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Abstract

Power System Damping Controllers Design using a Backstepping Control Technique

by

Ali Karimi

Doctor of Philosophy in Electrical Engineering

West Virginia University

Professor Ali Feliachi, Ph.D., Chair

The objective of this dissertation is to design and coordinate controllers that will enhance
transient stability of power systems subject to large disturbances. Two specific classes of
controllers have been investigated, the first one is a type of supplementary signals added to
the excitation systems of the generating units, and the second is a type of damping signal
added to a device called a Static Var Compensator that can be placed at any node in the
system. To address a wide range of operating conditions, a nonlinear control design technique,
called backstepping control, is used. While these two types of controllers improve the dynamic
performance significantly, a coordination of these controllers is even more promising. Control
coordination is presented in two parts. First part concerns simultaneous optimization of
selected control gains of exciter and SVC in coping with the complex nature of power systems.
Second part proposes a combination of reinforcement learning and a backstepping control
technique for excitation control system. The reinforcement learning progressively learns and
adapts the backstepping control gains to handle a wide range of operating conditions. Results
show that the proposed control technique provides better damping than conventional power
system stabilizers and backstepping fixed gain controllers.
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Chapter

1

Introduction

1.1 Problem Statement

The electric power system is a large complex interconnected system that constantly changes

in structure due to load changes, disturbances, faults, installation of new devices and appa-

ratus. Transients in the power system are analyzed using many levels of modeling details.

Mathematical formulation is governed by differential algebraic equations that describe the

dynamics of the generators in connection with the grid. These generators are nonlinear elec-

tromechanical systems that run synchronously. Following large system disturbances, some

synchronous generators may swing enough to lose synchronism with the system or become

transiently unstable.

Control is vital element to maintain the stability of the interconnected power system.

Because of this need, control structures are becoming more pervasive and numerous, guar-

anteeing the stability of system over the wide range of operating conditions. They can be

installed on generators, transmission lines, and distribution side. In this study, controllers are

installed on generators and transmissions that can affect the stability of the overall grid.

With rapid growth of electric power system, the dynamic performance of controls, stability

1
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of systems, and methods of studying have changed correspondingly. Design and implemen-

tation of control techniques to enhance the stability of large scale power systems is a more

challenging problem than ever before. The system itself is highly nonlinear, time varying,

and geographically dispersed. With regard to above descriptions, the following questions are

raised

• What is a feasible control structure to improve the stability of system?

• Is there a systematic way to obtain this control structure?

One of the most practical and economical ways of enhancing system stability is through

excitation systems [66]. The excitation system can provides oscillation damping to power

systems when augmented with supplementary controls. It can regulate the terminal voltage

of generator when it is used with automatic voltage regulator. Other devices which can also

play an increasing role in the operation and control of today’s power systems are Flexible

Alternating Current Transmission System or FACTS devices that certainly has influence on

stability of power system [39]. FACTS devices are based on high-voltage and high-speed

power electronics devices. There are capable of increasing the controllability of power flows

and voltages enhancing the utilization and stability of existing systems.

Most available control techniques are based on linear power system models that are valid

around the operating points. These include several designs for linearized models using a

specific operating condition, making them prone to system changes. Power system by its

nature is nonlinear, and it motivates to design a nonlinear control rather than linear one to

avoid the need for linearization of power system equations. To enhance the safe operation

of power system, the proposed controller has to perform satisfactorily over different scenarios

that the system is likely to experience and dampen system oscillations without adversely

affecting other aspects of system performance.

As for the system, electric power grid has been selected by the engineering academy as

the first choice for the twentieth century engineering innovation that is most beneficial to

civilization [30, 8]. Therefore, a system with this level of attention and importance needs to

be properly controlled as to guarantee stability following contingencies and disturbances. For

such a complex electric power system, outage of single transmission line, generation unit or

equipment failure might gradually lead into several more outages and eventually collapse of

the entire system if it is not properly controlled.
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The dynamics of power system following considerable structural changes and loading con-

ditions need to be controlled in order to ensure the system’s integrity. These events can

create dynamic stability problems in a fraction of a second [30]. The excitation control and

FACTS devices are nowadays becoming a mean of equal importance in fast acting device to

improve the stability of system. The progress made and aforementioned ideas motivated this

dissertation with following approach.

1.2 Approach

Design of controller by implementing nonlinear control techniques has gained significant influ-

ence due to its inherent ability to improve control performance beyond what can be achieved

by linear controls. In fact, linear analysis of complex nonlinear power system may fail in

capturing some dynamic behaviors of the system especially in the events of critical faults or

major disturbances. Today, nonlinear control theory forms a modern discipline that provides

the tools necessary to improve dynamic performance so as to provide better quality and more

secure power supply. Advances in computer systems and signal processing allow the practical

implementation of these nonlinear controls.

The approach in this dissertation is as follows. On excitation control, first each generator is

considered as a subsystem within the overall electric power system. Mathematical description

of each subsystem is achieved by a set of algebraic differential equations. The equations include

the interface among subsystems as well. Each subsystem, generator model, is transformed

into strict feedback form [64]. This formation is suitable for implementing proposed control

technique known as backstepping. Backstepping control is applied to each subsystem. The

controller has gains that require proper tuning. Tuning of control gains should be coordinated

with others and need to be done simultaneously so as to avoid adverse interactions. Hence, the

control methodology is applied within the framework of a multi objective optimization problem

to obtain optimum parameters for backstepping controls. The challenge lies in incorporating

evolutionary computation with PSO to improve the performance of the proposed controller.

By doing so, a tuned decentralized control scheme of system is achieved. Meaning that all the

information for control at each subsystem are obtained and processed locally. Decentralized

control has been a major research issue for many years by several researchers [91].

FACTS becomes a means equal importance to enhance stability of power system. SVCs
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are placed in the grid with the main purpose of the voltage support. These devices have sev-

eral advantage including reduction of operation and transmission investment cost, increasing

system security and reliability, increase power transfer capabilities, and overall enhancing a

better quality of power and voltage. SVCs are shunt FACTS devices that can provide continu-

ous and rapid control of reactive power and voltage, enhancing several aspects of transmission

system performance, such as prevention of voltage collapse, transient stability enhancement

during system oscillations. Generally, voltage regulation is the primary mode of operation,

which improves voltage stability. However, the contribution of SVC to the damping of the sys-

tem oscillations resulting due to the voltage regulation alone is not enough. Hence a damping

controller is presented based on backstepping approach to enhance the damping of the system.

The proposed controller is capable to provide additional damping during system oscillations

for SVC. Centralized type of controller is designed with backstepping technique which requires

remote information from each area. Conventional technique for designing these damping con-

trollers are based on linear analysis based on one operating point which is not valid for wider

range of operations. High degree of nonlinearity in power system and changes of operating

conditions make the situation more challenging. Hence, nonlinear controller is designed based

on backstepping control technique to achieve a good performance and enhance the stability

under a wide range of operating conditions.

Damping of power system swings has important roles such as increasing the transmission

capability, stabilizing the power system especially after large disturbance in the system. In

power system several control devices are active simultaneously, hence it is important to ensure

the stability of system in global and optimal manner. Simultaneous optimization of pre-

selected parameters of exciter and SVC control parameters is performed based on particle

swarm optimization (PSO) algorithm under transient conditions so that the stability of overall

system can be improved over a wide range of operating conditions.

More advanced control technique is presented as an approach toward modern electric sys-

tem. These new techniques lead to better, and in some cases guaranteed dynamic performance

than conventional fixed parameter controllers. These control schemes have been based on both

local measurements as well as measurements at different locations in the system resulting in

decentralized and centralized approaches. In more specific, reinforcement learning algorithm

[85] is applied to the backstepping controller on excitation system. These controllers are de-
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signed to withstand a set of credible contingencies in the system which satisfies their objective

functions. Instead of having a pre-selected constant gains for controllers, the gains are op-

timized at first, then re-adjusted through reinforcement learning algorithm due to small and

large disturbances which happens in the electric power grid.

1.3 Overview

The organization of this dissertation is as follows:

• Chapter 1: Introduction

The introduction consists of problem statement and approach. It continues with an

overview and outline for this dissertation.

• Chapter 2: Literature survey

This chapter presents a survey concerning transient stability (section 2.3) and control

design tools (section 6.19).

• Chapter 3: Background

This chapter includes basic background related to backstepping control design for simple

power system. Also the function optimization with particle swarm is explained.

– Backstepping control design and implementation on simple power system (section

3.1)

– Function Optimization (section 3.2)

• Chapter 4: Transient Stability Enhancement Using Excitation Control

This chapter includes proposed controller schemes for electric power systems:

– Backstepping control tuned by particle swarm optimization technique (section 4.1)

– Extended-backstepping control in presence of disturbance (section 4.2)

– Adaptive backstepping control in presence of uncertainties (section 4.3)

• Chapter 5: Transient Stability Enhancement using SVC

– Static Var Compensators (section 5.1)
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– Application of backstepping control in Static Var Compensator (section 5.2)

• Chapter 6: Control Coordination

This chapter includes two parts.

– On first part, a simultaneous tuning procedure for nonlinear damping controllers

for SVC and generator exciter is presented, using particle swarm optimization (6.1).

– On second part, advanced control technique is presented. Reinforcement learning

scheme is presented and improves the performance of the controller for generator

exciter in a multi machine power system (6.6).

• Chapter 7: Summary and conclusions

– Completed Work (section 7.1)

– Suggestion for Future Work (section 7.2)

– Accomplishments and list of publications (section 7.3)

This chapter summarizes the benefits of the developed nonlinear control and the enhance-

ments achieved by designing nonlinear damping controls using the proposed technique,

gives suggestions for future work, and lists research work already done or in progress

that is based on parts of this dissertation.

• Appendices A-D include system benchmark data and Appendix E include MAT-

LAB1computer codes. Finally, a lemma and mathematical simplification related to

interconnection term are covered in Appendices F and G respectively.

All Case studies presented, are performed with the help of the Power Analysis Toolbox

(PAT), a simulation package developed by Advanced Power and Electricity Research

Center (APERC) at West Virginia University [82]. PAT includes advanced vectorized

computations as well as a block-oriented simulation in MATLAB environment. The

conditions for performing steady-state analysis, including load flow calculations and

voltage-stability analysis are included. In addition, it has the capability of transient

stability.

1MATLAB and Simulink are products of The Mathworks, Inc., http://www.mathworks.com/
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2

Literature Survey

2.1 Introduction

In this chapter a literature survey related to the problem investigated in this dissertation

is presented. The survey is organized as follow. In section 2.2 work related to Lyapunov

stability is presented. Section 2.3 presents transient stability and related works. In Section

6.19 a survey on control design tools is given.

2.2 Lyapunov Stability

In this section the tools of Lyapunov stability theory is reviewed. These tools will be used

in the following chapters to analyze the stability properties of proposed nonlinear controller.

Consider the dynamic system:

ẋi = f(x, t), x(t0) = x0 x ∈ Rn (2.1)

It is assume that f(x, t) satisfies the conditions for the existence and uniqueness of solution,

x and t denotes states and time respectively. A point x∗ ∈ Rn is an equilibrium point of (2.1)

if f(x∗, t) ≡ 0. Equilibrium point is locally stable if all solutions which start near x∗ remain

near x∗ for all time. The equilibrium point x∗ is said to be locally asymptotically stable if x∗

7
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is locally stable and all solutions starting near x∗ tend toward x∗ as t → ∞. By shifting the

origin of the system, it is assumed that the equilibrium point of interest occurs at x∗. In case

of multiple equilibrium point, each need to to be studied by shifting the origin appropriately.

Several definitions are described in following:

• Stability in the sense of Lyapunov: The equilibrium point x∗ = 0 of (2.1) is stable

in sense of Lyapunov at t = t0 if for any ε > 0 there exists a δ(t0, ε) > 0 such

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0 (2.2)

Lyapunov stability does not require that trajectories starting close to the origin tend

to the origin asymptotically. Also stability is defined at t = t0. Uniform stability is

a concept which guarantees that the equilibrium point is not losing stability. For the

uniformly stable equilibrium point x∗, the upper bound δ is not a function of t0, so the

equation (2.2) may hold for all t0.

• Asymptotic Stability: An equilibrium point of 2.1 is asymptotically stable at t = t0

if x∗ = 0 is stable, and locally attractive. Meaning that

‖x(t0)‖ < δ ⇒ limt→∞x(t) = 0 (2.3)

As in the previous definition, asymptotic stability is defined at t0. Uniform asymptotic

stability requires that x∗ = 0 is uniformly stable, and x∗ = 0 is uniformly locally

attractive.

An equilibrium point is called unstable if it is not stable. Note that the aforementioned

definitions are local definitions which describe the behavior of a system near equilibrium

point. By definition equilibrium point x∗ is globally stable for all initial conditions

x0 ∈ Rn. Global stability is an ideal and desirable, but in application of large scale

nonlinear systems such as electric power system can be difficult to achieve.

Lyapunov’s first method or indirect method of Lyapunov provides a linearization of system to

determine the local stability of the original system. Given the system

ẋ = f(x, t) (2.4)

with f(0, t) = 0 for all t ≥ 0. Define J(t)

J(t) =
∂f(x, t)

∂x
|x=0 (2.5)
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to be the Jacobian matrix of f(x, t) with respect to x, and evaluated at the origin. The system

ẋ = J(t)x (2.6)

is defined as the linearization of equation (2.1). When the linearization exists, its stability

determines the local stability of the original nonlinear system. From the linearized model,

when Jacobian J has all eigenvalues with negative real parts, the linearized equation (2.6)

is called asymptotically stable. For this case initial conditions of states x lying in a finite

region around the origin, where the initial displacement of the state x from the origin within

this origin will decay to zero as time goes to infinity (asymptotically stable). This type of

analysis is called “stability in the small” [65]. On the other hand “stability in the large” may

be studied by explicit solution of the nonlinear differential equations.

Second or direct method of Lyapunov has proved subsequently to be more important

than the first method since it directly related to nonlinear system and allows determining the

stability of a system without explicitly integrating the differential equations. The approach

based on the direct method would consist of characterizing the dynamic behavior of the system

using suitable Lyapunov function. The idea is that if there is some measure of energy in the

system, then the rate of change of that energy to ascertain stability can be studied. For better

clarification of this concept, let Bε be a ball of size ε around the origin where

Bε = {x ∈ Rn : ‖x‖ < ε} (2.7)

• Locally Positive Definite Function: A continuous function V : Rn × R+ → R is

a locally positive definite function if for some ε > 0 and some continuous, and strictly

increasing function α : R+ → R.

V (0, t) = 0, and V (x, t) ≥ α(‖x‖) ∀x ∈ Bε,∀t ≥ 0 (2.8)

• Positive definite functions: A continuous function V : Rn × R+ → R is a posi-

tive definite function if it satisfies the conditions of locally positive definite function,

additionally α(p) →∞ as (p) →∞.

• Decrescent functions: A continuous function V : Rn × R+ → R is a decrescent

function, if for some ε > 0 and some continuous strictly increasing function β : R+ → R

V (0, t) = 0, and V (x, t) ≤ β(‖x‖) ∀x ∈ Bε,∀t ≥ 0 (2.9)
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In brief the direct method states that depends on V (x, t) and V̇ (x, t) ≤ 0 then it is

possible to specify the stability condition of system. The time derivative of V is taken along

the trajectories of the system:

V̇ |ẋ=f(x,t) =
∂V

∂t
+

∂V

∂x
f (2.10)

Let V (x, t) be a non-negative function with derivative V̇ along the trajectories of the system.

Stability conditions are summarized a follow:

• If V (x, t) is locally positive definite and V̇ (x, t) ≤ 0 locally in x and for all t, then the

origin of the system is locally stable in sense of Lyapunov.

• If V (x, t) is locally positive definite and decrescent, and V̇ (x, t) ≤ 0 locally in x and for

all t, then the origin of the system is uniformly locally stable in sense of Lyapunov.

• If V (x, t) is locally positive definite and decrescent, and −V̇ (x, t) is locally positive

definite, then the origin is uniformly locally asymptotically stable.

• If V (x, t) is positive definite and decrescent, and −V̇ (x, t) is positive definite, then the

origin of the system is globally uniformly asymptotically stable.

In general, the second method of Lyapunov gives sufficient conditions for the stability of

a origin of the system [75]. It does not provide information on how to provide the Lyapunov

function V (x, t), hence the search for a Lyapunov function establishing stability of an equilib-

rium point could be subtle. For the electric power grid it is usually hard to find the Lyapunov

function which is also not a unique function. Furthermore, while the condition of Lyapunov

stability theorem is sufficient, this does not specify on how to obtain the Lyapunov functions.

A natural choice for the Lyapunov function is the system energy. A detailed analysis of the

kinetic and potential energy behavior along time domain trajectory was conducted by sev-

eral researchers and is addressed in literature [81], [31], [70]. In their analysis the Lyapunov

function is composed from the kinetic energy associated with gross motion of angular speed

of generators plus the potential energy which relates to inter-machine motion between the

generators.
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2.3 Transient Stability

The electric power systems have grown in size and complexity with large number of intercon-

nections. The design of such a system and its secure operation is still a challenging operation.

To maintain a reliable service, a bulk electric grid must remain intact and be capable of with-

standing a variety of small and large disturbances. Stability has been a major concern in

electric power system for several years. In evaluation of stability the concern is the behavior

of the power system when subjected to a transient disturbance, which may be small or large.

The system is stable if it is able to operate satisfactorily under these conditions and effectively

supply the maximum demand. Having provided the definitions of stability, the formation of

stability procedure is presented in following. The system is initially at pre-disturbance steady

state conditions presented by equation

ẋ(t) = fp(x(t)) −∞ ≤ t < 0 (2.11)

Superscript indicates the pre-disturbance situation. The system is at equilibrium, and the

initial conditions are obtained by solving the power flow. Meaning that for a given power

grid, with known complex power loads and generations with their constraints, solve for any

unknown bus voltages and unspecified power generations and finally for the complex power

flow in the grid components. Now consider at time t = 0 the fault is initiated in system. As

a result of fault occurrence, the dynamic of the system changes as:

ẋ(t) = ff (x(t)) 0 < t ≤ tcl (2.12)

where the superscript f indicates the fault conditions. The fault is cleared by implementing

protective devices at time tcl. As a result the dynamic of the system is changed to post-

disturbance which is formulated as

ẋ(t) = f(x(t)) tcl < t < ∞ (2.13)

the stability analysis is performed with objective to achieve the asymptotic stability of equi-

librium point of system.

In reality the power system is a large complex system which is interconnected. As the com-

plexity of system grows, the challenge to its secure operation grows as well [29]. From stability

point of view, designing controllers for large interconnected system to ensure stable operation
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is a challenging problem. Power system is highly related to synchronous generators for gen-

eration of electric power. The necessary condition for transmission and exchange of power is

that all generators rotates at synchronism.

In evaluation of stability, the major concern is the ability of electric power system to

remain inact and capable of withstanding a variety of disturbances. Based on IEEE/CIGR

Joint Task Force on Stability Terms and Definitions [41], Power System Stability is defined as

follow:

“The ability of an electric power system, for a given operating condition, to regain

a state of operating equilibrium after being subjected to a physical disturbance,

with most system variables bounded so that particularly the entire system remains

inact”

Disturbances might be small or large. For instance continuous load changes are considered

as small disturbances but loss of long transmission line or trip of large generator from the

grid are considered as large disturbances. In this study mostly the later type of disturbance

is in concern. Hence, controllers are designed in a way to withstand large disturbances in the

system. Based on [41], classical term concerning stability related to these type of disturbances

is called transient stability and is defined as

“Ability of power system to maintain synchronism when subjected to severe dis-

turbances”

The instability of power system can take different forms and can be affected by wide range

of factors. Hence, it is important to identify the factors that contribute to unstability, and

to form the method of improving stable operations. The classification of stability will greatly

simplify this purpose. The main concern in this study is focused on transient stability. The

time frame concern in transient stability studies, is almost 3 − 5 seconds following a large

disturbance. Also for very large systems the time is extended to 10-20 seconds [41].

When disturbance happens in the system, it upsets the balance between prime mover

mechanical power and generator electrical power that some generators, possibly close to dis-

turbance, attain deviation from synchronous speed. And when one generator rotates faster

than the other, angular position of its rotor relative to the slower one will increase as well.
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This separation of angular position of rotor angles might increase further if the system can

not absorb enough kinetic energy corresponding to this deviation of speed. As a result it leads

to loss of synchronism and unstability. The concept is judged by variation of rotor angles of

generators with respect to time. If a rotor angle of a generator or group of generators continue

to increase with respect to the rest of the generators, the system is considered as unstable. It

is common to measure rotor angle of generator with respect to a fixed reference frame known

as synchronous rotating reference frame. Hence the synchronism is lost once rotor angle of

generator or group of generators are separated away from the rest of generators.

The prevention of electric power system losing synchronism after a large disturbance is

of great importance. Stability study of power system oscillations shows that power systems

contain many modes of oscillations due to interactions between different components. Many

of the oscillations are due to synchronous generator relative rotor swings. These oscillations

often grows in magnitude over the span of seconds. In some cases they may cause larger

generator groups to lose synchronism where part or overall of electric system is lost. Sustained

oscillations may disrupt the power system even if they do not cause electric grid separation

and loss of generations. For instance power swings may have associated voltage and frequency

deviations that are unacceptable. One practical way to enhance the stability of synchronous

generator is through excitation system equipped with supplementary control [65]. Excitation

system contributes to effective control of voltage and ensure stability for large disturbance.

Basically it provides DC voltage to field windings of generator and modulates this voltage for

control objectives. Several configuration of excitation systems are included in IEEE standard

actuators [42].

Supplementary control is frequently included in error voltage junction to actuators. It provides

additional input signal to actuator (either exciter or FACTS devices) to damp power system

oscillations. The early concepts of supplementary control were established in [23]. A common

supplementary control is known as Power System Stabilizer (PSS). Carefully tuned PSS on

the major generator units can damp the power oscillations. PSS consists of wash-out stage

and lead-lag stage. Wash-out stage has stabilizer gain and wash-out time constant. Wash-out

stage is a high pass filter to eliminate the input’s steady state. Time constant is usually within

the range of 1−20 sec, and let the stabilizing signal pass within the frequency of interest. Two

first order phase compensation are usually used to produce component of electric torque in
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phase with speed deviation. Shaft speed, integral of electric power, and terminal frequency are

the most common input to this control [65]. These inputs are measurable at each generator

so controller can utilize local information and operate without the need for remote signals

from other generators. Two inputs PSS has also been implemented for small and large signal

stability. Analysis was performed on several test systems and on an actual Hydro-Quebéc

system [48].

PSS has fixed parameters, lead-lag and wash-out stages, to be tuned. Tuning is off-line which is

based on finding set of parameters in which PSS can damp the oscillations. Tuning procedure

for PSS gained a lot of attention among researchers and large body of early works related

to this matter [96]. But most of these techniques are based on eigen analysis where first

state space models are obtained and then computation is performed based on these linearized

models [12].

The controller design for linear system is achieved to give specific performance at one operating

point which could be chosen as a worse case. There are sometimes intuitive ways to overcome

these limitations to some extent. For instance in damping oscillations with PSS a range of

oscillation frequencies can be dealt with by improved bandwidth design. Chow et. al [20]

have used frequency domain robust control techniques to design new PSS structures. Their

approach is based on unstructured uncertainty model which uses optimization over a class

of stabilizing controllers to force a closed loop transfer function to be as close as possible to

the desired one. Despite promising responses, robust control makes no restriction on how the

parameters vary in the specified ranges. Since, in principle they could be jumping randomly

and the controllers tend to be a high gain, and high bandwidth type which results in high

cost of control. Besides robust control, linear adaptive controllers have also been presented

[21]. For slow or infrequently changes of parameters, adaptive linear control can be imple-

mented to automatically retune the controller. Severe problem with linear adaptive control

is transient performance. Without good initial estimate of the parameters, the transient may

be unacceptable in practice.

In recent years, more sophisticated tuning techniques based on evolutionary algorithms are

developed for tuning control parameters. These techniques have the advantage of simultaneous

tuning of control parameters through the frame work of multi objective optimization problem.

Some innovative works related to PSS tuned by means of genetic algorithms has been done
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by do Bomfim, Taranto and Falcão [25]. Abido and Abdel-Magid presented tabu search (TS)

optimization technique for optimal gains of conventional PSS [5]. Also Abido investigated the

application of particle swarm optimization (PSO) for optimal settings of PSS gains through

eigenvalue based objective function and the nonlinear simulation of multi machine power

system [3].

So far the control schemes that have been discussed only deal with small disturbances

about an operating point. For large disturbance, there are pre-fault, fault-on, and post-fault

operating points which might be very different. Despite promising results obtained through

the course of their research, PSS still may not work properly during unpredictable changes.

Beside sophisticated tuning technique, the control structure itself is of great importance.

Hence, there is growing justification for nonlinear control structure which is capable to work

effectively under different circumstances. Unlike PSS, the structure of this nonlinear control

neither includes a phase compensation nor washout stage.

Through the course of this research, main concerns are

• Construct nonlinear control as supplementary control

• Obtain procedure for tuning the control parameters in optimal way

• Implement proposed controller on multi machine power systems

• Enhances the stability of system under different operating conditions

• Compare the proposed control performance with existing supplementary controller (PSS)

2.4 Control Design Tools

This section relates to survey on nonlinear control design and its application in power system.

The innovative and early works on nonlinear control for power system are reviewed as follow.

Starting with the control tools implemented on simple single-machine-infinite-bus (SMIB)

systems, Bazanella, Kokotovic̀ and e Silva [11] designed state feedback control based on a

Lyapounov approach known as LgV , where Lyapunov derivative depends on a control and can

be made negative by feedback to improve dynamic performance of the system. This control

methodology originated by Sontag [84]. Controller was implemented on simplified single-axis

generator model. States of the generator are considered as rotor angle, shaft speed deviation,

and internal voltage of generator. The controller, based on LgV requires the internal voltage
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of generator, which is not measurable. In their study, it is assumed that this internal variable

is available.

An optimal excitation control strategy using Lyapunov direct method is proposed by

Machowski, Bialek, Robak, and Bumby [70] and implemented on simple SMIB. Traditional

Lyapunov direct method has been used in power system to evaluate the stability margin [81].

But here the Lyapunov direct method is used to obtain control strategy. Lyapunov function is

constructed from kinetic and potential energy of system plus two additional terms to account

for flux decrement effects on generator axis. The control structure has linear relationship

between field voltage and internal voltage of generator is considered. Assumptions such as

availability of generator internal voltage, availability of initial values of quadrature and direct

voltage are considered during this study.

A so called Direct feedback linearization, based on the differential geometry approach

[43], has been investigated by several researchers [89], [44], [45]. They applied DFL controller

method to generator dynamics. The technique is capable of transforming system into lin-

earized model by implementing compensation laws to cancel nonlinearities of system. This

cancellation requires some unmeasurable variables. Also it requires large control effort to

cancel complete nonlinearities of system. Although it is not always helpful to cancel all the

nonlinearities in the system. The obtained linearized model is not an accurate model in com-

parison to the exact one. In their design, the main concerns are to prevent an electric power

system from losing synchronism after a large sudden fault on system and achieving the good

post fault regulation of generator terminal voltage.

Application of former control technique is extended to multi machine power system [35],

[44]. In order to achieve decentralization of control, interconnection bounds between generator

and the rest of the system is considered as a polynomial function of absolute rotor angle and

speed deviation. Through obtaining mathematical bounds for interconnection terms, several

assumptions are considered. For instance simple linear relation between excitation field voltage

and internal voltage of generators. The proposed technique is tested on two machine infinite

bus with objective to maintain stability of the system when large fault occurs.

In multi machine power systems, the same technique has been combined with observation

decoupled state space (ODSS), originally introduced in [92], to achieve decentralization of

control. Feedback linearization is used to handle nonlinearities and ODSS technique is used
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to achieve decoupling of each generator [28].

Different adaptive version of feedback linearization control were presented by Jain et al.

[46]. In their analysis, equivalent reactances of the transmission lines were considered as

unknown or varying parameters, then adaptation is used to estimate them and achieve an

exact cancellation of terms by feedback linearization. The technique was implemented on a

two generator infinite bus system. Their approach has been extended to a class of nonlinear

systems with decentralized output feedback control, where the interconnection terms were

expressed by polynomials [47].

Edwards and Spurgeon proposed a methodology based on a sliding mode control strategy

to stabilize multimachine power system by using static output feedback [90]. Interconnection

bounds are modeled similar to the approach as mentioned in [35] and the control is imple-

mented on two machine infinite bus. The main idea of sliding mode control was established

by Utkin [86]. Despite good robust characteristic, this control usually has steady state chat-

tering effect which is not ideal for implementation on actual hardware in excitation control of

generator.

Okou, Akhrif, and Dessaint presented a hierarchical control structure based on wide area

signals using input-output linearization and parameters adaptation. However, both local

and remote signals are assumed to be available. Local controllers dampen local rotor shaft

oscillations and a centralized controller decouples subsystems interactions. Final control is

obtained with a two-level objective of voltage and rotor speed regulator. Wide area control

laws are derived from a reformulation of the multi-machine model. Terminal voltages of

generators are considered as state variables instead of internal field voltages. As a result,

the new model is obtained through complex mathematical transformations. The hierarchical

controller is implemented on this model [72, 73].

More sophisticated and yet realistic control design technique, known as backstepping,

has been developed by Krstić, Kanellakopoulos, and Kokotović [32, 49, 50, 64]. A complete

review on the potential of this control including robust backstepping, adaptive backstepping,

and observer-based backstepping is presented in 1991 Bode Lecture by Kokotović [62].

