the dynamic β profiles only perform slightly

better, with around a 10% improvement in convergence probability. Surprisingly, the best

performing profiles were the constant β � 0.5 and β � 1, with drastically higher convergence

rates for low SNR regimens and equal convergence rates at high SNR. This is counter intuitive

and suggests that perhaps the regularization that R and Rz are providing is too small late

in the calibration cycle. We may see better loading performance if the final value of β was

increased to around 0.5.

Thus far we have only considered non-coherent sources, but RACE’s performance in the

face of coherent sources was also evaluated. Figure 3.14 plots the probability of convergence

verse channel gain variation while Figure 3.15 depicts the convergence rate vs phase variation.

These plots uses the same Monte Carlo set up as Figure 3.8 and 3.9 with the coherent

sources replacing the three non-coherent sources. Comparing the figures it evident that

the convergence rate is significantly suppressed even for small values of channel gain and
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Figure 3.12: Model noise loading profiles, X : Linear, j : Logarithmic, l : Sinusoid, Q : Con-
stant β � 1, S : Constant β � 0.5, R : Constant β � 0.1

Figure 3.13: RACE convergence vs SNR for three sources, X : Linear, j : Logarithmic,
l : Sinusoid, Q : Constant β � 1, S : Constant β � 0.5, R : Constant β � 0.1
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Figure 3.14: RACE convergence vs Γ amplitude variation for coherent sources, X : std��Γ� �
2.5X, j : std��Γ� � 5.0X, l : std��Γ� � 10X, Q : std��Γ� � 15.0X, S : std��Γ� � 20.0X

phase variation. The affect of coherent sources was also examined for various SNR and

number of sources. Figure 3.16 plots the convergence rate verse SNR for up to 5 coherent

sources and Figure 3.17 shows the corresponding convergences as a function of the number of

sources. Overall these plots show a much lower convergence probability that does not appear

to approach the non-coherent rate even for high SNR. Since RISR is somewhat robust to

coherent sources this reduction in the convergence rate is likely only partially attributable

to DoA estimation degradation.

To evaluate the ability of RACE to integrate prior calibration data, Γ and C were each

split into two matrices. One matrix acts as the channel variation and mutual coupling

measured as part of a prior calibration, and the other matrix acts as a random perturbation

from this prior calibration. In this way the total channel variation and mutual coupling

can be controlled independently from the information gleaned from a prior calibration. The

prior calibration data was incorporated into RACE using the manifold replacement methods
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Figure 3.15: RACE convergence vs Γ phase variation for coherent sources, X : std�SΓS�� 0.0dB,
j : std�SΓS� � 0.51dB, l : std�SΓS� � 0.96dB, Q : std�SΓS� � 1.37dB, S : std�SΓS� � 1.74dB

Figure 3.16: RACE convergence vs SNR for coherent sources, X : 2 Sources, j : 3 Sources,
l : 4 Sources, Q : 5 Sources
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Figure 3.17: RACE convergence vs SNR for coherent sources, X : 0 dB, j : 5 dB, l : 10 dB,
Q : 20 dB

transforming the array signal model seen in (3.45) into

y �CΓ�CpΓpA�x�v, (3.50)

where Cp and Γp are the prior estimates of the mutual coupling and channel gain/phase

variations respectively. The RACE algorithm now estimates C and Γ as perturbations from

these starting values. For these trials the value of Cp was set to the ideal mutual coupling, Γp

was set to have an amplitude standard deviation of 0.4 dB and a phase standard deviation of

25X, which according to Figures 3.8 and 3.9 would put the probability of convergence around

10%. The values in C were then set to unity to simulate channel gain/phase drift only.

The convergence rate was then evaluated as a function of channel gain and phase variation.

Figures 3.18 and 3.19 plot the convergence rate over channel gain and phase fluctuations

respectively. We can see that for no additional fluctuation in Γ the probability of convergence

is around 70%. This implies that while the prior calibration improves RACE’s performance,
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Figure 3.18: RACE convergence vs Γ amplitude variation with prior calibration, X : std��Γ��
2.5X, j : std��Γ� � 5.0X, l : std��Γ� � 10X, Q : std��Γ� � 15.0X, S : std��Γ� � 20.0X

large fluctuations in channel gain/phase still represent a significant challenge. As the amount

of channel fluctuation increase the probability of convergence slowly decrease. The roll off in

convergence probability is decidedly faster then in Figure 3.8 and 3.9 underscoring inherent

difficulty in calibrating an array with such large channel variations.

3.4 Summary

In this chapter we developed the RISR Array Calibration Enhancement (RACE) algorithm

to simultaneously estimate the mutual coupling, channel gain/phase variations and DoA

of incident signals. This was accomplished by leveraging the array perturbation model

developed by [20] and adapting the estimation techniques presented therein to be used with

the RISR algorithm. We showed that RACE is effective at improving the performance of

RISR in the presence of model mismatch. The performance of RACE was then evaluated

by examining convergence rates as a function of channel gain/phase variation, SNR, and
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Figure 3.19: RACE convergence vs Γ phase variation with prior calibration, X : std�SΓS� �
0.0dB, j : std�SΓS� � 0.41dB, l : std�SΓS� � 0.80dB, Q : std�SΓS� � 1.14dB, S : std�SΓS� � 1.46dB

the number of signals. It was shown that RACE is relatively insensitive to channel gain

variations, but somewhat sensitive to channel phase variations. We also found that RACE

is most effective for three to seven sources, with a greater SNR required as the number of

sources increases. In addition different model noise loading profiles were evaluated and it

was found that low SNR performance can be improved through model noise loading limit

selection. In addition, it was found that convergence rates were significantly suppressed

for coherent sources. Finally, the ability for RACE to integrate prior calibration data was

demonstrated using the manifold replacement method, and it was shown that integrating

prior calibration data in this manner could extend the convergence region of the RACE

algorithm.
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Chapter 4

Transmit-Receive Model Mismatch

Antenna pattern reciprocity is a fundamental concept that underpins much of antenna the-

ory and design practice. While antenna reciprocity is indisputable for a single antenna in

isolation, it is less than definitive when it comes to an array of antenna elements. In this

chapter we explore antenna reciprocity first for an antenna in isolation, before expanding to

antenna arrays and the effect of mutual coupling. We then examine the design of microwave

front-ends to see how the matching characteristics of RF amplifiers propagate through the

front-end to load the antenna. We are then able to appreciate how non-reciprocal elements

in the microwave front-end place different loads on the antenna depending on the oper-

ating mode of the system. This mode dependent loading in effect changes the electrical

configuration of the array and produces different mutual coupling for a transmitting array

than for a receive array, which in turn produces a nonreciprocal radiation pattern. This

analysis approach is unique in that takes into account the hardware in the front-end of a

transceiver. This is in contrast to existing literature that simplifies this hardware down to

a single Thévenin model, which masks this mode dependent loading, and ultimately the

non-reciprocity.

The concept of pattern reciprocity is instilled in many young antenna engineers so ve-

hemently that it is never challenged. This can be detrimental when implementing adaptive
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array processing algorithms that depend on accurate knowledge of the array’s characteristics.

In the following sections of this chapter we explore the performance degradation of direction

of arrival estimators when the transmit array manifold is mistakingly substituted for the

receive array manifold. The impact of this manifold mismatch is measured in terms of RMS

error in DoA estimates and a reduction of the probability of resolving two closely spaced

targets. We find that the MUSIC algorithm is adversely impacted by transmit-for-receive

array substitution in both of these metrics. On the other hand, RISR shows little to no

performance degradation due to its build in tolerance for model mismatch. We will present

results for both a uniform linear array of dipoles and a conformal array of dipoles suspended

above a PEC cylinder. We start in Section 4.1 by surveying existing literature on mutual

impedance, mutual coupling models, as well as, the role front-end hardware plays in mod-

eling mutual coupling. Section 4.2 then develops a mutual coupling model that integrates

the effects of mode dependent antenna loading. We then present the impact of transmit-for-

receive manifold on MUSIC and RISR for a ULA and a conformal array of dipoles in Section

4.3. This is then followed by a discussion of the results in Section 4.4 and a summary of our

findings in Section 4.5.

4.1 Background

Before the impact of transmit-receive manifold model mismatch can be examined, we need

to understand the underlying cause of the mismatch. In Section 4.1.1 we formally define

antenna reciprocity and note some special exceptions. Section 4.1.2 explores antenna arrays

and delves into competing mutual coupling models. The mutual impedance for ULA and

conformal array of dipoles are developed in Section 4.1.3. Finally Section 4.1.4 considers the

effect microwave front-end hardware have on array mutual coupling, and brings together an

explanation for model mismatch.
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4.1.1 Antenna Reciprocity

The reciprocity between a transmitting antenna’s pattern and the same antenna’s receive

pattern is a fundamental assumption in antenna theory. Many texts introduce the concept

of reciprocity in antennas by analogy to circuit theory by including a statement to the effect

of, “in linear, bilateral networks the location of a voltage source and a voltage meter can be

interchanged without changing the meter’s reading,” [59, p. 144–150][60, p. 8, 405–409][61,

p. 666–668]. This analogy is acceptable at face value as most antennas are constructed out

of simple materials and the propagation media between them is composed of linear, bilat-

eral materials. A few exceptions are highlighted though, Ramo points out that ionosphere

propagation is not strictly bilateral and Stutzman notes the presence of non-reciprocal com-

ponents such as ferrite isolators in the antenna system will cause reciprocity to not hold.

