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Abstract

Power System Damping Controllers Design using a Backstepping Control Technique
by

Ali Karimi

Doctor of Philosophy in Electrical Engineering
West Virginia University

Professor Ali Feliachi, Ph.D., Chair

The objective of this dissertation is to design and coordinate controllers that will enhance
transient stability of power systems subject to large disturbances. Two specific classes of
controllers have been investigated, the first one is a type of supplementary signals added to
the excitation systems of the generating units, and the second is a type of damping signal
added to a device called a Static Var Compensator that can be placed at any node in the
system. To address a wide range of operating conditions, a nonlinear control design technique,
called backstepping control, is used. While these two types of controllers improve the dynamic
performance significantly, a coordination of these controllers is even more promising. Control
coordination is presented in two parts. First part concerns simultaneous optimization of
selected control gains of exciter and SVC in coping with the complex nature of power systems.
Second part proposes a combination of reinforcement learning and a backstepping control
technique for excitation control system. The reinforcement learning progressively learns and
adapts the backstepping control gains to handle a wide range of operating conditions. Results
show that the proposed control technique provides better damping than conventional power
system stabilizers and backstepping fixed gain controllers.
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CHAPTER

1

Introduction

1.1 Problem Statement

The electric power system is a large complex interconnected system that constantly changes
in structure due to load changes, disturbances, faults, installation of new devices and appa-
ratus. Transients in the power system are analyzed using many levels of modeling details.
Mathematical formulation is governed by differential algebraic equations that describe the
dynamics of the generators in connection with the grid. These generators are nonlinear elec-
tromechanical systems that run synchronously. Following large system disturbances, some
synchronous generators may swing enough to lose synchronism with the system or become

transiently unstable.

Control is vital element to maintain the stability of the interconnected power system.
Because of this need, control structures are becoming more pervasive and numerous, guar-
anteeing the stability of system over the wide range of operating conditions. They can be
installed on generators, transmission lines, and distribution side. In this study, controllers are

installed on generators and transmissions that can affect the stability of the overall grid.

With rapid growth of electric power system, the dynamic performance of controls, stability
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of systems, and methods of studying have changed correspondingly. Design and implemen-
tation of control techniques to enhance the stability of large scale power systems is a more
challenging problem than ever before. The system itself is highly nonlinear, time varying,
and geographically dispersed. With regard to above descriptions, the following questions are

raised

e What is a feasible control structure to improve the stability of system?

e Is there a systematic way to obtain this control structure?

One of the most practical and economical ways of enhancing system stability is through
excitation systems [66]. The excitation system can provides oscillation damping to power
systems when augmented with supplementary controls. It can regulate the terminal voltage
of generator when it is used with automatic voltage regulator. Other devices which can also
play an increasing role in the operation and control of today’s power systems are Flexible
Alternating Current Transmission System or FACTS devices that certainly has influence on
stability of power system [39]. FACTS devices are based on high-voltage and high-speed
power electronics devices. There are capable of increasing the controllability of power flows

and voltages enhancing the utilization and stability of existing systems.

Most available control techniques are based on linear power system models that are valid
around the operating points. These include several designs for linearized models using a
specific operating condition, making them prone to system changes. Power system by its
nature is nonlinear, and it motivates to design a nonlinear control rather than linear one to
avoid the need for linearization of power system equations. To enhance the safe operation
of power system, the proposed controller has to perform satisfactorily over different scenarios
that the system is likely to experience and dampen system oscillations without adversely

affecting other aspects of system performance.

As for the system, electric power grid has been selected by the engineering academy as
the first choice for the twentieth century engineering innovation that is most beneficial to
civilization [30, 8]. Therefore, a system with this level of attention and importance needs to
be properly controlled as to guarantee stability following contingencies and disturbances. For
such a complex electric power system, outage of single transmission line, generation unit or
equipment failure might gradually lead into several more outages and eventually collapse of

the entire system if it is not properly controlled.



CHAPTER 1. INTRODUCTION 3

The dynamics of power system following considerable structural changes and loading con-
ditions need to be controlled in order to ensure the system’s integrity. These events can
create dynamic stability problems in a fraction of a second [30]. The excitation control and
FACTS devices are nowadays becoming a mean of equal importance in fast acting device to
improve the stability of system. The progress made and aforementioned ideas motivated this

dissertation with following approach.

1.2 Approach

Design of controller by implementing nonlinear control techniques has gained significant influ-
ence due to its inherent ability to improve control performance beyond what can be achieved
by linear controls. In fact, linear analysis of complex nonlinear power system may fail in
capturing some dynamic behaviors of the system especially in the events of critical faults or
major disturbances. Today, nonlinear control theory forms a modern discipline that provides
the tools necessary to improve dynamic performance so as to provide better quality and more
secure power supply. Advances in computer systems and signal processing allow the practical

implementation of these nonlinear controls.

The approach in this dissertation is as follows. On excitation control, first each generator is
considered as a subsystem within the overall electric power system. Mathematical description
of each subsystem is achieved by a set of algebraic differential equations. The equations include
the interface among subsystems as well. Each subsystem, generator model, is transformed
into strict feedback form [64]. This formation is suitable for implementing proposed control
technique known as backstepping. Backstepping control is applied to each subsystem. The
controller has gains that require proper tuning. Tuning of control gains should be coordinated
with others and need to be done simultaneously so as to avoid adverse interactions. Hence, the
control methodology is applied within the framework of a multi objective optimization problem
to obtain optimum parameters for backstepping controls. The challenge lies in incorporating
evolutionary computation with PSO to improve the performance of the proposed controller.
By doing so, a tuned decentralized control scheme of system is achieved. Meaning that all the
information for control at each subsystem are obtained and processed locally. Decentralized

control has been a major research issue for many years by several researchers [91].

FACTS becomes a means equal importance to enhance stability of power system. SVCs
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are placed in the grid with the main purpose of the voltage support. These devices have sev-
eral advantage including reduction of operation and transmission investment cost, increasing
system security and reliability, increase power transfer capabilities, and overall enhancing a
better quality of power and voltage. SVCs are shunt FACTS devices that can provide continu-
ous and rapid control of reactive power and voltage, enhancing several aspects of transmission
system performance, such as prevention of voltage collapse, transient stability enhancement
during system oscillations. Generally, voltage regulation is the primary mode of operation,
which improves voltage stability. However, the contribution of SVC to the damping of the sys-
tem oscillations resulting due to the voltage regulation alone is not enough. Hence a damping
controller is presented based on backstepping approach to enhance the damping of the system.
The proposed controller is capable to provide additional damping during system oscillations
for SVC. Centralized type of controller is designed with backstepping technique which requires
remote information from each area. Conventional technique for designing these damping con-
trollers are based on linear analysis based on one operating point which is not valid for wider
range of operations. High degree of nonlinearity in power system and changes of operating
conditions make the situation more challenging. Hence, nonlinear controller is designed based
on backstepping control technique to achieve a good performance and enhance the stability

under a wide range of operating conditions.