The first application of backstepping control in power system is given in [79] for SMIB

system with the goal of improving both transient stability and voltage regulation. One-axis
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generator is considered for their study. Rotor angle, speed deviation and internal voltage of

generator are considered as system states. Although the control gains are obtained through

trial and error (without any optimization procedure), the results demonstrated the effective-

ness of this novel control technique.

Discrete adaptive backstepping has also been implemented on single machine infinite bus

[93]. Reactances and transient time constants of generators are considered as uncertainties.

Backstepping excitation control is used to enhance transient stability of system with assump-

tion of full availability of generator states. Meanwhile, adaptation laws are used to estimate

the generator parameters.

With advances in power electronic devices, efficient damping can be achieved through the

use of network devices such as static var compensators. The main purpose of SVC is the

dynamic support of voltage. Once installed in a system, SVCs can also provide damping to

provide damping to enhance transient stability using an auxiliary signal over SVCs voltage

control loops. Several damping controllers have been designed and implemented for SVC.

The majorities of which are composed of lead-lag phase compensation and filter blocks with

adjustable parameters [65]. These designs are based on linearized model that is valid over a

limited range of conditions. However, linear methods may not properly capture the dynamics

of nonlinear power systems. Results in [18] indicate that a lead-lag damping controller designed

may lead to system instability by changing the nature of the load. In terms of control input

several lead-lag damping controllers have been designed using local measurements [94],[76].

Remote signals, such as generator speed or speed difference between two area have also been

used as inputs to lead-lag structures [37],[22]. Nonlinear control techniques have also been

implemented. A bang-bang controller combined with a linear one has been presented in [69].

This controller uses a phase angle signal that is obtained from the bus voltage and active

power at the location of the SVC. Optimization of this control is mathematically complex and

the nonlinearity of signal may introduce harmonics in voltages and currents that affect the

control signal. Direct Feedback Linearization is also used as nonlinear damping controller for

SVC which is mainly used for voltage stability problem [87].

The Reinforcement Learning (RL) is emerging as an important alternative to complex

control problems. Sutton and Barto have presented the convergence of the algorithm and

their applications in nonlinear system [85]. In domain of power system with application for
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damping oscillations, algorithm is proposed by Glavić et. al [33], [34]. Their idea is to combine

Control Lyapunov Function (CLF) with RL in attempt to optimize a mix of system stability

and performance. The capability of the proposed control is demonstrated on a control problem

involving Thyristor Controlled Series Capacitor (TCSC) and dynamic brake controller for

damping oscillations in power system [26]. In principle, based on their approach any control

with stability guarantees can be combined with RL mode and any heuristic search technique

can be used with Lyapunov based controller.

Coordination between controllers plays an important role once the controllers are installed

and active at the same time. Following a disturbance in a system, due to uncoordinated

control strategy used in many power systems, destabilizing interactions among SVC and exciter

controllers is possible. The interaction of rotor dynamics under weakly interconnected system

condition can cause dynamic stability and limit the operation range for power generators.

Some approaches based on linearization of system are addressed for coordination among SVC

and exciter controllers [77], [80]. However linear method can not properly capture complex

dynamics of the system, especially during large disturbance. More advanced optimization and

coordination techniques between FACTS devices and PSSs based on quasi-Newton algorithm

have been covered in [68], [14].

The trends of power system and the modern control techniques are reviewed in this section.

The survey looked at some modern control tools that have been offered in power system context

for the past several years. In particular nonlinear control and their applicability to various

classes of power system control problem is considered.



Chapter

3

Background

3.1 Backstepping Control Design for Simple Power System

3.1.1 Introduction

Organization of this section is as follows. Subsection 3.1.2 explains backstepping control

technique applied to strict feedback system. In Subsection 3.1.3 power system model is brought

into strict feedback form and backstepping control is applied. Case study with single machine

infinite bus is given in Subsections 3.1.4.

20
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3.1.2 Backstepping Control Design

Backstepping procedure is described in this section for a specific form of system model known

as strict feedback form [64]:

ẋ = f0 + g0z1 (3.1)

ż1 = f1 + g1z2 (3.2)

ż2 = f2 + g2z3 (3.3)
...

żk−1 = fk−1 + gk−1zk (3.4)

żk = fk + gku (3.5)

where x ∈ Rn, and z1, z2, · · · , zk are scalars. Control signal is presented by u, and fk and gk

are functions (k = 1, 2, · · · , n). In each equation state variable zk is fed back as an input to

zk−1. The objective is to stabilize the system (3.1-3.5) using backstepping control to steer x

to its desired value, there z1 stabilizes (3.1), z2 stabilizes (3.2), z3 stabilizes (3.3). u finally

stabilizes (3.5) and hence the overall system. For simplicity of explanation and notation,

consider a system with n = 2:

ẋ = f0 + g0z1 (3.6)

ż1 = f1 + g1z2 (3.7)

The objective is to stabilize (3.6 − 3.7) with u through backstepping procedure. Start with

scalar subsystem (3.6). This equation is stabilized through input z1. Stability of this scalar

equation is guaranteed with a suitable candidate Lyapunov function. Stabilizing state feedback

controller is z1 = φ0(x), which is zero at the origin and the Lyapunov function V0 = 1
2x2 that

satisfies stability criteria [60]

∂V0

∂x
[f0(x) + g0(x)φ0(x)] ≤ −W (x) (3.8)

where W (x) is a positive definite function. Applying a transformation on (3.7), using virtual

control u1 yields

z2 =
1
g1

[u1 − f1] (3.9)
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It is assumed that g1 6= 0 over the domain of interest. Transformation (3.9) reduces (3.6-3.7)

into (3.6) plus a pure integrator

ẋ = f0 + g0z1 (3.10)

ż1 = u1 (3.11)

where u1 has to stabilize (3.10-3.11). Adding and subtracting gφ0(x) on the right hand side

of (3.10) yields

ẋ = [f0 + g0φ0(x)] + g0[z1 − φ0(x)] (3.12)

substituting the new variable

υ = z1 − φ0(x) (3.13)

in (3.12) yields

ẋ = [f0 + g0φ0(x)] + g0υ (3.14)

taking the derivative of (3.13) yields

υ̇ = u1 − φ̇0(x) (3.15)

and this can be seen as backstepping −φ0(x) through the integrator. Defining a new variable

w = υ̇, the system becomes

ẋ = [f0 + g0φ0(x)] + g0υ (3.16)

υ̇ = w (3.17)

Equations (3.16-3.17) are similar to the system of equations (3.10-3.11). Schematic block

diagram Figure 3.1 shows the backstepping control design. The Figures (3.1) (a) and (d) have

similar structures. Except that in (d) the first component has asymptotically stable origin.



CHAPTER 3. BACKGROUND 23

1u ∫∫

)()()( 000 ⋅⋅+⋅ φgf

+
x

1z

)( 00 xφ−

+
v

1u
)(0 ⋅g ∫∫

)(
0

⋅f

+

)(
0

xf

x1z

Second 

Component

First

Component

)(0 ⋅g

∫

)()()( 000 ⋅⋅+⋅ φgf

+
xvw

First Component

Second 

Component

1u ∫∫

)()()(
000

⋅⋅+⋅ φgf

+
x

)(
00

xφɺ−

+

v

Back stepping

Through Integrator

w
)(0 ⋅g

)(
0

⋅g∫

(a)

(b)

(c)

(d)

Figure 3.1: Backstepping Design Procedure
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A Lyapunov function candidate for (3.16-3.17) is

V1(x, z1) = V0(x) +
1
2
υ2 (3.18)

and its derivative (using (3.8))

V̇1(x, z1) =
∂V0

∂x
[f0 + g0φ0(x)] +

∂V0

∂x
g0υ + υw (3.19)

V̇1(x, z1) ≤ −W (x) +
∂V0

∂x
g0υ + υw (3.20)

Choosing a stabilizing control law w in a way to achieve negative definiteness of V̇1(x, z1)

w = −∂V0

∂x
g0 − k1υ, k1 > 0, (3.21)

(3.20) becomes

V̇1(x, z1) ≤ −W (x)− k1υ
2 (3.22)

This choice stabilizes the origin (x = 0, υ = 0) globally and asymptotically. Explicit equation

for virtual control is obtained by substituting w in (3.11) and (3.15).

u1 =
∂φ0

∂x
[f0 + g0z1]−

∂V0

∂x
g0 − k1[z1 − φ0(x)] (3.23)

From (3.9), final control is obtained

z2 = φ1(x, z1) =
1
g1

[
∂φ0

∂x
[f0 + g0z1]−

∂V0

∂x
g0 − k1[z1 − φ0(x)]− f1], k1 > 0 (3.24)

Lyapunov function for (3.6)-(3.7)

V1(x, z1) = V0(x) +
1
2
[z1 − φ0(x)]2 (3.25)

With z2 = φ1(x, z1) determined, it is easy to extend this technique to a larger number of

equations (3.1-3.3).

For larger system include (3.3) into (3.1)-(3.2). In compact notation

Ż1 = F1 + G1z2 (3.26)

ż2 = f2 + g2z3 (3.27)

where Z1, F1, G1 are vectors:

Z1 =

 x

z1

 F1 =

 f0 + g0z1

f1

 G1 =

 0

g1


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The structure of (3.26)-(3.27) is identical to that of (3.6)-(3.7). Therefore, the same steps can

be repeated by introducing Lyapunov function

V2(x, z1, z2) = V1(x, z1) +
1
2
[z2 − φ1(x, z1)]2 (3.28)

The final control law for the system (3.26-3.27) will become

z3 = φ2(x, z1, z2) =
1
g2

[
∂φ1

∂Z1
(F1 + G1z2)−

∂V1

∂Z1
G1 − k2(z2 − φ1)− f2

]
(3.29)

=
1
g2

[ ∂φ1

∂x
∂φ1

∂z1

] f0 + g0z1

f1

+

 0

g1

 z2

−
[

∂V1
∂x

∂V1
∂z1

] 0

g1

− k2(z2 − φ1)− f2


where k2 > 0 and simplified as

z3 =
1
g2

[
∂φ1

∂x
(f0 + g0z1) +

∂φ1

∂z1
(f1 + g1z2)−

∂V1

∂z1
g1 − k2(z2 − φ1)− f2

]
, k2 > 0

z3 = φ2(x, z1, z2) (3.30)

Clearly the backstepping control technique can be applied to system to an nth order system,

providing the system is in the correct form of strict feedback.

3.1.3 Power System Problem Formulation

In general the complete differential-algebraic model of any power system has the following

form:

ẋ = f(x, V )

Y V = I(x, V )

where the parameters are denoted as:

• x - state vector of power system model

• V - bus voltage vector of the system

• I - current injection vector into the system

• Y - Admittance matrix, including constant impedance loads and the modifications due

to the faults
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Initially ẋ = 0 and Y V0 = I(x0, V0). Both functions f(x, V ) and I(x, V ) are nonlinear

functions and can be computed if the operating condition (x, V ) is given. I(x, V ) is a current

injection vector, which includes currents from all dynamic and nonlinear static devices, and

Y is the admittance matrix, which includes constant impedance loads. In particular dynamic

of synchronous generator is explained in following.

The dynamics of a real electric power system is complex due to large system components,

their variety and their interconnection. Mathematical formulation is governed by differential

algebraic equations that describes the dynamics of the generators in connection with the grid.

Here the main concern is transient stability and fast acting control design. The ith generator

in an n-machine system is modeled by the following set of differential and algebraic equations

[81]. Throughout this study, the following two-axis transient synchronous generator model is

considered:

a) Differential Equations

δ̇i = ωi − ω0 (3.31)

ω̇i = − Di

2Hi
(ωi − ω0) +

ω0

2Hi
(Pmi − P ei) (3.32)

Ė
′
di =

1
T
′
qoi

[−Iqi(Xqi −X
′
qi)− E

′
di] (3.33)

Ė
′
qi =

1
T
′
doi

[−E
′
qi + Idi(Xdi −X

′
di) + Efldi] (3.34)

b) Algebraic Equations

Pei = E
′
diIdi + E

′
qiIqi (3.35)

Edi = E
′
di + IqiX

′
di (3.36)

Eqi = E
′
qi − IdiX

′
di (3.37)

Iqi =
n∑

j=1

E
′
qj(Bijsin(δi − δj) + Gijcos(δi − δj)) (3.38)

Idi =
n∑

j=1

E
′
qj(Gijsin(δi − δj)−Bijcos(δi − δj)) (3.39)

The subsystem dynamics for each generator are nonlinear and coupled through nonlinear

coupling currents Idi and Iqi. Bij and Gij are elements of susceptance and conductance
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Table 3.1: Synchronous generator and transmission line variables

δi . . . Rotor angle in radians

ωi . . . Speed in radians per second

ω0 . . . Rated speed in radians per second

Efld . . . Excitation field voltage

Pei . . . Active power in per unit

Qei . . . Reactive power in per unit

Hi . . . Inertia constant in seconds

Di . . . Damping constant in per unit

Pmi . . . Mechanical power

Idi . . . Direct axis current

Iqi . . . Quadrature axis current

E
′
qi . . . Transient EMF in quadrature axis

E
′
di . . . Transient EMF in direct axis

Eqi . . . EMF in quadrature axis

Edi . . . EMF in direct axis

T
′
do . . . Direct open circuit time constant

T
′
qo . . . Quadrature open circuit time constant

Xq . . . Quadrature axis reactance

Xd . . . Direct axis reactance

X
′
d . . . Direct axis transient reactance

X
′
q . . . Quadrature axis transient reactance

Bij . . . Elements of susceptance matrix

Gij . . . Elements of conductance matrix

matrix respectively. Synchronous generator and transmission line variable are given in Table

3.1. Since the dynamic of generator is not in strict feedback form, the alternative state as active

power is considered. In following the simplification of generator model into strict feedback

form is presented. An alternative state, active power, is used instead of E
′
di and E

′
qi which are

internal generator voltages from their relation in algebraic form. Dynamic equation for active
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power is obtained by taking derivative of (3.35) and using (3.33) and (3.34).

Ṗei =
1

T
′
qoi

[−Iqi(Xqi −X
′
qi)− E

′
di]Idi + E

′
diİdi + (3.40)

+
1

T
′
doi

[−E
′
qi + Idi(Xdi −X

′
di) + Efldi]Iqi + E

′
qiİqi

Equation (3.31), (3.32) and (3.44) are dynamic equations for generator. The following state

variables are introduced by shifting the equilibrium point to the origin,

∆δi = δi − δi0 (3.41)

∆ωi = ωi − ω0 (3.42)

∆Pei = Pei − P ◦mi (3.43)

since there is no turbine-governor dynamics then P ◦mi = P ◦ei and ∆Ṗei = Ṗei. Equation (3.44)

is written as

∆Ṗei =
1

T
′
qoi

[−Iqi(Xqi −X
′
qi)− E

′
di]Idi + E

′
diİdi + (3.44)

+
1

T
′
doi

[−E
′
qi + Idi(Xdi −X

′
di) + Efldi]Iqi + E

′
qiİqi

substitute −E
′
diIdi = E

′
qiIqi − Pei

∆Ṗei = − Pei

T
′
qoi

−
IqiIdi(Xqi −X

′
qi)

T
′
qoi

+ E
′
qiIqi(

1
T
′
qoi

− 1
T
′
doi

) +

+E
′
diİdi + E

′
qiİqi +

Efldi
Iqi

T
′
doi

+
IqiIdi(Xdi −X

′
di)

T
′
doi

replace Pei = ∆Pei + P ◦ei

∆Ṗei = −∆Pei

T
′
qoi

−
IqiIdi(Xqi −X

′
qi)

T
′
qoi

+ E
′
qiIqi(

1
T
′
qoi

− 1
T
′
doi

)− P ◦ei
T
′
qoi

+

+E
′
diİdi + E

′
qiİqi +

Efldi
Iqi

T
′
doi

+
IqiIdi(Xdi −X

′
di)

T
′
doi

adding and subtracting a term
E◦

fldi
Iqi

T
′
doi

∆Ṗei = −∆Pei

T
′
qoi

−
IqiIdi(Xqi −X

′
qi)

T
′
qoi

+ E
′
qiIqi(

1
T
′
qoi

− 1
T
′
doi

)− P ◦ei
T
′
qoi

+

+E
′
diİdi + E

′
qiİqi +

∆Efldi
Iqi

T
′
doi

+
IqiIdi(Xdi −X

′
di)

T
′
doi

+
E◦fldi

Iqi

T
′
doi

(3.45)
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Dynamic equations will become

∆δ̇i = ∆ωi (3.46)

∆ω̇i = − Di

2Hi
∆ωi −

ωo

2Hi
∆Pei (3.47)

∆Ṗei = −∆Pei

T
′
qoi

−
IqiIdi(Xqi −X

′
qi)

T
′
qoi

+ E
′
qiIqi(

1
T
′
qoi

− 1
T
′
doi

)− P ◦ei
T
′
qoi

+

+E
′
diİdi + E

′
qiİqi +

IqiIdi(Xdi −X
′
di)

T
′
doi

+
E◦fldi

Iqi

T
′
doi

+
∆Efldi

Iqi

T
′
doi

(3.48)

The controller will be designed based on (3.46), (3.47), and (3.48). Electromagnetic equation

(3.48) is coupled with mechanical equations (3.46), (3.47). In contrast to the mechanical

equations, there are different ways to model electromagnetic models, depending primarily

upon the time scale at which the phenomenon of interest occurs. Former formulation provides

good agreement for the behavior of the controller for synchronous generator over a time scale

of transient stability. Providing states and control input:

x = ∆δ z1 = ∆ω z2 = ∆Pe u = ∆Efld (3.49)

and functions correspond to

g0 = 1 g1 = − ω0

2H
g2 =

Iq

T
′
do

f0 = 0 f1 = − D

2H
∆ω

f2 = −∆Pe

T ′
qo

−
IqId(Xq −X

′
q)

T ′
qo

+ E
′
qIq(

1
T ′

qo

− 1
T
′
do

)− P ◦ei
T ′

qo

+

+E
′
dİd + E

′
q İq +

IqId(Xd −X
′
d)

T
′
do

+
E◦fldi

Iqi

T
′
doi

(3.50)

Equations are in strict feedback form and suitable for backstepping controller design (3.30).

The final control signal is obtained as

u =
T
′
do

Iq
[(1 + k1)

2H

ω0
(f0 + g0∆ω) + (1 + k1 −

D

2H
)
2H

ω0
(f1 + g1∆Pe)− (∆δ + ∆ω)−

−k2∆Pe − k2
2H

ω0
[∆ω(−1− k1 +

D

2H
)−∆δ(−1− k1)]− f2] k1 > 0, k2 > 0 (3.51)

Controller gains are k1 and k2. Note that:
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• The nonlinear control law (3.51) is not feasible if Iq = 0. This condition occurs when

rotor angle is δ = n × 180◦ with n presents an integer number. Normally, when rotor

angle reaches 180◦, it is almost impossible to maintain stability by using incorporating

excitation control [9]. A reasonable system working region for rotor angle is 0◦ < δ <

180◦.

• Equations in strict feedback form has an advantage of formulation where interconnection

term appears only on last equation (3.48). Note that interface term is

di = −
IqId(Xq −X

′
q)

T ′
qo

+ E
′
qIq(

1
T ′

qo

− 1
T
′
do

)− P ◦ei
T ′

qo

+

+E
′
dİd + E

′
q İq +

IqId(Xd −X
′
d)

T
′
do

+
E◦fldi

Iqi

T
′
doi

(3.52)

• Various factors affect the transient stability of a system, such as strength of transmission

system and connection with the grid, characteristics of generators and their controllers.

Another important factor is the fault duration and the time span in which the faulted

line and equipment can be disconnected and restored back.

3.1.4 Case Studies

Single Machine Infinite Bus

A certain portion of the system including generator, actuators, and transmission lines is the

focus of the case study. The remainder of the system is represented by a simplified model

called dynamic equivalent. It is assumed that the remainder of the system is very large in

comparison with the concerned generator and adequate to represented by infinite bus. The

model consists of single generator connected through two parallel transmission lines to infinite

bus [65]. Single line diagram is shown in Figure 3.2.

A case study is presented to illustrate the effectiveness of the proposed controller during and

after contingency in the system. The results are compared with conventional Power System

Stabilizer. Figure 3.2 shows schematic diagram of single machine infinite bus. Complete data

related to this system is given in Appendix A. The objective is to improve transient stability

by implementing excitation controller.
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Figure 3.2: Single Machine Infinite Bus System

Excitation System Control Design

Supplementary control signal is used to add damping to system oscillations. This signal is

applied through excitation type-AC4A [42]. Following control strategies are analyzed:

• Backstepping controller is implemented on generator. Control gains are obtained by trial

and error k1 = 1 and k2 = 4.6.

• PSS with excitation type-AC4A, whose transfer functions are given below, is implemented

on generator. PSS has two stage lead-lag with a wash-out stage [9].

Kw
sTw

1 + sTw

(1 + sT1)2

(1 + sT2)2
= 13.7750

s1.410
1 + s1.410

(1 + s0.154)2

(1 + s0.033)2
(3.53)

• Excitation type-AC4A with no supplementary signal

Scenario

Three phase fault happens on first transmission line at 0.5 second, the fault is removed at

0.57 sec. The fault is cleared and transmission line is reconnected at 0.65 seconds. Results

are shown in Figures 3.3 and 3.4. Proposed controller effectively damps the oscillation and

modulates the voltage. Better performance is achieved in comparison with PSS. For such

small system the trial and error parameter search may be possible but for large system with

more control gains, trial and error will not be practical. Therefore, a systematic way should

presented to obtain control gains and satisfy objective function of the system.

In the following, the effect of k1 and k2 on suppressing oscillation are investigated. Even for

this small system, the effect of control gains on damping oscillation is significant. Figure 3.5

shows the relative rotor angle and speed deviation of generator for several k1, k2 pairs (Table

3.2). Unstable scenario (dot-line) happens when backstepping parameters become negative
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PSS (dash-dot line −.) and uncontrolled system (dotted line :)

and Lyapunov stability criteria are not satisfied. From the Figures 3.5 and 3.6, unstability

(dotted line) is in from of aperiodic drift due to non-tuned controller gains which results in

insufficient synchronizing torque. As a result a large excursion of rotor angle beyond the first

swing occurs and generator becomes unstable.



CHAPTER 3. BACKGROUND 33

0 1 2 3 4 5 6

40

60

80

100

120

140

time (sec)

R
e

la
tiv

e
 r

o
to

r 
a

n
g

le
 2

−
1

 (
d

e
g

) 

0 1 2 3 4 5 6
0.985

0.99

0.995

1

1.005

1.01

1.015

time (sec)

G
e
n
e
ra

to
r 

sp
e
e
d
 (

p
.u

.)
Figure 3.5: Relative rotor angle (deg) and Generator’s shaft speed (p.u.)
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Table 3.2: Backstepping Control Gains k1, k2

Control Parameters solid line − dotted line . dash dot line −. dash line −−

k1 1 -2 3 6

k2 4.6 5 5.7 3
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3.2 Function Optimization

3.2.1 Introduction

Organization of this section is as follows: Subsection 3.2.2 gives an overview of function

optimization problem in general. An evolutionary search technique known as Particle Swarm

Optimization (PSO), is described in Subsection 6.4.

3.2.2 Optimization Problem

Optimization is defined as finding the best possible solution to a problem given a set of con-

straints. Problem with two or more objective functions is called multi objective optimization

problem. Most practical problems require simultaneous optimization of multiple objectives.

Usually, these objectives have adverse effect on each other that can not be optimized one

at a time. Simultaneous function optimization with evolutionary search algorithms can find

solutions to all non-continuous and non-linear problems. This approach has become common

in solving these types of problems. Numerous applications of evolutionary algorithms can

be found especially in electric power systems [7]. The flexibility of evolutionary algorithms

to address optimization problem using any reasonable representation and objective functions

gives these techniques an advantage over classical optimization procedures. Given a control

structure with a number of adjustable gains, mathematical model of the system, and objec-

tive functions, while the aim is to obtain the best values of controllers’ gains that optimize

objective function subject to system constraints.

Optimization problem is formulated as follow:

min
s.t. gi(κ)≤0

f(κ) (3.54)

where κ ∈ Rm is the optimization parameter, f(κ) ∈ Rn is objective function vector, fi(κ)

for i = 1, 2, · · · , n are the objective functions, and gi(κ) ≤ 0 the system constraints. Compu-

tational intelligence-based can provide techniques that are feasible and almost independent of

the size of problem.

Evolutionary algorithm can be applied to any problem that can be formulated as function

optimization (3.54). It requires data structure to represents solutions, performance index to

evaluate the solutions, and variations operator to provide new solutions from the old ones.
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Advantage of the evolutionary algorithm comes from the ability in automating and problem

solving routines. Genetic algorithm (GA) and PSO are both considered as evolutionary algo-

rithm. Genetic algorithm is a search technique to find approximate solution to optimization

technique [59]. The algorithm uses techniques inspired by evolutionary biology such as mu-

tation, cross over, natural selection. Despite obtaining good solutions in hard search spaces,

still have some disadvantages such as tendency to converge toward local optima rather than

global optimum of the problem, and hard to implement on dynamic data sets. PSO is another

evolutionary technique that is not largely affected by nonlinearity and the size of the prob-

lem. The technique can easily converge to optimal solution that can be executed in search in

solution space for solving multi-objective optimization problems as formulated in (3.54).

Large number of evolutionary algorithms applications, especially for parameter estimation

and tuning of control gains can be found in electric power system literature [1], [2]. Among

all these techniques PSO has gained increased attention. Some advantages of PSO over other

optimization techniques are [19]:

• It has the ability to escape local minima

• It has less parameters to adjust, unlike many others

• It is easy for computer implementation and coding

• It is easy to implement and program with mathematical and logic operations

• It does not require a good initial solution to start the iteration

• It can be used with almost any realistic objective functions i.e. continuous or non-

continuous, convex or non-convex

• It has more effective memory capability (local and neighboring best)

A detailed survey on PSO applications to large scale power systems is covered by Alrashidi

and El-Hawary [6]. Recently a comprehensive overview of PSO techniques and different ap-

plications in electric power systems are covered by del Valle et. al [24].

3.2.3 Particle Swarm Optimization Algorithm

Particle Swarm Optimization is an evolutionary algorithm developed by James Kennedy and

Russell Eberhart [59]. The original objective of their research was to mathematically simulate

behavior of bird flocks. The search algorithm is based on cooperation and competition among

the population members. The objective is to find optimal regions of a complex search space
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through interaction of individuals in a population of particles. Each individual of the popu-

lation has an adaptable velocity (position change), according to which it moves in the search

space. Moreover, each individual has a memory remembering the best position of the search

space it has ever visited. Its movement is an aggregated acceleration toward its best previously

visited position. Another best value that is tracked by PSO is the best value obtained so far

by any particle in the neighborhood of the particle. The main idea is to change the position

and velocity of each particle toward global best location at each time step. As a result, after

number of iterations the particles among populations are found to have accumulated around

one or more of the optima and tends to find the global optima among all.

Given the size of the problem and the system complexities, the solution is assumed to lie in

the range of an N -dimensional space, where each potential solution is called a particle. Par-

ticle has a position and a velocity and moves in the search space toward an optimal solution.

Through the course of this study, PSO is applied to electric power system for tuning nonlin-

ear backstepping controller gains. The particles represent the controllers with this respective

gains that are sought [3], [4].

Some definitions are given below:

Particle Ki(t): A candidate solution (controller gains) for ith controller at iteration t.

Population: A set of n particles {K1(t),K2(t) · · ·Kn(t)}, where n is the number of candidate

solutions.

Swarm: Disorganized population of moving particles that tend to gather (with each other),

while each particle seems to be moving in a random direction.

Individual best K∗
i (t): This is the best value of the objective function J that this particle

has ever achieved up to tth iteration.

K∗
i (t) = {Ki(t) : Ji(K∗

i (t)) ≤ Ji(Ki(τ)), τ ≤ t}

J∗i (t) = Ji(K∗
i (t)) (3.55)

Global best K∗∗(t): Among all individual best positions achieved so far, the best position

for all particles is called global best.

K∗∗
i (t) = {K∗

i (t) : J(K∗∗(t)) ≤ Ji(K∗
i (t)), i = 1, · · ·n} (3.56)

The steps of the PSO algorithm are:

• Step 1: Initialization
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(a) Given a number of controllers n, population size (m), maximum number of iterations

tmax, maximum number of performance evaluation counter cmax, admissible range for gains

kmin
i,j , kmax

i,j

kmin
i,j ≤ ki,j ≤ kmax

i,j i = 1, 2, · · · , n, j = 1, 2, · · · ,m (3.57)

and number of intervals in jth dimension (µ). Set speed range

− νmax
i,j ≤ νi,j ≤ νmax

i,j (3.58)

where

νmax
i,j =

kmax
i,j − kmin

i,j

µ
(3.59)

(b) Initialize position and speed using uniformly distributed random numbers, and evaluate

the objective function Ji(t) of each particle.