The reciprocal circuit analogy also lends itself to describing the interaction of two antennas

using impedance parameters [62, p.1701–174] and leads to the equivalent impedance network

seen in Figure 4.1. The impedance parameters Z11 and Z22 represent the self impedance of

two antennas and Z21 �Z12 is the mutual impedance between the two antennas. The mutual

impedance is a function of the relative position of the two antennas, the intervening media,

as well as, the antennas’ radiation characteristics. This definition of antenna pattern reci-

procity is established for a single antenna in isolation. It is so fundamental that it is almost

universally applied even when an antenna is not in isolation, such as when an antenna is

part of a larger array of antennas and subject to mutual coupling.

4.1.2 Mutual Coupling

In the most general sense, mutual coupling is a description of the interactions between two

or more closely spaced antennas. These antenna elements are typically working in unison

to radiate a signal to a distant target, and mutual coupling perturbs the antenna elements

from the performance they would exhibit in isolation. A more precise definition of mutual

coupling is a little more elusive as divergent definitions of mutual coupling have evolved
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Figure 4.1: Two-port antenna impedance circuit model

and established significant bodies of work [63]. There are two major subject areas that are

driving this divergence, the first is the definition of mutual impedance and the second is how

to define mutual coupling once a definition of mutual impedance is selected. There are other

nuanced differences but mutual impedance and the mutual coupling definition are strong

driving factors. The predominate model, often referred to as the open-circuit model, relates

the open-circuit voltage that would have been present in an antenna in isolation to the voltage

that appears when the antenna is in proximity to other array elements [64]. This first order

approximation accounts for the voltage induced across an antenna’s terminals as a result of

the direct coupling of nearby elements. It only accounts for the primary fields induced by each

element and not any scattering effects. Many of the the competing mutual couping models

attempt to address this deficit by examining arrays in different modes or by considering

secondary scattered fields. But there is not much consensus on either mutual impedance

definitions or array models. For example, within works that consider arrays where every

element is being driving by an identical source, [65] defines mutual impedance using open-

circuit voltages and supplied current, while [66] uses voltage across the generators source

impedance, and further breaks down mutual impedance into direct and indirect effects. In

contrast [67] defines mutual impedance for an array in receive mode as the ratio of voltage

across one element’s load to the induced current from a second element, making mutual
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impedance dependent on the load impedance. Newer MIMO works break mutual impedance

down into array structure impedance and near-field scattering [4].

There is also little consonance on mutual coupling models, as many works have competing

mutual coupling matrices that attempt to quantify the effect of mutual coupling on an

array signal model. Works that leverage the open-circuit mutual impedance often uses a

mutual coupling matrix that makes use of only the mutual impedance and load impedance

of the antenna elements. Svantesson, in contrast, forms a mutual coupling matrix using,

mutual impedance, antenna impedance, and test equipment impedances [68]. Many authors,

particularly in the adaptive array algorithm community, forgo a physical definition of mutual

impedance entirely when forming a mutual coupling matrix and assume the final matrix must

be Toeplitz [9, 20, 69, 70]. Both the open-circuit mutual coupling model as well as some of

the competing models are examined in detail before a model is selected for this work.

4.1.2.1 Open-Circuit Mutual Coupling Model

The open-circuit model of mutual coupling leverages the self and mutual impedances of

closely spaced array elements to relate the open circuit voltage across each element in isola-

tion to the voltage across each element as a member of the array [64]. The self and mutual

impedances between two antennas is defined using the circuit model in Figure 4.1, from

which the voltage at each port can be written as

V1 �Z11I1�Z12I2 (4.1)

V2 �Z21I1�Z22I2.

The impedance terms are then defined as the ratio between the open-circuit voltage at

terminal 2 divided by the current supplied by terminal 1

Z21 �
V2
I1

RRRRRRRRRRRI2�0
(4.2)
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The open-circuit mutual coupling model considers an N element array excited by a distant

source, as seen in Figure 4.2, and assumes that the voltage at each antenna terminal is the

sum of contributions from each array element and the distant source,

V1 �Z11I1�Z12I2���Z1NIN �Z1sIs

V2 �Z21I1�Z22I2���Z2NIN �Z2sIs (4.3)

�

VN �ZN1I1�ZN2I2���ZNNIN �ZNsIs

where Vi and Ii, i � 1,2, . . . ,N are the voltage and current at the ith terminal, Zis is the

mutual impedance between the ith array element and the distance source, and Is is the

source current. Noting that the terminal voltage is

Vi � �ZLIi for i � 1,2, . . . ,N (4.4)

and the open circuit voltage

V o
i �ZisIs for i � 1,2, . . . ,N (4.5)

can be used to recast 4.3 as

<@@@@@@@@@@@@@>

V o
1

V o
2

�

V o
N

=AAAAAAAAAAAAA?
�

<@@@@@@@@@@@@@>

1� Z11
ZL

Z12
ZL

�
Z1N
ZL

Z21
ZL

1� Z22
ZL

�
Z2N
ZL

� � � �

ZN1
ZL

ZN2
ZL

� 1� ZNN
ZL

=AAAAAAAAAAAAA?

<@@@@@@@@@@@@@>

V1

V2

�

VN

=AAAAAAAAAAAAA?
. (4.6)

Or more simply

Vo �Z0V. (4.7)
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Figure 4.2: Open-circuit mutual coupling model

where Vo is a vector of the open circuit voltages, V is a vector of terminal voltages and Z0

is the impedance matrix relating them. This formulation allows one to take the measured

terminal voltages and transform them into the mutual coupling free open-circuit voltages.

4.1.2.2 Alternative Models

The open-circuit mutual coupling model is an improvement over a model that neglects mu-

tual coupling entirely, but it is not a perfect model and some alternative definitions of mutual

coupling have been developed. One common critique of the open-circuit mutual coupling

model is the manner in which the mutual impedance terms are derived. The impedance

terms Zij are commonly derived assuming either idealized current distributions or current

distributions from transmitting antennas [59, p. 471]. These current distribution assump-

tions are contradictory to the array receive model seen in Figure 4.2. Alternative models

typically seek to remedy this contradiction by either using a transmitting array model, or

redefining the mutual impedance terms to reflect current distributions imparted by incident

plain waves. Another common criticism of the open-circuit mutual coupling model is that it
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only accounts for direct coupling from each element and fails to account for scattering from

paths that include more than one element. While there is a significant body of work built

upon mutual coupling models that seek to remedy the short comings of the open-circuit

model we examine only two in detail. Each work is a good representation of the division in

mutual coupling models, and are excellent works in their own right.

The first alternative mutual model coupling considered herein addresses the mismatched

assumption of the open-circuit model by retaining the transmitting mutual impedance terms

and reexamining the array in a transmitting mode [66]. This modification can be seen in

Figure 4.3, and Equation (4.3) becomes

<@@@@@@@@@@@@@>

Vg1�ZLI1

Vg2�ZLI2

�

VgN �ZLIN

=AAAAAAAAAAAAA?
�

<@@@@@@@@@@@@@>

Z11 Z12 � Z1N

Z21 Z22 � Z2N

� � � �

ZN1 ZN2 � ZNN

=AAAAAAAAAAAAA?

<@@@@@@@@@@@@@>

I1

I2

�

IN

=AAAAAAAAAAAAA?
. (4.8)

The general transmitting problem is to use voltage generators Vgi to produce a desired voltage

Vi at the antenna terminals but mutual coupling will vary the voltage drop across ZL. By

substituting V �

i �ZLIi into (4.8) and performing some manipulation one can arrive at

<@@@@@@@@@@@@@>

Vg1

Vg2

�

VgN

=AAAAAAAAAAAAA?
�

<@@@@@@@@@@@@@>

1� Z11
ZL

Z12
ZL

�
Z1N
ZL

Z21
ZL

1� Z22
ZL

�
Z2N
ZL

� � � �

ZN1
ZL

ZN2
ZL

� 1� ZNN
ZL

=AAAAAAAAAAAAA?