Damping of power system swings has important roles such as increasing the transmission
capability, stabilizing the power system especially after large disturbance in the system. In
power system several control devices are active simultaneously, hence it is important to ensure
the stability of system in global and optimal manner. Simultaneous optimization of pre-
selected parameters of exciter and SVC control parameters is performed based on particle
swarm optimization (PSO) algorithm under transient conditions so that the stability of overall

system can be improved over a wide range of operating conditions.

More advanced control technique is presented as an approach toward modern electric sys-
tem. These new techniques lead to better, and in some cases guaranteed dynamic performance
than conventional fixed parameter controllers. These control schemes have been based on both
local measurements as well as measurements at different locations in the system resulting in
decentralized and centralized approaches. In more specific, reinforcement learning algorithm

[85] is applied to the backstepping controller on excitation system. These controllers are de-



CHAPTER 1. INTRODUCTION 5)

signed to withstand a set of credible contingencies in the system which satisfies their objective
functions. Instead of having a pre-selected constant gains for controllers, the gains are op-
timized at first, then re-adjusted through reinforcement learning algorithm due to small and

large disturbances which happens in the electric power grid.

1.3 Overview

The organization of this dissertation is as follows:

e Chapter 1: Introduction
The introduction consists of problem statement and approach. It continues with an
overview and outline for this dissertation.

e Chapter 2: Literature survey
This chapter presents a survey concerning transient stability (section 2.3) and control
design tools (section 6.19).

e Chapter 3: Background

This chapter includes basic background related to backstepping control design for simple

power system. Also the function optimization with particle swarm is explained.

— Backstepping control design and implementation on simple power system (section

3.1)

— Function Optimization (section 3.2)

e Chapter 4: Transient Stability Enhancement Using Excitation Control

This chapter includes proposed controller schemes for electric power systems:

— Backstepping control tuned by particle swarm optimization technique (section 4.1)
— Extended-backstepping control in presence of disturbance (section 4.2)

— Adaptive backstepping control in presence of uncertainties (section 4.3)

e Chapter 5: Transient Stability Enhancement using SVC

— Static Var Compensators (section 5.1)
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— Application of backstepping control in Static Var Compensator (section 5.2)

e Chapter 6: Control Coordination

This chapter includes two parts.

— On first part, a simultaneous tuning procedure for nonlinear damping controllers

for SVC and generator exciter is presented, using particle swarm optimization (6.1).

— On second part, advanced control technique is presented. Reinforcement learning
scheme is presented and improves the performance of the controller for generator

exciter in a multi machine power system (6.6).

e Chapter 7: Summary and conclusions

— Completed Work (section 7.1)
— Suggestion for Future Work (section 7.2)

— Accomplishments and list of publications (section 7.3)

This chapter summarizes the benefits of the developed nonlinear control and the enhance-
ments achieved by designing nonlinear damping controls using the proposed technique,
gives suggestions for future work, and lists research work already done or in progress

that is based on parts of this dissertation.

e Appendices A-D include system benchmark data and Appendix E include MAT-
LAB!computer codes. Finally, a lemma and mathematical simplification related to

interconnection term are covered in Appendices F and G respectively.

All Case studies presented, are performed with the help of the Power Analysis Toolbox
(PAT), a simulation package developed by Advanced Power and Electricity Research
Center (APERC) at West Virginia University [82]. PAT includes advanced vectorized
computations as well as a block-oriented simulation in MATLAB environment. The
conditions for performing steady-state analysis, including load flow calculations and
voltage-stability analysis are included. In addition, it has the capability of transient

stability.

'MATLAB and Simulink are products of The Mathworks, Inc., http://www.mathworks.com/
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2

Literature Survey

2.1 Introduction

In this chapter a literature survey related to the problem investigated in this dissertation
is presented. The survey is organized as follow. In section 2.2 work related to Lyapunov
stability is presented. Section 2.3 presents transient stability and related works. In Section

6.19 a survey on control design tools is given.

2.2 Lyapunov Stability

In this section the tools of Lyapunov stability theory is reviewed. These tools will be used
in the following chapters to analyze the stability properties of proposed nonlinear controller.

Consider the dynamic system:
T; = f(:E,t), l‘(to) =z90 z€R" (21)

It is assume that f(z,t) satisfies the conditions for the existence and uniqueness of solution,
x and t denotes states and time respectively. A point 2* € R™ is an equilibrium point of (2.1)
if f(z*,t) = 0. Equilibrium point is locally stable if all solutions which start near z* remain

near x* for all time. The equilibrium point z* is said to be locally asymptotically stable if z*

7
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is locally stable and all solutions starting near z* tend toward z* as t — oco. By shifting the
origin of the system, it is assumed that the equilibrium point of interest occurs at x*. In case
of multiple equilibrium point, each need to to be studied by shifting the origin appropriately.

Several definitions are described in following:

e Stability in the sense of Lyapunov: The equilibrium point z* = 0 of (2.1) is stable

in sense of Lyapunov at t = ¢¢ if for any € > 0 there exists a §(g, €) > 0 such
lx(to)]] <0 = ||lx(t)|| <€, Vt>to (2.2)

Lyapunov stability does not require that trajectories starting close to the origin tend
to the origin asymptotically. Also stability is defined at ¢ = t3. Uniform stability is
a concept which guarantees that the equilibrium point is not losing stability. For the
uniformly stable equilibrium point z*, the upper bound ¢ is not a function of ¢y, so the

equation (2.2) may hold for all ¢.

e Asymptotic Stability: An equilibrium point of 2.1 is asymptotically stable at ¢t = tg

if z* = 0 is stable, and locally attractive. Meaning that
llz(to)|| < & = limi—ooz(t) =0 (2.3)

As in the previous definition, asymptotic stability is defined at tg. Uniform asymptotic
stability requires that x* = 0 is uniformly stable, and z* = 0 is uniformly locally
attractive.

An equilibrium point is called unstable if it is not stable. Note that the aforementioned
definitions are local definitions which describe the behavior of a system near equilibrium
point. By definition equilibrium point z* is globally stable for all initial conditions
xg € R™. Global stability is an ideal and desirable, but in application of large scale

nonlinear systems such as electric power system can be difficult to achieve.