(c) Let J∗i (t) = Ji(t), K∗
i (t) = Ki(t) and

J∗∗(t, c) = min[J∗1 (t) · · ·J∗n(t)]

(d) Set t = t + 1, c = c + 1

• Step 2: Velocity Update with constriction factor approach

Velocity is updated by the following equation [59]2:

νi,j(t) = Ψ(νi,j(t− 1) + c1r1(k∗i,j(t− 1)− ki,j(t− 1)) + c2r2(k∗∗i,j(t− 1)− ki,j(t− 1))) (3.61)

Ψ =
2

|2− ϕ−
√

ϕ2 − 4ϕ|
where ϕ = c1 + c2, ϕ > 4 (3.62)

where positive constants c1, c2 are weighting factors. As φ > 4 increases above 4.0, the Ψ gets

smaller and the damping effect is more pronounced. Hence the amplitude of the individual

2 Particle︸ ︷︷ ︸
new velocity

= Ψ

Particle︸ ︷︷ ︸
velocity

+ c1︸︷︷︸
weights

rand

 pbest︸ ︷︷ ︸
local best

−Particle︸ ︷︷ ︸
position

 + c2︸︷︷︸
weights

Rand

 gbest︸ ︷︷ ︸
global best

−Particle︸ ︷︷ ︸
position




Particle︸ ︷︷ ︸
new position

= Particle︸ ︷︷ ︸
current position

+ Particle︸ ︷︷ ︸
new velocity

(3.60)
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particle’s oscillations decrease as it focuses on a previous best point. This formulation for

velocity results in particle convergence over time, meaning that the amplitude of individual’s

particles oscillations are decreased as it focuses over the previous point. r1, r2 are uniformly

distributed random number between 0 and 1. In case the velocity violates its range, it will be

set to its limit (3.58).

• Step 3: Position Update

For each particle, update each gain using the velocity equation (3.61)

ki,j(t) = νi,j(t) + ki,j(t− 1) (3.63)

Update the position Ki(t) = [ki1, · · · , kim] for i = 1, · · ·n

• Step 4: Performance Evaluation

Using the updated position, evaluate the objective function

[J1(t) · · ·Jn(t)] = [J1(K1(t)) · · ·Jn(Kn(t))].

• Step 5: Individual Best Update

Find individual best using (3.55), i.e. ,find J∗i (t) and the associated K∗
i (t) for each i.

• Step 6: Global Best Update

Find global best using (3.56), i.e. find J∗∗(t, c) = J(K∗∗(t, c)) and K∗∗(t, c). If

J∗∗(t, c) ≤ J∗∗(t− 1, c− 1) (3.64)

then the objective function has improved, and the gains are updated, set c = c + 1 and go to

next step. Otherwise, update J∗∗(t, c), K∗∗(t) and set c = 0. Then go to next step.

• Step 7: Stopping criteria

(a) If the best global solution J∗∗(t, c) can no longer be improved and the counter has reached

its maximum number, c = cmax, the optimal solution is then the current K∗∗(t). Exit.
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Figure 3.7: Particle movement toward new position

(b) If t reaches (tmax), the maximum number of allowed iterations has been reached and no

feasible solution was found, stop. Otherwise: t = t + 1 and go to Step 2.

Schematic view of particle movement is shown in Figure 3.7. Matlab code for PSO algorithm

is given in appendix E. Steps for PSO algorithm is given in following:

1. Initialize each particle with random solution in problem domain (initialization)

2. For each particle evaluate the objective function

3. For each particle, calculate the objective function and compare it with its pbest. If the

current value of the objective function is better than the pbest then set the value as the

pbest and the current position of the particle.

4. Among all pbest, identify the particle that has the best objective function value. The

value of the objective function is assigned as gbest with its new position.

5. For each particle update the velocity vector and then the position vector.

6. Repeat steps 2−5 until stopping criteria are met. These criteria are maximum iteration

and minimum error criteria

Parameter Selections: One important issue by implementing the algorithm is how to

initialize the population. The positions and velocities of the particles are usually initialized
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randomly [59]. For instance positions are distributed over the dynamic range of each dimen-

sion and initial velocities are distributed randomly over the range of minimum and maximum.

Where most of the time the maximum value for velocity is specified according to the char-

acteristics of the problem. Note that the velocity of the particle is a stochastic variable and

may subject to create an uncontrolled trajectory for the particle. Upper and lower limits are

defined for the velocity, in order to damp these oscillations.

if νi,j > νmax
i,j then νi,j = νmax

i,j

if νi,j < −νmax
i,j then νi,j = −νmax

i,j (3.65)

Based on the characteristic of the problem the value for maximum velocity can be chosen.

One common technique to obtain the maximum velocity is formulated in (3.59).

Weighting factors c1, c2 control the movement of each particle toward its individual and global

best position. Small weights will limit the movement of particle and large weights may cause

the particles to diverge. The proper inequality condition is given in (3.62). Note that by

considering uneven values for these weights, an uneven cycling for the trajectory of the particle

is obtained in searching around an optimum value.

Constriction factor as formulated in (3.62) improves the convergence of the particle over time

by damping the oscillations once the particle is focused on the best point in optimal region.

And finally a number of particles that is usually around 10− 50.
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4

Transient Stability
Enhancement Using
Excitation Control

4.1 Power System Stability Enhancement using Backstepping

Controller Tuned by Particle Swarm Optimization Tech-

nique

4.1.1 Introduction

This section describes an algorithm for function optimization in order to obtain optimum set

of gains for backstepping controller. Problem formulation for generator is given in subsection

3.1.3. Controller design, obtained in 3.1.2, is used to stabilize multi-machine power system.

The organization of this section is as follows. Subsection 4.1.2 presents the procedure to

obtain optimal settings for backstepping controller gains. Three machine nine bus test system

is presented in Subsection 4.1.3 for implementing the proposed technique.

4.1.2 Optimal Settings for Controller Gains

This subsection describes the procedure for controller tuning. An important aspect of any

optimization process is the criterion used to define the goal in system performance, which is

41
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known as optimization criterion. It is through the selection of this optimization criterion that

one can specify the manner in which the system to perform. In following a quadratic perfor-

mance measure seems appropriate for stability analysis due to contingencies in the system.

Optimization problem for selecting the gains for backstepping controller to enhance optimal

performance is solving via a Particle Swarm Optimization (PSO). The algorithm has been

described in Subsection 6.4.

Objective Function

Here the goal of PSO procedure is to explore the search space and obtain optimum gains that

minimize the defined objective function. Once the optimum controller gains are obtained,

controller signal is implemented. In this setting, each backstepping controller has two gains.

In multi-machine system gains for the controller are presented as ki,j is used, where i stands

for number of controllers and j refers to the sequence number of gains for each controller. The

problem is formulated in form of constrained optimization by minimizing objective functions

(4.1-4.3). Three different functions are considered for optimizations which are listed in the

following. ∆ωi is speed deviation, ∆δij relative rotor angle deviation, and ∆Vgeni generator

terminal voltage deviation. α, β, γ are weighting factors in optimization problem.

• Objective function I

min
ki,j

∑
Ji =

∑∫ t

0
α(∆ωi)2dt (4.1)

• Objective function II

min
ki,j

∑
Ji =

∑∫ t

0
[α(∆ωi)2 + γ(∆Vgeni)

2]dt (4.2)

• Objective function III

min
ki,j

∑
Ji =

∑∫ t

0
[α(∆ωi)2 + β(

∑
∆δij)2 + γ(∆Vgeni)

2]dt (4.3)

with same constraints as subject to

ki,jmin < ki,j < ki,jmax

∆ωimin < ∆ωi < ∆ωimax

∆δijmin < ∆δij < ∆δijmax
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∆Vgenimin
< ∆Vgeni < ∆Vgenimax

(4.4)

Equations (4.1-4.3) present a PSO objective functions subject to set of constraints to obtain

optimum gains for each generator as controlled by (3.51). More weight (α) is assigned to ∆ω

in comparison with β, γ, κ which has ratio of α
β = α

γ = 100.

Assumptions

Objective function (4.3) requires remote signals (
∑

∆δij) and can not be computed locally

unlike (4.1-4.2). Performance of proposed controller with different objective functions is com-

pared. Design of objective function is not unique and depends on designer choice. Three

different objective functions are considered in Sections 4.2 and 4.3. Here, in selecting the con-

troller gains, the main objective is to minimize speed deviation, angle deviation, and terminal

voltage deviations from their nominal.

4.1.3 Case Study

Three Machine Nine Bus Test System

Three machine nine bus test system is considered in this case study. Detailed of the data are

provided in [9] and also presented in Appendix B. Single line of the system is shown in Figure

4.1.

Excitation System Control Design

Generators’ excitation systems, type-AC4A, based on fast acting power electronic exciters

are considered [42] (Figure 4.2). A voltage regulator with gain KR = 1 and time constant

TR = 0.01 is added. A lead-lag stage is used to model equivalent time constant for voltage

regulator and parameters. These parameters are obtain through PSO search technique and

are given in Table 4.1. Amplifier stage has first order delay element with gains and time

constants of KA = 200 and TA = 0.015, respectively. Ideal actuator is considered for this case

study with gain KE = 1 and time constant TE = 0. Backstepping control inputs are speed

deviation ∆ω and electric power deviation ∆Pe. To implement control law (3.51), ∆δ is also

required. Integration of shaft speed ∆ω is used to obtain ∆δ with zero initial condition.
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Figure 4.1: Three Machine Nine Bus Power System

Figure 4.2: Excitation system control

Table 4.1: Parameters for Lead-Lag Stage (Tc, TB)

Generator TC TB

1 0.0675 0.3401

2 0.2125 0.2687

3 0.1269 0.1199
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Scenario

The proposed controller, based on (3.51), is implemented on generators 1, 2 and 3. A three

phase fault is applied on transmission line 6− 9 at 100 msec. The line is removed and fault is

cleared at 180 msec. Following control strategies are analyzed:

• Backstepping controller with actuator (Figure 4.2), is implemented on each generator. Con-

troller gains are tuned by PSO technique by optimizing the objective functions(4.1-4.3). Fol-

lowing gains k1, k2 are obtained through PSO search algorithm (Table 4.2). Parameters for

wash-out stage and lead-lags for PSS are given in [9]

Table 4.2: Parameters for Backstepping Controller with Different Objective Functions

(I) k1 k2 (III) k1 k2

Gen#1 2.2635 2.9467 Gen#1 1.753 2.9983

Gen#2 2.5462 2.2950 Gen#2 2.3071 1.4592

Gen#3 1.4030 1.8439 Gen#3 1.2654 1.006

(II) k1 k2 (IV ) k1 k2

Gen#1 2.3032 2.5140 Gen#1 1.5136 1.7463

Gen#2 1.9657 2.990 Gen#2 2.4022 2.5833

Gen#3 2.0906 2.70978 Gen#3 2.1806 2.7408

Table 4.3: Parameters for PSS

Generators Kw Tw T1 T2 T3 T4

Gen#1− 3 13.7750 1.410 0.154 0.033 0.154 0.033

Figure 4.3 shows comparison between backstepping controllers tuned by objective functions

(4.1-4.3). Relative rotor angles δ21 and δ31 indicates that the system finds new operating point

that is different from pre-fault operating point. This happens because transmission line 6− 9

does not reclose afterward, and system configuration has changed. Also proposed controller

can effectively damp generator shaft oscillations. Terminal voltages of generators 2, 3 and

control signals are shown in Figures 4.4 and 4.5 respectively.
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Figure 4.3: Relative rotor angles 2− 1 and 3− 1 (rad), exciter with backstepping damping controller

with objective function J (I) (solid line −), Objective function J (II) (dash line −−), Objective function

J (III) (dash-dot line −.), PSS (dot line :)
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Figure 4.4: Terminal voltages for generators 2 and 3, exciter with backstepping damping controller

with objective function J (I) (solid line −), Objective function J (II) (dash line −−), Objective function

J (III) (dash-dot line −.), PSS (dot line :)

An approach to design controls of generator excitation based on backstepping were pre-

sented in this subsection. The control parameters are tuned by a particle swarm optimization

technique. The objective is to enhance stability of the power system and damp the oscilla-

tions during and after the contingencies. Based on numerical simulations, in this subsection,

it is concluded that proposed controllers improves transient stability in 3 machine 9 bus test



CHAPTER 4. TRANSIENT STABILITY ENHANCEMENT USING EXCITATION CONTROL47

0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

time(sec)

C
o

n
tr

o
l s

ig
n

a
l G

e
n

#
 2

0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

time(sec)

C
o

n
tr

o
l s

ig
n

a
l G

e
n

#
 3

Figure 4.5: Control signals for generators 2 and 3, exciter with backstepping damping controller with

objective function J (I) (solid line −), Objective function J (II) (dash line −−), Objective function

J (III) (dash-dot line −.), PSS (dot line :)

system.

It is assumed that interconnection terms with Idi and Iqi and remote information is available

measurements for each generator, in order to implement damping controller through excita-

tion control of generator. To remove this assumption, two approaches will be considered in

section 4.2 and 4.3 respectively.
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4.2 Extended-Backstepping Control of Power Systems

4.2.1 Introduction

In this section backstepping controller with additive nonlinear damping is applied for stability

enhancement of multi-machine power systems. The decentralized control scheme is practical

in systems especially when remote information are estimated locally. Remote information

from one generator to other through transmission lines are modeled and considered as exter-

nal disturbance through each plant. Controller has additive nonlinear damping to compensate

the effect of this disturbance.

The organization of this section is as follows: In subsection 4.2.2 controller, extended-backstepping,

is designed based on a recursive technique to obtain stabilizing control via Lyapunov function.

Additive nonlinear damping (extended term) is added to backstepping controller and is used

to counteract the effect of disturbance. Power system differential and algebraic equations

are given in subsection 4.2.3. Subsection 4.2.4 explains interface modeling as external dis-

turbance. Subsection 4.2.5 presents the optimal settings for extended-backstepping controller

gains. Gain setting for the controller is obtained with Particle Swarm Optimization. Bench-

mark system with 50 machines 145 buses system presented in subsection 4.24 for implementing

the proposed technique.

4.2.2 Backstepping Control Design in Presence of Disturbance

In this subsection a brief overview of backstepping control design for a nonlinear system with

a disturbance is presented. To apply this method, the system is assumed to have a parametric

strict-feedback form (3.6), which for a system with two states (x, z1):

ẋ = f0(x) + g0(x)z1 (4.5)

ż1 = f1(x, z1) + g1(x, z1)(u + d) (4.6)

The designed controller u has two components. First component, uB, is obtained using back-

stepping techniques while ignoring the disturbance d, and a second component, uD, is an

additional damping term added to counteract the effect of the disturbance. Hence, the final

control has two parts u = uB + uD.
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Backstepping Control

The first component uB (backstepping controller) is designed as follows. The disturbance d is

neglected here.

Define virtual control uB1:

uB =
1

g1(x, z1)
[uB1 − f1(x, z1)] (4.7)

Hence, equation (4.6) can be written as:

ż1 = uB1 (4.8)

z1 drives subsystem x as seen from (4.5). It is composed of two components, one of which,

φ0(x), is to stabilize this subsystem, and a second part is to guarantee the stability of the

overall system (see steps 1 and 2 below). Hence:

z1 = φ0(x) + v (4.9)

The above equation is used to eliminate z1. Taking the derivative with respect to time of (4.9)

yields:

ż1 = v̇ + φ̇0(x) = uB1 (4.10)

Equation (4.10) is re-arranged as:

v̇ = ż1 − φ̇0(x) = uB1 − φ̇0(x)

Finally, the original system without disturbance is written as:

ẋ = [f0(x) + g0(x)φ0(x)] + g0(x)v (4.11)

v̇ = w (4.12)

where

w = uB1 − φ̇0(x) (4.13)

Step 1: Let W (x) > 0 be positive definite function. Find a Lyapunov function V0(x) (simple

quadratic function) for the unforced system (4.11) and φ0(x) such that

V̇0(x) =
∂V0

∂x
(f0(x) + g0(x)φ0(x)) ≤ −W (x)

V̇0(x) = x(f0(x) + g0(x)φ0(x)) ≤ −W (x) (4.14)
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In this case the unforced system is asymptotically stable.

Step 2: Find w to stabilize (4.11), (4.12)

Let V1(x, z1) = V0(x)+ 1
2v2 be a Lyapunov function for (4.11) and (4.12). Its derivative along

the state trajectory is given by:

V̇1(x, z1) = V̇0(x)ẋ + vv̇

=
∂V0

∂x
(f0(x) + g0z1) + vw

= x(f0(x) + g0[φ0(x) + v]) + vw

= x(f0(x) + g0φ0(x)) + xg0(x)v + vw

(4.15)

Substitution of (4.14) in (4.15) yields:

V̇1(x, z1) ≤ −W (x) + xg0(x)v + vw (4.16)

w is chosen in a way to cancel the indefinite term and provide more negative definite to (4.16).

w = −xg0(x)− k1v (4.17)

then

V̇1(x, z1) ≤ −W (x)− k1v
2

V̇1(x, z1) ≤ −W (x)− k1(z1 − φ0(x))2 (4.18)

Therefore, (4.18) results in negative definite if the control gain k1 is positive.

uB1 is obtained from (4.13) (4.9) and (4.17). Finally, the backstepping controller uB is obtained

by substituting uB1 in (4.7) as follow:

uB1 = w + φ̇0(x) = −xg0(x)− k1v + φ̇0(x)

uB =
1
g1

[−xg0(x)− k1[z1 − φ0(x)] + φ̇0(x)− f1] (4.19)

Additive Nonlinear Damping

Now, including disturbance d to the local system, nonlinear damping term uD, is added using

the results provided in the following lemma [64],[49]

Lemma: Consider the system (4.5, 4.6), The following control

u = uB − γ
∂V1(x, z1)

∂z1
g1(x, z1), γ > 0 (4.20)
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where uB is given in (4.19), guarantees global uniform boundedness of X = (x, z1) and con-

vergence to the residual set

< =

{
X : |X| ≤ ς−1

1 ◦ ς2 ◦ ς−1
3

(
‖d‖2

∞
4γ

)}
(4.21)

where ς1, ς2, and ς3 are called κ∞ function such that

ς1(|X|) ≤ V (X) ≤ ς2(|X|) (4.22)

ς3(|X|) ≤ W (X) (4.23)

Hence:

uD = −γ ∂V1(x,z1)
∂z1

g1(x, z1) (4.24)

Proof of lemma is given in appendix F. A continuous function ς1 is said to belong to κ∞ if
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Figure 4.6: Backstepping Control and Nonlinear Damping

it is strictly increasing, ς1(r) → ∞ as r → ∞ and ς1(0) = 0. Once ς1 is a class κ∞ then the

inverse ς−1
1 belongs to the same class. Also ς−1

1 ◦ ς2 ◦ ς−1
3 (·) is composition of ς1, ς2, and ς3 and

defined as ς−1
1 ◦ ς2 ◦ ς−1

3 = ς−1
1 (ς2(ς−1

3 (·))) [60].

k1, γ are controller and nonlinear damping gains respectively. A large γ results in small

disturbance, i.e. ‖d‖∞ << 1 and will guarantee stability of the system. Hence, γ is a
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design parameter. Large γ will however saturate the controller signal. Therefore, it will put

some restriction on the size of the disturbance. A schematic block diagram of the extended-

backstepping is shown in Figure 4.6.

4.2.3 Disturbance Modeling

To apply the extended-backstepping method as described in subsection 4.2.2 to power systems,

the system has to be in strict feedback form. The power system is an interconnection of many

generating power plants to load centers through transmission lines. To design decentralized

controllers, each generator is modeled as an independent subsystem in a strict feedback form,

and the effect of the external system is in a form of a disturbance, consistent with the modeling

presented previously (3.46, 4.33, 3.48). Hence, each generator is modeled as:

ẋ = f0(x) + g0(x)z1

ż1 = f1(x, z1) + g1(x, z1)z2

ż2 = f2(x, z1, z2) + g2(x, z1, z2)(u + d). (4.25)

where
x = ∆δ f0 = 0 g0 = 1

z1 = ∆ω f1 = − D
2H z1 g1 = − ω0

2H

z2 = ∆Pe f2 = −∆Pe

T ′qo
g2 = Iq

T
′
do

u = ∆Efld

and d
′
= g2(x, z1, z2)d is

d
′

= −
IqId(Xq −X

′
q)

T ′
qo

+ E
′
qIq(

1
T ′

qo

− 1
T
′
do

)− P ◦e
T ′

qo

+

+ E
′
dİd + E

′
q İq +

IqId(Xd −X
′
d)

T
′
do

+
E◦fldIq

T
′
do

(4.26)

Parameters and variables for synchronous generators and transmission lines are given in Table

3.1. Following the extended-backstepping technique in subsection 4.2.2, the final controller is

given by

u = φ2(x, z1, z2)− γ
∂V2(x, z1, z2)

∂z2
g2(x, z1, z2) (4.27)

where φ2(x, z1, z2), V2(x, z1, z2) are obtained from (3.30) and (3.28), respectively. Extended-

backstepping control has the ability to work under diverse operating conditions and damp
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the oscillations effectively under small and large disturbances. Note that here f2 term can be

computed locally and does not include remote information.

4.2.4 Overall System View

A complete centralized control scheme in electric power system has excessive computation

time, distortion in information transfer, and high cost. More feasible structure is obtained

by decentralized scheme, where controllers only utilize local information and operate without

the need for remote signals. To design decentralized controllers, each generator is modeled

as an independent subsystem in a strict feedback form. The effect of the external system

is considered as disturbances to the generator which is in concern. Extended-backstepping

controller (4.27) is designed to stabilize each generator and to counteract the effect of external

disturbances.

Note that based on aforementioned lemma (Appendix F), stability of n-machine power system,

is guaranteed when a positive definite candidate Luapunov function

Vtotal =
n∑

i=1

(V0(xi) +
1
2
[z1i − φ0i(xi)]2 +

1
2
[z2i − φ1i(xi, z1i)]2) (4.28)

and has a negative definite derivative along state trajectories. Negative value of the derivative

V̇total means that Lyapunov functions V̇total decreases with time and tends toward it minimum

value.

V̇total ≤
n∑

i=1

−Wi(xi)− k1i(z1i − φ0i(xi))2 − k2i(z2i − φ1i(xi, z1i))2 +
1

4γi
‖di‖2

∞ (4.29)

This condition is satisfied as long as

n∑
i=1

−Wi(xi)− k1i(z1i − φ0i(xi))2 − k2i(z2i − φ1i(xi, z1i))2 +
1

4γi
‖di‖2

∞ ≤ 0 (4.30)

The effect of control gains and nonlinear damping factor somehow provide a balance to obtain

the inequality condition of Lypunov stability and minimize the effect of disturbance.
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4.2.5 Optimal Settings for Controller Gains

Particle Swarm Optimization technique is used in this subsection to obtain optimal regions

for controller gains. Performance index relating to optimization for control gains is defined as

Jcontrolleri
=

∫ t

0
[α(∆ωi)2 + β(∆δij)2 + λ(∆Efldi

)2]dt

(4.31)

Control constraints

kmin
i1 < ki1 < kmax

i1

kmin
i2 < ki2 < kmax

i2

∆Emin
fldi

< ∆Efldi
< ∆Emax

fldi

System constraints

∆ωmin
i < ∆ωi < ∆ωmax

i

∆δmin
ij < ∆δij < ∆δmax

ij

∆V min
geni

< ∆Vgeni < ∆V max
geni

.

Table 4.4 shows parameters for controller performance index.

Table 4.4: Performance Index Parameters for Controller

ki . . . Controller’s gains

∆ωi . . . Speed deviation

∆δij . . . Relative rotor angle deviation

∆Vgeni . . . Terminal Voltage deviation

∆Efldi . . . Control signal deviation from initial values

α,β,λ . . . Weighting factors

4.2.6 Case Study

Fifty Machine System

Mid-sized benchmark that retains the dynamic behavior of large scale power system is con-

sidered for implementing the proposed controller design. It consists of 50 generators, 44 are
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classical, and 6 are transient models [31]. Complete data related to generators and exciter

data are given in Appendix D. Four nonlinear controllers are implemented on generators at

related buses 93, 104, 110, and 111 [31]. Schematic block diagram for 50 machine power system

is shown in Figure 4.7. Control gains are tuned with PSO algorithm and considered the same

Figure 4.7: Fifty Machine System Single Line Diagram

for all scenarios.

Excitation System Control Design

Extended-backstepping control has ability to work under diverse operating points of the sys-

tem, and as will be shown in case studies this nonlinear control works effectively under small

and large disturbances. Figure 4.8 shows schematic block diagram of supplementary damping
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signal with exciter. Damping control signal u is applied through the exciter. Comparison is

held between the proposed damping controller and the PSS. It consists of amplifier gain KA,

amplifier time constant TA, and saturation hard limit. The actuator is ideal with KE = 1

and TE = 0. In power system stability and control, the main idea of damping control is to

suppress generator rotor oscillations under influence of contingencies and improve dynamic

performance. Conventional damping control, power system stabilizer (PSS), is design based

on linearized model of power system around small region of operating points. Comparison

between extended-backstepping control and PSS is shown in following scenarios.
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Figure 4.8: Supplementary Damping Controllers with Exciter

Scenario-I Three Phase Fault

For this scenario three phase fault is applied on transmission line 59 − 107 at 100 msec, the

fault is cleared at 300 msec. Controllers will sustain the stability of overall system even though

the type and location of fault is altered. Same parameters (Table 4.5) are used for extended-

backstepping controller gains. Comparison is done between extended-backstepping control
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and power system stabilizer. PSS has two similar lead-lag with a wash-out stage (3.53). Two

algorithms are used for tuning PSS gains. First, PSO is used to obtain PSS gains (Table 4.6).

Second technique, Genetic Algorithm (GA), the gains are obtained from survey on tuning

PSS gains [36]. The parameters for the excitation system are given in Appendix D. In Figure

4.9 extended-backstepping control with damping factor γ = 150 (solid line) damp the rotor

oscillations effectively when compared with PSS tuned by PSO (dash-dot line), PSS tuned by

GA (dash line), and simple exciter with no damping controller (dot line). Controller signals

for generators 2, 6 are shown in Figure 4.10. Larger control effort signals is used by the

proposed controller to damp oscillations, since nonlinear damping term is introduced for this

new control. Hence, there is a trade-off in balance between saturation of control signals and

magnitude of nonlinear damping signal.

Table 4.5: Parameters for Backstepping control

Generator # Bus # Gain k1 Gain k2

1 93 272.7240 63.6678

2 104 251.1236 211.4062

5 110 180.3733 240.5763

6 111 277.0844 355.0586

Table 4.6: Parameters for PSS tuned by PSO

Generator # Bus # Kw Tw T1 T2

1 93 92.4223 3.4140 0.59 0.39

2 104 28.3032 1.6609 1.01 0.35

5 110 81.3726 8.5178 0.38 0.28

6 111 7.1390 0.5353 0.99 0.40

Scenario-II Effect of Nonlinear Damping

Three-phase to ground fault is applied on transmission line 61−63. Fault duration is 100 msec.

The transmission line is removed at 200 msec but not reclosed afterward. In this scenario the

objective is to demonstrate the effect of nonlinear damping term to suppress the oscillations.
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Figure 4.9: Relative rotor angles (rad) 6 − 1, 6 − 3. Exciter with PSO-tuned extended-backstepping

(solid line −), simple exciter with PSO-tuned PSS (dash-dot line −. ), simple exciter with GA-tuned

PSS (dash line −− ), simple exciter without damping control (dot line .)
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Figure 4.11 shows the effect of nonlinear damping factor γ, on speed deviation of generator 1

from nominal value. By increasing the gain γ the system obtains additional damping and the

oscillations are suppressed. Note that for very large value of γ control signal will be saturated

on upper and lower limits. The effect of saturation for generator 1 is also shown in Figure

4.12. In this section, coupling among generators through transmission lines is considered as

external disturbance. Controllers were designed based on backstepping technique to stabilize

the system, plus additive nonlinear damping were added to controller to counteract the effect

of disturbance.

In selecting controller gains, emphasis was placed on damping the oscillations of rotor angle,
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Figure 4.11: Effect of nonliear damping speed deviation and control signal for generator 1, γ = 1500

(solid line −), γ = 100 (dash-dot line .), γ = 15 (dot line .)

speed, power and terminal voltages from their nominal. The latter were achieved by PSO

tuning technique.

Effect of Noise

Consider Scenario-II with reclosing the line at 250 msec. For this case Gaussian noise is

included in disturbance term. The latter change makes the interface term a more realistic

condition. Also the objective function has local information that includes speed deviations
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Figure 4.12: Effect of nonlinear damping speed deviation and control signal for generator 5, γ = 1500

(solid line −), γ = 100 (dash-dot line .), γ = 15 (dot line .)

from generators.

Jcontrolleri
=

∫ t

0
α(∆ωi)2dt

(4.32)

Backstepping controller gains are given in Table 4.7. Effect of control signals for generators

Table 4.7: Parameters for Backstepping control

Generator # Bus # Gain k1 Gain k2

1 93 189.8 16.21

2 104 151.1 370.5

5 110 400 395.5

6 111 246.4 0.14

1, 2, 5 and 6 with γ = 1000 are shown in 4.13. Sudden jumps in control signals are caused by

the disturbances. The effect of nonlinear damping γ is investigated on suppressing the oscil-

lations of generator. Figures 4.13 show that by increasing γ, the oscillations will damp faster.

Gaussian noise is included in disturbance d. The noise has zero mean, fixed variance of 0.2

and sample time 1 second that has direct effects on actuator signal. Nonlinear damping added

to backstepping controller can suppress the oscillations in presence of noisy measurement.
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Figure 4.13: Relative rotor angles (rad) 6−1, 2−6. Simple exciter with extended backstepping control

with γ = 1000 (solid line −), γ = 400 (dash line −−), γ = 90 (dahs-dot line −.), γ = 20 (dot line :)
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Backstepping technique that presented here can solve stabilization problems under conditions

less restrictive that those encountered in other methods, since it exploits the flexibility as-

sured by lower-order and scalar systems. Moreover, backstepping exhibits its full power in the

presence of uncertain nonlinearities such as interface between generators. In summary In this

section backstepping design and nonlinear damping have been proposed as a new approach for

controlling a generator dynamics. Each generator is modeled as a subsystem connected to the

grid. The effect of interconnection on each subsystem is considered as external disturbance.