<@@@@@@@@@@@@@>

V �

1

V �

2

�

V �

N

=AAAAAAAAAAAAA?
, (4.9)

which can be used to relate the generator voltages to the antenna terminal voltages. The

impedance matrix in (4.9) is identical to the one that appears in (4.6), which is not surprising

as both models use identical definitions of mutual impedance. This has the additional

advantage that the same impedance transformation matrix can be used to find the relevant

voltages in both the transmit and receive cases.
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Figure 4.3: Modified open-circuit mutual coupling model

Where Sato deviates from the open-circuit mutual coupling model is by including scat-

tering effects from the other array elements. This starts with the assertion that the current

at each antenna element the sum of a radiation current I�t�i and a re-radiating current I�s�i ,

such at that

Ii � I
�t�
i �I

�s�
i . (4.10)

Substituting (4.10) into (4.8) produces

<@@@@@@@@@@@@@>

Vg1�ZL�I�t�1 �I
�s�
1 �

Vg2�ZL�I�t�2 �I
�s�
2 �

�
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�s�
N �

=AAAAAAAAAAAAA?
�

<@@@@@@@@@@@@@>

Z11 Z
�t�
12 � Z

�t�
1N

Z
�t�
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I
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N

=AAAAAAAAAAAAA?
.

(4.11)

From this new definition, Sato derives a radiating mutual coupling matrix and a re-radiating

mutual coupling matrix. And further asserts that both are needed to describe the transmit-

ting mutual couping while only the re-radiating term is needed to describe receive mutual

coupling.

In contrast, works such as [67] seek to improve upon the open-circuit model by using

antenna current distributions appropriate for antennas subject to incident plain waves. Hui
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also uses a modified definition of the impedance parameter in order to account for secondary

scattering between array elements. In contrast to (4.2) where the open-circuit voltage at

one antenna terminal is divided by the current supplied by the source antenna, Hui defines

mutual coupling using the measured voltages and currents at each terminal induced by the

distant source. Using the definitions in Figure 4.2 the mutual impedance is then expressed

as

Zij �
Vi
Ij

for i x j. (4.12)

This new definition of mutual impedance explicitly makes mutual coupling a function of the

antenna load as Ij will vary with load impedance. This is in contrast to the open-circuit

mutual impedance definition that relates open circuit voltage to supplied source current.

It is evident from these works that modeling mutual coupling is a challenging problem,

even from a definition stand point. And one must be careful of the underlying assumptions

when applying mutual impedance models to various array geometries.

4.1.3 Array Mutual Coupling Models

With a general understanding of mutual coupling models in place, focus can now turn to

selecting a model and applying it to specific array geometries. The work contained herein

focuses on applying a open-circuit mutual impedance definition to two different dipole ar-

ray geometries. The open-circuit mutual impedance model was selected over the alternative

definitions for two principal reasons: 1) to leverage some existing bodies of work that make

use of the open-circuit assumption and 2) the open-circuit mutual impedance model is suffi-

ciently accurate for the works herein. This work then forgoes using the open-circuit mutual

coupling model and instead uses the open-circuit mutual impedance definition to derive a

new mutual coupling model. Existing models are derived in terms of total voltages and

Thévenin source models which are cumbersome to integrate into a microwave system. The

mutual coupling model derived herein will make use of scattering parameters to integrate
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the effects of the microwave front-end. Two different dipole arrays are examined in detail.

The first is a Uniform Linear Array (ULA) of dipoles and the second is a conformal array of

dipoles suspended over a PEC cylinder. The ULA geometry has been extensively studied and

the open-circuit mutual coupling model is readily available. The mutual impedances for the

conformal array on the other hand will need to be derived. Existing literature will provide

several key elements for this derivation. Principally, Herper’s work [71, 72] on embedded

element patterns can be leveraged to find the dipole active gap impedance and dipole cur-

rent distribution. These values in turn can be used to model the mutual impedance between

array elements.

4.1.3.1 Uniform Linear Array of Dipoles

The derivation of an open-circuit mutual coupling model for dipole antennas in free space is

a well studied problem and is available in a number of texts [59, p. 471–473] [60, p. 124–125]

[61, 659–661]. Most consider an induced EMF model where

Z21 �
V21
I1i

�
�1
I1iI2i

S
l~2

�l~2
Ez21�z��I2�z��dz� (4.13)

is the mutual impedance between two z directed dipoles of length l, with E-field Ez21�z�
induced on dipole two by dipole one, the current distribution on dipole two is I2�z� and I1i

and I2i are the input currents on dipole one and two respectively. A closed form solution to

(4.13) is obtainable by assuming a sinusoidal current distribution

Iz�z� � Im sin�k� l2 � SzS�� (4.14)

and using electric field

Ez�z� � �j η0Im
4π �e�jkR1

R1
�
e�jkR2

R2
�cos�kl2 � e�jkr

r
	 (4.15)
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where R1, R2 and r are defined in Figure 4.4, k is the freespace wavenumber, Im is the

maximum current value and η0 is the freespace impedance. Substituting (4.14) and (4.15)

into (4.13) yields

Z21 � j30�I1mI2m
I1iI2i

�2

S
l~2

�l~2
sin�k� l2 � Sz�S���e

�jkR1

R1
�
e�jkR2

R2
�cos�kl2 � e�jkr

r
	dz�. (4.16)

For side-by-side dipoles separated by distance d a closed form solution exists

R21 �
η

4π �2Ci�u0��Ci�u1��Ci�u2�� (4.17)

X21 � �
η

4π �2Si�u0��Si�u1��Si�u2�� (4.18)

where R21 and X21 are the real and imaginary parts of the Z21 respectively, and

u0 � kd (4.19)

u1 � k�ºd2� l2� l� (4.20)

u2 � k�ºd2� l2� l� , (4.21)

and Ci�x� and Si�x� are the cosine and sine integrals respectively. This mutual impedance

model is suitable for use with either the open-circuit mutual coupling model or the first

alternative model considered in Section 4.1.2.2.

4.1.3.2 Cylindrical Conformal Array of Dipoles

Developing an open-circuit mutual coupling model for a conformal array of dipoles above

a PEC cylinder is a much more challenging problem. Luckily, some of the key pieces have

already been developed and can be leveraged to produce the desired mutual coupling model.

Herper developed a theoretical solution for a conformal array of dipoles above a PEC cylinder

in [71], and later confirmed his predictions through direct measurement in [72]. Herper was
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Figure 4.4: Dipole Geometry

principally focused on deriving the embedded element pattern, but in the processes developed

the current distribution of each dipole element as well as the active gap impedance. Both of

which can be used to help develop a mutual impedance model for the conformal array.

The process Herper follows to derive an embedded element pattern is simple conceptu-

ally if rather involved mathematically. It starts by taking the whole array geometry and

dividing it into a unit cell containing a section of PEC cylinder and a single dipole element.

The appropriate boundary conditions are then applied to the unit cell, including Floquet

boundary conditions to account for the periodic nature of the array. A Green’s function is

then derived for the unit cell based on the geometry and boundary conditions that relates

dipole currents to electric field. Herper then assumes a gap voltage is applied to the dipole

element that will produce an unknown current distribution on the dipole arms. The Galerkin

method is then applied to transform this unknown current distribution into a set of linearly

independent equations weighted by a set of unknown coefficients [59, p. 450–458]. This set of

equations can be solved using standard linear system theory and the dipole current distribu-

tion found. With the dipole current and gap voltage known the dipole active gap impedance
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Figure 4.5: Geometry of the cylindrical array

can be found and a matching network designed. The embedded element pattern can then

calculated from the dipole current distribution and the Green’s function.

Geometry The cylindrical array of dipoles can be seen in Figure 4.5 and the unit cell

geometry in Figure 4.6. The array is assumed to be an infinite stack of coaligned circular

arrays, each containing N evenly spaced dipoles. Here a is the radius of the PEC cylinder,

ρ0 the radius to the dipole, l and w define the dipole total length and width respectively and

h the dipole gap distance. Each unit cell represents a α � 2π~N wedge of height d and each

dipole is separated by b � αρ0.

Boundary Conditions The unit cell seen in Figure 4.6 has four boundaries to consider.

These boundary conditions can be cast in terms of E and H fields or more generally in

terms of a Green’s function, G�r,r��, where the primed vectors point to the sources and the

unprimed to the observation location. On the PEC cylinder tangential E-fields will go to
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Figure 4.6: Geometry of the unit cell for the cylindrical array

zero [73, p. 343] or in terms of the Green’s function

G�a,φ,z;r��Ybz �G�a,φ,z;r��Ybφ � 0 (4.22)

In addition, as ρ approaches infinity the Green’s function will need to meet the radiation

boundary condition. That leaves just the top/bottom and left/right boundary conditions.

As the unit cell is placed in an infinite array the Floquet boundary conditions can be applied.

G�ρ, α2 ,z� � e�jναG�ρ,�α2 ,z� (4.23)

G�ρ,φ, d2� � e�jkz0dG�ρ,φ,�d2� (4.24)

Where kz0 is the progressive phase delay between neighboring column elements and ν is the

νth phase sequence around the circular array. With the boundary conditions defined, the

Green’s function can now be formulated.
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Green’s Function In electromagnetics a Green’s function is a linear operator that when

integrated over a source distribution produces a field quantity. In this case the source is

the current distribution over the dipole element and Herper writes the Green’s function to

produce a auxiliary vector potential A. The E and H field quantities can then be found

through the differential relationships:

HA �
1
µ
S�A (4.25)

and

EA � �jωA�j
1
ωµε

S�SYA� (4.26)

This is a common electromagnetic method that is often employed to solve antenna and

radiation problems. Since the dipole length is much greater than its width, LQw, it can be

assumed that the current on the dipole is strictly z-directed and the vector potential can be

expressed:

Az�r;ν,kz0� � µ0S
s
G�r,r�;ν,kz0�K�r��dS� (4.27)

Where K�r�� is the dipole current distribution on surface s.