Lyapunov’s first method or indirect method of Lyapunov provides a linearization of system to

determine the local stability of the original system. Given the system
T = f(z,1) (2.4)
with f(0,¢) = 0 for all ¢ > 0. Define J(t)

(2.5)
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to be the Jacobian matrix of f(z,t) with respect to x, and evaluated at the origin. The system
i =J(t)x (2.6)

is defined as the linearization of equation (2.1). When the linearization exists, its stability
determines the local stability of the original nonlinear system. From the linearized model,
when Jacobian J has all eigenvalues with negative real parts, the linearized equation (2.6)
is called asymptotically stable. For this case initial conditions of states z lying in a finite
region around the origin, where the initial displacement of the state x from the origin within
this origin will decay to zero as time goes to infinity (asymptotically stable). This type of
analysis is called “stability in the small” [65]. On the other hand “stability in the large” may

be studied by explicit solution of the nonlinear differential equations.

Second or direct method of Lyapunov has proved subsequently to be more important
than the first method since it directly related to nonlinear system and allows determining the
stability of a system without explicitly integrating the differential equations. The approach
based on the direct method would consist of characterizing the dynamic behavior of the system
using suitable Lyapunov function. The idea is that if there is some measure of energy in the
system, then the rate of change of that energy to ascertain stability can be studied. For better

clarification of this concept, let B, be a ball of size ¢ around the origin where

B.={x € R": ||z] < €} (2.7)

e Locally Positive Definite Function: A continuous function V : R" x Ry — R is
a locally positive definite function if for some € > 0 and some continuous, and strictly

increasing function o : R4 — R.

V(0,t) =0, and V(z,t) > a(||z]) Yz € B, Vt>0 (2.8)

e Positive definite functions: A continuous function V' : R® x Ry — R is a posi-
tive definite function if it satisfies the conditions of locally positive definite function,

additionally a(p) — oo as (p) — oc.

e Decrescent functions: A continuous function V : R" x Ry — R is a decrescent

function, if for some € > 0 and some continuous strictly increasing function g8 : Ry — R

V(0,t) =0, and V(z,t) < B(||z|]) Vo € B, Vt>0 (2.9)
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In brief the direct method states that depends on V(x,t) and V(z,t) < 0 then it is
possible to specify the stability condition of system. The time derivative of V' is taken along

the trajectories of the system:

ov. oV

Vi—seo = 57 + 55 (2.10)

Let V(x,t) be a non-negative function with derivative 1% along the trajectories of the system.

Stability conditions are summarized a follow:

e If V(x,t) is locally positive definite and V (z,t) < 0 locally in z and for all ¢, then the

origin of the system is locally stable in sense of Lyapunov.

e If V(z,t) is locally positive definite and decrescent, and V (x,t) < 0 locally in z and for

all ¢, then the origin of the system is uniformly locally stable in sense of Lyapunov.

o If V(x,t) is locally positive definite and decrescent, and —V (z,t) is locally positive

definite, then the origin is uniformly locally asymptotically stable.

e If V(x,t) is positive definite and decrescent, and —V (x,t) is positive definite, then the
origin of the system is globally uniformly asymptotically stable.

In general, the second method of Lyapunov gives sufficient conditions for the stability of
a origin of the system [75]. It does not provide information on how to provide the Lyapunov
function V' (x,t), hence the search for a Lyapunov function establishing stability of an equilib-
rium point could be subtle. For the electric power grid it is usually hard to find the Lyapunov
function which is also not a unique function. Furthermore, while the condition of Lyapunov
stability theorem is sufficient, this does not specify on how to obtain the Lyapunov functions.
A natural choice for the Lyapunov function is the system energy. A detailed analysis of the
kinetic and potential energy behavior along time domain trajectory was conducted by sev-
eral researchers and is addressed in literature [81], [31], [70]. In their analysis the Lyapunov
function is composed from the kinetic energy associated with gross motion of angular speed
of generators plus the potential energy which relates to inter-machine motion between the

generators.
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2.3 Transient Stability

The electric power systems have grown in size and complexity with large number of intercon-
nections. The design of such a system and its secure operation is still a challenging operation.
To maintain a reliable service, a bulk electric grid must remain intact and be capable of with-
standing a variety of small and large disturbances. Stability has been a major concern in
electric power system for several years. In evaluation of stability the concern is the behavior
of the power system when subjected to a transient disturbance, which may be small or large.
The system is stable if it is able to operate satisfactorily under these conditions and effectively
supply the maximum demand. Having provided the definitions of stability, the formation of
stability procedure is presented in following. The system is initially at pre-disturbance steady

state conditions presented by equation
z(t) = fP(x(t)) —oo<t<O0 (2.11)

Superscript indicates the pre-disturbance situation. The system is at equilibrium, and the
initial conditions are obtained by solving the power flow. Meaning that for a given power
grid, with known complex power loads and generations with their constraints, solve for any
unknown bus voltages and unspecified power generations and finally for the complex power
flow in the grid components. Now consider at time ¢ = 0 the fault is initiated in system. As

a result of fault occurrence, the dynamic of the system changes as:
i(t) = (@) 0<t <ty (2.12)

where the superscript f indicates the fault conditions. The fault is cleared by implementing
protective devices at time t.. As a result the dynamic of the system is changed to post-

disturbance which is formulated as
(t) = f(z(t)) tag <t<oo (2.13)

the stability analysis is performed with objective to achieve the asymptotic stability of equi-
librium point of system.

In reality the power system is a large complex system which is interconnected. As the com-
plexity of system grows, the challenge to its secure operation grows as well [29]. From stability

point of view, designing controllers for large interconnected system to ensure stable operation
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is a challenging problem. Power system is highly related to synchronous generators for gen-
eration of electric power. The necessary condition for transmission and exchange of power is
that all generators rotates at synchronism.

In evaluation of stability, the major concern is the ability of electric power system to
remain inact and capable of withstanding a variety of disturbances. Based on IEEE/CIGR
Joint Task Force on Stability Terms and Definitions [41], Power System Stability is defined as

follow:

“The ability of an electric power system, for a given operating condition, to regain
a state of operating equilibrium after being subjected to a physical disturbance,
with most system variables bounded so that particularly the entire system remains

inact”

Disturbances might be small or large. For instance continuous load changes are considered
as small disturbances but loss of long transmission line or trip of large generator from the
grid are considered as large disturbances. In this study mostly the later type of disturbance
is in concern. Hence, controllers are designed in a way to withstand large disturbances in the
system. Based on [41], classical term concerning stability related to these type of disturbances

is called transient stability and is defined as

“Ability of power system to maintain synchronism when subjected to severe dis-

turbances”

The instability of power system can take different forms and can be affected by wide range
of factors. Hence, it is important to identify the factors that contribute to unstability, and
to form the method of improving stable operations. The classification of stability will greatly
simplify this purpose. The main concern in this study is focused on transient stability. The
time frame concern in transient stability studies, is almost 3 — 5 seconds following a large
disturbance. Also for very large systems the time is extended to 10-20 seconds [41].