Backstepping controller and nonlinear damping are provided to stabilize the generator and

counteract the effect of disturbance respectively.
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4.3 PSO-tuned Adaptive Backstepping Control

4.3.1 Introduction

In this section, the approach toward decentralized control is based on adaptive backstepping.

The adaptation laws are used to estimate the effects of the rest of the system on concerned

generator, which allows for a decentralized control design. The section is organized as follows.

In Subsection 4.3.2 a strict feedback generator model suitable for decentralized control design

is presented. In Subsection 4.3.3 the adaptive backstepping control design algorithm is pre-

sented. Interface variables are estimated with linear estimator whose coefficients are adapted.

The control and adaptation gains are obtained using a Particle Swarm Optimization (PSO)

search technique in Section 4.3.4. Case study is provided in Subsection 4.3.5 to illustrate the

effectiveness of the proposed controller.

4.3.2 Problem Formulation

To apply the design technique proposed in this section, the generator model is (1) cast in

a strict feedback form [64], and (2) each machine is modeled as an independent dynamic

subsystem. The starting point is the transient two-axis generator model given in section 3.1.3.

To obtain the strict feedback form model, acceleration power instead of direct and quadrature

voltages is used as a state variable. The decoupling of the generator from the rest of the

system is obtained by considering the effect of the rest of the system on each generator as a

disturbance. Therefore, each generator is modeled by the following state equations.

∆δ̇i = ∆ωi

∆ω̇i = − Di

2Hi
∆ωi −

ωio

2Hi
∆Pei

∆Ṗei = −∆Pei

1
T
′
qoi

+ βi∆Efldi
+ d

′
i (4.33)

where the coupling term d
′
i is given by equation (4.26). This term includes local and remote

information. Here, it is expressed as a linear uncertain function from two local measurements

with parameters that will be estimated. Here, uncertain function is considered as first order

differential equation,

d
′
i ≈ θ1i∆Pei + θ2i∆Ṗei (4.34)
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where θ1i and θ2i from 4.34) are uncertain values which has to be estimated through adaptation

law. In generic terms, the equation set (4.33) for ith generator is:

ẋ1 = b1x2 (4.35)

ẋ2 = b2x3 + b3x2 (4.36)

ẋ3 = βu + b4x3 + d
′

(4.37)

where, disturbance d
′
is chosen as (4.34). State variables are x1 = ∆δ x2 = ∆ω x3 = ∆Pe.

Parameters are b1 = 1 b2 = − ω0
2H b3 = − D

2H b4 = − 1

T
′
qoi

, and control input u = ∆Efld

appears in the last equation. β, θ1, θ2 are uncertainties, not known a priori.

4.3.3 Adaptive Backstepping Control Design

The objective is to stabilize the system (4.35-4.37) using backstepping control which is to

steer x1 to its desired value xd
1 = α0 = constant, then find x2 to stabilize (4.35), and x3 to

stabilize (4.36) and finally u to stabilize (4.37) and hence the overall system. Consequently

once the control signal u is obtained, it can stabilize dynamic of x3. Backstep to equation

(4.36), x3 controls the dynamic of x2. Again backstep to equation (4.35), x2 grasps dynamic

of x1. Hence the overall system is stabilized. Each of the states x2 and x3 will have virtual

trajectories α1 and α2 to follow. Define the error variables:

zi = xi − αi−1, i = 1, 2, 3 (4.38)

The problem then is to find α1, α2 and u to drive the error variables zi to zero. The control

signal is obtained following these steps:

Step 1: Find α1

The dynamics of z1, using (4.38) and (4.35)

ż1 = ẋ1 − α̇0 = ẋ1 = b1x2 = b1(α1 + z2) (4.39)

Let the Lyapounov function for this subsystem be

V1 =
1
2
z2
1 (4.40)

its derivative along the trajectory, using (4.38), is:

V̇1 = ż1z1 = b1α1z1 + b1z2z1 (4.41)
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Choose

α1 = α11z1 = −k1z1

b1
(4.42)

where provide a negative definite term plus an indefinite term provided for next step

V̇1 = −k1z
2
1 + b1z2z1 (4.43)

Parameter and trajectory k1 and z2 will be chosen later to render V̇1 < 0 and hence guaran-

teeing asymptotic stability of subsystem (4.39).

Step 2: Find α2

Consider now the dynamics of z2 and α1, using (4.38), (4.36), (4.42), and (4.39). Therefore

ż2 = ẋ2 − α̇1 = b2x3 + b3x2 + k1
ż1

b1
= b2x3 + (−k2

1

b1
− k1b3

b1
)z1 + (b3 + k1)z2 (4.44)

The following augmented Lyapounov function is chosen for the system described by (4.39)

and (4.44)

V2 = V1 +
1
2
(z2)2 (4.45)

its derivative along the trajectory, using (4.43) and (4.44), is:

V̇2 = V̇1 + ż2z2 (4.46)

using (4.43) and (4.44) and let x3 = z3 + α2

V̇2 = −k1z
2
1 + [b1z1 + b2α2 − (

k2
1

b1
+

k1b3

b1
)z1 + (b3 + k1)z2]z2 + b2z2z3 (4.47)

Choose trajectory α2

α2 = α21z1 + α22z2 (4.48)

where α21 and α22 are defined by

α21 =
−b1

b2
+

k2
1

b2b1
+

k1b3

b1b2

α22 = −k1 + k2 + b3

b2
(4.49)
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then, V̇2 becomes

V̇2 = −k1z
2
1 − k2z

2
2 + b2z2z3 (4.50)

Decision on choosing α2 is based on making the term inside the bracket (4.47) negative definite.

In following, k1, k2, and z3 will be chosen to make V̇2 < 0 and hence subsystem (4.39), (4.44)

asymptotically stable.

Step 3: Find u

Consider the dynamics of z3 and α2 using equations (4.38), (4.37), (4.48), (4.39), and (4.44)

ż3 = ẋ3 − α̇2 = βu + b4x3 + d
′ − α̇2 (4.51)

where d
′
is given in (4.34) and α̇2 is obtained using (4.39) and (4.44)

α̇2 = α21ż1 + α22ż2 = (−k1α21 − b1α22)z1 + (b1α21 − k2α22)z2 + (b2α22)z3 (4.52)

Equation (4.51) becomes

ż3 = βu + (b4α21 + k1α21 + b1α22)z1 + (b4α22 − b1α21 + k2α22)z2 + (b4 − b2α22)z3 + d
′

(4.53)

Consider the following augmented Lyapounov function for (4.39), (4.44), and (4.53)

V = V2 +
1
2
(z3)2 +

1
2
(β − β̂)2γ−1 +

1
2
[(θ1 − θ̂1) (θ2 − θ̂2)]Γ−1[(θ1 − θ̂1) (θ2 − θ̂2)]T (4.54)

where θ̂1, θ̂2, and β̂ are estimate of θ1, θ2, β. Γ = diag[Γ1,Γ2] is an adaptation gain matrix,

and γ is a scalar positive value. Then

V̇ = −k1z
2
1 − k2z

2
2 + [βu + α31z1 + α32z2 + α33z3 + d

′
]z3 −

− (β − β̂)γ−1 ˙̂
β − (θ1 − θ̂1)Γ−1

1
˙̂
θ1 − (θ2 − θ̂2)Γ−1

2
˙̂
θ2 (4.55)

where

α31 = b4α21 + k1α21 + b1α22

α32 = b2 − b1α1 + b4α22 + k2α22

α33 = b4 − b2α22 (4.56)
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Now consider d
′
as given in equation (4.34). The adaptation laws ˙̂

β,
˙̂
θ1,

˙̂
θ2 in (4.55) are chosen

in a way to obtain (4.55) independent of θ1, θ2, β̂:

˙̂
θ1 = Γ1z3x3

˙̂
θ2 = Γ2z3ẋ3

˙̂
β = γz3u (4.57)

Adaptation laws 4.57 are obtained as follow. Consider equation 4.55

V̇ = −k1z
2
1 − k2z

2
2 + βuz3 + α31z1z3 + α32z2z3 + α33z

2
3 + d

′
z3 −

− βγ−1 ˙̂
β + β̂γ−1 ˙̂

β − θ1Γ−1
1

˙̂
θ1 + θ̂1Γ−1

1
˙̂
θ1 − θ2Γ−1

2
˙̂
θ2 + θ̂2Γ−1

2
˙̂
θ2 (4.58)

substitute d
′
= θ1x3 + θ2ẋ3 and factorize θ1, θ2 and β. Equation (4.58) becomes

V̇ = −k1z
2
1 − k2z

2
2 + β(uz3 − γ−1 ˙̂

β) + α31z1z3 + α32z2z3 + α33z
2
3 +

+ θ1(x3z3 − Γ−1
1

˙̂
θ1) + θ2(ẋ3z3 − Γ−1

2
˙̂
θ2) + β̂γ−1 ˙̂

β + θ̂1Γ−1
1

˙̂
θ1 + θ̂2Γ−1

2
˙̂
θ2 (4.59)

Since θ1, θ2, and β are unknown, terms related to them are canceled. Set

x3z3 − Γ1
1
˙̂
θ1 = 0

uz3 − γ−1 ˙̂
β = 0

ẋ3z3 − Γ−1
2

˙̂
θ2 = 0 (4.60)

Equation (4.59) becomes

V̇ = −k1z
2
1 − k2z

2
2 + α31z1z3 + α32z2z3 + α33z

2
3 + β̂γ−1 ˙̂

β + θ̂1Γ−1
1

˙̂
θ1 + θ̂Γ−1

2
˙̂
θ2 (4.61)

Substitute (4.57) in (4.62)

V̇ = −k1z
2
1 − k2z

2
2 + α31z1z3 + α32z2z3 + α33z

2
3 + β̂uz3 + θ̂1x3z3 + θ̂ẋ3z3 (4.62)

factorizing z3

V̇ = −k1z
2
1 − k2z

2
2 + [β̂u + α31z1 + α32z2 + α33z3 + d̂]z3 (4.63)

where d̂ = θ̂1x3 + θ̂2ẋ3. The controller u is then designed to make V̇ < 0. This is achieved

with the following controller and positive values k1, k2, k3:

u = β̂−1[−α31z1 − α32z2 − α33z3 − k3z3 − d̂] (4.64)
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β̂ 6= 0 for normal operating conditions, and make the controller feasible. In fact, with this

controller, V̇ is expressed by:

V̇ = −k1z
2
1 − k2z

2
2 − k3z

2
3 (4.65)

Finally, this control law is written in terms of the original state variables as

u = β̂−1[F1x1 + F2x2 + F3x3 − d̂] (4.66)

where

F1(k1, k2, k3) = [−α31 + α21α33 + k3α21 +
−k1α32 + k1α22α33 + k1k3α22

b1
] (4.67)

F2(k1, k2, k3) = [−α32 + α33α22 + k3α22] (4.68)

F3(k1, k2, k3) = [−α33 − k3] (4.69)

This controller u(x1, x2, x3, θ̂1, θ̂2, β̂) (4.66) is a nonlinear function that is affected by the choice

of the control parameters:

K = [k1 k2 k3 k4 k5 k6] (4.70)

where: k4 = Γ1, k5 = Γ2, k6 = γ.

4.3.4 Optimal Settings for Controller Gains

Following a system disturbance, the main objective of damping controllers is to prevent loss of

synchronism and withstand large deviations of states from their nominal. In order to achieve

this goal, effective controllers need to act fast. Improperly design or tuned controllers may

contribute to unstability problem. Hence in selecting controller gains, emphasis is placed on

stability of all the system.

The controller designed Subsection 4.3.3 is at each machine and the control gains (4.70)

are denoted Ki = [ki1 ki2 ki3 ki4 ki5 ki6]. If the system comprises n substations, then

there are N = 6n control parameters that need to be selected simultaneously so that each

substation is asymptotically stable. A vector Lyapounov Function for the entire system is

taken as V = [V1 V2 · · ·Vn] which is positive definite and its derivative along the trajectory
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is [V̇1 V̇2 V̇3 · · · V̇n] . V̇i is the derivative along the trajectory of the Lyapounov function

of subsystem (i) given by (4.65). Therefore, the goal is to minimize the objective function

J = [J1 J2 · · ·Jn], where Ji = V̇i for i = 1, 2, · · ·n, i.e. to make each entry of J as negative as

possible by tuning the control gains. The problem is formulated as follows:

max
Ki such that V̇i<0, i=1:n

‖J‖∞ (4.71)

Given the size of the problem, and the system complexities, this problem is solved using the

Particle Swarm Optimization (PSO). Advantages with this approach are

• Appropriate Lyapunov function (4.54) is obtained through adaptive backstepping pro-

cedure

• With optimization technique, adaptive backstepping controller maximizes (4.65)

• Adaptation laws (4.57) are obtained to estimate interface variables locally

• Local control signals are used to implement control structure (4.66)

4.3.5 Case Study

Fifty Machine System

Fifty machine system, as explained in 4.24, is considered as case study [31]. Adaptive back-

stepping controllers (4.66), are implemented as supplementary damping signal to excitation

system for generators 2 and 6 at related buses 104 and 111 respectively.

Excitation Control Design

Following figure shows schematic block diagram of adaptive backstepping control for a genera-

tor with Exciter. Exciter consists of amplifier gain KA, amplifier time constant TA, saturation

hard limit, actuator gain KE , actuator time constant TE . Parameters for exciter is given in

appendix D.

Scenario-I

The ability of the system to tolerate a three phase fault on transmission line 6 − 9 is in-

vestigated. For this scenario the system is analyzed in two operating conditions. First the

configuration of system as shown in Figure 4.7. And second, the system with the line 6 − 9
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Figure 4.14: Adaptive backstepping Controller with Exciter

out of service for 250 msec. The control and adaptation gains are obtained in a way that sat-

isfy (4.71) for generators 2, 6. Figure (4.15) compares performance of exciter with proposed

controller, exciter with power system stabilizer, and exciter without supplementary signal.

Proposed controller damp the oscillation of rotor angles more effectively in comparison to

PSS. The PSS for each generator (2 and 6) has a wash-out stage and two identical lead-lag

stages. Control and adaptation gains are given in Tables 4.11 and 4.12.

Table 4.8: Adaptive Backstepping Controller Gains

Backstepping k1 k2 k3

Gen #2 67.45 36.87 116.05

Gen #6 151.04 7.91 0.93

Adaptation gains k4 k5 k6

Gen #2 359.90 402.00 275.07

Gen #6 557.40 30.80 53.15

Table 4.9: PSS Gains

PSS Tw Kw T1 T2

Gen #2 3.18 14.85 0.71 0.49

Gen #6 6.92 7.75 1.33 1.10
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Figure 4.15: Relative rotor angle δ21 and control signal Generator 2. Adaptive Backstepping (solid

line −), and Power System Stabilizer (dash-dot line −.) , Exciter without supplementary signal (dot

line . )
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Figure 4.16: Interface modeling for generators 2 and 6. Exact term d
′
(solid line −), estimated term

d̂ (dash dot line −.)
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Figure 4.17: Relative rotor angle δ21 (deg) and Control signal generator 2. Adaptive Backstepping

(solid line −), PSS (dot line :)

Scenario-II

Consider the same gains from Table 4.11, but type and location of fault is altered (Line to

ground Fault on line 6 − 7 at 0.5 second, the transmission line remains open). Adaptive

backstepping control is applied for generators 2 and 6 at buses 104 and 111. Figures (4.18)

compares the coupling terms, exact term in dot-line (4.25) and estimated interface variables

with solid line (4.34) for generator 2 and 6. The adaptation laws adjusts fraction of incoming

power and it is being used by backstepping control to produce effective control signals which

damp oscillations and stabilize the system.

In this section PSO based optimization algorithm for damping control design with rel-

atively large scale system is presented. The PSO algorithm allows simultaneous tuning of

multiple power system nonlinear controllers in different operating conditions. Two different

scenarios were presented for this system, three phase fault and loss of transmission line. The

obtained results show that PSO can be effectively utilized for nonlinear damping controllers

with their local settings at two generators 2 and 6. Furthermore, comparison with conventional

PSS shows that the performance of the proposed technique is superior.
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Figure 4.18: Interface modeling for generators 2 and 6. Exact term d
′
(solid line −), estimated term

d̂ (dash dot line −.)
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Two Area System:

Second system is the benchmark two-area power system (Figure 4.19) that has been extensively

used in the literature for analyzing inter-area oscillations [61].

Figure 4.19: Two area system

Excitation Control Design

Figure 4.20 shows the schematic block diagram of the proposed adaptive backstepping con-

troller acting as supplementary signal. The actuator consists of an exciter gain KA, an time

constant TA, a filter time constant Tr and a saturation hard limit with upper and lower bounds

[VRmin VRmax ]. Excitation data is given in Table 6.5.

Table 4.10: Parameters for Static Excitation

Exciter 1, 2, 3, 4

KA Regulator gain p.u. 200

TA Regulator time constant p.u. 0.05

Tr Filter time constant p.u. 0.01

VRmax upper bound for saturation p.u. 10

VRmin lower bound for saturation p.u. −10
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Figure 4.20: Adaptive backstepping Controller with static exciter

Table 4.11: PSS Gains

PSS Tw Kw T1 T2

Gen #2 20 2.36 0.7109 0.155

Gen #3 20 15 0.15 0.0843

Scenarios

Scenarios are presented to illustrate the effectiveness of the proposed controller and to compare

it to existing PSS. PSS at generators 2 and 3 have been successfully designed by authors

previously to damp local and inter-area oscillations [37]. The data for generators are given in

Appendix C. Following control strategies are analyzed:

• Two PSSs, whose transfer functions are given below, are implemented on generators 2 and

3.

Kw
sTw

1 + sTw︸ ︷︷ ︸
Wash−out

(1 + sT1)2

(1 + sT2)2︸ ︷︷ ︸
Lead−Lag

(4.72)

Where Tw wash-out time constant, Kw wash-out gain, and T1, T2 are lead-lag time constants.

PSS parameters are given in Table 4.11 [37].

• Two Adaptive Backstepping controllers, designed using the proposed approach, are imple-

mented on generators 2 and 3. Gains, tuned by PSO, are given in Table 4.12. Here, intercon-

nection coupling term d
′
i is approximated locally with a second order polynomial function of
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Table 4.12: Adaptive Backstepping Controller Gains

Backstepping k1 k2 k3

Gen #2 2.40 1.27 19.34

Gen #3 10.73 16.76 28.20

Adaptation gains k4 k5 k6

Gen #2 13.5 14.41 10.72

Gen #3 1.15 3.81 11.34

Table 4.13: Analyzed Scenarios

Scenarios # I II III

Transmission line (13− 101) double single single

Fault occurrence time(sec) 1.00 1.00 1.00

Fault clearance time (sec) 1.026 1.046 1.06

Line re-closing time (sec) 1.03 1.05 10.00

electric power deviation. Its parameters are estimated, using local information:

d
′
i ≈ θ1i∆Pei + θ2i∆P 2

ei
(4.73)

where θ1i and θi2 are values estimated using adaptation laws. The modification is done in

(4.55) where adaptation laws are denoted as:

˙̂
θ1 = Γ1z3x3

˙̂
θ2 = Γ2z3x

2
3

˙̂
β = γz3u (4.74)

The scenarios that have been analyzed are tabulated in Table 4.13. A three phase fault is

applied at bus 3 for each scenario. In scenario-I, simulation results show that relative rotor

angle oscillations ∆δ31,∆δ41 is damped fast enough, in less than 8 seconds (Figure 4.21).

In scenario-II, when one transmission line between buses 13− 101 is removed, the system is

under stress. Adaptive backstepping controller dampen rotor oscillation in approximately 8

sec, while it takes almost twice that time for PSS to suppress the oscillations (Figure 4.22).
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Figure 4.21: Relative rotor angles δ31, δ41. Adaptive backstepping (solid line), PSS (dash-dotted line)

and uncontrolled system (dotted line) for Scenario-I
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Figure 4.22: Relative rotor angles δ31, δ41. Adaptive backstepping (solid line), PSS (dash-dotted line)

and uncontrolled system (dotted line) for Scenario-II
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Figure 4.23: Relative rotor angle δ31, Speed deviations ∆ω3 for Generator 3. Adaptive Backstepping

(solid line −), and PSS (dash-dot line −.) in Scenario-III

In scenario-III, unlike aforementioned scenarios, the fault duration is increased. The transmis-

sion line is removed at 1.06 sec. The transmission line is reconnected at 10 seconds. Proposed

controllers stabilize the system which returns to its pre-fault equilibrium point. Relative ro-

tor angle δ31, δ41 depicts the fact that pre-fault steady state and post-fault steady state are

equal (Figure 4.24). Instability, with PSS controller, is the result of low frequency inter-area

oscillations that arise due to long duration of fault.
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Figure 4.24: Terminal voltage at buses 11 and excitation field voltage Efld3 for Generator 3. Adaptive

Backstepping (solid line −), and PSS (dash-dot line −.) in Scenario-III
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Finally Figures (4.25) compares the estimated and actual d and d̂ coupling terms. The

adaptation laws adjust the fraction of incoming power to decouple each generator from the

effects of the rest of the system, and produce decentralized control signals. Simulation results

reveal that the system is well damped and stable during and after large disturbances occur in

the system.
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Figure 4.25: Interface modeling for generator 2 and 3. Exact term (solid line −) and estimated term

(dash-dot line −.) in Scenario-III

The proposed technique presented an adaptive controller for improving the damping of
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oscillations in a power system during large disturbances. This controller is decentralized, that

has been achieved by estimating the external system as uncertain linear function (4.73). The

linear estimate of the disturbance has given adequate results, and the global optimization that

is performed, counteract any errors in this estimate. Simultaneous optimization is performed

to produce the minimum objective function for the over all system under the structure that

each local control act as local optimizer. The well damped optimal nonlinear control illustrates

the successful solution of the problem, indicating that the technique is a valuable tool dealing

with transient control problems for power system.

4.3.6 Modeling Error

In reality the dynamic environment for large scale system has uncertainties. Some factors that

might contribute to this are listed as follow:

• Operating conditions might be different from those considered in planning and designing

stage

• Planning models are inaccurate with respect to system dynamics

• Large changes in system operating conditions might happened due to outside distur-

bances

Performance of controller is evaluated with respect to generator modeling error. Important

requirement is that the tuning procedure must ensure that the proposed damping controller

tuned are robust enough to changes in system parameters and they provide adequate damping

for a range of parameter changes on the system. To verify the robustness of the optimized

tuning controller, scenario-II is investigated as given in Table 4.13. A random change of gen-

erator parameters from their nominal values within the range of ±50% are considered for the

following parameters of each generator (∆x
′
q,∆T

′
do,∆x

′
d,∆T

′
qo,∆H). Figure 4.26 shows speed

deviation for generator 3 for several number of simulations. Proposed controller numerically

shows robust performance due to modeling errors for all. The mean (solid line), maximum

(dash-dot line) and minimum (dotted line) values are given in Figure 4.26. Relative rotor

angle 3 − 1 has shown for several simulations. Despite the fact that the proposed technique

is model based, the damping effectiveness of the proposed controller has been ascertained by

nonlinear time simulation. For all the cases the controller performs effectively and damp the
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oscillations as shown in Figure 4.27 with minimum, maximum and mean values. In brief,

decentralized adaptive backstepping control is presented and implemented to stabilize multi-

machine power systems where generator parameters have bounded uncertainties. Test results

show the effectiveness of the proposed controller in presence of parameter uncertainties of

generators.
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Figure 4.26: Speed deviation ∆ω3 for several simulations, minimum (dash-dotted line), mean (solid

line), and maximum (dotted line) values for ∆ω3, Scenario-II



CHAPTER 4. TRANSIENT STABILITY ENHANCEMENT USING EXCITATION CONTROL83

0 2 4 6 8 10 12 14 16 18 20
−75

−70

−65

−60

−55

−50

−45

−40

−35

−30

time (sec)

Re
lat

ive
 ro

tor
 an

gle
 3−

1 (
de

g)

0 2 4 6 8 10 12 14 16 18 20
−75

−70

−65

−60

−55

−50

−45

−40

−35

−30

time (sec)

Re
lat

ive
 ro

tor
 an

gle
 3−

1 (
de

g)

Figure 4.27: Relative rotor angle ∆δ31 for several simulations, minimum (dash-dotted line), mean

(solid line), and maximum (dotted line) values for ∆δ31, Scenario-II
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The controller which is presented is a model-based control and designed based on transient

dynamics of generator. Detailed dynamics of generators (subtransient model) is considered

to implement same controllers. For this case four subtransient generators are considered

for two area system benchmark. The controllers are implementing on generators 2 and 3.

Comparison is done between the response of controlled system with two different generator

dynamics as transients and subtransients. Parameters for the generators are given in appendix

7.3. Direct and quadrature subtransient impedances are denoted by X
′′
d and X

′′
q respectively.

Also time constant for direct and quadrature open circuit are T
′′
do, T

′′
qo. State equations related

to subtransient voltages on direct and quadrature projections are

Ė
′′
d =

(
E
′
d + (X

′
d −X

′′
q )Iq − E

′′
d

) 1
T ′′

qo

(4.75)

Ė
′′
q =

(
E
′
q − (X

′
d −X

′′
d )Id − E

′′
q

) 1
T
′′
do

(4.76)

with algebraic stator equations

E
′′
q − Vq = RaIq + X

′′
d Id (4.77)

E
′′
d − Vd = RaId −X

′′
q Iq (4.78)

Direct and quadrature transient voltages, angle, and speed dynamics for transients are given

in equations (3.33), (3.34), (3.31), and (3.32) respectively.

Figure 4.28 show that the responses of the both systems (transients and subtransients models)

are close to each and the controller shows robust performance due to different generator model.

Figures 4.28 and 4.29 compares the relative angles and electric power deviations of generators

for same contingency. Three phase fault occurs on line 3 − 101 at 1.00 second. The fault is

cleared after 45 msec and line is reconnected back at 50 sec. Solid line is provided through

simulation of transient model and dotted line presents the simulated model with subtransient

model. Numerical simulations demonstrate that the proposed controller provides the proper

response that behavior of transient and subtransient synchronous generator over a time scale

of transient stability are almost the same. Depending on the time frame of stability of power

system, different study model for generator can be selected. The results show that the response

of the system based on transient and subtransient models have negligible error.
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Figure 4.28: Relative angles ∆δ21, ∆δ31, and ∆δ41. Electric power deviation output of Subtransient

generator model (dotted line) and transient model (solid line)
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Figure 4.29: Electric power deviations ∆Pe1, ∆Pe2, and ∆Pe3, and ∆Pe4. Relative angles of Sub-

transient generator model (dotted line) and transient model (solid line)



Chapter

5

Transient Stability
Enhancement Using SVC

5.1 Static Var Compensator

FACTS concept is related to incorporating of power electronic devices into high voltage side of

the grid to make it more controllable. Static Var Compensators (SVCs) are shunt FACTS de-

vices which can provide continuous and rapid control of reactive power and voltage, enhancing

several aspects of transmission system performance. Including prevention of voltage collapse,

enhancement of transient stability, and enhancement of damping of system oscillations. These

devices are certainly playing an increasing role in the operation and control of today’s power

systems. FACTS devices can provide more power transfer with no major changes in the

system transmission or generations. It can be placed in transmission and increase power

transfer capabilities. In addition, it reduces the operation and transmission investment cost

significantly. As mentioned, these devices increase the controllability of power systems but it

requires proper damping control technique. Contribution of SVC to the damping of system

oscillations resulting from voltage regulation is not significant and usually it requires damping

controller. In addition, appropriate damping control requires the designer to have concern

about the choice of the device, the most effective measurement to be utilized as input signal,

the damping scheme, the control design strategy, and evaluation of the resulting overall system

87
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performance.

Static var compensators are used to control the voltage at the bus through variable reactive

impedance. Because SVC has no rotating part, it is called static. The SVC, type that is used,

contains a thyristor switched capacitor bank in parallel with a phase angle controlled reactors.

By modifying thyristor firing angle α the current flow through the inductor is adjusted. Firing

angle range is [π2 , π], that makes SVC reactance changes from inductive to capacitive. The

algebraic difference between these two capabilities (capacitive and inductive) is called the

dynamic range. Equivalent model for SVC in transient stability study is shown in 5.1. SVC

Figure 5.1: SVC Equivalent Model

is used to keep the bus voltage at specific value. By varying its reactive power output in

response to the demand of an automatic voltage regulator, it can maintain constant voltage

at the point in the system to which it is connected. It can presented as generator bus where

injected active power is set to zero and the required reactive power is computed through load

flow algorithm. Desired steady state values are obtained as follow

I =
(

jQB

VB

)∗
V = V B + jXT I (5.1)

jB = − I

V

B(α) =
2α− sin(2α)− π(2− XL

XC
)

πXL

QB injected reactive power, V̄B bus voltage. B is equivalent SVC admittance. The firing

angle is input to the look up table using XL, XC , and 90◦ ≤ α ≤ 180◦. Actual admittance for

SVC is found from pre-computed look up table using XL, XC , and α range. Dynamic of the



CHAPTER 5. TRANSIENT STABILITY ENHANCEMENT USING SVC 89

thyristor firing delay is approximated by first order block with time delay constant (T ≈ 3ms).

PI controller is used to set the α within the limits.

5.2 SVC Backstepping Damping Nonlinear Controller Design

for Power Systems

5.2.1 Introduction

In this section a damping controller for a Static Var Compensator (SVC) is designed using a

backstepping controller technique to enhance voltage regulation and power system stability.