The form of the Green’s function can now be formulated. In addition to the bound-

ary conditions described earlier, the Green’s function will also have to satisfy the vector

Helmholtz equation:

S
2G�k2G � �δ�r�r�� (4.28)

It is advantageous to rewrite G in terms of orthogonal functions of ρ, φ, and z.

G�r,r�� � g�ρ,ρ��Φ�φ,z,φ�,z�� (4.29)
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The Floquet boundary conditions in (4.23) and (4.24) can be satisfied solely by Φ

Φmn�φ,z� � 1º
αd
e�j�νmφ�kznz� (4.30)

where νm � ν �mN , (ν=0, 1, . . . , N-1; m = 0, �1,. . .) and kzn � kz0 �2πn~d, (n = 0, �1,

. . .). The PEC boundary and radiation boundary conditions can be satisfied by g�ρ,ρ��. The
Helmholtz equation in (4.28) is first applied to gmn�ρ,ρ�� yielding:

1
ρ

d

dρ
�ρdgmn

dρ
���kn� νm

ρ

2�gmn � �δ�ρ�ρ��
ρ

(4.31)

where kn �
»
k2�k2

zn. To satisfy the radiation boundary condition gmn will need to take the

form of an outward traveling wave. gmn will also need to go to zero at ρ � a to satisfy (4.22).

With this and (4.28) in mind, gmn takes the form:

gmn�ρ,ρ�� � π

2jH
�2�
ρm �knρA�Zzm�knρ@� (4.32)

where

Zνm�knρ@� � Jνm�knρ@�� Jνm�kna�
H

�2�
νm �kna�H

�2�
νm �knρ@� (4.33)

and ρ
A�@� �max(min)�ρ,ρ��. The Hankel function in (4.32) ensures that the radiation bound-

ary conditions are met while the Zνm function does the same for the boundary condition on

the PEC cylinder. The complete Green’s function can now be written:

G�r,r�;ν,kz0� � ª

Q
n,m��ª

gmn�ρ,ρ�;ν,kz0�Φmn�φ,z�Φ�

mn�φ�,z�� (4.34)

Galerkin Solution With the Green’s function now known, attention can be focused on

finding the unknown dipole current distribution. While sinusoidal approximations of half

wavelength dipole current distributions are well known [59, p. 460] those distributions are

only valid for an isolated dipole current in free-space and is not applicable to a dipole
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element within an array suspended over a PEC cylinder. To solve for the unknown current

distribution Herper starts by applying a gap voltage, Vg, to the dipole. Vg can be rewritten

in terms of an E-field, Vg � �Egh, and since the Green’s function in (4.34) can be used to

describe the E-field everywhere, including in the dipole gap and on the dipole itself, one can

write:

ÂGK � S
s

ÂG�r,r��K�r��dS� �
¢̈̈̈̈̈
¦̈̈̈̈
¤̈

0 on dipole arms

Eg in the gap
(4.35)

where ÂG is the E-field Green’s function found by applying (4.26) to (4.34). Equation (4.35)

is still not directly solvable as the integration still involves an unknown distribution K. An

approximate solution can be derived by applying Galerkin’s method.

Galerkin’s method takes the unknown distribution,K, and supposes that it can be written

as a series of orthogonal basis functions of unknown weights.

K�r�� � Q

Q
q�1

cqΨq�φ�,z�� (4.36)

Where Q is the number of basis functions used. The orthogonal basis function, Ψq, will need

to be valid on the dipole. Let Ψq � 0 for φ and z off the dipole, solely a function of z on the

dipole, and Ψq�φ�, l~2� � Ψq�φ�,�l~2� � 0. A sine function is a natural choice to meet these

conditions.

Ψq � sin
qπ

l
�z� l2� (4.37)

It should be noted that as Q�ª the Galerkin approximation converges to the true solution.

Applying (4.36) to (4.35) yields

Q

Q
q�1

cq ÂGΨq�φ�,z�� �Egphpw (4.38)

where phpw are pulse functions with a unity value over the dipole gap. In this form one can

see that the Galerkin’s method to this point has transformed (4.35) into a form in which the
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integration can be evaluated, however it has created Q unknown weights, cq. Linear system

theory dictates that to solve for Q unknowns one needs Q equations. Galerkin’s method

accomplishes this by taking the inner product of both sides of (4.38) with a set of orthogonal

testing functions. In classic Galerkin’s method the basis and testing functions are composed

of the same orthogonal functions, and the inner products will be non-zero only when the

basis and testing functions are equal.

Q

Q
q�1

cq�Ψp, ÂGΨq� �Eg�Ψp,phpw� p = 1, 2, . . . , P=Q (4.39)

where the inner product �f,g� is defined over the dipole by

�f,g� � S w~2p0

�w~2p0
dφS

L~2

�L~2
f�φ,z�g�φ,z�dz (4.40)

Galerkin’s method has now created Q unknown weights and Q linear equations that can

be solved using linear system theory and then used to calculate the dipole currents. Once

the currents are known, secondary products such as the active dipole gap impedance can be

found. Equation (4.27) can then be used to find the vector potential and Equations (4.25)

and (4.26) can be used to find the radiated fields.

Matching Network With the dipole current distribution, K, found and the applied gap

voltage, Vg, known, the active dipole gap impedance can be found by evaluating the current

distribution over the dipole gap and applying Ohm’s law.

Zg �
Vg`Ige �

Vg
w
h R h~2�h~2K�z�dz . (4.41)

Since the active gap impedance is not likely to match the characteristic impedance of

the feed transmission line a matching network will be required. A generic 2-port matching

network can be seen in Figure 4.7. Network theory can be applied and the gap voltage can
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Figure 4.7: Active dipole matching network

be related to the voltage incident on the matching networks input port.

Vg�ν,kz0� � S21�1�Γg�ν,kz0��
1�S22Γg�ν,kz0� e�jβ2l2Vinc (4.42)

The active gap impedance from Herper takes into account both the dipole self impedance

and the mutual impedance. This can be seen by extending (4.1) to an N element array and

solving for the active gap impedance to yield

Z1d �
V1
I1

�Z11�Z12�I2
I1
�� � � ��Z1N �IN

I1
� , (4.43)

in which Z1d is the active gap impedance, also commonly called the drive-point impedance.

However, before an open-circuit mutual couping model can be developed the self impedance

and the N �1 mutual impedances in (4.43) need to be known.

The dipole mutual impedance model described as part of the ULA dipole array can be

leveraged here, but care must be taken in doing so. The previous dipole model was able

to predict the mutual impedance between two dipoles under the assumptions that: 1) the

dipoles were suspended in free space and 2) by using an idealized current distribution. In the

conformal array the dipoles are not in free space but rather suspended over a PEC cylinder,

and their current distribution is not the idealized sinusoidal distribution. The first challenge

can be overcome by applying image theory [74, p. 314–323] to replace the PEC cylinder

with a set of equivalent sources. The current distributions, derived from Herper’s work, can
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then be used to replace the idealized dipole currents. Figure 4.8 depicts the canonical image

theory example in which a current source is suspended over a flat PEC boundary. Image

theory states that an identical field is produced in the upper half-space by the combination

of real and image sources without the PEC boundary as the real sources over the PEC

boundary. This will add additional array elements, but will remove the PEC boundary and

allow the dipole mutual coupling model to be leveraged.

For large cylinders with dipoles placed close to the surface it may be practical to approx-

imate the cylinder as locally flat. However, for the general case the curvature of the cylinder

will need to be considered. Figure 4.9 show how image theory can be applied to cylindrical

structures [61, p. 48–49]. The most notable change is in the location of the equivalent source.

In the flat PEC boundary case the real and equivalent source are placed equal distances from

the boundary. In contrast, the equivalent source is places an offset distance from the center

of the cylinder based on the size of the cylinder and the distance of the real source. This

now allows for the creation of an equivalent model to which the dipole mutual impedance

model can be applied.

The self impedance Z11 from (4.43) can now be found by considering a single dipole

above the PEC cylinder. Image theory generates a second dipole separated by a distance of

d � r� r�. Equations (4.17)–(4.21) can now be applied to find the mutual impedances and

the self impedance can be calculated as the drive point impedance

Z1d �
V1
I1

�Z11�Z12�I2
I1
� , (4.44)

with I1 � �I2.

Calculating the N �1 mutual impedance terms in (4.43) is a little more challenging. It

starts by considering two dipoles suspended over a PEC cylinder and applying image theory

as illustrated in Figure 4.10. This produces a total of four dipoles that must be considered.