When disturbance happens in the system, it upsets the balance between prime mover
mechanical power and generator electrical power that some generators, possibly close to dis-
turbance, attain deviation from synchronous speed. And when one generator rotates faster

than the other, angular position of its rotor relative to the slower one will increase as well.
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This separation of angular position of rotor angles might increase further if the system can
not absorb enough kinetic energy corresponding to this deviation of speed. As a result it leads
to loss of synchronism and unstability. The concept is judged by variation of rotor angles of
generators with respect to time. If a rotor angle of a generator or group of generators continue
to increase with respect to the rest of the generators, the system is considered as unstable. It
is common to measure rotor angle of generator with respect to a fixed reference frame known
as synchronous rotating reference frame. Hence the synchronism is lost once rotor angle of

generator or group of generators are separated away from the rest of generators.

The prevention of electric power system losing synchronism after a large disturbance is
of great importance. Stability study of power system oscillations shows that power systems
contain many modes of oscillations due to interactions between different components. Many
of the oscillations are due to synchronous generator relative rotor swings. These oscillations
often grows in magnitude over the span of seconds. In some cases they may cause larger
generator groups to lose synchronism where part or overall of electric system is lost. Sustained
oscillations may disrupt the power system even if they do not cause electric grid separation
and loss of generations. For instance power swings may have associated voltage and frequency
deviations that are unacceptable. One practical way to enhance the stability of synchronous
generator is through excitation system equipped with supplementary control [65]. Excitation
system contributes to effective control of voltage and ensure stability for large disturbance.
Basically it provides DC voltage to field windings of generator and modulates this voltage for
control objectives. Several configuration of excitation systems are included in IEEE standard

actuators [42].

Supplementary control is frequently included in error voltage junction to actuators. It provides
additional input signal to actuator (either exciter or FACTS devices) to damp power system
oscillations. The early concepts of supplementary control were established in [23]. A common
supplementary control is known as Power System Stabilizer (PSS). Carefully tuned PSS on
the major generator units can damp the power oscillations. PSS consists of wash-out stage
and lead-lag stage. Wash-out stage has stabilizer gain and wash-out time constant. Wash-out
stage is a high pass filter to eliminate the input’s steady state. Time constant is usually within
the range of 1 —20 sec, and let the stabilizing signal pass within the frequency of interest. T'wo

first order phase compensation are usually used to produce component of electric torque in
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phase with speed deviation. Shaft speed, integral of electric power, and terminal frequency are
the most common input to this control [65]. These inputs are measurable at each generator
so controller can utilize local information and operate without the need for remote signals
from other generators. Two inputs PSS has also been implemented for small and large signal
stability. Analysis was performed on several test systems and on an actual Hydro-Quebéc

system [48].

PSS has fixed parameters, lead-lag and wash-out stages, to be tuned. Tuning is off-line which is
based on finding set of parameters in which PSS can damp the oscillations. Tuning procedure
for PSS gained a lot of attention among researchers and large body of early works related
to this matter [96]. But most of these techniques are based on eigen analysis where first
state space models are obtained and then computation is performed based on these linearized

models [12].

The controller design for linear system is achieved to give specific performance at one operating
point which could be chosen as a worse case. There are sometimes intuitive ways to overcome
these limitations to some extent. For instance in damping oscillations with PSS a range of
oscillation frequencies can be dealt with by improved bandwidth design. Chow et. al [20]
have used frequency domain robust control techniques to design new PSS structures. Their
approach is based on unstructured uncertainty model which uses optimization over a class
of stabilizing controllers to force a closed loop transfer function to be as close as possible to
the desired one. Despite promising responses, robust control makes no restriction on how the
parameters vary in the specified ranges. Since, in principle they could be jumping randomly
and the controllers tend to be a high gain, and high bandwidth type which results in high
cost of control. Besides robust control, linear adaptive controllers have also been presented
[21]. For slow or infrequently changes of parameters, adaptive linear control can be imple-
mented to automatically retune the controller. Severe problem with linear adaptive control
is transient performance. Without good initial estimate of the parameters, the transient may

be unacceptable in practice.

In recent years, more sophisticated tuning techniques based on evolutionary algorithms are
developed for tuning control parameters. These techniques have the advantage of simultaneous
tuning of control parameters through the frame work of multi objective optimization problem.

Some innovative works related to PSS tuned by means of genetic algorithms has been done



CHAPTER 2. LITERATURE SURVEY 15

by do Bomfim, Taranto and Falcao [25]. Abido and Abdel-Magid presented tabu search (TS)
optimization technique for optimal gains of conventional PSS [5]. Also Abido investigated the
application of particle swarm optimization (PSO) for optimal settings of PSS gains through
eigenvalue based objective function and the nonlinear simulation of multi machine power

system [3].

So far the control schemes that have been discussed only deal with small disturbances
about an operating point. For large disturbance, there are pre-fault, fault-on, and post-fault
operating points which might be very different. Despite promising results obtained through
the course of their research, PSS still may not work properly during unpredictable changes.
Beside sophisticated tuning technique, the control structure itself is of great importance.
Hence, there is growing justification for nonlinear control structure which is capable to work
effectively under different circumstances. Unlike PSS, the structure of this nonlinear control

neither includes a phase compensation nor washout stage.
Through the course of this research, main concerns are

e Construct nonlinear control as supplementary control

Obtain procedure for tuning the control parameters in optimal way

Implement proposed controller on multi machine power systems

Enhances the stability of system under different operating conditions

Compare the proposed control performance with existing supplementary controller (PSS)

2.4 Control Design Tools

This section relates to survey on nonlinear control design and its application in power system.

The innovative and early works on nonlinear control for power system are reviewed as follow.

Starting with the control tools implemented on simple single-machine-infinite-bus (SMIB)
systems, Bazanella, Kokotovic and e Silva [11] designed state feedback control based on a
Lyapounov approach known as L,V', where Lyapunov derivative depends on a control and can
be made negative by feedback to improve dynamic performance of the system. This control
methodology originated by Sontag [84]. Controller was implemented on simplified single-axis
generator model. States of the generator are considered as rotor angle, shaft speed deviation,

and internal voltage of generator. The controller, based on L,V requires the internal voltage
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of generator, which is not measurable. In their study, it is assumed that this internal variable

is available.

An optimal excitation control strategy using Lyapunov direct method is proposed by
Machowski, Bialek, Robak, and Bumby [70] and implemented on simple SMIB. Traditional
Lyapunov direct method has been used in power system to evaluate the stability margin [81].
But here the Lyapunov direct method is used to obtain control strategy. Lyapunov function is
constructed from kinetic and potential energy of system plus two additional terms to account
for flux decrement effects on generator axis. The control structure has linear relationship
between field voltage and internal voltage of generator is considered. Assumptions such as
availability of generator internal voltage, availability of initial values of quadrature and direct

voltage are considered during this study.