The damping control design is formulated as an optimization using detailed model of power

system including dynamic and static load. A PSO algorithm (3.2) is used to obtain optimal

control parameter gains. Nonlinear time domain simulations are carried out to examine the

performance of the proposed control technique on a single and multi machine power system.

The results for both systems show that the proposed SVC damping controller is superior to

conventional lead-lag design especially under high loading conditions and severe contingen-

cies. Much of the effort involved in stability control concerns the avoidance or suppression of

oscillations and avoiding cascade failure of the entire power system.

5.2.2 SVC Control Design

Static Var Compensators are used in power system to increase transmittable power by reg-

ulating the bus voltage and suppressing power oscillations. The main purpose of this device

is to control the voltage. Since damping contribution from voltage regulation is not enough,

providing a proper damping control signal to voltage control loop is required. Proposed damp-

ing controller is based on backstepping technique. Dual input signals are considered for this

controller, which are generator speed and electric power deviations from their nominal val-

ues, as shown in Figure 5.2. The backstepping controller is nonlinear function of a form:

u = Φ(∆ω, ∆δ,∆Pe, k1, k2, k3), where ∆ω, ∆δ, ∆Pe are speed, angle and electric power de-

viation. k1, k2, k3 are control gains. The schematic block diagram with conventional lead-lag

controller is shown in Figure 5.2. Electric power deviation is used as the input to the con-

troller. It consists of a filter and lead-lag blocks. Backstepping is a model based controller and

is applied to a system whose dynamics are transformed into a specific form. The procedure
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Figure 5.2: SVC damping controllers with nonlinear control structure (backstepping) and Lead-Lags

to obtain backstepping control is similar as explained in Section 3.1. In brief for the system

of differential equations (5.2)

ẋ = f0 + g0z1

ż1 = f1 + g1z2

ż2 = f2 + g2u (5.2)

The closed form backstepping controller is as follows

u =
1
g2

[
−∂V1(x, z1)

∂z1
g1 − k3(z2 − φ1(x, z1)) +

∂φ1

∂x
ẋ1 +

∂φ1

∂z1
ż1 − f2

]
(5.3)

and Lyapunov function of the system (5.2) is given below.

V2(x, z1, z2) =
1
2
x2 +

1
2

[z1 − φ0(x)]2 +
1
2

[z2 − φ2(x, z1)]
2 (5.4)

Controller u provides signal that stabilizes the dynamics of x, z1, z2. Note that controller gains

k1, k2, k3 require tuning to obtain optimal performance of the closed loop system.
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5.2.3 Optimal Settings of SVC Control Gains

The task of PSO (as explained in Section 3.2) is to search for an optimal set of gains for

SVC to regulate the voltage and damp the power oscillations. The objective function J to

be optimized by PSO is therefore formulated as a weighted quadratic sum of generator speed

and bus voltage deviations from their nominal values.

min
Find Ki

J =
∫ t

0

[
α(∆ω)2 + γ(∆Vbus)

]
dt (5.5)

PSO method for obtaining the damping controller gain is implemented without linearizing the

system. The technique is implemented on a single and a multi machine power system.

5.2.4 Single Machine Infinite Bus

A single machine infinite bus system with AC transmission link is analyzed here [65]. The

system is presented by nonlinear differential and algebraic equations including synchronous

generator, load, SVC with damping controller and very large AC network represented by an

infinite bus. Parameters for generator and line reactance are given in Table 5.1. SVC is

connected at the load bus that is separated from generator bus through a transformer and an

additional line reactance.

Inputs to the damping controller of SVC are speed and electric power deviation respectively

∆ω = ω − ωref , ∆Pe = Pe − P ◦e . Hence it is needed to bring the generator speed deviation

back to zero [53]. Dynamic equations related to generator are:

∆δ̇ = ∆ω

∆ω̇ = − D

2H
∆ω −

ωref

2H
∆Pe

∆Ṗe = ξ + βu (5.6)

Where ξ and β are functions defined below and u is a damping control signal.

ξ = −∆Pe

T̃d

+
xq − xd

xq
∑T̃d

+ Peω cot δ − Pe◦
T̃d

+
Vbus∞ sin δ

xq
∑T̃d

β =
Vbus sin δ

xq
∑ T̃d (5.7)

Equation 5.7 is in strict feedback form, so backstepping controller can be applied. Note that

SVC is basically a shunt connected device whose output is adjusted to exchange capacitive
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Table 5.1: Analyzed Scenarios

Leakage reactance (p.u.) xl = 0.15

Resistance (p.u.) ra = 0.003

d-axis reactance (p.u.) xd = 1.81

d-axis transient reactance (p.u.) x
′
d = 0.3

d-axis open circuit time constant (sec) T
′
do = 8

q-axis reactance (p.u.) xq = 1.494

Inertia Constant (sec) H = 4

Reactance AC line (p.u.) xL1 = 0.93

Reactance AC line (p.u.) xL2 = 0.5

Transformer+line reactance xT = 0.2

x
′

d
∑ xL + x

′
d + xT

x
′

q
∑ xL + x

′
q + xT

T̃d T
′
do

x
′
d

∑
xq

∑
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or inductive current in order to maintain and control specific power system variables. Active

power equation 5.8 with SVC installed is obtained as:

Pe =
E
′
qVbus∞

x
′
d

∑ − xLBsvc(x
′
d + xT )

(5.8)

where xd
∑ = xL+xd+xT , BSV C is SVC susceptance, xL = xL1+xL2, and Vbus∞ is the infinite

bus voltage [65], [38]. Static and dynamic loads are both connected at the load bus. Static

load is represented as a function of bus voltage. Induction motor represented the dynamic

load with the following parameters in per unit:

Stator resistance rs = 0.4063

Stator leakage reactance xs = 0.4373

Magnetizing reactance xm = 1.9979

Rotor resistance rr = 0.4356

Rotor leakage reactance xr = 0.1337

Inertia constant H = 2.224 (sec)

Following scenarios are presented here for illustrating the performance of the proposed con-

troller.

• Effect of fault duration

• Effect of dynamic load (induction motor)

• Effect of low to high power generation

Effect of fault duration: The first scenario demonstrates the effect of fault duration on SVC

control performance. Proposed damping controller with backstepping is compared with a

lead-lag controller. PSO algorithm is used for tuning controller gains with defined objective

function 5.5. Tuning process is performed during a three phase fault on transmission line

2 − 3 (Figure 5.1). The fault is cleared by removing the line after 35 msec. The line is

reconnected after 60 msec. Table 5.2 shows the tuned controller gains. By increasing the fault

duration lead-lag damping controller cannot damp the oscillations effectively in comparison

with proposed backstepping controller. Figure 5.4 shows the relative angle of generator. For

longer fault duration (66 msec), it becomes subtle to achieve the stability of closed loop system.

Lead-lag damping controller can no longer stabilize the system while the proposed controller

does.
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Table 5.2: Damping Controller Gains

Lead-Lag Damping Controller Gains Backstepping Damping Controller Gains

K = 80.1749 k1 = 1

T = 6.4087 k2 = 9.0768

T1 = 0.1687 k3 = 0.42287

T2 = 0.4753
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Figure 5.3: SVC with lead-lag damping controller (dotted line :),SVC with backstepping damping

controller (solid line −). Fault duration 40 msec

Effect of Dynamic load (induction motor): Dynamic load in this study is presented by an

induction motor. A three phase fault scenario away from nominal operation of system has

a 42 msec fault duration. Response of the proposed controller is compared with a lead-lag

controller. Terminal voltage and relative angle of generator are improved as shown in Figures

5.5 . The simulation results show that nature of load can affect the transient behavior of

the system. Induction motor with MVA base=75 and inertia H = 8.22 (sec) is included, the

model is obtained from [13]. Parameters of induction motor in per unit are:

Stator resistance rs = 0.0041

Stator leakage reactance xs = 0.04373

Magnetizing reactance xm = 1.9799
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Figure 5.4: SVC with lead-lag damping controller (dotted line :),SVC with backstepping damping

controller (solid line −). Fault duration 66 msec
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Figure 5.5: Terminal voltage under a large induction load and generator relative rotor angle (deg)

Rotor resistance rr = 0.0044

Rotor leakage reactance xr = 0.1337

Effect of low to high generation: In this scenario effect of low power generation to high power

generation is investigated. For each set of power generation load flow solution is obtained for

each bus. Figure 5.6 demonstrate power and speed deviations. Figure 5.6 shows the effect of
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Figure 5.6: Effect of low to high generation on electric power of generator and speed deviation of

generator
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low to high power generation on performance of SVC damping controller with backstepping

technique. Performance of controller with power generation PG = 0.9 (p.u.) (solid line),

power generation PG = 0.7 (dash line), power generation PG = 0.5 (p.u.) (dot line), power

generation PG = 0.3 (p.u.) (dash-dot line).
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Figure 5.7: Effect of low to high generation power on terminal voltage of generator

5.2.5 Two Area System
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Figure 5.8: Two Area system
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A two area system is considered for this study that is presented as a benchmark for inter-

area oscillation studies. The system consists of two generators in each area connected via

two tie lines. Generators parameters are given in [65]. The effect of SVC on bus 101 has

been studied on this system especially with lead-lag damping controller [37]. Schematic block

diagram is shown in Figure 5.8. Backstepping technique is used to obtain damping signal

to SVC at mid point of transmission line at bus 101. SVC supplies the reactive power at

midpoint of long transmission line. To obtain proper damping signal, the controller does not

require detailed information from dynamic of each generator. Instead it is possible to design

backstepping control strategy based on system center of inertia (COI) trajectory. Objective

of controller is to drive the COI’s of each area (1 and 2) to its equilibrium point. Since COI

presents a mean motion of each area, the information is very effective to control inter area

oscillation and enhancing the stability of interconnected two area system. More specifically for

this system the backstepping control law could keep synchronization of the two interconnected

system by driving their dynamics COIs to a stable equilibrium point.

Consider Area-i with n number of generators, center of inertia reference transformation is

defined by COI angle, speed, and electric power as:

δCOIi =
1

MT

n∑
j=1

Mjδj

ωCOIi =
1

MT

n∑
j=1

Mjωj

PeCOIi =
1

MT

n∑
j=1

MjPej (5.9)

where

MT =
n∑

j=1

Mj

Mi =
2Hi

ωref
(5.10)

Dynamics of relative motion between two areas are formulated with state presented by ∆δCOI12 ,

∆ωCOI12 , ∆PeCOI12 where:

∆δCOI12 = δCOI1 − δCOI2

∆ωCOI12 = ωCOI1 − ωCOI2

∆PCOI12 = PCOI1 − PCOI2 (5.11)
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The derivatives of equations 6.9 can be presented in strict feedback form similar to equation

5.2. A backstepping technique is applied to produce damping signal to SVC. The ability of

system to withstand a three phase fault on line 3 − 101 in Figure 5.8 is tested. The fault

occurred at 0.5 seconds and is cleared after 50 msec by removing the transmission line. The

line is reconnected back at 0.67 sec. Proposed SVC damping controller with backstepping

is compared with lead-lag that has been designed for this system [37]. Following control

strategies are analyzed:

• Proposed backstepping damping controller using COI information

• Lead-Lag damping controller using local information (power deviation at bus 101)

• Lead-Lag damping controller using remote speed measurements from area 1 and 2.

Schematic block for two Lead-Lag damping controller is given in Figure 5.9. Backstepping
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Figure 5.9: Lead-Lag damping signal with electric power and speed inputs

controller gains are tuned with PSO algorithm to optimize the following objective function

(Table 5.3).

min
Find Ki

J1 =
∫ t

0
α (∆PCOI12)

2 dt (5.12)



CHAPTER 5. TRANSIENT STABILITY ENHANCEMENT USING SVC 100

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

time (sec)

Re
lat

ive
 an

gle
 2−

1 (
de

g)

 

 
Backstepping
Lead−Lag (power input)
Lead−Lag (speed input)

0 2 4 6 8 10 12 14 16 18 20
−45

−40

−35

−30

−25

−20

−15

−10

time (sec)

Re
lat

ive
 an

gle
 4−

1 (
de

g)

 

 
Backstepping
Lead−Lag (power input)
Lead−Lag (speed input)

Figure 5.10: Relative angle 2− 1 and 4− 1 (deg)

Figures 5.10 show the comparison between relative rotor angles 2 − 1, 4 − 1. Proposed SVC

damping controller outperforms two Lead-Lag controllers. With remote information of dy-

namic COI, the performance of the designed controller is superior to the conventional ones.

It should also be noted that with fast development of wide area measurements and control,

it is possible to design effective controllers which requires information based on system center

of inertia trajectory. In designing a backstepping controller for an SVC the following three

different objective functions have been investigated. The results are tabulated in Table 5.3.
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Table 5.3: Backstepping Controller Gains

Backstepping Controller Gains Objective Functions and Weighting Factors

k1 = 1.9212

k2 = 3.7788 J1 =
∫ t
0 α (∆PCOI12)

2 dt

k3 = 2.1791

k1 = 1.0312

k2 = 2.8012 J2 =
∫ t
0 α (∆ωCOI12)

2 + α (∆Vbus)
2 dt

k3 = 4.228

k1 = 3.5465

k2 = 3.9490 J3 =
∫ t
0 (∆Ptie)

2 + α (∆Vbus)
2 dt

k3 = 1.9467

The objective function used in the control design can have an impact upon the effectiveness

of the controller when it is applied to the system. Speed and terminal voltage for generators

2 are shown in Figure 5.11 under three phase fault condition.

Objective function J1 has information related to electric power deviation of each area based

on center of inertia calculation. Second objective function J2 comprises of speed deviation

of each area based on center of inertia and voltage deviation at the bus where the SVC is

located. Both of them J1 and J2 require remote information from each areas to achieve global

optimization through PSO algorithm. Instead of using remote signals in optimization process,

global signals can also be used instead. For objective function J3 local information at the bus

is used where the SVC is connected. Response of the backstepping controlled is compared

through these three objective function. J1 is the better choice to damp the oscillations of the

system through SVC damping controller in comparison with other two performance indices as

computed as J2 and J3.

As a result damping controller design for backstepping is formulated as an optimization

problem with PSO algorithm. COI information of the system can improve the performance

of the system. There is a complementary need to provide large scale feedback controllers

with remote status information from each area, so that they can better accommodate critical

conditions or events especially those involving major changes in power system structure. Re-

sults show that the proposed controller is superior in damping performance to conventional



CHAPTER 5. TRANSIENT STABILITY ENHANCEMENT USING SVC 102

0 1 2 3 4 5 6 7 8 9 10
0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

time (sec)

Sp
ee

d 
ge

ne
ra

to
r #

 2

 

 
Backsteping (J1)
Backstepping (J2)
Backstepping (J3)

0 1 2 3 4 5 6 7 8 9 10
0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

time (sec)

Te
rm

ina
l v

olt
ag

e 
Ge

ne
ra

to
r #

 2

 

 
Backstepping (J1)
Backstepping (J2)
Backstepping (J3)

Figure 5.11: Speed and terminal voltage for Generator 2
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controller. During the simulation it is assumed that the wide area signals are available for the

controller, the effect of time delay has already been involved in this study.

With rapid advances in wide area measurements technology, the transmission of measured

signals from remote generators to centralized control has become relatively simple. Depending

on the distance of measurement site, time delay typically in the range of (0.02 − 1) seconds

is expected and incorporated in simulation results [83], [17]. The controller performed satis-

factorily in different time delay within the specified delay time. Two different values for time

delay 0.04 seconds (dash-dotted line) and 0.09 seconds (dotted line) are considered for the

following scenario. Solid line denotes the relative angles δ21, δ31, and δ41 with no time delay.

Transmission line is removed at 1.50 second and reconnected back after 0.27 sec. In this study

a fixed time delay has been considered for all communication channels through the control

inputs. In more realistic case, this might not be the case as the distance of measurement

areas differs from the control center. The dynamic response of the system following the large

disturbance (Figures 5.12, 5.13) show that the oscillations are damped in short period of time,

and the COI feedback signals arrive at the control location at bus 101 after a finite time delay.

For optimization of centralized controller gains, performance index J1 (Table 5.3) is used.
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Figure 5.12: Effect of time delay in relative angle δ21. Solid line (no delay), dash-dotted line (delay

0.04 sec), dotted line (delay 0.09 sec)
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Comparison between SVC and excitation system with backstepping damping controllers

are considered in following. Fault scenario is a three phase fault at 0.5 sec on line 3 − 101.

The fault is cleared at 0.57 sec and the line is reconnected back at 0.6 sec. The objective

function for tuning the gains is J1 that is given in Table 5.3. Figur 5.14 compares the relative

rotor angles δ31, and δ41. Excitation controller with backstepping provides better damping in

comparison with SVC.
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Figure 5.14: Relative rotor angles δ31 and δ41. Solid line (Excitation control with backstepping

damping controller), dash-dotted line (SVC with backstepping damping controller)



Chapter

6

Control Coordination

6.1 Optimization and Coordination

In this section, an optimization based PSO algorithm is proposed to coordinate among mul-

tiple nonlinear controllers simultaneously. The coordinated controllers consist of exciter and

SVC damping controllers. Exciteation controller is designed based on local measurement at

generator bus. SVC damping controller is designed based center of inertia information from

each area. Particle swarm has shown a great potential in solving complex optimization prob-

lems especially in power system [67]. It has been employed to obtain optimal settings of PSS

control parameters in multi-machine power system [2]. In addition it has been used to ob-

tain optimal parameters of SVC damping controllers which is designed based on wide area

measurements [22]. One important aspect of this optimization is the criterion used to define

the overall goal. Combination of objective functions are considered for simultaneous tuning

of controllers that will improve damping in the overall power oscillations in the system in an

optimal and globally coordinated manner.

106
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6.2 Problem Formulation

For optimization and coordination of the exciter and SVC need to consider full oscillatory

dynamics of the system, especially oscillations on the tie lines where the FACTS devices (i.e.

SVC) are installed and oscillations on local generators where the excitation controllers are

installed. Therefore the coordinated controllers for excitation and SVC are designed in way

to:

• Maximize damping of power oscillations in local and inter-areas

• Enhance overall system stability

Optimization problem is formulated as follow:



Min
κsvc,κexc

∑n
i=1 αiJi

Ji =
t∫
0

[
x̃T Wx̃

]
dt∑

αi = 1

W = weights

x̃ = state deviation

κsvc = svc control gains

κexc = exciter control gains

(6.1)

Regarding damping of power swings, certain state variables need to be considered to form an

objective function (6.1). State deviation variables are presented as x̃ = x−x◦. Where the x◦,

initial values for states. Weighting matrix W has diagonal elements with dimensionality of

n×n where n stands for the number of variables that are obtained through optimization. The

objective of the simultaneous control tuning is to globally optimize the overall system damping

performance. This requires simultaneous optimization and coordination of the controllers

depends on their placement in the power system. Where FACTS devices are installed on long

transmission lines in between areas and excitation system are placed on generators. Therefore,

four different objective functions are presented and compared in following.
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• First objective function includes deviation of active power output of generators in areas

1 and 2 plus deviation of active power tie lines which connects each area together.

Weighting elements are denoted as wii and w
′
jj . Optimization problem is formulated as

follow:

minJ1 =
∫ t

0

[
4∑

i=1

wii

(
PGeni(t)− P ◦Geni

)2]+

 2∑
j=1

w
′
jj

(
Ptiej (t)− P ◦tiej

)2

 (6.2)

• Second objective function includes generators’ speed as given with respect to syn-

chronous reference frame and voltage deviation at bus 101 where SVC is connected.

Optimization of objective function is given as:

minJ2 =
∫ t

0
$1 (∆ωCOI12)

2 + $2 (∆Vbus)
2 dt (6.3)

• Third objective function center of inertia related to electric power (6.10)

minJ3 =
∫ t

0
$3 (∆PCOI12)

2 dt (6.4)

• Fourth objective function is a combination of J1 and J2.

min
α1,α2=0.5 α1+α2=1

J4 = α1J1 + α2J2 (6.5)

Objective function J4 is suitable for coordinated design of multiple controllers. This combina-

tion provides improvement in damping of overall power oscillations in a globally coordinated

manner.

6.3 Power System Under Study

Figure 6.1 illustrates the combination of exciter and FACTS controllers for two area system

[65]. The system consists of four generators divided into two areas and are connected via two

tie lines. Following a disturbance, the two areas swing against each other resulting unstability.

In damping control design with backstepping, first the generator model is written in a strict

feedback form [64]. In doing so the electric power instead of transient voltages is used as

a state variable. Dynamic equations are derived for each generator which is in proper form

for control design. In following subsections, damping controller signals for exciter and SVC

are briefly explained separately. The approach to obtain excitation damping control design
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Figure 6.1: Four Machine System with Damping Controllers

is decentralized and based on local generator dynamics with some assumptions about the

interface variables to be approximated locally. On the other hand, the approach for SVC

damping controller design is centralized and the idea of controller is to drive the area centers

of inertia to a stable equilibrium point and keeps the system stable.

6.3.1 Excitation Control Design

Damping controller for exciter system is used to modulate the excitation voltage. Dual input
signals are feed into controller. Signals are speed and electric power deviations. The control
structure is a nonlinear function of angle deviation ∆δ, speed deviation ∆ω, and power de-
viation ∆Pe. To obtain the rotor angle deviations, pure integrator from speed signal is used.
The output is the stabilizing signal which is added to the excitation system voltage. Based
on generic formulation (3.1),(3.2), and (3.5), generator sub-system Ξi for two axis model is
formulated as:

Ξi


∆δ̇i = ∆ωi

∆ω̇i = − Di

2Hi
∆ωi − ω0i

2Hi
∆Pei

∆Ṗei = −∆Pei

T
′
qoi

+ Iqi

T
′
doi

∆ufld + d
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where parameters are defined as in [55].

x0i = ∆δi, x1i = ∆ωi, x2i = ∆Pei

f0i = 0, g0i = 1,

f1i = − Di

2Hi
, g1i = − ω0i

2Hi

f2i = −∆Pei

T
′
qoi

, g2i = Iqi

T
′
doi

di = − IqiIdi(Xqi−X
′
qi)

T
′
qoi

+ IqiIdi(Xdi−X
′
di)

T
′
doi

− P◦
ei

T
′
qoi

−u◦
fldIqi

T
′
doi

+ E
′

qiIqi

(
1

T
′
qoi

− 1
T
′
doi

)
+ E

′

diİdi + E
′

qiİqi

(6.6)

For designing damping controller for exciter, ∆ufld is obtained explicitly through equation

(3.30):

• The interconnection term di between the generators are estimated by d̃i using local

information. The estimated term presents a polynomial of electric power deviations at

each generator unit.

d̃i ≈ θ1i∆Pei + θ2i∆P 2
ei

(6.7)

where coefficients (θ1i and θ2i along with β̂i) are to be estimated through adaption laws

[55]. 
˙̂
θ1i = Γ1i (∆Pei − α1i) ∆Pei

˙̂
θ2i = Γ2i (∆Pei − α1i) ∆P 2

ei
˙̂
βi = γi (∆Pei − α1i) ∆ufldi

Γi, γi are weighting factors and required tuning. α1i is a desired trajectory that is

obtained through backstepping control design.

• Nonlinear controller ∆ufldi includes gains and weighting factors (κexc
1i , κexc

2i , κexc
3i ), (Γ1i,Γ2i, γi)

that need to be tuned properly .

• Static exciter model is conside for the actuator [78]. Figure 6.2 shows damping controller

with exciter.
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6.3.2 SVC Control Design

SVC is a FACTS device, which is used primarily for the purpose of voltage and reactive power

control [39]. Once installed, a damping control signal can be introduced into voltage summing

junction to improve damping. Authors have implemented backstepping control technique

for SVC damping controller [56]. The formulation is explained in brief. Consider an Area-i

including n number of generators. Center of inertia reference transformation is defined by

COI angle, speed and electric power as following:

δCOIi =
1

M∑
n∑

j=1

Mjδj ωCOIi =
1

M∑
n∑

j=1

Mjωj PeCOIi =
1

M∑
n∑

j=1

MjPej (6.8)

where M∑ =
∑n

j=1 Mj and Mi = 2Hi
ω0

[81]. Dynamics with center of inertia calculation for area
i is simplified as follow. The notation

∑
presenting the summations for generator parameters

within each area.

ΞCOIi



δ̇COIi
= ωCOIi

− ω0i

ω̇COIi
= −D∑

i(ω∑
i−ω0i)

M∑
i

− ω0i(PeCOIi
−P◦

ei)
M∑

i

ṖeCOIi = − (PeCOIi
−P◦

ei)
T
′∑

qoi

+ I∑
qi

T
′∑

doi

∆usvc + d∑
i

(6.9)

Dynamic of relative motion between Area-1 and Area-2 can be formulated from (6.9) where

the states are the relative difference between two areas.

∆δCOI12 = δCOI1 − δCOI2

∆ωCOI12 = ωCOI1 − ωCOI2

∆PCOI12 = PCOI1 − PCOI2 (6.10)

Note that

• Dynamic of relative equations is in strict feedback form.

• The generator parameters for two-area system are similar.

• Mean motion between area-1 and area-2 is obtained to design SVC damping control

signal ∆usvc.
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• Damping controller for SVC (3.30) has three gains (κsvc
1 , κsvc

2 , κsvc
3 ) for tuning.

Figure 6.2 shows schematic block diagram for exciter and SVC damping controllers. For SVC,

inputs are obtained through wide area measurements and remote information from each area.

Remote signals, based on speed and electric power deviations for each area, is fed into damping

controller. The output of the controller is added to SVC voltage control loop reference.
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Figure 6.2: Damping Controllers for Exciter and SVC

6.4 Optimum Settings for Controllers

This section presents a global tuning procedure for nonlinear backstepping damping controllers
using Particle Swarm Optimization algorithm [59]. PSO originally is developed for nonlinear
optimization problems with continuous variables. In this technique the system is initialized
with a population of random solutions. Each potential solution (known as particle) is assigned
to a randomized velocity and then move through the problem search space. Velocity and
position update equations are given as:

υ︸︷︷︸
new velocity

= K

 υ︸︷︷︸
velocity

+c1rand

 pbest︸ ︷︷ ︸
localbest

−Particle︸ ︷︷ ︸
position

+ c2Rand

 gbest︸ ︷︷ ︸
globalbest

−Particle︸ ︷︷ ︸
position




ρ̂︸︷︷︸
new
position

= ρ̂︸︷︷︸
current
position

+ υ︸︷︷︸
new
velocity

(6.11)
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Where

K =
2∣∣∣2− φ−
√

φ2 − 4φ
∣∣∣ (6.12)

and φ = c1 + c2, φ > 4. K is called constriction factor, c1 and c2 are weighting factors.

For most implementations equal values for both parameters are considered (c1 = c2 = 2.05).

Rand, rand are uniform random numbers [0−1]. When φ > 4 the swarm converges toward the

best solution in the search space. The main objective of this algorithm is to obtain optimum

controller gains and weighting factors simultaneously.

6.5 Results and Discussion

Two area four generator system is presented for global optimization and coordination of the

exciter and SVC damping controllers (Figure 6.1). The two areas are identical with two

parallel tie lines (230-km) which transfer 400 MW from generators 1, 2 to generators 3, 4 in

normal operating condition. After solving the load flow and initialize the system, particle

swarm optimization runs to obtain the optimum controller gains for controllers with a defined

scenario.

6.5.1 Case-I

3−phase fault occurs on line 3−101 for 170 msec. Tables 6.1, 6.2, provide the controller gains

with PSO optimization algorithm. Weighting factors for J1, J2, J3 are obtained with PSO and

shown in Table 6.3. Figure 6.3 shows the comparison between the relative rotor angles for J1

(dash line), J2 (dash-dot line), J3 (dotted line) and J4 (solid line). Combination of objective

first and second objective functions (presented as J4) provides better result in damping local

and inter-area oscillations in comparison with J1, J2, J3. It is clear that with proper choice

objective function, the power and controllability of these controllers can be used to increase

the damping of oscillation caused by system contingency. Power deviations between tie lines,

transmission lines between buses 3−101 and 101−13, are compared with each other in Figure

6.4. Less power deviations are observed through transferring the bulk of power by optimizing

and coordinating the controllers with objective function J4.
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Table 6.1: SVC and EXC Controller Gains

Objective function J1

SVC control gains ksvc
1 ksvc

2 ksvc
3

SVC at Bus #101 55 15.2 25.3

EXC control gains kexc
1 kexc

2 kexc
3

EXC at Generator #2 20 80 70

EXC at Generator #3 70 78 20

Optimized EXC (J1) Γ1 Γ2 γ

EXC at Generator #2 200 400 51

EXC at Generator #3 700 481 384

Objective function J2

SVC control gains ksvc
1 ksvc

2 ksvc
3

SVC at Bus #101 2.8 10 1.7

EXC control gains kexc
1 kexc

2 kexc
3

EXC at Generator #2 12.5 11.4 26.9

EXC at Generator #3 17.6 30.9 8.8

EXC control gains Γ1 Γ2 γ

EXC at Generator #2 333.5 514.8 57.2

EXC at Generator #3 750.7 553.6 102.9
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Table 6.2: SVC and EXC Controller Gains

Objective function J3

SVC control gains ksvc
1 ksvc

2 ksvc
3

SVC at Bus #101 9.9 1 6

EXC control gains kexc
1 kexc

2 kexc
3

EXC at Generator #2 50 27.2 50

EXC at Generator #3 39 42.6 10

EXC control gains Γ1 Γ2 γ

EXC at Generator #2 354.3 600 20

EXC at Generator #3 765.1 400 200

Objective function J4

SVC control gains ksvc
1 ksvc

2 ksvc
3

SVC at Bus #101 4 3.5 1.4

EXC control gains kexc
1 kexc

2 kexc
3

EXC at Generator #2 47 51 53

EXC at Generator #3 5.2 39 18.2

EXC control gains Γ1 Γ2 γ

EXC at Generator #2 529.6 415.9 50.2

EXC at Generator #3 287.2 494.2 74
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Table 6.3: Weighting factors for J1, J2, J3, J4

Objective Function J1 J2 J3 J4

weighting factors

$1 − 333 − 482.8

$2 − 750 − 603.2

$3 − − 600 −

w
′
11 10 − − 611.313

w
′
22 10 − − 500

w11 454 − − 99

w22 99 − − 302.5

w33 900 − − 312.1

w44 10 − − 657.8
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Figure 6.4: Tie-lines power deviations between 3− 101 and 101− 13. Optimized controller gains with

J1 (dash line), J2 (dash-dot line), J3 (dotted line), J4 (solid line)
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6.5.2 Case-II

Objective function J1 in equation (6.2) provides active power deviation of generators and

tie line deviation from their nominal values. Their nominal values are obtained through

load flow solution. Two different percentage of power generation settings for generators are

considered 35% and 25% from their nominal values of generation. Then based on the new

initialized settings, the optimization is performed to obtain optimum sets of controller gains.