The mutual impedance between the two real dipoles can be calculated by evaluating (4.13).
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As before I�z�� is equal to the current distribution on dipole two but Ez�z�� is now equal to

the sum of E-fields induced by the three other dipoles

Z21PEC �
V21
I2�0� � �1

I2�0��I1�0��I �1�0��I �2�0�� S
l~2

�l~2
�Ez21�z���Ez21��z���Ez22��z���I2�z��dz�.

(4.45)

This expression can be evaluated numerically or split into constituent components to reveal

Z21PEC �Z21�Z21� �Z22� . (4.46)

This indicates that the mutual impedance between two conformal dipoles is equal to the

mutual impedance of the dipoles in free space perturbed by the mutual impedances of of the

dipole images in the PEC cylinder.

All the required components are now in hand to create an open-circuit mutual coupling

model for a conformal array of dipoles suspended over a PEC cylinder. The work of Herper

et al. contributes the active gap impedance as well as the current distribution on the array

elements. While the careful application of image theory and the dipole mutual impedance

model helps derive the mutual impedances between array elements.

4.1.4 Microwave Front-End Design

Many antenna models focus on the current and/or charge distribution on an antenna and

the resulting fields dictated by Maxwell’s equations, while simplifying the RF hardware

connected to the antenna down to a Thévenin equivalent model. This abstraction simplifies

the overall problem, but care needs to be taken as this can mask some important underlying

issues. Of particular interest is the effective load impedance the microwave front-end places

on the antenna in different operating modes. In this section we start with the simple Thevenin

model seen in Figure 4.11 and slowly increase the complexity of the microwave front-end

model so it more accurately reflects reality. This is accomplished by first adding in the
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Figure 4.8: Real and equivalent sources for a flat PEC plain

Figure 4.9: Real and equivalent sources for a cylindrical PEC object
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Figure 4.10: Real and equivalent sources for determining the mutual impedances between
two conformal elements

antenna feed line and matching structure, then incorporating a transmit/receive (T-R) switch

before finally examining the power amplifier and low noise amplifier. It will be shown that

these amplifiers place a different load impedance on the antenna depending on the position

of the T-R switch, and this in turn changes the mutual coupling between adjacent elements.

4.1.4.1 Antenna Matching and Feeding Network

Without loss of generality we start by considering a two element array which has been

arranged in Figure 4.12 to resemble a two port network. In a previous section the mutual

coupling between these two dipoles was described using mutual impedances, also known as

Z-parameters. However, most microwave systems are described using scattering parameters.

The process for transforming between Z-parameters and S-parameters is readily available in

many texts and the reader is referred to [62, p. 187] for specifics.

Very few antennas are connected directly to an RF source, so the first modification to
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Figure 4.11: Dipole array with element Thevenin model
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Figure 4.12: Two element dipole array laid out as a two port network

the array model is to add a transmission line with impedance Z0 and a matching network

to minimize reflections between the antenna’s drive impedance and Z0. Figure 4.13 depicts

the updated model.

4.1.4.2 Transmit-Receive Switch

As an array is typically used for both transmitting and receiving signals some sort of switching

network is used to connect the antenna to either the transmitter or the receiver. This

switching network may consist of a T-R switch or a ferrite circulator and in either case it is

three port network that connects to a source and a load. Figure 4.14 shows one half of the

two port network updated to include the switching network. The T-R switch connects to

either a transmitting source, modeled as a Thévenin source with source impedance Zs or a

receive low noise amplifier denoted by load resistor ZL. In an ideal system both ZL and Zs
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Figure 4.13: Two element dipole array with matching networks

would be matched to Z0 and the antenna matching network would present a conjugate match

to the antenna’s drive point impedance maximizing power transfer. In this idealized case the

load seen by the antenna is the same whether the array is transmitting or receiving and the

modifications made so far have not added anything meaningful to the model. However, once

realistic models of transmitting amplifier and receive LNA are developed any perturbation

from ideal will propagate through these additions before reaching the antenna.

4.1.4.3 Microwave Amplifiers

Microwave amplifiers play a key role in RF systems, and understanding how these devices

are designed is vitally important to understanding how they affect the mutual coupling

between array elements. Consider the generic single stage amplifier seen in Figure 4.15,

where a transistor with scattering parameters �S� is matched to source and load impedance

Z0 by an input and output matching network described by �Si� and �So� respectively. Pozar
tells us that the amplifier will obtain maximum gain when the matching networks provide a
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Figure 4.14: Two element dipole array with matching network and switching network
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conjugate match to the transistors source and load impedances,

Γin � Γ�S (4.47)

and

Γout � Γ�L, (4.48)

where � denotes conjugation [62, p. 548]. In this conjugate matched case, the matching

networks transform Z0 such that the transistor sees an optimal Z�

in connected to the input and

Z�

out connected to the output. Conversely the matching networks transforms the transistor’s

input and output impedance such that the impedance looking into the amplifier from either

direction appears to be Z0. This conjugately matched amplifier would then imply that both

ZL and Zs in Figure 4.14 would be equal to Z0 and the antenna element would be presented

with identical loads regardless of the T-R switch position.

Most amplifiers do not use conjugate matching networks. Designing an amplifier with

conjugate matching maximizes gain but significantly limits bandwidth. Input and output

matching networks can only provide a conjugate match over a relatively narrow bandwidth

so the peak obtainable gain is realized only over that small bandwidth and the gain tends to

drop off rapidly outside that band. Instead design engineers trade gain for bandwidth and

mismatches are purposely introduced [in the matching networks] to reduce the overall gain

[62, p. 553]. Now, the impedance looking into the amplifier is no longer Z0 but some other

impedance value, and the apparent input impedance is almost certainly a different value from

the apparent output impedance. This is key, as now ZL and Zs in Figure 4.14 are not only

not equal to Z0 but are no longer equal to each other. This difference in impedance value will

propagate through the microwave front end and present the antenna with a different load

impedance, depending on the state of the T-R switch, and ultimately result in a different

induced voltage values at each of the the array elements.
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Figure 4.15: Single Stage Amplifier Diagram

4.2 Simulation Setup

Before the impact of substituting a transmit array manifold for a receive manifold can be

undertaken the updated array element model seen in Figure 4.14 needs to be incorporated

into the mutual coupling model, the array mutual impedance values need to be calculated

and the array manifold constructed. Once this is complete a set of simulations can be

undertaken to compare the performance of some common array processing algorithms using

the correctly matched and mismatched array manifolds.

4.2.1 Integrating Hardware and Mutual Coupling Models

The mutual coupling models thus far considered have been expressed in terms of Z-parameters,

in contrast the array element model has been expressed in S-parameters. Rather than con-

tinue with the two models expressed in different terms, the mutual coupling model will be

recast into scattering parameters. Consider a two element array excited by a distance source,

the mutual impedances can be transformed into S-parameters and the array described by the

signal flow diagram seen in Figure 4.16a. Since the excitation source is far away we consider

only signal paths directly from the distant source and neglect any secondary loops that would

form from signals bouncing between the source and the array. We will specifically consider

signals flowing from the distant source to element one as seen in Figure 4.16b. Between
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4.16b and 4.16c the self-loops created when signals are incident on an array element are

partial reflected and re-radiated are collapsed. The final flow diagram can be seen in Figure

4.16d and we can now see the signal at array element one is the sum of the direct path plus a

portion of the signal scattered from element two, plus a diminishing set of terms representing

repeated scattering between elements one and two. Neglecting these multi-scatter terms we

can write the transmission from the the distant source to element one as

T1 � S13�
S12ΓL

1�S22ΓL
S23. (4.49)

This can be extended to an N element array to produce

T �

<@@@@@@@@@@@@@>

T1

T2

�

TN

=AAAAAAAAAAAAA?
�

<@@@@@@@@@@@@@>

1 S12ΓL
1�S22ΓL �

S1NΓL
1�SNNΓL

S21ΓL
1�S11ΓL 1 �

S2NΓL
1�SNNΓL

� � � �

SN1ΓL
1�S11ΓL

SN2ΓL
1�S22ΓL � 1

=AAAAAAAAAAAAA?

<@@@@@@@@@@@@@>

S1�N�1�

S2�N�1�

�

SN�N�1�

=AAAAAAAAAAAAA?
. (4.50)

Or more simply

T �CSs, (4.51)

where Ss is a vector of S-parameters relating the distant source to each array element, and

mutual coupling matrix C relates incident signal to the forward propagating wave entering

the microwave front end. This model can now be integrated into the array signal model very

simply. First, the magnitude of each term in vector Ss is related to the distance between

the source and each element. Since the distance between the source and the center of the

array is much greater than the distance from one end of the array to the other we can say

the magnitude of each term in Ss is approximately equal to some scalar value α. Since α

is a arbitrary scalar value based on the source distance and the array signal model is solely

focused on the signal present at the array, and not the propagation from source to array,

it can be neglected. This leaves the phase of vector Ss to describe the relative phase value
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(a) (b)

(c) (d)

Figure 4.16: S-parameter mutual coupling network flow diagram solution

between each element. In the array signal model this phase information is already captured

in the unperturbed array manifold and we can prepend C to the unperturbed array manifold

to model the effects of mutual coupling.