A so called Direct feedback linearization, based on the differential geometry approach
[43], has been investigated by several researchers [89], [44], [45]. They applied DFL controller
method to generator dynamics. The technique is capable of transforming system into lin-
earized model by implementing compensation laws to cancel nonlinearities of system. This
cancellation requires some unmeasurable variables. Also it requires large control effort to
cancel complete nonlinearities of system. Although it is not always helpful to cancel all the
nonlinearities in the system. The obtained linearized model is not an accurate model in com-
parison to the exact one. In their design, the main concerns are to prevent an electric power
system from losing synchronism after a large sudden fault on system and achieving the good

post fault regulation of generator terminal voltage.

Application of former control technique is extended to multi machine power system [35],
[44]. In order to achieve decentralization of control, interconnection bounds between generator
and the rest of the system is considered as a polynomial function of absolute rotor angle and
speed deviation. Through obtaining mathematical bounds for interconnection terms, several
assumptions are considered. For instance simple linear relation between excitation field voltage
and internal voltage of generators. The proposed technique is tested on two machine infinite

bus with objective to maintain stability of the system when large fault occurs.

In multi machine power systems, the same technique has been combined with observation
decoupled state space (ODSS), originally introduced in [92], to achieve decentralization of

control. Feedback linearization is used to handle nonlinearities and ODSS technique is used
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to achieve decoupling of each generator [28].

Different adaptive version of feedback linearization control were presented by Jain et al.
[46]. In their analysis, equivalent reactances of the transmission lines were considered as
unknown or varying parameters, then adaptation is used to estimate them and achieve an
exact cancellation of terms by feedback linearization. The technique was implemented on a
two generator infinite bus system. Their approach has been extended to a class of nonlinear
systems with decentralized output feedback control, where the interconnection terms were

expressed by polynomials [47].

Edwards and Spurgeon proposed a methodology based on a sliding mode control strategy
to stabilize multimachine power system by using static output feedback [90]. Interconnection
bounds are modeled similar to the approach as mentioned in [35] and the control is imple-
mented on two machine infinite bus. The main idea of sliding mode control was established
by Utkin [86]. Despite good robust characteristic, this control usually has steady state chat-
tering effect which is not ideal for implementation on actual hardware in excitation control of

generator.

Okou, Akhrif, and Dessaint presented a hierarchical control structure based on wide area
signals using input-output linearization and parameters adaptation. However, both local
and remote signals are assumed to be available. Local controllers dampen local rotor shaft
oscillations and a centralized controller decouples subsystems interactions. Final control is
obtained with a two-level objective of voltage and rotor speed regulator. Wide area control
laws are derived from a reformulation of the multi-machine model. Terminal voltages of
generators are considered as state variables instead of internal field voltages. As a result,
the new model is obtained through complex mathematical transformations. The hierarchical

controller is implemented on this model [72, 73].

More sophisticated and yet realistic control design technique, known as backstepping,
has been developed by Krsti¢, Kanellakopoulos, and Kokotovié¢ [32, 49, 50, 64]. A complete
review on the potential of this control including robust backstepping, adaptive backstepping,

and observer-based backstepping is presented in 1991 Bode Lecture by Kokotovié¢ [62].

The first application of backstepping control in power system is given in [79] for SMIB

system with the goal of improving both transient stability and voltage regulation. One-axis
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generator is considered for their study. Rotor angle, speed deviation and internal voltage of
generator are considered as system states. Although the control gains are obtained through
trial and error (without any optimization procedure), the results demonstrated the effective-

ness of this novel control technique.

Discrete adaptive backstepping has also been implemented on single machine infinite bus
[93]. Reactances and transient time constants of generators are considered as uncertainties.
Backstepping excitation control is used to enhance transient stability of system with assump-
tion of full availability of generator states. Meanwhile, adaptation laws are used to estimate

the generator parameters.

With advances in power electronic devices, efficient damping can be achieved through the
use of network devices such as static var compensators. The main purpose of SVC is the
dynamic support of voltage. Once installed in a system, SVCs can also provide damping to
provide damping to enhance transient stability using an auxiliary signal over SVCs voltage
control loops. Several damping controllers have been designed and implemented for SVC.
The majorities of which are composed of lead-lag phase compensation and filter blocks with
adjustable parameters [65]. These designs are based on linearized model that is valid over a
limited range of conditions. However, linear methods may not properly capture the dynamics
of nonlinear power systems. Results in [18] indicate that a lead-lag damping controller designed
may lead to system instability by changing the nature of the load. In terms of control input
several lead-lag damping controllers have been designed using local measurements [94],[76].
Remote signals, such as generator speed or speed difference between two area have also been
used as inputs to lead-lag structures [37],[22]. Nonlinear control techniques have also been
implemented. A bang-bang controller combined with a linear one has been presented in [69].
This controller uses a phase angle signal that is obtained from the bus voltage and active
power at the location of the SVC. Optimization of this control is mathematically complex and
the nonlinearity of signal may introduce harmonics in voltages and currents that affect the
control signal. Direct Feedback Linearization is also used as nonlinear damping controller for

SVC which is mainly used for voltage stability problem [87].

The Reinforcement Learning (RL) is emerging as an important alternative to complex
control problems. Sutton and Barto have presented the convergence of the algorithm and

their applications in nonlinear system [85]. In domain of power system with application for
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damping oscillations, algorithm is proposed by Glavié¢ et. al [33], [34]. Their idea is to combine
Control Lyapunov Function (CLF) with RL in attempt to optimize a mix of system stability
and performance. The capability of the proposed control is demonstrated on a control problem
involving Thyristor Controlled Series Capacitor (TCSC) and dynamic brake controller for
damping oscillations in power system [26]. In principle, based on their approach any control
with stability guarantees can be combined with RL mode and any heuristic search technique

can be used with Lyapunov based controller.

Coordination between controllers plays an important role once the controllers are installed
and active at the same time. Following a disturbance in a system, due to uncoordinated
control strategy used in many power systems, destabilizing interactions among SVC and exciter
controllers is possible. The interaction of rotor dynamics under weakly interconnected system
condition can cause dynamic stability and limit the operation range for power generators.
Some approaches based on linearization of system are addressed for coordination among SVC
and exciter controllers [77], [80]. However linear method can not properly capture complex
dynamics of the system, especially during large disturbance. More advanced optimization and
coordination techniques between FACTS devices and PSSs based on quasi-Newton algorithm

have been covered in [68], [14].

The trends of power system and the modern control techniques are reviewed in this section.
The survey looked at some modern control tools that have been offered in power system context
for the past several years. In particular nonlinear control and their applicability to various

classes of power system control problem is considered.
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Background

3.1 Backstepping Control Design for Simple Power System

3.1.1 Introduction

Organization of this section is as follows. Subsection 3.1.2 explains backstepping control
technique applied to strict feedback system. In Subsection 3.1.3 power system model is brought
into strict feedback form and backstepping control is applied. Case study with single machine

infinite bus is given in Subsections 3.1.4.