Table 6.4 summarizes the results which were obtained through system response with pre-

defined 3−phase fault on line 3 − 101 for 170 msec. Nominal values of gains are provided

in Table 6.1 where nominal total active power generation and load are P∑
gen = 28.27 (p.u.)

P∑
load = 27.38 (p.u.) respectively with base of 100 MVA. Figures 6.5 and 6.6 show the

advantage of re-tuning for controller gains for different generation settings in comparison with

Table 6.4: Exciter and SVC Controller Gains-25% and 35% of active power generation and load

25% change of generation

SVC control gains ksvc
1 ksvc

2 ksvc
3

SVC at Bus #101 19.4 4.3 3.4

EXC control gains kexc
1 kexc

2 kexc
3

EXC at Generator #2 39.7 44.1 80

EXC at Generator #3 75 44.9 0.1

EXC control gains Γ1 Γ2 γ

EXC at Generator #2 550 884.7 48.2

EXC at Generator #3 400 700 412.5

35% change of generation

SVC control gains ksvc
1 ksvc

2 ksvc
3

SVC at Bus #101 1.02 8.0 4.5

EXC control gains kexc
1 kexc

2 kexc
3

EXC at Generator #2 50 16 48

EXC at Generator #3 50 28.1 0.01

EXC control gains Γ1 Γ2 γ

EXC at Generator #2 450 878.5 37.1

EXC at Generator #3 600 553.8 60
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Figure 6.5: Speed deviations Generators 1, 4. Performance of controller with nominal gains (dotted

line), effect of re-tuned control gains at 35% change of power generation Pgen (solid line)
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Figure 6.6: Relative angle of generators δ21, δ41. Performance of controller with nominal gains (dotted

line), effect of re-tuned control gains at 35% change of power generation Pgen (solid line)

gains in nominal condition. Solid line shows the response once the gains are re-tuned and

dotted line shows the response with their nominal gains.

Deviation of tie line power oscillations are compared and shown in Figures 6.7. As a

result the re-adjustment of controllers gains provide more damping to the system oscillations.

Similar conclusion can be derived with different percentage of power generation and load,25%

change. Following results (Figures 6.8, Figure 6.9) show the relative angles and speed of
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Figure 6.8: Speed deviations Generators 1, 4. Performance of controller with nominal gains (dotted

line), effect of re-tuned control gains at 25% change of power generation Pgen (solid line)
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Figure 6.9: Relative angle of generators δ21, δ41. Performance of controller with nominal gains (dotted

line), effect of re-tuned control gains at 25% change of power generation Pgen (solid line)

generators. In summary, nonlinear coordinated excitation and SVC controllers are proposed

to enhance the stability of multi-machine power system. The proposed coordinated controller

is designed based on backstepping technique and consists of generator excitation and SVC

damping controllers. The goal is to allow the controllers work simultaneously and improve

the power system performance cooperatively. The problem is formulated as an optimization

problem based on PSO so as to obtain the optimum control gains, and as a result enhance
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power system damping. Simulation results show that by selecting proper objective function

during optimization of nonlinear controllers, notable improvement on system performance and

optimization are obtained.
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6.6 Advanced Control Technique

In power systems, control devices are installed to enhance various aspects of system stability

such as transient stability. These equipments are mainly power electronic based. Given the

nature of the power system, it is best suited for the control design where local controllers are

coordinated to obtain the stability of overall system. A supplementary damping controller is

added to the primary regulator of transmission device or to generator controls. Specifically,

this section presents usage of excitation controls of the generators to enhance the stability of

system in combination with Reinforcement Learning (RL) algorithm [85].

The combination of RL and backstepping control techniques is proposed to damp oscil-

lations in power systems thru the excitation system. A schematic of the proposed controller

for a simple two controllers is shown in Figure 6.10. Backstepping controllers alone are shown

in (Figure 1.A). To obtain the control gains, each subsystem is modeled as an independent

uncertain dynamic subsystem, where the uncertainty is a disturbance that represents the ef-

fects of the rest of the system on that particular subsystem. This disturbance is expressed as

a polynomial function of local states, and its parameters are adapted using a Particle Swarm

Optimization method. The proposed controller shown in Figure 1.B uses RL at a higher

level to adapt the gains due to varying operating conditions and uncertainties in the interface

variables. Explanation of the algorithm is as follows.

6.6.1 Reinforcement Learning

Reinforcement learning is learning to take actions by observing the current state of the system

in order to maximize the long term reward [85]. The controller will discover which action

should be taken by interacting with its environment and trying different actions which may

lead to the highest reward. Schematic block diagram related to reinforcement learning is

shown in Figure 6.11. The controller interacts with the environment and takes an action a

from a set of actions {A} at time t. These actions will affect the environment and takes it

to new state st+1. The controller is rewarded for this action, and obtains the reward rt+1.

The interaction between controller and the environment is repeated until the desired goal is

obtained. Conceptually each RL problem has following important components:

• State: Series of information from the system that determines the degree of closeness to
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Reinforcement Learning

Backstepping

Controller 1
Backstepping

Controller 2

Adapted Gains

K1
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Fixed Gains

K2

Backstepping

Controller 1
Backstepping

Controller 2

1.A

1.B

Sub-system 1 Sub-system 2

Sub-system 1 Sub-system 2

Figure 6.10: Schematic Design of Controlled System

the objective

• Action: Decision made by controller that will affect the environment or system under

control

• Reward: Scalar signal that determines how close the action is to the objective

• Policy: Matching between states and actions

Agent

Environment

Policy

Reward Tr

State

1+Tr

1+Ts

Action
Ts

Ta

Figure 6.11: Block diagram representation of reinforcement learning

The reward function plays an important role in determining the interaction between agent

and environment. The better the definition of the reward function is, the better control
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performance will be. The role of RL methods is to find the policy resulting in the maximum

long term reward. The sum of the expected reward in the future is defined as a return of a

system and defined as:

Rt =
∞∑

k=0

rt+k+1 (6.13)

In many applications a discounted factor 0 ≤ γ ≤ 1 is introduced and the return is modified

so that the control will maximize a discount return defined by:

Rt =
∞∑

k=0

γkrt+k+1 (6.14)

The discount factor is included in the equation to determine the current value of the future

reward (6.13). If the objective is to just maximize the immediate reward achieved by taking

action at then γ = 0. When γ = 1 then the equation become the classical definition of the

returns. Each RL include two main important functions:

• Value Function: The value of each state s called the state value function, is defined as

the expected return when starting at state st using policy Π(s, a). It is given by (6.15):

V π
s = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}
(6.15)

• Action Value Function: The action value function of each state s and action a, is defined

as the expected return, or expected discount reward, when starting at state st, taking

action at, using policy Π(s, a). It is known as Q-function and it is given in following:

Qπ(s, a) = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
(6.16)

The reinforcement learning task is to find the optimal policy that maximizes the value function

for all the states. The optimal policy will also maximize the optimal action value function for

all the states and actions

Q∗(s∗, a∗) = max
π

Qπ(s∗, a∗) (6.17)

The optimality conditions for these functions are given by the Bellman equation. Optimal pol-

icy can be obtained by solving a Bellman equation, assuming that transition probabilities and
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rewards are known. However, in most cases these parameters are not available to controller.

Therefore methods which are less dependent on system model are required. Non-model based

methods first approximate the system and estimate the Q-function before solving Bellman’s

equation.

Q-learning is one of the most important Temporal Difference (TD) algorithms which is

model independent. In this method the experience is gained by interacting with the environ-

ment to update the value function at each time step. As a result the optimal Q-function is

approximated directly, without finding the optimal policy. The following equation is used to

update the action value functions at each time step.

∆Q = α
[
rt+1 + γ max

a
Q(st+1, at+1)−Q(st, at)

]
(6.18)

In this equation, α is a constant step-size parameter (0 < α < 1), which represents the amount

of the corrected error and γ is the discounted factor. The following algorithm summarizes the

steps of Q-learning algorithm.

• Initialize Q(s, a) for all the states and the actions

• Repeat for each run of the algorithm

Initialize s

Repeat for each step

Take action a based on policy determined by Q1

Observe st+1 and r

Modify Q based on equation (6.18)

s = st+1

• Repeat until the terminal state is reached.

6.7 Proposed Control Design

Combination of the backstepping controller with reinforcement learning provides optimal per-

formance of the closed loop system. The update of the controller gains is based on reinforce-

ment learning states. State of reinforcement learning is a derivative of Lyapunov function.
1In order to select an action the ε-greedy policy is used. This approach selects the action with the currently

highest action value as experienced through interaction with the environment with the probability of (1 − ε)

and a random action with probability ε.
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The controller itself contains the backstepping damping controller plus the exciter. Action is

a control signal that modifies the exciter field voltage. The environment is a power system.

The state of reinforcement learning (J) is presented as:

J =
m∑

i=1

V̇i︸︷︷︸
uncontrolled Gen

+
n∑

j=1

V̇j︸︷︷︸
controlled Gen

+
l∑

q=1

Φ(∆Ptie)︸ ︷︷ ︸
coupling

(6.19)

Schematic view of for two area system is shown in Figure 6.12. Information from the system

that determines the degree of closeness to the objective is obtained through J . For controlled

generators derivative of Lyapunov function is obtained through backstepping design and sim-

ilar to (4.65). Similarly, for uncontrolled generators the same transformation can be applied

to obtain the local Lyapunov functions.

V̇i = −(∆δ − α0)2 − (∆ω − α1)2 − (∆Pe − α2)2 (6.20)

The Φ(∆Ptie) is a function of tie line power deviation (refer to Appendix G).

The initial value for gain settings has important effect on transient behavior of dynamic

system especially at the beginning of the interaction with no experience. Optimization search
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technique based on PSO has been proposed by Kennedy et al. [59] and is used off-line to

obtain initial settings. These values let the RL driven control interact with the simulation

model of the system. Once the initial backstepping controller gains are sufficiently tuned off-

line, one may implement the proposed technique on real system where it will benefit from the

tuned gains obtained in the simulation environment and still be able to improve its behavior

from interaction with the environment.

Particle swarm is a well defined methodology in evolutionary computation [59]. Complete

survey and implementation including applications in power system is given by Lee et al. [67].

This method requires only primitive mathematical operators and computation requires small

amount of memory. This technique is developed through the simulation of bird flocking.

Each individual (particle) has a position and a velocity. The information can be updated by

changing the velocity and position of particles. The particle itself is a candidate solution in

search space.

The main idea is to evaluate the objective function for each particle vector. Each particle

vector knows its best values so far, which is denoted by pbest. Also each particle vector knows

the best value among all individual best, known as global best or gbest. Then it modifies its

movement in the search space by using the following information:

• current position

• current velocity

• distance between current position and pbest

• distance between current position and gbest.

Velocity and position update equations are given as:

υ︸︷︷︸
new velocity

= K


υ︸︷︷︸

velocity

+c1rand

 pbest︸ ︷︷ ︸
localbest

−Particle︸ ︷︷ ︸
position

+

+c2Rand

 gbest︸ ︷︷ ︸
globalbest

−Particle︸ ︷︷ ︸
position




κ̂︸︷︷︸

new
position

= κ̂︸︷︷︸
current
position

+ υ︸︷︷︸
new
velocity

(6.21)
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Where

K =
2∣∣∣2− φ−
√

φ2 − 4φ
∣∣∣ (6.22)

and φ = c1 + c2, φ > 4. K is called constriction factor, c1 and c2 are weighting factors, and

κ presents the particles positions. In this study particles are presented as controller gains.

For most implementations equal values for both parameters are considered (c1 = c2 = 2.05).

Rand, rand are uniform random numbers [0 − 1]. When φ > 4 the swarm converges toward

the best solution in the search space. This constriction method results in particle convergence

over time [59].

6.8 Case Study

To illustrate capabilities of the proposed control technique on excitation control, the four-

machine system model [65] is used. The one line diagram of the test system is given in

Figure 6.12. All generators are equipped with static exciter (Table 6.5). Generators 2, 3 have

Table 6.5: Parameters for Static Excitation

Exciter 1, 2, 3, 4

KA Regulator gain p.u. 200

TA Regulator time constant p.u. 0.05

Tr Filter time constant p.u. 0.01

VRmax upper bound for saturation p.u. 10

VRmin lower bound for saturation p.u. −10

supplementary controllers. Two area system configurations, with 400 MW of power flowing

from area 1 to area 2, were analyzed

• Operating Condition 1- System with two transmission lines between bus 13 and 101

• Operating Condition 2- System with a single line between bus 13 and 101

By analyzing the stability of these two conditions, the ability of the proposed controller to

withstand a loss of a line after three phase fault at bus 3 is evaluated. The results are
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Figure 6.13: Scenario-1 Relative rotor angles δ31, δ41. Proposed control (solid line), Backstepping

with fixed gains (dash-dotted line), PSS (dotted line)

compared with fixed gain backstepping controller tuned by PSO and fixed gain linear PSS

tuned by genetic algorithm [37].

The fixed gain backstepping controller is tuned first based on PSO technique [55] to yield

the best damping performance characteristic to the system for the particular contingency.

Then RL is used to re-adjust the gains under large disturbances at different operating points.

The first scenario is three phase fault at time t = 0.1 sec, while the power (400MW ) is

flowing from area 1 to area 2. The near end of the line is opened and the line is removed at

t = 0.19 sec. The line is reconnected back at 0.21 sec. Figures 6.13 show the relative angles

δ31, δ41 respectively. Results show the superiority of the proposed reinforcement learning based

backstepping control over the fixed gain controller. Adjustment of controller gains k
′
1i, k

′
2i, k

′
3i

for generators i = 2, 3 are shown in Figures 6.14.

For the second case with one transmission line between bus 13 − 101, the contingency

occurs at the line 3− 101 at 1.00 second. The line is removed and fault is cleared at 1.06 sec.

The transmission line 3 − 101 is reconnected at 2.5 sec. Figures 6.16 show the comparison

between relative angles. Fixed gain PSS becomes unstable due to long fault duration and

highly stressed transmission lines. Backstepping controller provides desired response with re-

adjusted gains (Figure 6.17). Terminal voltages for generators 2 are shown in Figures 6.18.
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Figure 6.15: Scenario-1 Terminal voltages for Generators 1, 4
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Figure 6.16: Scenario-2 Relative rotor angles δ31, δ41. Proposed control (solid line), Backstepping

with fixed gains (dash-dotted line), PSS (dotted line)
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Figure 6.17: Scenario-2 Control gains for generator 2, 3
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Figure 6.18: Scenario-2 Terminal voltage generator 2, 4.
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Figure 6.19: Scenario-1 Supplementary control signals for generators 2, 3

Results for both cases demonstrate that the reinforcement learning is well suited to be

applied in excitation control environment. Supplementary control signals for both scenarios

(generators 2, 3) are shown in Figures 6.19. Note that for both scenarios the pre-fault and

post-fault equilibrium points are similar. For the case where pre-fault and post-fault does not

match, for instance removing the transmission line without re closing, there will become an

offset in equilibrium point of post-fault which needs to be re-adjusted in backstepping control

design. The re-adjustment can be applied in performance evaluation where the transformed

states, and tie line powers information are collected (Figure 6.12). In concept of backstepping

controller for a excitation control of generator, one can obtain local Lyapunov function and

find stabilizing feedback control law. Reinforcement learning algorithm adjusts a closed-loop

control rule which is mapping from the system states to control action. System state contains

a local Lyapunov function plus an interconnection tie line power. This combination provides

broad view of system stability. In principle, the combination of backstepping control and

reinforcement learning tries to optimize some mix of stability and performance, and here

it suggests a combination of reinforcement learning and backstepping control as a way to

implement an advanced control scheme for system stability control. The proposed algorithm

for the control is capable withstands severe contingencies in the system in which the controller

has not been experienced previously and enhances transient stability of system.

The combination of nonlinear controllers designed thru the backstepping technique with

the tuning and adaptation of their gains using reinforcement learning is shown in this section
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as a potential approach to power system stability enhancement. First backstepping controllers

are designed, with the gains obtained thru a Particle Swarm Optimization search method, and

the interface variables are handled as uncertainties. Then RL progressively learns and adapts

the gains to handle a wide range of operating conditions, not covered with backstepping alone.

This proposed approach is successfully demonstrated using a two-area four-generator power

system.



Chapter

7

Summary and Conclusions

7.1 Completed Work

This dissertation proposes a backstepping control design to enhance transient stability of

power system subject to large disturbances. Two specific classes of controllers have been

investigated. First, nonlinear controller is designed for generation units. Generators are

considered as subsystems that connect through transmission lines. Generator models are

presented in strict feedback form. This form is suitable for applying backstepping control

technique. Backstepping controller gains require proper tuning. Particle Swarm Optimization

technique is presented and implemented for obtaining these control gains. It is shown through

different case studies that tuned controller can improve the transient stability and damp

system oscillations in great extent.

To achieve decentralized control, interfaces between generators thru transmission lines are

modeled and estimated with two approaches.

I. Interconnection term is considered as noisy measurement of interface that represents the

effect of the rest of the system on a generator. The additive nonlinear damping or extended

term is added with backstepping control to counteract the effect of disturbance.
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II. Interconnection term is considered as uncertainties. To decouple each generator model

so to design a local controller, the effect of the rest of the system on the generator is estimated

with a linear estimator whose coefficients are obtained adaptively. This uncertain function is

expressed as a polynomial of electric power, and its parameters are obtained by adaptation

laws through adaptive backstepping technique.

Second class of controller provides a damping signal for Static Var Compensator. The

problem is formulated as an optimization problem with PSO algorithm. The proposed con-

troller requires both local and remote information that are obtained from center of inertia

for each area. The widely dispersed signals of power systems are processed and distributed

over the entire system. Results on standard benchmark system demonstrate that the SVC

damping controller outperforms the lead-lag during severe contingencies in the system.

While these two types of controllers improve the dynamic performance significantly, a co-

ordination of these controllers is even more promising. The proposed coordinated controller

is designed based on backstepping technique. The problem is formulated as an optimization

problem based on PSO so as to obtain the optimum control gains. By selecting proper objective

function during optimization of nonlinear controllers, notable improvement on system perfor-

mance and optimization are obtained. On the last part, the combination of reinforcement

learning and backstepping controller is proposed for generation units. The RL progressively

learns and adapts the backstepping gains to handle a wide range of operating conditions, not

covered with backstepping alone.

7.2 Suggestion for Future Work

The work in this dissertation first concerned on decentralized control for generating units,

a topic that has dominated the power system industry for decades. Nevertheless, new tech-

nologies allow obtaining of accurate measurements, fast signal processing, and communication

using a variety of different combination controllers with information from each area. New

control algorithms will be required to ensure the most advantageous overall system response.

Despite excellent performance of nonlinear controllers, they are mainly model-based. This re-

quires information from the system, which might not be available always. More effort should

be made on non-model based controllers which provide less dependency on system parameters

and become independent from specific modeling of the system. A fairly simplistic scheme
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has been introduced in this dissertation for coordination and more advanced controller by

combining the reinforcement learner and decentralized backstepping controller for generating

units. This approach can be extended among different classes of controllers such as excitation

control and FACTS devices.

7.3 Accomplishments and list of publications

This section provides lists of research work already done or in progress that is based on parts

of this dissertation.
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Appendix

A

Single machine Infinite bus
system data

Data file for single machine infinite bus

% Sing l e−machine i n f i n i t e bus example

%Base v a l u e

basmva=100;

% bus data format

% bus :

% co l 1 number

% co l 2 v o l t a g e magnitude ( pu )

% co l 3 v o l t a g e ang l e ( deg r ee )

% co l 4 p gen ( pu )

% co l 5 q gen ( pu ) ,

% co l 6 p l o ad ( pu )

% co l 7 q l o ad ( pu )

% co l 8 G shunt ( pu )

% co l 9 B shunt ( pu )

% co l 10 bu s t ype

% bus t ype − 1 , swing bus

% − 2 , g e n e r a t o r bus (PV bus )

% − 3 , l oad bus (PQ bus )

% co l 11 q gen max ( pu )
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% co l 12 q gen min ( pu )

% co l 13 v r a t e d (kV)

% co l 14 v max pu

% co l 15 v min pu

bus = [ . . .

1 1 .00 0 .00 0 .9 0 .436 0 0 0 0 2 99 −99;

2 1 .00 0 .00 0 .00 0 .00 0 0 0 0 3 99 −99;

3 1 .00 0 .00 0 .00 0 .00 0 0 0 0 1 99 −99];

% l i n e data format : from bus , to bus , r e s i s t a n c e ( pu ) , r e a c t a n c e ( pu ) ,

% l i n e cha r g i n g ( pu ) , tap r a t i o , tap phase

l i n e = [ . . .

1 2 0 .0000 0 .15 0 .0 1 0 . 0 ;

2 3 0 .0000 0 .93 0 .0 1 0 .0

2 3 0 .0000 0 .5 0 .0 1 0 . 0 ] ;

% Machine data format

% Machine data format

% 1 . machine number ,

% 2 . bus number ,

% 3 . base mva ,

% 4 . l e a kag e r e a c t an c e x l ( pu ) ,

% 5 . r e s i s t a n c e r a ( pu ) ,

% 6 . d−a x i s s y ch ronous r e a c t an c e x d ( pu ) ,

% 7 . d−a x i s t r a n s i e n t r e a c t an c e x ’ d ( pu ) ,

% 8 . d−a x i s s u b t r a n s i e n t r e a c t an c e x” d ( pu ) ,

% 9 . d−a x i s open−c i r c u i t t ime con s t an t T’ do ( s e c ) ,

% 10 . d−a x i s open−c i r c u i t s u b t r a n s i e n t t ime con s t an t

% T” do ( s e c ) ,

% 11 . q−a x i s s y ch ronous r e a c t an c e x q ( pu ) ,

% 12 . q−a x i s t r a n s i e n t r e a c t an c e x ’ q ( pu ) ,

% 13 . q−a x i s s u b t r a n s i e n t r e a c t an c e x” q ( pu ) ,

% 14 . q−a x i s open−c i r c u i t t ime con s t an t T’ qo ( s e c ) ,

% 15 . q−a x i s open c i r c u i t s u b t r a n s i e n t t ime con s t an t

% T” qo ( s e c ) ,
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% 16 . i n e r t i a con s t an t H( s e c ) ,

% 17 . damping c o e f f i c i e n t d o ( pu ) ,

% 18 . dampl ing c o e f f i c i e n t d 1 ( pu ) ,

% 19 . bus number

mac con = [ . . .

1 1 100 0 .15 0 .003 1 .81 0 .30 0 8 0 1 .76 0 .65 0 1 0 3 .5 0 0 1 0 0 ; . . .

2 3 100 0 .0001 0 .00 0 .0 0 .001 0 0 0 0 .00 0 .00 0 0 0 8 .0 0 0 3 0 0 ] ;

% De f i n e i f i n i t e bus

i b u s c on = [0 1 ] ;

% E x c i t e r data format

% column data

% 1 e x c i t e r type

% 2 machine number

% 3 i npu t f i l t e r t ime con s t an t

% 4 v o l t a g e r e g u l a t o r ga i n K A

% 5 vo l t a g e r e g u l a t o r t ime con s t an t T A( sec )

% 6 v o l t a g e r e g u l a t o r t ime con s t an t T B( sec )

% 7 v o l t a g e r e g u l a t o r t ime con s t an t T C( se c )

% 8 maximum vo l t a g e r e g u l a t o r output VR max

% 9 minimum vo l t a g e r e g u l a t o r output VR min

% 10 e x c i t e r c on s t a t K e

% 11 e x c i t e r t ime con s t an t T E

% 12 E 1

% 13 s a t u r a t i o n f u n c t i o n S E ( E 1 )

% 14 E 2

% 15 s a t u r a t i o n f u n c t i o n S E ( E 2 )

% 16 s t a b i l i z e r ga i n K f

% 17 s t a b i l i z e r t ime con s t an t ( T f )

exc con = [0 1 0 200 0 .015 0 0 7 .0 −7 0 0 0 0 0 0 0 0 ] ;

% PSS data format

%co l 1 type

%co l 2 gen number

%co l 3 ga i n ( pu )
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%co l 4 washout ( s e c . )

%co l 5 l e a d T 1

%co l 6 l a g T 2

%co l 7 l e ad T 3

%co l 8 l a g T 4

%co l 9 V−max ( pu )

%co l 10 V−min ( pu )

p s s con = [1 1 13.7750 1 .410 0 .154 0 .033 0 .154 0 .033 0 .2 −0 .2 ] ;



Appendix

B

Three machine Nine bus
system data

Data file for the three machine nine bus

% Three machine n i n e bus example

%Base v a l u e

basmva=100;

% bus data format

% bus :

% co l 1 number

% co l 2 v o l t a g e magnitude ( pu )

% co l 3 v o l t a g e ang l e ( deg r ee )

% co l 4 p gen ( pu )

% co l 5 q gen ( pu ) ,

% co l 6 p l o ad ( pu )

% co l 7 q l o ad ( pu )

% co l 8 G shunt ( pu )

% co l 9 B shunt ( pu )

% co l 10 bu s t ype

% bus t ype − 1 , swing bus

% − 2 , g e n e r a t o r bus (PV bus )

% − 3 , l oad bus (PQ bus )

% co l 11 q gen max ( pu )
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% co l 12 q gen min ( pu )

% co l 13 v r a t e d (kV)

% co l 14 v max pu

% co l 15 v min pu

bus = [

1 1 .04 0 0 .716 0 .27 0 .0 0 .0 0 .00 0 .00 1 20 −20 138

1 .10 0 . 9 ;

2 1 .025 0 1 .63 0 .067 0 .0 0 .0 0 .0 0 .00 2 20 −20 138

1 .10 0 . 9 ;

3 1 .025 0 0 .85 −0.0109 0 .0 0 .0 0 .00 0 .00 2 20 −20 138

1 .10 0 . 9 ;

4 1 .0 0 0 .0 0 .0 0 .0 0 .0 0 .00 0 .00 3 20 −20 138

1 .10 0 . 9 ;

5 1 .0 0 0 .0 0 .0 1 .25 0 .5 0 .0 0 .00 3 20 −20 138

1 .10 0 . 9 ;

6 1 .0 0 0 .0 0 .0 0 .9 0 .3 0 . 0 0 .00 3 20 −20 138

1 .10 0 . 9 ;

7 1 .0 0 0 .0 0 .0 0 .0 0 .0 0 . 0 0 .00 3 20 −20 138

1 .10 0 . 9 ;

8 1 .0 0 0 .0 0 .0 1 .0 0 .35 0 .0 0 .00 3 20 −20 138

1 .10 0 . 9 ;

9 1 .0 0 0 .0 0 .0 0 .0 0 .0 0 . 0 0 .00 3 20 −20 138

1 .10 0 . 9 ] ;

% l i n e data format

% l i n e : c o l 1−from bus ,

% c o l 2−to bus ,

% c o l 3− r e s i s t a n c e ( pu ) ,

% c o l 4− r e a c t a n c e ( pu ) ,

% c o l 5− l i n e cha r g i n g ( pu ) ,

% c o l 6− tap r a t i o ,

% c o l 7− tap phase ,

% c o l 8−tapmax ,

% co l 9−tapmin ,

% c o l 10− t a p s i z e

l i n e = [ . . .