4.2.2 Simulations Setup

With a suitable mutual coupling model integrated with the new model of the microwave front-

end, the mutual coupling terms are calculated for a ULA and conformal array of dipoles.

The array manifolds are then derived for both the transmitting and receiving configuration.

In both cases the matching network seen in Figure 4.14 was designed to match the drive

point impedance of the dipole to a 50Ω transmission line. The output return loss of the

power amplifier was set to -10 dB with arbitrary phase, while the low noise amplifier had

an input return loss of -15 dB again with arbitrary phase. These values are selected after
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surveying amplifier specification sheets to find typical return loss values.

Direction of arrival estimators will be used to evaluated the impact of model mismatch

with the aid of two metrics. The first metric is the probability of resolving two sources of

equal magnitude separated by half the nominal resolution distance. The second metric will

look at the RMS error between the predicted DoA and the true DoA. Since the size of the

array directly affects the pattern beamwidth, the RMS error will be nominalized with respect

to the null-to-null beamwidth of the array. This normalization will allow the RMS error to

be compared fairly across arrays of differing lengths.

To calculate these metrics a series of 500 trial Monte Carlo simulations are performed

over a suitable SNR range. In each trial the RMS error is calculated and a determination is

made as to if the targets have been resolved. At the end of the 500 trials the probability of

resolution is calculated and the RMS error is averaged. For both the ULA and the conformal

array the continuous array manifold is discretized into M=181 samples, with 2X separating

each sample. In each trial L snapshots of data are generated from the array signal model,

and results will be presented for L ranging from 5 to 100.

4.3 Results

The impact of transmit-for-receive manifold replacement on DoA estimators was assessed

for MUSIC and RISR using two different array geometries. The ESPRIT algorithm was

precluded from evaluation as ESPRIT does not require explicit knowledge of the array man-

ifold, and so is not subject to transmit-for-receive manifold mismatch. Results are presented

for both a uniform linear array of dipoles, as well as, a conformal array of dipoles suspended

over a PEC cylinder. In each case we present the probability of the DoA estimator resolving

two non-coherent targets of equal magnitude separated by half the nominal resolution. We

also present the RMS error in the DoA estimate for two and four targets. For MUSIC these

metrics show a noticeable degradation in performance when the receive array manifold in
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place of the arrays true receive manifold. In contrast, RISR shows almost no performance

degradation, which is likely due to RISR’s robustness to model mismatch in general.

4.3.1 Uniform Linear Array Results

A uniform linear array of antenna elements is a very common geometry and we examine

the impact of transmit-receive model mismatch using two DoA estimators. The array is

composed of ten λ~2 dipoles in a side-by-side configuration separated by a distance of λ~2.
The MUSIC algorithms is considered first in Section 4.3.1.1 followed by the RISR algorithm

in Section 4.3.1.2

4.3.1.1 MUSIC

The MUSIC algorithm requires knowledge of the number of incident signals, and the results

presented in this section MUSIC is supplied with clairvoyant knowledge of the number of

sources. Figures 4.17 and 4.18 plot the probability of separating two non-coherent, equal

magnitude targets for a range of sample support verse the array SNR (ASNR). ASNR is

defined as

ASNR �N
σ2
s

σ2
n
, (4.52)

where σs and σn are the signal and noise powers respectively. From these two plots the curves

for L=10, 25, and 100 were superimposed in Figure 4.19 so the impact in model mismatch

can be easily interpreted.

The RMS error in the direction of arrival estimation was also calculated and for the same

two closely spaced sources it can be seen Figure 4.20 for the matched array manifold and

Figure 4.21 for the mismatch case. The difference in RMS error is plotted for L=10, 25, and

100 is plotted in Figure 4.22. The RMS error for four sources, two closely spaced and two

separated by more then the nominal resolution, can be seen in Figures 4.23 and 4.24 with

the difference between estimates plotted in Figure 4.25.
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Figure 4.17: Probability of MUSIC separating two targets separated by half the nominal
resolution using the correct manifold. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50,
j : L=100

Figure 4.18: Probability of MUSIC separating two targets separated by half the nominal
resolution using the mismatched manifold. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50,
j : L=100
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Figure 4.19: Comparison of the probability of MUSIC separating two targets separated
by half the nominal resolution using the correct and mismatched array manifold. Dashed
lines : correct manifold, Solid lines : mismatched manifolds. X : L=10, S : L=25, j : L=100

Figure 4.20: RMS error in MUSIC DoA estimates for two targets using the correct manifold.
� : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100
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Figure 4.21: RMS error in MUSIC DoA estimates for two targets using the mismatched
manifold. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100
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Figure 4.22: Difference in the RMS error of MUSIC DoA estimates for two targets using the
correct and mismatched array manifold. X : L=10, S : L=25, j : L=100

Figure 4.23: RMS error in MUSIC DoA estimates for four targets using the correct manifold.
� : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100
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Figure 4.24: RMS error in MUSIC DoA estimates for four targets using the mismatched
manifold. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100

Figure 4.25: Difference in the RMS error of MUSIC DoA estimates for four targets using
the correct and mismatched array manifold. X : L=10, S : L=25, j : L=100
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Figure 4.26: Probability of RISR separating two targets separated by half the nominal
resolution using the correct manifold. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50,
j : L=100

4.3.1.2 RISR

The RISR algorithm was configured for 10 iterations, with a noise loading factor of α � 1~8.
Both the noise variance and model variance terms were assumed to be known rather than

estimated as part of the algorithm. Figures 4.26 and 4.27 plot the probability of separating

two closely spaced sources for the matched and mismatched array manifold respectively.

There is very little difference between the two and this is apparent in Figure 4.28 as the

matched and mismatched manifold traces lay on top of each other.

The RMS error in the RISR DoA estimation for two closely spaced sources can be seen in

Figures 4.29 and 4.30. As with the probability of separation plots there is very little difference

between these plots, and Figure 4.31 plots this small difference. This trend continues for the

four source test case as seen in Figures 4.32–4.34.
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Figure 4.27: Probability of RISR separating two targets separated by half the nominal
resolution using the mismatched manifold. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50,
j : L=100

Figure 4.28: Comparison of the probability of RISR separating two targets separated by half
the nominal resolution using the correct and mismatched array manifold. Dashed lines : cor-
rect manifold, Solid lines : mismatched manifolds. X : L=10, S : L=25, j : L=100
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Figure 4.29: RMS error in RISR DoA estimates for two targets using the correct manifold.
� : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100

Figure 4.30: RMS error in RISR DoA estimates for two targets using the mismatched man-
ifold. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100
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Figure 4.31: Difference in the RMS error of RISR DoA estimates for two targets using the
correct and mismatched array manifold. X : L=10, S : L=25, j : L=100

Figure 4.32: RMS error in RISR DoA estimates for four targets using the correct manifold.
� : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100
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Figure 4.33: RMS error in RISR DoA estimates for four targets using the mismatched
manifold. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100

Figure 4.34: Difference in the RMS error of RISR DoA estimates for four targets using the
correct and mismatched array manifold. X : L=10, S : L=25, j : L=100
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Figure 4.35: Embedded element pattern for 54 element conformal array

4.3.2 Conformal Array Results

The conformal array is less common then the ULA considered earlier but is never the less

interesting. One interesting aspect of the conformal array considered herein is that the

elements are outward facing and that the embedded element pattern is known from the works

of Herper and is plotted in Figure 4.35. Often times circular arrays and cylindrical arrays

are considered in analogy to circular apertures and constrained to beam patterns broadside

to the entire array, such that all elements can contribute simultaneously. In contrast, here

only a small subset of the array elements contribute to the transmission and reception of

signals for a given angle.

4.3.2.1 MUSIC

For the conformal array, MUSIC is again supplied with clairvoyant knowledge of the number

of sources and we consider both probability of separating two closely spaced targets as well
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Figure 4.36: Probability of MUSIC separating two targets separated by half the nominal
resolution using the correct manifold, conformal array. � : L=5, X : L=10, Q : L=15,
S : L=25, l : L=50, j : L=100

as the RMS error in DoA estimates for two and four targets. The probability of separating

targets using the correct matched array manifold can be seen in Figure 4.36, while the

mismatched case is plotted in Figure 4.37. As before the difference between the probabilities

is plotted in Figure 4.38 for a selection of time sample support.

The RMS error in the DoA estimates for two closely spaced targets when MUSIC is

assuming the correct and mismatched array manifolds can be seen in Figures 4.39 and 4.40

respectively. The difference in error between the two models is plotted in Figure 4.41.