20
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3.1.2 Backstepping Control Design

Backstepping procedure is described in this section for a specific form of system model known

as strict feedback form [64]:

& = fo+goxn (3.1)

1 = fit oz (3.2)

Zy = fo+ 9273 (3.3)

k-1 = Je-1+ gr-12k (3.4)

e = fr+geu (3.5)

where x € R™, and z1, 29, - , 2 are scalars. Control signal is presented by u, and fi and g
are functions (k = 1,2,--- ,n). In each equation state variable z is fed back as an input to

zk—1. The objective is to stabilize the system (3.1-3.5) using backstepping control to steer x
to its desired value, there z; stabilizes (3.1), z9 stabilizes (3.2), z3 stabilizes (3.3). w finally
stabilizes (3.5) and hence the overall system. For simplicity of explanation and notation,

consider a system with n = 2:

& = fo+goz (3.6)
21 = itz (3.7)

The objective is to stabilize (3.6 — 3.7) with u through backstepping procedure. Start with
scalar subsystem (3.6). This equation is stabilized through input z;. Stability of this scalar
equation is guaranteed with a suitable candidate Lyapunov function. Stabilizing state feedback
controller is z; = ¢o(x), which is zero at the origin and the Lyapunov function Vj = %xQ that
satisfies stability criteria [60]

oV
o o(@) + go(@)do(@)] < ~W () (3:8)
where W (x) is a positive definite function. Applying a transformation on (3.7), using virtual

control u; yields

1
z2 = E[UI — fi] (3.9)
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It is assumed that g; # 0 over the domain of interest. Transformation (3.9) reduces (3.6-3.7)

into (3.6) plus a pure integrator

T = fo+goz1 (310)
Z"l = Ui (311)

where u; has to stabilize (3.10-3.11). Adding and subtracting g¢o(x) on the right hand side
of (3.10) yields

& = [fo + gogo(x)] + go[z1 — do()] (3.12)
substituting the new variable
v =21 — ¢o(x) (3.13)
in (3.12) yields
& = [fo+ gogo(x)] + gov (3.14)
taking the derivative of (3.13) yields
& = uy — ¢o() (3.15)

and this can be seen as backstepping —¢g(x) through the integrator. Defining a new variable

w = U, the system becomes

T = [fo+gogo(x)] + gov (3.16)
v o= w (3.17)

Equations (3.16-3.17) are similar to the system of equations (3.10-3.11). Schematic block
diagram Figure 3.1 shows the backstepping control design. The Figures (3.1) (a) and (d) have

similar structures. Except that in (d) the first component has asymptotically stable origin.
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A Lyapunov function candidate for (3.16-3.17) is

Vila, 21) = Vole) + 507 (3.18)

and its derivative (using (3.8))
(e, 2) = D005y + gugofa)] + D2 g0 + vnn (3.19)
Vi(z,z1) < =W () + %gov + vw (3.20)

Choosing a stabilizing control law w in a way to achieve negative definiteness of Vl(m, 21)

oV
w = —87;)90 — ]{,‘11), ]{21 > 0, (3.21)
(3.20) becomes
Vl(a:, z1) < —Wi(x) — kv? (3.22)

This choice stabilizes the origin (x = 0, v = 0) globally and asymptotically. Explicit equation
for virtual control is obtained by substituting w in (3.11) and (3.15).

0 oVt
Uy = %[fo + goz1] — aixogo — k1[z1 — ¢o(z)] (3.23)

From (3.9), final control is obtained

29 = ¢1(w,21) = gl[a%

) %[fo + goz1] — %go —ki[z1 — ¢o(z)] — f1], k1 >0 (3.24)

ox
Lyapunov function for (3.6)-(3.7)

Vil 21) = Vola) + 3121 — o) (3.25)

With z9 = ¢1(x, 21) determined, it is easy to extend this technique to a larger number of
equations (3.1-3.3).
For larger system include (3.3) into (3.1)-(3.2). In compact notation

Zl = F+Giz (326)
Zy = fat 9223 (3.27)
where 71, F1, G1 are vectors:
T + goz 0
2, - P - Jo+ 9021 G —

21 fi g1
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The structure of (3.26)-(3.27) is identical to that of (3.6)-(3.7). Therefore, the same steps can

be repeated by introducing Lyapunov function

Vo(x, 21, 22) = Vi(x, 21) + %[22 — ¢1(w, 21))? (3.28)

The final control law for the system (3.26-3.27) will become

B 1 [ 091 oVy
23 = ¢a(x, 21, 22) = 7 [8Z1 (F1 + Gi22) — 62101 — ko(2z2 — ¢1) —f2]
(3.29)
1 fo+ g0z 0 , , 0
oA TR A Al Bl I Y R I e AR
92 1 g1 g1

where ko > 0 and simplified as

1|0 0 oV
z3 = P [(;;;(f0+9021)+(;§11(f1+9122)—821191—1?2(22—@)—]82} y k2 >0
zZ3 = ¢2 (a:, 21, 22) (330)

Clearly the backstepping control technique can be applied to system to an n* order system,

providing the system is in the correct form of strict feedback.
3.1.3 Power System Problem Formulation

In general the complete differential-algebraic model of any power system has the following

form:

z = f(z,V)
YV =1(z,V)

where the parameters are denoted as:

e 1 - state vector of power system model
e I/ - bus voltage vector of the system
e [ - current injection vector into the system

e Y - Admittance matrix, including constant impedance loads and the modifications due

to the faults
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Initially £ = 0 and YV = I(zo,Vh). Both functions f(z,V) and I(z,V) are nonlinear
functions and can be computed if the operating condition (x, V') is given. I(z, V) is a current
injection vector, which includes currents from all dynamic and nonlinear static devices, and
Y is the admittance matrix, which includes constant impedance loads. In particular dynamic

of synchronous generator is explained in following.

