436 research outputs found

    Fast Adaptive Robust Differentiator Based Robust-Adaptive Control of Grid-Tied Inverters with a New L Filter Design Method

    Get PDF
    In this research, a new nonlinear and adaptive state feedback controller with a fast-adaptive robust differentiator is presented for grid-tied inverters. All parameters and external disturbances are taken as uncertain in the design of the proposed controller without the disadvantages of singularity and over-parameterization. A robust differentiator based on the second order sliding mode is also developed with a fast-adaptive structure to be able to consider the time derivative of the virtual control input. Unlike the conventional backstepping, the proposed differentiator overcomes the problem of explosion of complexity. In the closed-loop control system, the three phase source currents and direct current (DC) bus voltage are assumed to be available for feedback. Using the Lyapunov stability theory, it is proven that the overall control system has the global asymptotic stability. In addition, a new simple L filter design method based on the total harmonic distortion approach is also proposed. Simulations and experimental results show that the proposed controller assurances drive the tracking errors to zero with better performance, and it is robust against all uncertainties. Moreover, the proposed L filter design method matches the total harmonic distortion (THD) aim in the design with the experimental result

    Power system damping controllers design using a backstepping control technique

    Get PDF
    The objective of this dissertation is to design and coordinate controllers that will enhance transient stability of power systems subject to large disturbances. Two specific classes of controllers have been investigated, the first one is a type of supplementary signals added to the excitation systems of the generating units, and the second is a type of damping signal added to a device called a Static Var Compensator that can be placed at any node in the system. To address a wide range of operating conditions, a nonlinear control design technique, called backstepping control, is used. While these two types of controllers improve the dynamic performance significantly, a coordination of these controllers is even more promising. Control coordination is presented in two parts. First part concerns simultaneous optimization of selected control gains of exciter and SVC in coping with the complex nature of power systems. Second part proposes a combination of reinforcement learning and a backstepping control technique for excitation control system. The reinforcement learning progressively learns and adapts the backstepping control gains to handle a wide range of operating conditions. Results show that the proposed control technique provides better damping than conventional power system stabilizers and backstepping fixed gain controllers

    Robust nonlinear adaptive backstepping controller design for power system applications including renewable energy systems

    Full text link
    This thesis has developed robust nonlinear backstepping and adaptive backstepping controllers for power networks. Comprehensive control solutions are provided for conventional and modern power generation systems including DC microgrids. One of the excellent features of these controllers is the robustness against parameter uncertainties and measurement noises

    Ofshore Wind Park Control Assessment Methodologies to Assure Robustness

    Get PDF

    Nonlinear Robust Disturbance Attenuation Control Design for Static Var Compensator in Power System

    Get PDF
    The problem of designing an adaptive backstepping controller for nonlinear static var compensator (SVC) system is addressed adopting two perspectives. First, instead of artificially assuming an upper bound or inequality scaling, the minimax theory is used to treat the external unknown disturbances. The system is insensitive to effects of large disturbances due to taking into account the worst case disturbance. Second, a parameter projection mechanism is introduced in adaptive control to force the parameter estimate within a prior specified interval. The proposed controller handles the nonlinear parameterization without compromising control smoothness and at the same time the parameter estimate speed is improved and the robustness of system is strengthened. Considering the short-circuit ground fault and mechanical power perturbation, a simulation study is carried out. The results show the effectiveness of the proposed control method

    The application of a new PID autotuning method for the steam/water loop in large scale ships

    Get PDF
    In large scale ships, the most used controllers for the steam/water loop are still the proportional-integral-derivative (PID) controllers. However, the tuning rules for the PID parameters are based on empirical knowledge and the performance for the loops is not satisfying. In order to improve the control performance of the steam/water loop, the application of a recently developed PID autotuning method is studied. Firstly, a 'forbidden region' on the Nyquist plane can be obtained based on user-defined performance requirements such as robustness or gain margin and phase margin. Secondly, the dynamic of the system can be obtained with a sine test around the operation point. Finally, the PID controller's parameters can be obtained by locating the frequency response of the controlled system at the edge of the 'forbidden region'. To verify the effectiveness of the new PID autotuning method, comparisons are presented with other PID autotuning methods, as well as the model predictive control. The results show the superiority of the new PID autotuning method

    Control techniques for ocean energy applications.

    Get PDF
    Control systems, despite often being `invisibly' incorporated within products, devices and vehicles, are ubiquitous. They are prevalent within the automotive and aerospace industries and form part of the vanguard of technologies in in- creasing performance, improving fuel economy and increasing safety. One of the most appealing aspects of incorporating control technology in many systems is that the addition of extra control functionality can usually be achieved merely through the addition of extra software code though, in many cases, additional sensors and actuators may be required. This relatively simple implementation modality masks both the capability of control systems and the high level of engineering underpinning the devel- opment of a suitable control algorithm. For example, many high-performance model-based control design methods require an accurate mathematical model of the system to be controlled and a significant number of man-hours can be absorbed in modelling. Nevertheless, there is usually a good case to be made for the incorporation of control technology to improve the performance (both technical and economic), reliability and safety of a system. In this chapter, we will examine the role that control engineering can play in making ocean energy technology more competitive

    High performance position control for permanent magnet synchronous drives

    Get PDF
    In the design and test of electric drive control systems, computer simulations provide a useful way to verify the correctness and efficiency of various schemes and control algorithms before the final system is actually constructed, therefore, development time and associated costs are reduced. Nevertheless, the transition from the simulation stage to the actual implementation has to be as straightforward as possible. This document presents the design and implementation of a position control system for permanent magnet synchronous drives, including a review and comparison of various related works about non-linear control systems applied to this type of machine. The overall electric drive control system is simulated and tested in Proteus VSM software which is able to simulate the interaction between the firmware running on a microcontroller and analogue circuits connected to it. The dsPIC33FJ32MC204 is used as the target processor to implement the control algorithms. The electric drive model is developed using elements existing in the Proteus VSM library. As in any high performance electric drive system, field oriented control is applied to achieve accurate torque control. The complete control system is distributed in three control loops, namely torque, speed and position. A standard PID control system, and a hybrid control system based on fuzzy logic are implemented and tested. The natural variation of motor parameters, such as winding resistance and magnetic flux are also simulated. Comparisons between the two control schemes are carried out for speed and position using different error measurements, such as, integral square error, integral absolute error and root mean squared error. Comparison results show a superior performance of the hybrid fuzzy-logic-based controller when coping with parameter variations, and by reducing torque ripple, but the results are reversed when periodical torque disturbances are present. Finally, the speed controllers are implemented and evaluated physically in a testbed based on a brushless DC motor, with the control algorithms implemented on a dsPIC30F2010. The comparisons carried out for the speed controllers are consistent for both simulation and physical implementation
    • …
    corecore