1 4 0 .0 0 .0567 0 .0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 ;
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2 7 0 .0 0 .0625 0 .0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 ;

3 9 0 .0 0 .0586 0 .0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 ;

4 5 0 .01 0 .085 0.088∗2 0 .0 0 .0 0 .0 0 .0 0 . 0 0 ;

4 6 0 .017 0 .092 0.079∗2 0 .0 0 .0 0 .0 0 .0 0 . 0 0 ;

5 7 0 .032 0 .161 0.153∗2 0 .0 0 .0 0 .0 0 .0 0 . 0 0 ;

6 9 0 .039 0 .170 0.179∗2 0 .0 0 .0 0 .0 0 .0 0 . 0 0 ;

7 8 0 .0085 0 .072 0.0745∗2 0 .0 0 .0 0 .0 0 . 0 0 . 0 0 ;

8 9 0 .0119 0 .1008 0.1045∗2 0 .0 0 .0 0 .0 0 . 0 0 . 0 0 ] ;

% Machine data format

% Machine data format

% 1 . machine number ,

% 2 . bus number ,

% 3 . base mva ,

% 4 . l e a kag e r e a c t an c e x l ( pu ) ,

% 5 . r e s i s t a n c e r a ( pu ) ,

% 6 . d−a x i s s y ch ronous r e a c t an c e x d ( pu ) ,

% 7 . d−a x i s t r a n s i e n t r e a c t an c e x ’ d ( pu ) ,

% 8 . d−a x i s s u b t r a n s i e n t r e a c t an c e x” d ( pu ) ,

% 9 . d−a x i s open−c i r c u i t t ime con s t an t T’ do ( s e c ) ,

% 10 . d−a x i s open−c i r c u i t s u b t r a n s i e n t t ime con s t an t

% T” do ( s e c ) ,

% 11 . q−a x i s s y ch ronous r e a c t an c e x q ( pu ) ,

% 12 . q−a x i s t r a n s i e n t r e a c t an c e x ’ q ( pu ) ,

% 13 . q−a x i s s u b t r a n s i e n t r e a c t an c e x” q ( pu ) ,

% 14 . q−a x i s open−c i r c u i t t ime con s t an t T’ qo ( s e c ) ,

% 15 . q−a x i s open c i r c u i t s u b t r a n s i e n t t ime con s t an t

% T” qo ( s e c ) ,

% 16 . i n e r t i a con s t an t H( s e c ) ,

% 17 . damping c o e f f i c i e n t d o ( pu ) ,

% 18 . dampl ing c o e f f i c i e n t d 1 ( pu ) ,

% 19 . bus number

mac con = [ . . .

1 1 100 0 .00 0 .0 0 .146 0 .0608 0 8 .96 0 0 .0969 0 .0969 0 0 .31

0 23 .64 1 0 1 ;

2 2 100 0 .00 0 .0 0 .8958 0 .1198 0 6 .00 0 0 .8645 0 .1969 0 0 .535

0 6 .40 1 0 2 ;
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3 3 100 0 .00 0 .0 1 .3125 0 .1813 0 5 .89 0 1 .2578 0 .2500 0 0 .600

0 3 .01 1 0 3 ] ;

% E x c i t e r data format

% column data

% 1 e x c i t e r type

% 2 machine number

% 3 i npu t f i l t e r t ime con s t an t

% 4 v o l t a g e r e g u l a t o r ga i n K A

% 5 vo l t a g e r e g u l a t o r t ime con s t an t T A( sec )

% 6 v o l t a g e r e g u l a t o r t ime con s t an t T B( sec )

% 7 v o l t a g e r e g u l a t o r t ime con s t an t T C( se c )

% 8 maximum vo l t a g e r e g u l a t o r output VR max

% 9 minimum vo l t a g e r e g u l a t o r output VR min

% 10 e x c i t e r c on s t a t K e

% 11 e x c i t e r t ime con s t an t T E

% 12 E 1

% 13 s a t u r a t i o n f u n c t i o n S E ( E 1 )

% 14 E 2

% 15 s a t u r a t i o n f u n c t i o n S E ( E 2 )

% 16 s t a b i l i z e r ga i n K f

% 17 s t a b i l i z e r t ime con s t an t ( T f )

exc con = [ . . .

0 1 0 200 . 0 .015 0 0 15 .0 −15 0 0 0 0 0 0 0 0 ;

0 2 0 200 . 0 .015 0 0 15 .0 −15 0 0 0 0 0 0 0 0 ;

0 3 0 200 . 0 .015 0 0 15 .0 −15 0 0 0 0 0 0 0 0 ] ;

%PSS data format

%co l 1 type

%co l 2 gen number

%co l 3 ga i n ( pu )

%co l 4 washout ( s e c . )

%co l 5 l e a d T 1

%co l 6 l a g T 2

%co l 7 l e ad T 3

%co l 8 l a g T 4
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%co l 9 V−max ( pu )

%co l 10 V−min ( pu )

p s s con = [ . . .

1 1 13 .7750 1 .410 0 .154 0 .033 0 .154 0 .033 0 .2 −0.2;

1 2 13.7750 1 .410 0 .154 0 .033 0 .154 0 .033 0 .2 −0.2;

1 3 13.7750 1 .410 0 .154 0 .033 0 .154 0 .033 0 .2 −0 .2 ] ;

% gove rno r model

% column data u n i t

% 1 t u r b i n e model number (=1)

% 2 machine number

% 3 speed s e t p o i n t wf pu

% 4 s t eady s t a t e ga i n 1/R pu

% 5 maximum power o r d e r Tmax pu on g en e r a t o r base

% 6 s e r v o t ime con s t an t Ts s e c

% 7 gove rno r t ime con s t an t Tc se c

% 8 t r a n s i e n t ga i n t ime con s t an t T3 sec

% 9 HP s e c t i o n t ime con s t an t T4 sec

% 10 r e h e a t e r t ime con s t an t T5 sec

tg con = [ . . .

1 1 1 25 .0 2 .0 0 .1 0 .5 0 .0 1 .25 5 . 0 ;

1 2 1 25 .0 2 .0 0 .1 0 .5 0 .0 1 .25 5 . 0 ;

1 3 1 25 .0 2 .0 0 .1 0 .5 0 .0 1 .25 5 . 0 ] ;



Appendix

C

Two Area-Four Machine
system data

Data file for the Two-area system

% Two area Test ca se

% bus data format

% bus :

% co l 1 number

% co l 2 v o l t a g e magnitude ( pu )

% co l 3 v o l t a g e ang l e ( deg r ee )

% co l 4 p gen ( pu )

% co l 5 q gen ( pu ) ,

% co l 6 p l o ad ( pu )

% co l 7 q l o ad ( pu )

% co l 8 G shunt ( pu )

% co l 9 B shunt ( pu )

% co l 10 bu s t ype

% bus t ype − 1 , swing bus

% − 2 , g e n e r a t o r bus (PV bus )

% − 3 , l oad bus (PQ bus )

% co l 11 q gen max ( pu )

% co l 12 q gen min ( pu )
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% co l 13 v r a t e d (kV)

% co l 14 v max pu

% co l 15 v min pu

bus = [ . . .

1 1 .03 0 7 .00 1 .85 0 .00 0 0 0 .0 1 99 .0 −99.0 22 .0 1 .1 . 9 ;

2 1 .01 0 7 .00 2 .35 0 .00 0 0 0 .0 2 99 .0 −99.0 22 .0 1 .1 . 9 ;

3 0 .9781 0 0 .00 2 .00 0 .00 0 0 0 .0 3 0 .0 0 .0 500 .0 1 .5 . 5 ;

4 0 .95 0 0 .00 0 .00 9 .76 1 0 0 .0 3 0 .0 0 .0 115 .0 1 .05 . 9 5 ;

10 1 .0103 0 0 .00 0 .00 0 .00 0 0 0 .0 3 0 .0 0 .0 230 .0 1 .5 . 5 ;

11 1 .03 0 7 .19 1 .76 0 .00 0 0 0 .0 2 99 .0 −99.0 22 .0 1 .1 . 9 ;

12 1 .01 0 7 .00 2 .02 0 .00 0 0 0 .0 2 99 .0 −99.0 22 .0 1 .1 . 9 ;

13 0 .9899 0 0 .00 3 .50 0 .00 0 0 0 .0 3 0 .0 0 .0 500 .0 1 .5 . 5 ;

14 0 .95 0 0 .00 0 .00 17 .67 1 0 0 .0 3 0 .0 0 .0 115 .0 1 .05 . 9 5 ;

20 0 .9876 0 0 .00 0 .00 0 .00 0 0 0 .0 3 0 .0 0 .0 230 .0 1 .5 . 5 ;

101 1 .0 0 0 .00 0 .00 0 .00 0 0 1 .6 3 99 . −99. 500 .0 1 .5 . 5 ;

110 1 .0125 0 0 .00 0 .00 0 .00 0 0 0 .0 3 0 .0 0 .0 230 .0 1 .5 . 5 ;

120 0 .9938 0 0 .00 0 .00 0 .00 0 0 0 .0 3 0 .0 0 .0 230 .0 1 .5 . 5 ] ;

% l i n e data format : from bus , to bus , r e s i s t a n c e ( pu ) , r e a c t a n c e ( pu ) ,

% l i n e cha r g i n g ( pu ) , tap r a t i o , tap phase , tapmax , tapmin , t a p s i z e

l i n e = [ . . .

1 10 0 .0 0 .0167 0 .00 1 0 . 0 . 0 . 0 . ;

2 20 0 .0 0 .0167 0 .00 1 0 . 0 . 0 . 0 . ;

10 20 0 .0025 0 .025 0 .0437 1 0 . 0 . 0 . 0 . ;

20 3 0 .001 0 .0100 0 .0175 1 0 . 0 . 0 . 0 . ;

3 4 0 .0 0 .005 0 .00 1 0 . 1 . 2 0 .8 0 . 0 5 ;

3 101 0 .011 0 .110 0 .1925 1 0 . 0 . 0 . 0 . ;

3 101 0 .011 0 .110 0 .1925 1 0 . 0 . 0 . 0 . ;

101 13 0 .011 0 .11 0 .1925 1 0 . 0 . 0 . 0 . ;

101 13 0 .011 0 .11 0 .1925 1 0 . 1 . 2 0 . 8 0 . 0 5 ;

13 120 0 .001 0 .01 0 .0175 1 0 . 0 . 0 . 0 . ;

120 110 0 .0025 0 .025 0 .0437 1 0 . 0 . 0 . 0 . ;

11 110 0 .0 0 .0167 0 .0 1 0 . 0 . 0 . 0 . ;

12 120 0 .0 0 .0167 0 .0 1 0 . 0 . 0 . 0 . ] ;

% Machine data format
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% Machine data format

% 1 . machine number ,

% 2 . bus number ,

% 3 . base mva ,

% 4 . l e a kag e r e a c t an c e x l ( pu ) ,

% 5 . r e s i s t a n c e r a ( pu ) ,

% 6 . d−a x i s s y ch ronous r e a c t an c e x d ( pu ) ,

% 7 . d−a x i s t r a n s i e n t r e a c t an c e x ’ d ( pu ) ,

% 8 . d−a x i s s u b t r a n s i e n t r e a c t an c e x” d ( pu ) ,

% 9 . d−a x i s open−c i r c u i t t ime con s t an t T’ do ( s e c ) ,

% 10 . d−a x i s open−c i r c u i t s u b t r a n s i e n t t ime con s t an t

% T” do ( s e c ) ,

% 11 . q−a x i s s y ch ronous r e a c t an c e x q ( pu ) ,

% 12 . q−a x i s t r a n s i e n t r e a c t an c e x ’ q ( pu ) ,

% 13 . q−a x i s s u b t r a n s i e n t r e a c t an c e x” q ( pu ) ,

% 14 . q−a x i s open−c i r c u i t t ime con s t an t T’ qo ( s e c ) ,

% 15 . q−a x i s open c i r c u i t s u b t r a n s i e n t t ime con s t an t

% T” qo ( s e c ) ,

% 16 . i n e r t i a con s t an t H( s e c ) ,

% 17 . damping c o e f f i c i e n t d o ( pu ) ,

% 18 . dampl ing c o e f f i c i e n t d 1 ( pu ) ,

% 19 . bus number

% Sub t r a n s i e n t Model

mac con = [ . . .

1 1 900 0 .2 0 .0025 1 .8 0 .30 0 .25 8 0 .03 1 .7 0 .55 0 .25 0 .4 0 .05 6 .5 0

0 1 ;

2 2 900 0 .2 0 .0025 1 .8 0 .30 0 .25 8 0 .03 1 .7 0 .55 0 .25 0 .4 0 .05 6 .5 0

0 2 ;

3 11 900 0 .2 0 .0025 1 .8 0 .30 0 .25 8 0 .03 1 .7 0 .55 0 .25 0 .4 0 .05 6 .5 0

0 11 ;

4 12 900 0 .2 0 .0025 1 .8 0 .30 0 .25 8 0 .03 1 .7 0 .55 0 .25 0 .4 0 .05 6 .5 0

0 1 2 ] ;

% Tran s i e n t Model

mac con = [ . . .



APPENDIX C. TWO AREA-FOUR MACHINE SYSTEM DATA 155

1 1 900 0 .200 0 .0025 1 .8 0 .30 0 .000 8 .00 0 .0000 1 .7 0 .55 0 .000

0 .4 0 .000 6 .5 0 0 1 ;

2 2 900 0 .200 0 .0025 1 .8 0 .30 0 .000 8 .00 0 .0000 1 .7 0 .55 0 .000

0 .4 0 .000 6 .5 0 0 2 ;

3 11 900 0 .200 0 .0025 1 .8 0 .30 0 .000 8 .00 0 .0000 1 .7 0 .55 0 .000

0 .4 0 .000 6 .5 0 0 11 ;

4 12 900 0 .200 0 .0025 1 .8 0 .30 0 .000 8 .00 0 .0000 1 .7 0 .55 0 .000

0 .4 0 .000 6 .5 0 0 1 2 ] ;

% E x c i t e r data format

% 1 e x c i t e r type

% 2 machine number

% 3 i npu t f i l t e r t ime con s t an t

% 4 v o l t a g e r e g u l a t o r ga i n K A

% 5 vo l t a g e r e g u l a t o r t ime con s t an t T A( sec )

% 6 v o l t a g e r e g u l a t o r t ime con s t an t T B( sec )

% 7 v o l t a g e r e g u l a t o r t ime con s t an t T C( se c )

% 8 maximum vo l t a g e r e g u l a t o r output VR max

% 9 minimum vo l t a g e r e g u l a t o r output VR min

% 10 e x c i t e r c on s t a t K e

% 11 e x c i t e r t ime con s t an t T E

% 12 E 1

% 13 s a t u r a t i o n f u n c t i o n S E ( E 1 )

% 14 E 2

% 15 s a t u r a t i o n f u n c t i o n S E ( E 2 )

% 16 s t a b i l i z e r ga i n K f

% 17 s t a b i l i z e r t ime con s t an t ( T f )

exc con = [ . . .

0 1 0 .01 200 0 .05 0 0 10 .0 −10.0 0 0 0 0 0 0 0 0 0 0 0 ;

0 2 0 .01 200 0 .05 0 0 10 .0 −10.0 0 0 0 0 0 0 0 0 0 0 0 ;

0 3 0 .01 200 0 .05 0 0 10 .0 −10.0 0 0 0 0 0 0 0 0 0 0 0 ;

0 4 0 .01 200 0 .05 0 0 10 .0 −10.0 0 0 0 0 0 0 0 0 0 0 0 ] ;

% PSS data format

%co l 1 type

%co l 2 gen number

%co l 3 ga i n ( pu )
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%co l 4 washout ( s e c . )

%co l 5 l e a d T 1

%co l 6 l a g T 2

%co l 7 l e ad T 3

%co l 8 l a g T 4

%co l 9 V−max ( pu )

%co l 10 V−min ( pu )

p s s con = [ . . .

1 2 47 .16 20 .0 0 .7109 0 .155 0 .7109 0 .155 0 .2 −0.05;

1 3 300 20 .0 0 .15 0 .08431 0 .15 0 .08431 0 .2 −0 .05 ] ;

% gove rno r model

% column data u n i t

% 1 t u r b i n e model number (=1)

% 2 machine number

% 3 speed s e t p o i n t wf pu

% 4 s t eady s t a t e ga i n 1/R pu

% 5 maximum power o r d e r Tmax pu on g en e r a t o r base

% 6 s e r v o t ime con s t an t Ts s e c

% 7 gove rno r t ime con s t an t Tc se c

% 8 t r a n s i e n t ga i n t ime con s t an t T3 sec

% 9 HP s e c t i o n t ime con s t an t T4 sec

% 10 r e h e a t e r t ime con s t an t T5 sec

tg con = [ . . .

1 1 1 25 .0 1 .0 0 .1 0 .5 0 .0 1 .25 5 . 0 ;

1 2 1 25 .0 1 .0 0 .1 0 .5 0 .0 1 .25 5 . 0 ;

1 3 1 25 .0 1 .0 0 .1 0 .5 0 .0 1 .25 5 . 0 ;

1 4 1 25 .0 1 .0 0 .1 0 .5 0 .0 1 .25 5 . 0 ] ;
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D

Fifty Machine system data

Machine and Exciter data file for the fifty machine system

% Machine data format

% 1 . machine number ,

% 2 . bus number ,

% 3 . base mva ,

% 4 . l e a kag e r e a c t an c e x l ( pu ) ,

% 5 . r e s i s t a n c e r a ( pu ) ,

% 6 . d−a x i s s y ch ronous r e a c t an c e x d ( pu ) ,

% 7 . d−a x i s t r a n s i e n t r e a c t an c e x ’ d ( pu ) ,

% 8 . d−a x i s s u b t r a n s i e n t r e a c t an c e x” d ( pu ) ,

% 9 . d−a x i s open−c i r c u i t t ime con s t an t T’ do ( s e c ) ,

% 10 . d−a x i s open−c i r c u i t s u b t r a n s i e n t t ime con s t an t

% T” do ( s e c ) ,

% 11 . q−a x i s s y ch ronous r e a c t an c e x q ( pu ) ,

% 12 . q−a x i s t r a n s i e n t r e a c t an c e x ’ q ( pu ) ,

% 13 . q−a x i s s u b t r a n s i e n t r e a c t an c e x” q ( pu ) ,

% 14 . q−a x i s open−c i r c u i t t ime con s t an t T’ qo ( s e c ) ,

% 15 . q−a x i s open c i r c u i t s u b t r a n s i e n t t ime con s t an t

% T” qo ( s e c ) ,

% 16 . i n e r t i a con s t an t H( s e c ) ,
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% 17 . damping c o e f f i c i e n t d o ( pu ) ,

% 18 . dampl ing c o e f f i c i e n t d 1 ( pu ) ,

% 19 . bus number

mac con = [ . . .

1 93 100 0 .012 0 0 .098 0 .024 0 8 .5 0 0 .096 0 .036 0 1 .24 0 115 0 0

93 0 .0654 0 .5743 0 0 ;

2 104 100 0 .008 0 0 .102 0 .012 0 10 0 0 .098 0 .014 0 1 .50 0 73 .8 0 0

104 0 .21 0 .55 0 0 ;

3 105 100 0 .011 0 0 .114 0 .021 0 6 .6 0 0 .109 0 .031 0 1 .50 0 84 .4 0 0

105 0 .13 0 .4096 0 0 ;

4 106 100 0 .017 0 0 .172 0 .031 0 6 .6 0 0 .164 0 .047 0 1 .50 0 56 .2 0 0

106 0 .13 0 .4096 0 0 ;

5 110 100 0 .012 0 0 .098 0 .024 0 8 .5 0 0 .096 0 .036 0 1 .24 0 115 0 0

110 0 .0654 0 .5743 0 0 ;

6 111 100 0 .008 0 0 .102 0 .012 0 10 0 0 .098 0 .014 0 1 .50 0 73 .8 0 0

111 0 .21 0 .55 0 0 ;

7 60 100 0 .00 0 .000 0 . 0 .4769 0 0 0 0 0 0 0 0 1 .41 1 .41

0 .0 60 0 0 0 0 ;

8 67 100 0 .00 0 .000 0 . 0 .0213 0 0 0 0 0 0 0 0 52.1796 52 .18 0 .0

67 0 0 0 0 ;

9 79 100 0 .00 0 .000 0 . 0 .1292 0 0 0 0 0 0 0 0 6 .65 6 .65

0 .0 79 0 0 0 0 ;

10 80 100 0 .00 0 .000 0 . 0 .6648 0 0 0 0 0 0 0 0 1 .2857 1 .29

0 .0 80 0 0 0 0 ;

11 82 100 0 .00 0 .000 0 . 0 .5291 0 0 0 0 0 0 0 0 2 .115 2 .12

0 .0 82 0 0 0 0 ;

12 89 100 0 .00 0 .000 0 . 0 .0585 0 0 0 0 0 0 0 0 20.5602 20 .56 0 .0

89 0 0 0 0 ;

13 90 100 0 .00 0 .000 0 . 1 . 6 0 0 0 0 0 0 0 0 0 .7628 0 .76

0 .0 90 0 0 0 0 ;

14 91 100 0 .00 0 .000 0 . 0 .3718 0 0 0 0 0 0 0 0 1 .6848 1 .68

0 .0 91 0 0 0 0 ;

15 94 100 0 .00 0 .000 0 . 0 .0839 0 0 0 0 0 0 0 0 17.3424 34 .69

0 .0 94 0 0 0 0 ;

16 95 100 0 .00 0 .000 0 . 0 .1619 0 0 0 0 0 0 0 0 5 .4662 5 .46

0 .0 95 0 0 0 0 ;
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17 96 100 0 .00 0 .000 0 . 0 .4824 0 0 0 0 0 0 0 0 2 .1216 2 .12

0 .0 96 0 0 0 0 ;

18 97 100 0 .00 0 .000 0 . 0 .2125 0 0 0 0 0 0 0 0 5 .4912 5 .49

0 .0 97 0 0 0 0 ;

19 98 100 0 .00 0 .000 0 . 0 .0795 0 0 0 0 0 0 0 0 13 .96 13 .16 0 .0

98 0 0 0 0 ;

20 99 100 0 .00 0 .000 0 . 0 .1146 0 0 0 0 0 0 0 0 17 .108 17 .1

0 .0 99 0 0 0 0 ;

21 100 100 0 .00 0 .000 0 . 0 .1386 0 0 0 0 0 0 0 0 7 .56 7 .56

0 .0 100 0 0 0 0 ;

22 101 100 0 .00 0 .000 0 . 0 .0924 0 0 0 0 0 0 0 0 12.2844 12 .3

0 .0 101 0 0 0 0 ;

23 102 100 0 .00 0 .000 0 0 .0135 0 0 0 0 0 0 0 0 78 .43 78 .4

0 .0 102 0 0 0 0 ;

24 103 100 0 .00 0 .000 0 . 0 .1063 0 0 0 0 0 0 0 0 8 .16 8 .16

0 .0 103 0 0 0 0 ;

25 108 100 0 .00 0 .000 0 . 0 .0248 0 0 0 0 0 0 0 0 30 .432 30 .4

0 .0 108 0 0 0 0 ;

26 109 100 0 .00 0 .000 0 . 0 .2029 0 0 0 0 0 0 0 0 2 .6622 2 .66

0 .0 109 0 0 0 0 ;

27 112 100 0 .00 0 .000 0 . 0 .0924 0 0 0 0 0 0 0 0 12.2844 12 .3

0 .0 112 0 0 0 0 ;

28 115 100 0 .00 0 .000 0 . 0 .0024 0 0 0 0 0 0 0 0 97 .33 97 .3

0 .0 115 0 0 0 0 ;

29 116 100 0 .00 0 .000 0 . 0 .0022 0 0 0 0 0 0 0 0 105 .50 105 .5

0 .0 116 0 0 0 0 ;

30 117 100 0 .00 0 .000 0 . 0 .0017 0 0 0 0 0 0 0 0 102 .16 102 .2

0 .0 117 0 0 0 0 ;

31 118 100 0 .00 0 .000 0 . 0 .0014 0 0 0 0 0 0 0 0 162 .74 162 .5

0 .0 118 0 0 0 0 ;

32 119 100 0 .00 0 .000 0 . 0 .0002 0 0 0 0 0 0 0 0 348 .22 348 .2

0 .0 119 0 0 0 0 ;

33 121 100 0 .00 0 .000 0 . 0 .0017 0 0 0 0 0 0 0 0 116 .54 116 .5

0 .0 121 0 0 0 0 ;

34 122 100 0 .00 0 .000 0 . 0 .0089 0 0 0 0 0 0 0 0 39 .24 39 .2

0 .0 122 0 0 0 0 ;

35 124 100 0 .00 0 .000 0 . 0 .0017 0 0 0 0 0 0 0 0 116 .86 116 .9

0 .0 124 0 0 0 0 ;
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36 128 100 0 .00 0 .000 0 . 0 .0001 0 0 0 0 0 0 0 0 503 .87 503 .9

0 .0 128 0 0 0 0 ;

37 130 100 0 .00 0 .000 0 . 0 .0010 0 0 0 0 0 0 0 0 230 .90 230 .9

0 .0 130 0 0 0 0 ;

38 131 100 0 .00 0 .000 0 . 0 .0001 0 0 0 0 0 0 0 0 1101.72 1101 .7

0 .0 131 0 0 0 0 ;

39 132 100 0 .00 0 .000 0 . 0 .0016 0 0 0 0 0 0 0 0 120 .35 120 .4

0 .0 132 0 0 0 0 ;

40 134 100 0 .00 0 .000 0 . 0 . 3 e−4 0 0 0 0 0 0 0 0 802 .12 802 .1

0 .0 134 0 0 0 0 ;

41 135 100 0 .00 0 .000 0 . 0 .0008 0 0 0 0 0 0 0 0 232 .63 232 .6

0 .0 135 0 0 0 0 ;

42 136 100 0 .00 0 .000 0 . 0 . 1 e−4 0 0 0 0 0 0 0 0 2018.17 5000 .2

0 .0 136 0 0 0 0 ;

43 137 100 0 .00 0 .000 0 . 0 .0004 0 0 0 0 0 0 0 0 469 .32 469 .3

0 .0 137 0 0 0 0 ;

44 139 100 0 .00 0 .000 0 . 0 .0001 0 0 0 0 0 0 0 0 2210.20 2210 .2

0 .0 139 0 0 0 0 ;

45 140 100 0 .00 0 .000 0 . 0 .0003 0 0 0 0 0 0 0 0 889 .19 889 .2

0 .0 140 0 0 0 0 ;

46 141 100 0 .00 0 .000 0 . 0 .0001 0 0 0 0 0 0 0 0 1474.22 1474 .2

0 .0 141 0 0 0 0 ;

47 142 100 0 .00 0 .000 0 . 0 .0003 0 0 0 0 0 0 0 0 950 .80 950 .8

0 .0 142 0 0 0 0 ;

48 143 100 0 .00 0 .000 0 . 0 .0023 0 0 0 0 0 0 0 0 204 .30 204 .3

0 .0 143 0 0 0 0 ;

49 144 100 0 .00 0 .000 0 . 0 .0004 0 0 0 0 0 0 0 0 443 .22 443 .2

0 .0 144 0 0 0 0 ;

50 145 100 0 .00 0 .000 0 . 0 .0018 0 0 0 0 0 0 0 0 518 .08 518 .1

0 .0 145 0 0 0 0 ]

% E x c i t e r data format

% column data

% 1 e x c i t e r type

% 2 machine number

% 3 i npu t f i l t e r t ime con s t an t

% 4 v o l t a g e r e g u l a t o r ga i n K A
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% 5 vo l t a g e r e g u l a t o r t ime con s t an t T A( sec )

% 6 v o l t a g e r e g u l a t o r t ime con s t an t T B( sec )

% 7 v o l t a g e r e g u l a t o r t ime con s t an t T C( se c )

% 8 maximum vo l t a g e r e g u l a t o r output VR max

% 9 minimum vo l t a g e r e g u l a t o r output VR min

% 10 e x c i t e r c on s t a t K e

% 11 e x c i t e r t ime con s t an t T E

% 12 E 1

% 13 s a t u r a t i o n f u n c t i o n S E ( E 1 )

% 14 E 2

% 15 s a t u r a t i o n f u n c t i o n S E ( E 2 )

% 16 s t a b i l i z e r ga i n K f

% 17 s t a b i l i z e r t ime con s t an t ( T f )

exc con = [ . . .

0 1 0 .02 185 .0 0 0 0 8 .89 −2.0 0 0 0 0 0 0 0 0 ;

0 2 0 .015 253 .0 0 0 0 8 .86 −7.0 0 0 0 0 0 0 0 0 ;

0 3 0 .468 54 .63 0 0 0 7 .38 0 .0 0 0 0 0 0 0 0 0 ;

0 4 0 .468 54 .63 0 0 0 7 .38 0 .0 0 0 0 0 0 0 0 0 ;

0 5 0 .02 185 .0 0 0 0 8 .89 −2.0 0 0 0 0 0 0 0 0 ;

0 6 0 .015 253 .0 0 0 0 8 .86 −7.0 0 0 0 0 0 0 0 0 ] ;
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E

Matlab Code

E.1 Particle Swarm Optimiztion

PSO Matlab Function

f u n c t i o n [ Jss , xss , J s s s , t ] = psomax ( bounds , evalFN , tmax , c1 , c2 , n ,M)

% PSOmax run a P a r t i c a l Swarm Opt im i z a t i on to maximize the o b j e c t i v e f u n c t i o n .

% f u n c t i o n [ x , endPop , bPop , t r a c e I n f o ]=ga ( bounds , evalFN , tmax , c1 , c2 , n ,M)

%

% Output Arguments :

% J s s − the b e s t s o l u t i o n found du r i ng the cou r s e o f the run .

% x s s − the f i n a l p opu l a t i o n .

% J s s s − a t r a c e o f the b e s t p opu l a t i o n .

% t − number o f i t e r a t i o n .

%

% Inpu t Arguments :

% bounds − a mat r i x o f upper and l owe r bounds on the v a r i a b l e s .

% evalFN − the name o f the e v a l u a t i o n .m f u n c t i o n .

% tmax − maximum number o f i t e r a t i o n .

% c1 − we i gh t i n g f a c t o r .
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% c2 − we i gh t i n g f a c t o r .

% n − number o f p opua l t i o n .

% M − maximum number o f i t e r a t i o n o f unchanged s o l t i o n .

% P a r t i c a l Swarm Opt im i z a t i on f o r Matlab

%

% This program i s f r e e s o f twa r e ; you can r e d i s t r i b u t e i t and/ or modi fy

% i t under the terms o f the GNU Gene ra l Pub l i c L i c e n s e as p ub l i s h e d by

% the Free So f tware Foundat ion ; e i t h e r v e r s i o n 1 , o r ( at your op t i on )

% any l a t e r v e r s i o n .