The dynamics of a real electric power system is complex due to large system components,
their variety and their interconnection. Mathematical formulation is governed by differential
algebraic equations that describes the dynamics of the generators in connection with the grid.
Here the main concern is transient stability and fast acting control design. The " generator
in an n-machine system is modeled by the following set of differential and algebraic equations
[81]. Throughout this study, the following two-axis transient synchronous generator model is
considered:

a) Differential Equations

b = wi—wo (3.31)
. D; w
bi = 5@ (wi —wo) + T&(Pmi — Pei) (3.32)
-/ ]. ! /
Edi = T[_Iqi<Xqi - qu) - Ed’L] (333)
qot
-/ 1 / !
E, = T[_Eqi + Igi(Xai — Xg;) + Efai (3.34)
doti
b) Algebraic Equations
P = Egli+ E:p’Iqi (3.35)
By = Ey+ IuXy, (3.36)
By = Ey—IuXy (3.37)
Iy = ZE (Bijsin(6; — ;) + Gijcos(6; — 65)) (3.38)
I; = Z E;j(Gijsin(& — 0;) — Bjjcos(6; — 6;)) (3.39)

The subsystem dynamics for each generator are nonlinear and coupled through nonlinear

coupling currents Iy and I,;. B;; and G;; are elements of susceptance and conductance
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Table 3.1: Synchronous generator and transmission line variables

d; ... Rotor angle in radians

w; ... Speed in radians per second

wg ... Rated speed in radians per second
Efq ... Excitation field voltage

P.,; ... Active power in per unit

Qei ... Reactive power in per unit

H; ... Inertia constant in seconds

D; ... Damping constant in per unit

P,; ... Mechanical power

I ... Direct axis current

I,; ... Quadrature axis current

E;Z- ... Transient EMF in quadrature axis
E;ll. ... Transient EMF in direct axis

Ey, ... EMF in quadrature axis

E; ... EMF in direct axis

TC;O ... Direct open circuit time constant
T;o Quadrature open circuit time constant
Xy ... Quadrature axis reactance

Xg ... Direct axis reactance

X;l ... Direct axis transient reactance

X ; ... Quadrature axis transient reactance
B;; ... Elements of susceptance matrix
G;j ... Elements of conductance matrix

matrix respectively. Synchronous generator and transmission line variable are given in Table
3.1. Since the dynamic of generator is not in strict feedback form, the alternative state as active
power is considered. In following the simplification of generator model into strict feedback
form is presented. An alternative state, active power, is used instead of E;h» and E:ﬂ- which are

internal generator voltages from their relation in algebraic form. Dynamic equation for active
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power is obtained by taking derivative of (3.35) and using (3.33) and (3.34).

1 ! / ! .
F[—Iqi(Xqi — Xgi) = Egillai + Egilai + (3.40)

qot

Pei:

]. / / VA
+ﬁ[—Eqi + Lai(Xai — Xg;) + Epiaillgi + Egily
01
Equation (3.31), (3.32) and (3.44) are dynamic equations for generator. The following state

variables are introduced by shifting the equilibrium point to the origin,

AS;, = & — i (3.41)
Awi = W; — W (3.42)
AP,; = P,— P, (3.43)

since there is no turbine-governor dynamics then P, . = P., and AP,; = P,;. Equation (3.44)

1s written as

2 1 / / / .
AP.; = f[—lqi(Xqi — qu) — Edi]Idi + EdiIdi -+ (344)
qot
1 / ’ / .
+Tf[*Eqi + Lai(Xai — Xg;) + Epiaillyi + Egilyi
doi

substitute —E), Iy = EjIo; — Pe;

’

AP——PCZ _quIdl(qu_XqZ)_}_E/I (L_L)_’_
er — / / 1L q / /
qui qui ! qui Tdoi

;o ;. Eng Ly Lily(Xg — X
L+ Bl + J;ﬂill ai | Toilal Tfh ai)

doi doi
replace Ppj = APy + Py,
. AP, Iyils(Xe — X, , 1 1 re
APei _ _ /ez T dz( (/]Z qz) +Eq7,qu( R )7 ,6’L +
qui qui qui Tdoi qui
;. v . Bpaly  Tily(Xa— X,
+Edildi+Equqi+ fl?z qi + qi dz( c/lz dz)
Tdoi Tdoi
. . E;ldﬂlqi
adding and subtracting a term ———
doi
_ AP, Iily(Xe — X, , 1 1 re
APei _ _ /ez T dz( (,]l (Il) +Equqi( S )_ ,ez +
qui qui qui Tdoi qui
;o v . ABEpg Iy Iily(Xe— X)) Efg Ly
By lgs + By + =140 4 2a aiXai = Xgi) | Zpuaiai (3.45)
Tdoz’ Tdoi Tdoi
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Dynamic equations will become

A(SZ = Awi (346)
. D; w
Awi = —ﬁAwi - T]%APEZ‘ (347)
: AP, Iuls(Xg— X)) 1 1. P
APei - = ei  Tq dz( (IJZ qz) + Equqi( R ) - ,ez +
qui qui qui Tdoi qui
' s c e Ialgi(Xai — X)) Ehala AEpg I
+Egilai + Eyily + - ai{ & i) it L LAY (3.48)
Tdoi Tdoi Tdoi

The controller will be designed based on (3.46), (3.47), and (3.48). Electromagnetic equation
(3.48) is coupled with mechanical equations (3.46), (3.47). In contrast to the mechanical
equations, there are different ways to model electromagnetic models, depending primarily
upon the time scale at which the phenomenon of interest occurs. Former formulation provides
good agreement for the behavior of the controller for synchronous generator over a time scale

of transient stability. Providing states and control input:
r=A0 z1=Aw 2=AP. u=AFEy (3.49)

and functions correspond to

wo Iq D
= 1 = —— = 7 = 0 = —7A
90 g1 o 92 T fo f1 Y
AP, LI (X,- X, ;1 1 Pe
f2:_T/e_ 1 (Tq/ q)+Equ(T_/)_,Ifz+
qo qo qo Tdo qo
. v LI(Xg— X)) E%yly
+@@+@@+q“£f ﬂ+ ﬁ” (3.50)
do doi

Equations are in strict feedback form and suitable for backstepping controller design (3.30).

The final control signal is obtained as

!

T, 20 D 2H
U= Tq[(l + k1)w70(f0 + goAw) + (1 + ky — ﬁ)wfo(fl + g1AP.) — (Ad + Aw) —
2H D
—szPe — kgwi[Aw(—l — k1 + ﬁ) — A(S(—l — kl)] — fz] k1 > 0, ko >0 (3.51)
0

Controller gains are k1 and ks. Note that:



CHAPTER 3. BACKGROUND 30

e The nonlinear control law (3.51) is not feasible if I, = 0. This condition occurs when
rotor angle is 6 = n x 180° with n presents an integer number. Normally, when rotor
angle reaches 180°, it is almost impossible to maintain stability by using incorporating
excitation control [9]. A reasonable system working region for rotor angle is 0° < § <
180°.

e Equations in strict feedback form has an advantage of formulation where interconnection

term appears only on last equation (3.48). Note that interface term is

IIX,— X .1 1 P
= (q, ) E (=) — 7+
TCIO TQO Tdo qu
;. s LI(Xy— X, ES,, I
YEyly+ E I, + - al d 2 | fldi "4 (3.52)

Tdo Tdoi

e Various factors affect the transient stability of a system, such as strength of transmission
system and connection with the grid, characteristics of generators and their controllers.
Another important factor is the fault duration and the time span in which the faulted

line and equipment can be disconnected and restored back.
3.1.4 Case Studies

Single Machine Infinite Bus

A certain portion of the system including generator, actuators, and transmission lines is the
focus of the case study. The remainder of the system is represented by a simplified model
called dynamic equivalent. It is assumed that the remainder of the system is very large in
comparison with the concerned generator and adequate to represented by infinite bus. The
model consists of single generator connected through two parallel transmission lines to infinite
bus [65]. Single line diagram is shown in Figure 3.2.