Similarly, the RMS error in DoA estimates for 4 targets, two of which are closely spaced,

can be seen in Figures 4.42 and 4.43, with the difference between them plotted in Figure

4.44.
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Figure 4.37: Probability of MUSIC separating two targets separated by half the nominal
resolution using the mismatched manifold, conformal array. � : L=5, X : L=10, Q : L=15,
S : L=25, l : L=50, j : L=100
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Figure 4.38: Comparison of the probability of MUSIC separating two targets separated by
half the nominal resolution using the correct and mismatched array manifold, conformal ar-
ray. Dashed lines : correct manifold, Solid lines : mismatched manifolds. X : L=10, S : L=25,
j : L=100

Figure 4.39: RMS error in MUSIC DoA estimates for two targets using the correct manifold,
conformal array. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100
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Figure 4.40: RMS error in MUSIC DoA estimates for two targets using the mismatched
manifold, conformal array. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100

Figure 4.41: Difference in the RMS error of MUSIC DoA estimates for two targets using the
correct and mismatched array manifold, conformal array. X : L=10, S : L=25, j : L=100
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Figure 4.42: RMS error in MUSIC DoA estimates for four targets using the correct manifold,
conformal array. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100

Figure 4.43: RMS error in MUSIC DoA estimates for four targets using the mismatched
manifold, conformal array. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100
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Figure 4.44: Difference in the RMS error of MUSIC DoA estimates for four targets using the
correct and mismatched array manifold, conformal array. X : L=10, S : L=25, j : L=100
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Figure 4.45: Probability of RISR separating two targets separated by half the nominal
resolution using the correct manifold, conformal array. � : L=5, X : L=10, Q : L=15,
S : L=25, l : L=50, j : L=100

4.3.2.2 RISR

The RISR algorithm was again configured for 10 iterations, with a noise loading factor

of α � 1~8. The probability of separating targets is plotted in Figures 4.45 and 4.46 for

the matched manifold and mismatched array manifold cases respectively. Similar to the

ULA geometry the difference between the two models is very small for RISR and some

representative cases are plotted in Figure 4.47.

Figures 4.48 and 4.49 plot the RMS error in RISR’s DoA estimates for two closely spaced

targets using the matched and mismatched array manifolds, while Figure 4.50 plots the

difference in error for the two manifolds.

Finally, Figures 4.51 and 4.52 depict the RISR RMS error for four targets. The difference

in RMS error between the matched and mismatched manifold cases can be seen in Figure

4.53.
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Figure 4.46: Probability of RISR separating two targets separated by half the nominal
resolution using the mismatched manifold, conformal array. � : L=5, X : L=10, Q : L=15,
S : L=25, l : L=50, j : L=100

4.4 Discussion

The impact of substituting the transmit array manifold for the receive manifold on direction

of arrival estimation algorithms is highly dependent upon the algorithm itself, and the man-

ner in which the algorithm uses the array manifold. In examining the performance impact

on MUSIC and RISR it was found that MUSIC suffers a loss of performance while RISR

does not. This is attributable to the RISRs use of a model mismatch loading term. In the

following discussion we will examine in detail the performance impact of transmit-for-receive

manifold mismatch.

4.4.1 MUSIC

The MUSIC algorithm explicitly depends on the accuracy of the assumed array manifold and

it is not surprising that performance suffers if the assumed array manifold does not match
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Figure 4.47: Comparison of the probability of RISR separating two targets separated by half
the nominal resolution using the correct and mismatched array manifold, conformal array.
Dashed lines : correct manifold, Solid lines : mismatched manifolds. X : L=10, S : L=25,
j : L=100

Figure 4.48: RMS error in RISR DoA estimates for two targets using the correct manifold,
conformal array. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100
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Figure 4.49: RMS error in RISR DoA estimates for two targets using the mismatched man-
ifold, conformal array. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100

Figure 4.50: Difference in the RMS error of RISR DoA estimates for two targets using the
correct and mismatched array manifold, conformal array. X : L=10, S : L=25, j : L=100
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Figure 4.51: RMS error in RISR DoA estimates for four targets using the correct manifold,
conformal array. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100

Figure 4.52: RMS error in RISR DoA estimates for four targets using the mismatched
manifold, conformal array. � : L=5, X : L=10, Q : L=15, S : L=25, l : L=50, j : L=100
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Figure 4.53: Difference in the RMS error of RISR DoA estimates for four targets using the
correct and mismatched array manifold, conformal array. X : L=10, S : L=25, j : L=100

the true array manifold. The impact of this model mismatch can be seen in both of the

metrics. Figures 4.19 shows the probability of separation for MUSIC on the ULA for both

the matched manifold and mismatched manifold, with time support L � 10,25 and 100. In

all three sample support curves there is a 3–4 dB performance penalty for substituting the

transmit manifold for the receive manifold. Interestingly, this same penalty is not present in

the conformal array geometry. This is likely due to the reduced mutual impedance between

elements as the PEC tends to suppress mutual coupling. MUSIC’s performance is also

degraded in terms of the RMS error of the DoA estimation it produces. Both Figures

4.22 and 4.25 show a dramatic difference between the RMS error when using the correct

receive manifold then when the mismatched transmit manifold is used. This difference is

most dramatic at high ASNR, implying that extra signal power is needed to overcome the

so called model noise. The difference is RMS error for the conformal array likewise shows

a penalty for manifold substitution. In contrast the ULA geometry, Figures 4.41 and 4.44

show that the error in DoA estimates is principally located at lower ASNRs for the conformal
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geometry. The difference is also smaller in keeping with the lower mutual coupling. Both

metrics show MUSIC is susceptible to performance degradation if the transmit manifold is

mistakingly substituted for the receive manifold.

4.4.2 RISR

RISR has built in model mismatch tolerance and this tolerance is readily apparent from

the simulation results. In contrast to MUSIC which showed a performance penalty of 3–

4 dB in the probability of separating two closely spaced targets, Figures 4.28 and 4.47

show virtually no difference between the mismatched and correct manifold. This difference

in performance between MUSIC and RISR can be appreciated by examining the example

spectrums in Figures 4.54 and 4.55. Both spectrums are taken from the transition region

when each algorithm is resolving two closely spaced signals for roughly half the trials. In the

MUSIC pseudo-spectrum there is a marked difference between the matched and mismatched

manifolds, with the correct receive manifold showing a greater potential to separate the

two targets. In comparison the RISR spectrum is nearly identical for both the manifolds

implying that RISR will give similar performance in the face of some model mismatch.

RISR model mismatch tolerance can also be seen by examining the difference in DoA RMS

error when using either the correct receive manifold or the mismatched transmit manifold.

For the ULA geometry, Figures 4.31 and 4.34 show very little difference between the two

models. Figures 4.50 and 4.53 tell as similar story for the conformal array with less then

1 dB difference for all but a small handful of data points.

4.5 Summary

In this chapter, we have seen how the imperfections in the matching networks of RF power

and low noise amplifiers can propagate through the microwave front-end to load an antenna

element. Moreover, it was noted that the non-reciprocal nature of a transmit-receive switch
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Figure 4.54: Example MUSIC pseudo-spectrum showing differences in estimates between the
correct and mismatched manifold. Solid line with � markers : mismatched manifold, dashed
line with X markers : matched manifold

Figure 4.55: Example RISR spectrum showing virtually no difference in estimates between
the correct and mismatched manifold. Solid line with � markers : mismatched manifold,
dashed line with X markers : matched manifold
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will cause the load placed on the antenna to be dependent upon the switch state. This mode

dependent load was then integrated into a mutual coupling model for an antenna array, and

it was shown that the mutual coupling between array elements would change depending on

the mode of the system. As the array manifold is influenced by the mutual coupling, this

difference in the mutual coupling between elements will result in a different array manifold

on transmit then on receive. It was then shown that substituting the transmit manifold for

the receive manifold led to performance degradation for the MUSIC algorithm, but little to

no performance degradation in RISR. It was surmised that RISR’s model mismatch loading

term gives the algorithm enough robustness to model mismatch that the transmit-for-receive

manifold substitution did not affect the DoA estimates.
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Chapter 5

Closure

5.1 Summary & Conclusions

Inaccuracies in the underlying array model can degrade the performance of modern array

processing algorithms, but recognizing this mismatch provides an opportunity to recapture

some of that lost performance. If we can have the introspection to appreciate the limits

of our knowledge and the limits of the models we work with we can develop techniques to

regain some of the performance lost to model mismatch. This work attempted to do just

that, first by developing RACE, a blind calibration routine to help improve the array model

used in the RISR DoA algorithm. RACE uniquely extend RISR’s existing model mismatch

capabilities while retaining RISR’s SCM’less structure, making it relevant to low sample

support environments. This work then examined a case of model mismatch perpetuated by

applying an oversimplified model of microwave hardware. This oversimplification, masked

the mode dependent antenna loading that can perturb the array’s performance and the

performance of many array processing algorithms. These cases of model mismatch cost

performance but if we are willing to deal with the added complexity we can recapture much

of that lost performance.