%

% This program i s d i s t r i b u t e d i n the hope tha t i t w i l l be u s e f u l ,

% but WITHOUT ANY WARRANTY; w i thout even the imp l i e d war ran ty o f

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU Gene ra l Pub l i c L i c e n s e f o r more d e t a i l s . A copy o f the GNU

% Gene ra l Pub l i c L i c e n s e can be ob ta i n ed from the

% Free So f tware Foundat ion , I n c . , 675 Mass Ave , Cambridge , MA 02139 , USA .

x i n t= bounds ;

t =1; % 1 s t i t e r a t i o n .

ph i=c1+c2 ;

K=2/( abs (2−phi−s q r t ( ph i ˆ2−4∗ ph i ) ) ) ;

f o r i =1: l e n g t h ( x i n t )

x ( i , : )= x i n t ( i ,1)+( x i n t ( i ,2)− x i n t ( i , 1 ) ) ∗ rand (1 , n ) ;

end

f o r i =1: l e n g t h ( x i n t )

Vmax( i )=max( x ( i , : ) ) ; Vmin ( i )=min ( x ( i , : ) ) ;

vk ( i )=(Vmax( i )−Vmin ( i ) )/ n ;

V( i ,:)=− vk ( i )+( vk ( i )+vk ( i ) )∗ rand (1 , n ) ;

end

vmax=vk ; vmin=−vk ;

s i z e V=s i z e (V ) ;

xs=x ;

f o r i =1: s i z e V (2)

xc=x ( : , i ) ;

e 1 s t r =[ ’ j c =’ evalFN ’ ( xc ) ; ’ ] ;

e v a l ( e 1 s t r ) ;
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J ( i )= j c ;

end

Js=J ;

J s s=max( Js ) ; x s s=x ( : , f i n d ( J s s==Js ) ) ;

J s s s ( t )=J s s ;

m=0;

wh i l e (m<M | t<tmax )

t=t+1

m

r1=rand ( 1 ) ; r2=rand ( 1 ) ;

f o r i =1: s i z e V (1)

f o r k=1: s i z e V (2)

v c a l=K∗(V( i , k)+c1∗ r1 ∗( xs ( i , k)−x ( i , k))+c2∗ r2 ∗( x s s ( i )−x ( i , k ) ) ) ;

i f ( v c a l >=vmin ( i ) & v c a l <=vmax ( i ) )

V( i , k)= v c a l ;

e l s e

end

end

end

f o r i =1: s i z e V (1)

f o r k=1: s i z e V (2)

x c a l=V( i , k)+x ( i , k ) ;

i f ( x c a l >=x i n t ( i , 1 ) & x c a l <=x i n t ( i , 2 ) )

x ( i , k)= x c a l ;

e l s e

end

end

end

f o r i =1: s i z e V (2)

xc=x ( : , i ) ;

e 1 s t r =[ ’ j c =’ evalFN ’ ( xc ) ; ’ ] ; e v a l ( e 1 s t r ) ;

J ( i )= j c ;

end

f o r i =1: s i z e V (2)

i f J ( i )>Js ( i )

Js ( i )=J ( i ) ;

x s ( : , i )=x ( : , i ) ;
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e l s e

end

end

Jmax=max( Js ) ;

i f Jmax>J s s

m=0;

J s s=Jmax

x s s=xs ( : , f i n d ( J s s==Js ) ) ; x s s=x s s ( : , 1 ) ;

e l s e

m=m+1;

f p r i n t f ( ’%2.0 f ’ ,m)

end

J s s s ( t )=J s s ;

end

r e t u r n
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E.2 Reinforcement Learning

Reinforcement Learning

f u n c t i o n r l ( b l o ck )

% Leve l−2 M f i l e S−Funct i on f o r t imes two demo .

% Copy r i gh t 1990−2004 The MathWorks , I n c .

% Revision : 1.1.6.1

s e tup ( b l o ck ) ;

%end f un c t i o n

f u n c t i o n se tup ( b l o ck )

%% Re g i s t e r number o f i n pu t and output p o r t s

b l o ck . NumInputPorts = 7 ;

b l o ck . NumOutputPorts = 6 ;

%% Setup f u n c t i o n a l po r t p r o p e r t i e s to d ynam i c a l l y

%% i n h e r i t e d .

b l o ck . SetPreCompInpPort InfoToDynamic ;

b l o ck . SetPreCompOutPortInfoToDynamic ;

b l o ck . I npu tPo r t ( 1 ) . Complex i t y = ’ Real ’ ;

b l o ck . I npu tPo r t ( 1 ) . DataTypeId = 0 ;

b l o ck . I npu tPo r t ( 1 ) . SamplingMode = ’ Sample ’ ;

b l o ck . I npu tPo r t ( 1 ) . Dimens ions = 1;% AcE1

b l o ck . I npu tPo r t ( 2 ) . Complex i t y = ’ Real ’ ;

b l o ck . I npu tPo r t ( 2 ) . DataTypeId = 0 ;

b l o ck . I npu tPo r t ( 2 ) . SamplingMode = ’ Sample ’ ;

b l o ck . I npu tPo r t ( 2 ) . Dimens ions = [4 9 ] ;

b l o ck . I npu tPo r t ( 3 ) . Complex i t y = ’ Real ’ ;

b l o ck . I npu tPo r t ( 3 ) . DataTypeId = 0 ;

b l o ck . I npu tPo r t ( 3 ) . SamplingMode = ’ Sample ’ ;

b l o ck . I npu tPo r t ( 3 ) . Dimens ions = 1;% s t a t e
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b l o ck . I npu tPo r t ( 4 ) . Complex i t y = ’ Real ’ ;

b l o ck . I npu tPo r t ( 4 ) . DataTypeId = 0 ;

b l o ck . I npu tPo r t ( 4 ) . SamplingMode = ’ Sample ’ ;

b l o ck . I npu tPo r t ( 4 ) . Dimens ions = 1;%bk1

b l o ck . I npu tPo r t ( 5 ) . Complex i t y = ’ Real ’ ;

b l o ck . I npu tPo r t ( 5 ) . DataTypeId = 0 ;

b l o ck . I npu tPo r t ( 5 ) . SamplingMode = ’ Sample ’ ;

b l o ck . I npu tPo r t ( 5 ) . Dimens ions = 1;%bk2

b l o ck . I npu tPo r t ( 6 ) . Complex i t y = ’ Real ’ ;

b l o ck . I npu tPo r t ( 6 ) . DataTypeId = 0 ;

b l o ck . I npu tPo r t ( 6 ) . SamplingMode = ’ Sample ’ ;

b l o ck . I npu tPo r t ( 6 ) . Dimens ions = 1;%bk3

b l o ck . I npu tPo r t ( 7 ) . Complex i t y = ’ Real ’ ;

b l o ck . I npu tPo r t ( 7 ) . DataTypeId = 0 ;

b l o ck . I npu tPo r t ( 7 ) . SamplingMode = ’ Sample ’ ;

b l o ck . I npu tPo r t ( 7 ) . Dimens ions = 1;%c4

b l o ck . OutputPort ( 1 ) . Complex i t y = ’ Real ’ ;

b l o ck . OutputPort ( 1 ) . DataTypeId = 0 ;

b l o ck . OutputPort ( 1 ) . SamplingMode = ’ Sample ’ ;

b l o ck . OutputPort ( 1 ) . Dimens ions = 1;%bk1

b l o ck . OutputPort ( 2 ) . Complex i t y = ’ Real ’ ;

b l o ck . OutputPort ( 2 ) . DataTypeId = 0 ;

b l o ck . OutputPort ( 2 ) . SamplingMode = ’ Sample ’ ;

b l o ck . OutputPort ( 2 ) . Dimens ions = 1;%bk2

b l o ck . OutputPort ( 3 ) . Complex i t y = ’ Real ’ ;

b l o ck . OutputPort ( 3 ) . DataTypeId = 0 ;

b l o ck . OutputPort ( 3 ) . SamplingMode = ’ Sample ’ ;

b l o ck . OutputPort ( 3 ) . Dimens ions = 1;%bk3

b l o ck . OutputPort ( 4 ) . Complex i t y = ’ Real ’ ;

b l o ck . OutputPort ( 4 ) . DataTypeId = 0 ;
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b l o ck . OutputPort ( 4 ) . SamplingMode = ’ Sample ’ ;

b l o ck . OutputPort ( 4 ) . Dimens ions = 1;%bk4

b l o ck . OutputPort ( 5 ) . Complex i t y = ’ Real ’ ;

b l o ck . OutputPort ( 5 ) . DataTypeId = 0 ;

b l o ck . OutputPort ( 5 ) . SamplingMode = ’ Sample ’ ;

b l o ck . OutputPort ( 5 ) . Dimens ions = 1;% j

b l o ck . OutputPort ( 6 ) . Complex i t y = ’ Real ’ ;

b l o ck . OutputPort ( 6 ) . DataTypeId = 0 ;

b l o ck . OutputPort ( 6 ) . SamplingMode = ’ Sample ’ ;

b l o ck . OutputPort ( 6 ) . Dimens ions = 1;% s t a t e

%b lo ck . I npu tPo r t ( 1 ) . D i r e c tFeed th rough = t r u e ;

%% Set b l o ck sample t ime to i n h e r i t e d

b l o ck . SampleTimes = [ 0 . 6 0 ] ;

%% Run a c c e l e r a t o r on TLC

b l o ck . SetAccelRunOnTLC ( t r u e ) ;

%% Re g i s t e r methods

b l o ck . RegBlockMethod ( ’WriteRTW ’ , @WriteRTW ) ;

b l o ck . RegBlockMethod ( ’ Outputs ’ , @Output ) ;

%end f un c t i o n

f u n c t i o n Output ( b l o ck )

%−−−−−−−f i n d i n g g reedy ac t i on−−−−−−−−−−−−−−−−−−
i f ( abs ( b l o ck . I npu tPo r t ( 1 ) . Data )>=0.01)

s=(b l o ck . I npu tPo r t ( 3 ) . Data ) ;

max1=b lo ck . I npu tPo r t ( 2 ) . Data ( s , 1 ) ;

j =1;

f o r l =1:8

i f ( b l o ck . I npu tPo r t ( 2 ) . Data ( s , l )>max1 )

max1=b lo ck . I npu tPo r t ( 2 ) . Data ( s , l ) ;

j=l ;
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end

end

b l o ck . OutputPort ( 5 ) . Data=j ;

b l o ck . OutputPort ( 6 ) . Data=b l o ck . I npu tPo r t ( 3 ) . Data ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%inc r ement or decrement

d e l =4;

i f ( j==1)

b l o ck . OutputPort ( 1 ) . Data=b l o ck . I npu tPo r t ( 4 ) . Data+de l ;

e l s e i f ( j==2)

BK1=b lock . I npu tPo r t ( 4 ) . Data−d e l ;

b l o ck . OutputPort ( 1 ) . Data=b l o ck . I npu tPo r t ( 4 ) . Data−d e l ;

i f (BK1<=0)

b l o ck . OutputPort ( 1 ) . Data=b l o ck . I npu tPo r t ( 4 ) . Data+de l ;

end

e l s e i f ( j==3)

b l o ck . OutputPort ( 2 ) . Data=b l o ck . I npu tPo r t ( 5 ) . Data+de l ;

e l s e i f ( j==4)

BK2=b lock . I npu tPo r t ( 5 ) . Data−d e l ;

b l o ck . OutputPort ( 2 ) . Data=b l o ck . I npu tPo r t ( 5 ) . Data−d e l ;

i f (BK2<=0)

b l o ck . OutputPort ( 2 ) . Data=b l o ck . I npu tPo r t ( 5 ) . Data+de l ;

end

e l s e i f ( j==5)

b l o ck . OutputPort ( 3 ) . Data=b l o ck . I npu tPo r t ( 6 ) . Data+de l ;

e l s e i f ( j==6)

BK3=b lock . I npu tPo r t ( 6 ) . Data−d e l ;

b l o ck . OutputPort ( 3 ) . Data=b l o ck . I npu tPo r t ( 6 ) . Data−d e l ;

i f (BK3<=0)

b l o ck . OutputPort ( 3 ) . Data=b l o ck . I npu tPo r t ( 6 ) . Data+de l ;

end

e l s e i f ( j==7)

b l o ck . OutputPort ( 4 ) . Data=b l o ck . I npu tPo r t ( 7 ) . Data+de l ;

e l s e i f ( j==8)
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c4=b lo ck . I npu tPo r t ( 7 ) . Data−d e l ;

b l o ck . OutputPort ( 4 ) . Data=b l o ck . I npu tPo r t ( 7 ) . Data−d e l ;

i f ( c4<=0)

b l o ck . OutputPort ( 4 ) . Data=b l o ck . I npu tPo r t ( 7 ) . Data+de l ;

end

end

e l s e

b l o ck . OutputPort ( 5 ) . Data=9;

b l o ck . OutputPort ( 6 ) . Data=b l o ck . I npu tPo r t ( 3 ) . Data ;

b l o ck . OutputPort ( 1 ) . Data=b l o ck . I npu tPo r t ( 4 ) . Data ;

b l o ck . OutputPort ( 2 ) . Data=b l o ck . I npu tPo r t ( 5 ) . Data ;

b l o ck . OutputPort ( 3 ) . Data=b l o ck . I npu tPo r t ( 6 ) . Data ;

b l o ck . OutputPort ( 4 ) . Data=b l o ck . I npu tPo r t ( 7 ) . Data ;

end

%end f un c t i o n

Reinforcement Learning

f u n c t i o n r l 2 ( b l o ck )

g l o b a l a l gama

a l =0.9 ;

gama=0.9;

% Leve l−2 M f i l e S−Funct i on f o r t imes two demo .

% Copy r i gh t 1990−2004 The MathWorks , I n c .

% Revision : 1.1.6.1

s e tup ( b l o ck ) ;

%end f un c t i o n

f u n c t i o n se tup ( b l o ck )

%% Re g i s t e r number o f i n pu t and output p o r t s

b l o ck . NumInputPorts = 4 ;

b l o ck . NumOutputPorts = 2 ;
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%% Setup f u n c t i o n a l po r t p r o p e r t i e s to d ynam i c a l l y

%% i n h e r i t e d .

b l o ck . SetPreCompInpPort InfoToDynamic ;

b l o ck . SetPreCompOutPortInfoToDynamic ;

b l o ck . I npu tPo r t ( 1 ) . Complex i t y = ’ Real ’ ;

b l o ck . I npu tPo r t ( 1 ) . DataTypeId = 0 ;

b l o ck . I npu tPo r t ( 1 ) . SamplingMode = ’ Sample ’ ;

b l o ck . I npu tPo r t ( 1 ) . Dimens ions = 1;% PI1

b l o ck . I npu tPo r t ( 2 ) . Complex i t y = ’ Real ’ ;

b l o ck . I npu tPo r t ( 2 ) . DataTypeId = 0 ;

b l o ck . I npu tPo r t ( 2 ) . SamplingMode = ’ Sample ’ ;

b l o ck . I npu tPo r t ( 2 ) . Dimens ions = [4 9 ] ;

b l o ck . I npu tPo r t ( 3 ) . Complex i t y = ’ Real ’ ;

b l o ck . I npu tPo r t ( 3 ) . DataTypeId = 0 ;

b l o ck . I npu tPo r t ( 3 ) . SamplingMode = ’ Sample ’ ;

b l o ck . I npu tPo r t ( 3 ) . Dimens ions = 1;% s t a t e

b l o ck . I npu tPo r t ( 4 ) . Complex i t y = ’ Real ’ ;

b l o ck . I npu tPo r t ( 4 ) . DataTypeId = 0 ;

b l o ck . I npu tPo r t ( 4 ) . SamplingMode = ’ Sample ’ ;

b l o ck . I npu tPo r t ( 4 ) . Dimens ions = 1;% j ( number o f the a c t i o n taken )

b l o ck . OutputPort ( 1 ) . Complex i t y = ’ Real ’ ;

%b l o ck . OutputPort ( 1 ) . DataTypeId = 0 ;

b l o ck . OutputPort ( 1 ) . SamplingMode = ’ Sample ’ ;

b l o ck . OutputPort ( 1 ) . Dimens ions = [4 9 ] ;

b l o ck . OutputPort ( 2 ) . Complex i t y = ’ Real ’ ;

%b l o ck . OutputPort ( 2 ) . DataTypeId = 0 ;

b l o ck . OutputPort ( 2 ) . SamplingMode = ’ Sample ’ ;

b l o ck . OutputPort ( 2 ) . Dimens ions = 1 ;

%% Set b l o ck sample t ime to i n h e r i t e d
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b l o ck . SampleTimes = [ 0 . 6 0 ] ;

%% Run a c c e l e r a t o r on TLC

b l o ck . SetAccelRunOnTLC ( t r u e ) ;

%% Re g i s t e r methods

b l o ck . RegBlockMethod ( ’WriteRTW ’ , @WriteRTW ) ;

b l o ck . RegBlockMethod ( ’ Outputs ’ , @Output ) ;

%end f un c t i o n

f u n c t i o n Output ( b l o ck )

a l =0.9 ;

gama=0.9;

y1=(b l o ck . I npu tPo r t ( 1 ) . Data ( 1 ) ) ;

i f ( y1>=100)

sn=1;

e l s e i f ( ( y1>=10)&&(y1 <100))

sn=2;

e l s e i f ( ( y1>=0.01)&&(y1 <10))

sn=3;

e l s e

sn=4;

end

r=abs (−10ˆ2)∗ y1 ;

s=b l o ck . I npu tPo r t ( 3 ) . Data ;

j=b l o ck . I npu tPo r t ( 4 ) . Data ;

max2=b lo ck . I npu tPo r t ( 2 ) . Data ( s , 1 ) ;

f o r z=1:8

i f ( b l o ck . I npu tPo r t ( 2 ) . Data ( s , z)>max2 )

max2=b lo ck . I npu tPo r t ( 2 ) . Data ( s , z ) ;

end
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end

b l o ck . OutputPort ( 1 ) . Data ( s , j )=(1− a l )∗ b l o ck . I npu tPo r t ( 2 ) . Data ( s , j )+ a l ∗( r+gama∗max2 ) ;

b l o ck . OutputPort ( 2 ) . Data=sn ;

%end f un c t i o n
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Appendix-I

Lemma: Consider ith subsystem, where i = 1, 2, · · ·n

ẋi = f0i(xi) + g0i(xi)z1i (F.1)

ż1i = f1i(xi, z1i) + g1i(xi, z1i)(ui + di) (F.2)

The following control

ui = uBi + uDi (F.3)

where uBi, uDi are backstepping control and nonlinear damping respectively, guarantees global

uniform boundedness of X = (xi, z1i) and convergence to the residual set

< =

{
X :

n∑
i=1

|X| ≤ ς−1
1 ◦ ς2 ◦ ς−1

3

(
n∑

i=1

‖di‖2
∞

4γi

)}
(F.4)

where ς1, ς2, and ς3 are κ∞ function such that

ς1(|X|) ≤ V (X) ≤ ς2(|X|) (F.5)

ς3(|X|) ≤ W (X) (F.6)

174
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Summation of Lyapunov function is positive definite.

Vtotal =
n∑

i=1

V1i(xi, z1i) i = 1, 2, · · ·n (F.7)

Obtain derivative of Lyapunov function along closed loop trajectories (F.1), (F.2)

V̇total =
n∑

i=1

∂V1i(xi, z1i)
∂xi

ẋi +
∂V1i(xi, z1i)

∂z1i
ż1i i = 1, 2, · · ·n (F.8)

V̇total =
n∑

i=1

∂V1i(xi, z1i)
∂xi

(f0i(xi) + g0i(xi)z1i) +

+
∂V1i(xi, z1i)

∂z1i
(f1i(xi, z1i) + g1i(xi, z1i)(ui + di)) (F.9)

substitute control signal in (F.9)

V̇total =
n∑

i=1

∂V1i(xi, z1i)
∂xi

(f0i(xi) + g0i(xi)z1i) +

+
∂V1i(xi, z1i)

∂z1i
(f1i(xi, z1i) + g1i(xi, z1i)φ1i(xi, zi1)−

− γi
∂V1i(xi, z1i)

∂z1i
g2
1i(xi, z1i) + g1i(xi, z1i)di) (F.10)

V̇total =
n∑

i=1

∂V1i(xi, z1i)
∂xi

(f0i(xi) + g0i(xi)z1i) +

+
∂V1i(xi, z1i)

∂z1i
(f1i(xi, z1i) + g1i(xi, z1i)φ1i(xi, zi1))−

− γi(
∂V1i(xi, z1i)

∂z1i
)2g2

1i(xi, z1i) +
∂V1i(xi, z1i)

∂z1i
g1i(xi, z1i)di (F.11)

use (4.18)

n∑
i=1

∂V1i(xi, z1i)
∂xi

(f0i(xi) + g0i(xi)z1i) +

+
∂V1i(xi, z1i)

∂z1i
(f1i(xi, z1i) + g1i(xi, z1i)φ1i(xi, zi1))

≤
n∑

i=1

−Wi(xi)− k1i(z1i − φ0i(xi))2 (F.12)
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substitute (F.12) in (F.11)

V̇total ≤
n∑

i=1

−Wi(xi)− k1i(z1i − φ0i(xi))2 −

− γi(
∂V1i(xi, z1i)

∂z1i
)2g2

1i(xi, z1i) +
∂V1i(xi, z1i)

∂z1i
g1i(xi, z1i)di

(F.13)

From Young’s inequality know that

AB ≤ γA2 +
1
4γ

B2 γ > 0 (F.14)

where A,B are variables, and γ is constant. Consider the last term (F.13), and apply (F.14)

n∑
i=1

∂V1i(xi, z1i)
∂z1i

g1i(xi, z1i)di ≤
n∑

i=1

γ(
∂V1i(xi, z1i)

∂z1i
g1i(xi, z1i))2 +

1
4γi

d2
i

≤
n∑

i=1

γ(
∂V1i(xi, z1i)

∂z1i
g1i(xi, z1i))2 +

1
4γi

‖di‖2
∞ (F.15)

Substitute (F.15) in (F.13) and simplify

V̇total ≤
n∑

i=1

−Wi(xi)− k1i(z1i − φ0i(xi))2 +
1

4γi
‖di‖2

∞ (F.16)

From (F.16) it follows that V̇total is negative definite whenever

n∑
i=1

Wi(xi) + k1i(z1i − φ0i(xi))2 ≥
n∑

i=1

1
4γi

‖di‖2
∞ (F.17)

or in simplified form

n∑
i=1

Wi(Xi) ≥
n∑

i=1

1
4γi

‖di‖2
∞ (F.18)

where Xi = (xi, z1i). Large γi decreases the effect of disturbance and will guarantee the

stability of system. Combining (F.18) with (F.6) results in

n∑
i=1

|Xi| > ς−1
3 (

n∑
i=1

1
4γi

‖di‖2
∞) ⇒ V̇total < 0 (F.19)

Means that if
∑n

i=1 |Xi(0)| ≤ ς−1
3 (
∑n

i=1
1

4γi
‖di‖2

∞), then from (F.5)

n∑
i=1

Vi(Xi) ≤ ς2 ◦ ς−1
3 (

n∑
i=1

1
4γi

‖di‖2
∞) (F.20)
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implies that

n∑
i=1

|Xi| ≤ ς−1
1 ◦ ς2 ◦ ς−1

3 (
n∑

i=1

1
4γi

‖di‖2
∞) (F.21)

on the other hand if
∑n

i=1 |Xi(0)| > ς−1
3 (
∑n

i=1
1

4γi
‖di‖2

∞), then

n∑
i=1

Vi(Xi) ≤
n∑

i=1

Vi(Xi(0)) (F.22)

that implies

n∑
i=1

|Xi| ≤ ς−1
1 ◦ ς2(

n∑
i=1

|Xi(0)|) (F.23)

Combining (F.21) and (F.23) results in the global uniform boundedness of Xi.
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Appendix-II

Consider generators (single-axis) connected through a transmission line (Figure G.1).The cou-

pling term for each machine is given in following [35].

Electric 

Power

2eP
1eP

Generator 

B

Generator 

A

Electric 

Power

Transmission

LineBus-1

Bus-2

Area-BArea-A

Figure G.1: Schematic view of two generators with single transmission line in between

di = − P ◦ei
T
′
qoi

+
Iqiu

◦
fldi

T
′
qoi

−
IdiIqi(xdi − x

′
di)

T
′
qi

+ E
′
qiİqi (G.1)
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where algebraic equation are presented as

Pei =
n∑

j=1

E
′
qiE

′
qjBij sin(δi − δj) (G.2)

Qei =
n∑

j=1

E
′
qiE

′
qjBij cos(δi − δj) (G.3)

Edi = E
′
qi + (xdi − x

′
di)Idi (G.4)

Iqi =
n∑

j=1

E
′
qjBijsin(δi − δj)

Idi = −
n∑

j=1

E
′
qj(Bijcos(δi − δj) (G.5)

Assume that u◦fld ≈ E and use (G.4) to simplify the first three terms of the coupling term

that results in di ≈ E
′
qiİqi. This presents that subsystem dynamics for each generator are

nonlinear and coupled through nonlinear coupling equations Iqi(t). The main goal is to obtain

explicitly the coupling terms Φ(∆Ptie) as a function of tie line power deviations as mentioned

in equation (6.19). Starting point include coupling term that appears in derivative of each

Lyapunov function has the following extra term

V̇ = −κ1(∆δ − α0)2 − κ2(∆ω − α1)2 − κ3(∆Pe − α2)2 + (∆Pe − α2)d (G.6)

Here it is shown for simplistic case that the coupling term is a function of tie line power and

will counteract any errors in the estimate.

Φ(∆Ptie) = (∆PA
e1 − αA

2 )dA + (∆PB
e2 − αB

2 )dB (G.7)

Φ(∆Ptie) ≈ (∆PA
e1 − αA

2 )E
′
q1İq1 + (∆PB

e2 − αB
2 )E

′
q2İq2

Obtain derivative of (G.5) and substitute in (G.7), then factorizing

Φ ≈ (∆PA
e1 − αA

2 )E
′
q1

 2∑
j=1

Ė
′
qjB1j sin(δ1 − δj)+

E
′
qjB1j cos(δ1 − δj)(ω1 − ωj)


+(∆PB

e2 − αB
2 )E

′
q2

 2∑
j=1

Ė
′
qjB2j sin(δ2 − δj)+

E
′
qjB2j cos(δ2 − δj)(ω2 − ωj)


(G.8)
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substitute dynamic of quadratic voltage for j = 1, 2

Ė
′
qj =

1
T
′
doj

(ufldj − Eqj) (G.9)

assume that ufldj ≈ σEqj and Ė
′
qj ≈ ςE

′
qj where ς and σ are proportional term which are

specified through reinforcement learning. Equation (G.8) can be simplified as

(∆PA
e1 − αA

2 −∆PB
e2 + αB

2 )

 E
′
q1E

′
q2ςB12 sin(δ1 − δ2)+

E
′
q1E

′
q2ςB12 cos(δ1 − δ2)(ω1 − ω2)


(G.10)

Referring to active and reactive power definition (G.2, G.3), equation (G.10) simplify as

(∆PA
e2 − αA

2 −∆PB
e2 + αB

2 )
{

Pe1ςB12 −
(
Qe1 − E

′2
q1B11

)
(ω1 − ω2)

}

(G.11)

using (4.48) and (4.38), the first expression becomes

∆PA
e1 − αA

2 −∆PB
e2 + αB

2 = ∆PA
e1 − αA

21∆δ1−
−αA

22(∆ω1 − αA
1 )−∆PB

e2 + αB
21∆δ2 + αB

22(∆ω2 − αB
1 )

(G.12)

following assumptions are considered

• ∆ω2 → αB
1 , ∆ω1 → αA

1

• ∆δ1α
A
21 ≈ ∆δ2α

B
21

simplify (G.11)

Φ ≈ (∆PA
e1 −∆PB

e2)
{

PA
e1ςB12 −

(
QB

e1 − E
′2
q1B11

)
(ω1 − ω2)

}

(G.13)
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consider the lossless case where active and reactive power for area-1 can be written as PA
e1 =

P A
e1+P A

e1
2 = P A

e1−P B
e2

2 similarly for reactive power.

Φ ≈
(
∆PA

e1 −∆PB
e2

)


(ω1−ω2)
2

 −Qe1 −Qe2

−E
′2
q1B11 − E

′2
q2B22


− ς

2

(
∆PA

e1 −∆PB
e2 + P

◦A
e1 − P

◦B
e2

)


(G.14)

Reactive power expression is written in following form, using (G.3)

(
∆PA

e1 −∆PB
e2

)


(ω1−ω2)
2

 E
′
q1E

′
q2B12 cos(δ1 − δ2)+

E
′
q1E

′
q2B21 cos(δ2 − δ1)


− ς

2

(
∆PA

e1 −∆PB
e2 + P

◦A
e1 − P

◦B
e2

)


(G.15)

where final expression is obtained

Φ ≈ (∆Ptie)
{

1
2

∂∆Ptie

∂δ12

∂δ12

∂t
− ς

2
(∆Ptie + P ◦tie)

}

Φ ≈ − ς

2
∆P 2

tie −
ς

2
P ◦tie∆Ptie +

1
2

∂∆Ptie

∂δ12

∂δ12

∂t

(G.16)

where ∆Ptie = ∆PA
e1−∆PB

e2. Therefore the coupling term is approximated as a tie-line power

from area 1 to 2.
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