The RISR Array Calibration Enhancement (RACE) algorithm was developed as a blind
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calibration routine that when paired with RISR can simultaneously estimate the channel

gain/phase variations, mutual coupling and DoA of incident signals. While the RISR algo-

rithm was designed with model mismatch in mind, the calibration enhancement presented

herein takes the next logical step by using a more robust model of common array perturba-

tions. By estimating these perturbations it is possible to recapture some of the accuracy lost

to using a idealized array signal model. In Chapter 3 we developed the RACE algorithm

by leveraging a more robust array signal model and perturbation estimation techniques de-

veloped in [20] and applied them to the RISR algorithm. We then showed the efficacy of

the algorithm and explored its convergence region. It was found that RACE can improve

the performance of RISR in the face of model mismatch. In addition, RACE is robust to

a wide range of channel gain variation and to a somewhat smaller range of channel phase

variation. It was also found that the effectiveness of RACE was dependent on both the num-

ber of sources and the SNR environment, with additional SNR required as the number of

signals increased. A method to extend the convergence region of RACE by integrating prior

calibration data was also developed. Subsequent testing showed the manifold replacement

method could significantly extend the convergence region of the RACE algorithm. RACE

is suitable for any array where RISR is used and can improve DoA accuracy by reducing

model mismatch associated with channel gain/phase and mutual coupling. Since RISR is

not dependent on a sample covariance matrix both RISR and RACE are prime choices when

either sample support is low, or coherent sources are present.

Model mismatch can also occur when engineers incorrectly apply a transmitting array

model to an array operating in a receive mode. This type of model mismatch was explored in

Chapter 4 by showing that the front-end hardware can place a mode dependent load on the

array elements. This load in turn affects the mutual coupling and the array manifold. This

approach is unique in its consideration of RF hardware as convention simplifies this same

hardware down to a Thévenin model which masks the underlying mode dependency. This

type of model mismatch is also often overlooked in the face of the traditional antenna reci-
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procity mantra. It was shown this transmit-for-receive array model substitution degraded the

performance of the MUSIC algorithm, while RISR was more robust to the model mismatch.

Conversely, this performance loss can be recaptured by addressing the model mismatch and

using the correct manifold.

5.2 Future Work

The work contained herein is only the first step of developing the RACE algorithm and

much is left to the future work of myself and others. There is considerable work left to

be done on RACE’s noise loading limits and profiles. The results presented in Chapter 3

counterintuitively showed two constant value loading profiles out-performing all three model

noise loading profiles that gradually reduced over the calibration cycle. It was surmised that

the limits on β contributed to the under performance of these loading profiles. Future work

should include defining upper and lower bounds on β for optimal performance, as well as

reexamining model noise loading profiles. Thus far RACE has been constrained to theoretical

simulations and implementing RACE on actual hardware will provide rich opportunities for

future work. The calibration estimations in RACE were implemented using a least squares

framework, but in other frameworks may prove interesting, particularly recursive methods

that may be able to run in parallel to RISR. Future work should also include exploring

integrating prior calibration data via Γ and C seeding. This work proposed two methods to

integrate prior calibration data, Γ and C seeding and manifold replacement, but only the

performance of manifold replacement was explored. Future work into prior calibration should

also extend to tracking calibration over a system’s lifetime. One of the defining benefits to

blind calibration is frequency periodic recalibration and it may prove interesting to see how

the two methods adapt to an evolving array.
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Appendix A

Notaion

A.1 Acronyms

ASNR Array Signal-to-Noise Ratio

dB Decibel

DoA Direction of Arrival

EMF Electromotive Force

ESPRIT Estimation of Signal Parameter Via Rotational Invariance Techniques

MUSIC Multiple Signal Classification

MVDR Minimum Variance Distortionless Response

PEC Perfect Electric Conductor

RACE RISR Array Calibration Enhancement

RF Radio Frequency

RISR Reiterative Super Resolution

RMS Root Mean Squared

SCM Sample Covariance Matrix

SNR Signal-to-Noise Ratio

T-R Switch Transmit-Receive Switch
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A.2 Conventions

x Scalar

x Vector

X Matrix

x̂ Estimation of x

E�x� Expectation of x

SxS Magnitude of x

�x Angle of x

xH , XH Conjugate transpose

xT , XT Transpose

x� conjugate of x

�X�ij ij element of X

Ix�x x�x Identity matrix

0i�j i�j Zero matrix

b Hadamard product

Sx Gradient

S�x Divergence

S�x Curl

S2x Laplacian
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A.3 Symbols

A i) Ideal array manifold (2)

ii) Auxiliary vector potential (4.1.3.2)

a�ψ� Ideal array steering vector

a PEC cylinder radius

α i) RISR noise loading factor (2.1.3)

ii) Unit cell angular size (4.1.3.2)

αn nth channel gain value

B1 First mutual coupling transformation matrix

B2 Second mutual coupling transformation matrix

B3 Third mutual coupling transformation matrix

B4 Fourth mutual coupling transformation matrix

b Unit vector

b Horizontal dipole separation

β RISR model loading factor

C Mutual coupling matrix

c Mutual coupling terms vector

c Speed of light in a vacuum

cq qth unknown coefficient

Ci Cosine integral

D Calibration matrix

d i) Array element separation (2.1.2)

ii) Vertical dipole separation distance (4.1.3.2)

∆ Sensor position uncertainty matrix

ε Permittivity

ε0 Permittivity of freespace
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η0 Freespace impedance

EA E-field derived from auxiliary vector potential

Eg Dipole gap E-field

G��� Green’s function

gmn�ρ� Radial component of the Green’s function

Γ Channel gain/phase matrix

Γg Generator voltage reflection coefficient

Γin Input voltage reflection coefficient

Γout Output voltage reflection coefficient

Γs Source voltage reflection coefficient

ΓL Load voltage reflection coefficient

γ Channel gain/phase term vector

HA H-filed derived from auxiliary vector potential

H�1� Hankel function of the first kind

H�2� Hankel function of the first kind

h Dipole gap height

In Total current at the terminals of the nth array element

Is Total current at the terminals of the source antenna

I1i, I2i Input currents to ports 1 and 2

Im Maximum current

Jn nth order Bessel function of the first kind

JMUSIC MUSIC cost function

JRISR RISR cost function

Js1, Js2 ESPRIT selection matrices

k Wavenumber vector

kz0 Progressive phase delay between neighboring column elements

kzn Phase of the nth vertical element
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K Dipole current distribution

L Number of time snapshots

l Dipole length

λ Wavelength

λi Signal subspace eigenvalue

M Number of samples in the array manifold

µ Permeability

µ0 Permeability of freespace

N Number of elements in an array

Ns Number of elements in a subarray

ν Angular phase progression between cylindrical elements

νm Phase of the mth angular element

P RISR spectral power distribution matrix

pn Position vector for sensor element n

phpw Pulse functions with a unity value over dipole gap

ρ0 Radius of dipole array

ψ Signal angle of incidence

Ψ Phase relationship matrix between subarray signal subspace eigenvectors

Ψq qth orthogonal basis function

Φ Phase relationship matrix between subarray manifolds

Φmn�φ,z� φ and z components of the Green’s function

Q i) Number of incident signals (2)

ii) Number of Galerkin basis functions (4.1.3.2)

Q1�z� Gain/phase transformation function

Q2�z� ULA mutual coupling transformation function

Q3�z� UCA mutual coupling transformation function

R Covariance matrix
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R Radius of uniform circular array

R1 Distance from top of dipole to target

R2 Distance from bottom of dipole to target

r Distance from center of dipole to target

R21 Real part of the mutual impedance

Rx x covariance matrix

Rv v covariance matrix

Ry y covariance matrix

Rz RISR model noise covariance matrix

S True array manifold

Ss1 First subarray manifold

Ss2 Second subarray manifold

s�ψ� True array steering vector

s Hight of dipole above PEC cylinder

Si Sine integral

S11, S22 S-parameter reflection coefficients

S21, S12 S-parameter transmission coefficients

η0 Freespace impedance

σ2
s Signal variance

σ2
n Noise variance

σ2
i Noise subspace eigenvalue

τnk Time delay between source k and sensor n

τn Time delay between origin and sensor n

ui Eigenvector

Us Set of signal subspace eigenvectors

Us1 First subarray eigenvectors

Us2 Second subarray eigenvectors
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Un Set of noise subspace eigenvectors

u0 Dipole mutual impedance argument

u1 Dipole mutual impedance argument

u2 Dipole mutual impedance argument

v Noise vector

Vn Total voltage at the terminals of the nth array element

Vgn Voltage of the nth generator

Vg Dipole gap voltage

Vinc Incident voltage

ω Radial frequency

w Dipole width

W RISR adaptive filter bank

X Signal spatial distribution matrix

x Signal spatial distribution vector

X21 Imaginary part of the mutual impedance

Y Array signal matrix

y Array signal vector

Z11, Z22 Self-Impedance

Z21, Z12 Mutual-Impedance

ZL Load impedance

Zs Source impedance

Z0 Transmission line characteristic impedance

Z1d Drive point impedance

Zin Input impedance

Zout Output impedance

ζn nth channel phase
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