A case study is presented to illustrate the effectiveness of the proposed controller during and
after contingency in the system. The results are compared with conventional Power System
Stabilizer. Figure 3.2 shows schematic diagram of single machine infinite bus. Complete data
related to this system is given in Appendix A. The objective is to improve transient stability

by implementing excitation controller.
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Synchronous
E-fld i ? Line-1 ) O Generator

O_ _@_ | Bus voltage
Ili Transmission Line
Line-2

g Infinite Bus

Excitation

Control @D Transformer

Figure 3.2: Single Machine Infinite Bus System

Excitation System Control Design

Supplementary control signal is used to add damping to system oscillations. This signal is
applied through excitation type-AC4A [42]. Following control strategies are analyzed:

e Backstepping controller is implemented on generator. Control gains are obtained by trial
and error k1 = 1 and ky = 4.6.

e PSS with excitation type-AC4A, whose transfer functions are given below, is implemented

on generator. PSS has two stage lead-lag with a wash-out stage [9].

sTy (1+sTy)* 13,7750 51410 (14 50.154)2
Y14 8T, (14+sTy)2 1+ 51.410 (1 + s0.033)2

(3.53)
e Excitation type-AC4A with no supplementary signal
Scenario

Three phase fault happens on first transmission line at 0.5 second, the fault is removed at
0.57 sec. The fault is cleared and transmission line is reconnected at 0.65 seconds. Results
are shown in Figures 3.3 and 3.4. Proposed controller effectively damps the oscillation and
modulates the voltage. Better performance is achieved in comparison with PSS. For such
small system the trial and error parameter search may be possible but for large system with
more control gains, trial and error will not be practical. Therefore, a systematic way should
presented to obtain control gains and satisfy objective function of the system.

In the following, the effect of k1 and ke on suppressing oscillation are investigated. Even for
this small system, the effect of control gains on damping oscillation is significant. Figure 3.5
shows the relative rotor angle and speed deviation of generator for several ki, ko pairs (Table

3.2). Unstable scenario (dot-line) happens when backstepping parameters become negative
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PSS (dash-dot line —.) and uncontrolled system (dotted line :)

and Lyapunov stability criteria are not satisfied. From the Figures 3.5 and 3.6, unstability

(dotted line) is in from of aperiodic drift due to non-tuned controller gains which results in

insufficient synchronizing torque. As a result a large excursion of rotor angle beyond the first

swing occurs and generator becomes unstable.
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3.2 Function Optimization

3.2.1 Introduction

Organization of this section is as follows: Subsection 3.2.2 gives an overview of function
optimization problem in general. An evolutionary search technique known as Particle Swarm

Optimization (PSO), is described in Subsection 6.4.
3.2.2 Optimization Problem

Optimization is defined as finding the best possible solution to a problem given a set of con-
straints. Problem with two or more objective functions is called multi objective optimization
problem. Most practical problems require simultaneous optimization of multiple objectives.
Usually, these objectives have adverse effect on each other that can not be optimized one
at a time. Simultaneous function optimization with evolutionary search algorithms can find
solutions to all non-continuous and non-linear problems. This approach has become common
in solving these types of problems. Numerous applications of evolutionary algorithms can
be found especially in electric power systems [7]. The flexibility of evolutionary algorithms
to address optimization problem using any reasonable representation and objective functions
gives these techniques an advantage over classical optimization procedures. Given a control
structure with a number of adjustable gains, mathematical model of the system, and objec-
tive functions, while the aim is to obtain the best values of controllers’ gains that optimize
objective function subject to system constraints.

Optimization problem is formulated as follow:

i 3.54
go min _fr) (3.54)

where k € R™ is the optimization parameter, f(x) € R™ is objective function vector, f;(k)
for i =1,2,--- ,n are the objective functions, and g;(k) < 0 the system constraints. Compu-
tational intelligence-based can provide techniques that are feasible and almost independent of

the size of problem.

Evolutionary algorithm can be applied to any problem that can be formulated as function
optimization (3.54). It requires data structure to represents solutions, performance index to

evaluate the solutions, and variations operator to provide new solutions from the old ones.
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Advantage of the evolutionary algorithm comes from the ability in automating and problem
solving routines. Genetic algorithm (GA) and PSO are both considered as evolutionary algo-
rithm. Genetic algorithm is a search technique to find approximate solution to optimization
technique [59]. The algorithm uses techniques inspired by evolutionary biology such as mu-
tation, cross over, natural selection. Despite obtaining good solutions in hard search spaces,
still have some disadvantages such as tendency to converge toward local optima rather than
global optimum of the problem, and hard to implement on dynamic data sets. PSO is another
evolutionary technique that is not largely affected by nonlinearity and the size of the prob-
lem. The technique can easily converge to optimal solution that can be executed in search in

solution space for solving multi-objective optimization problems as formulated in (3.54).

Large number of evolutionary algorithms applications, especially for parameter estimation
and tuning of control gains can be found in electric power system literature [1], [2]. Among
all these techniques PSO has gained increased attention. Some advantages of PSO over other

optimization techniques are [19]:

e It has the ability to escape local minima

e It has less parameters to adjust, unlike many others

e It is easy for computer implementation and coding

e It is easy to implement and program with mathematical and logic operations

e It does not require a good initial solution to start the iteration

e It can be used with almost any realistic objective functions i.e. continuous or non-
continuous, convex or non-convex

e It has more effective memory capability (local and neighboring best)

A detailed survey on PSO applications to large scale power systems is covered by Alrashidi
and El-Hawary [6]. Recently a comprehensive overview of PSO techniques and different ap-

plications in electric power systems are covered by del Valle et. al [24].
3.2.3 Particle Swarm Optimization Algorithm

Particle Swarm Optimization is an evolutionary algorithm developed by James Kennedy and
Russell Eberhart [59]. The original objective of their research was to mathematically simulate
behavior of bird flocks. The search algorithm is based on cooperation and competition among

the population members. The objective is to find optimal regions of a complex search space
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through interaction of individuals in a population of particles. Each individual of the popu-
lation has an adaptable velocity (position change), according to which it moves in the search
space. Moreover, each individual has a memory remembering the best position of the search
space it has ever visited. Its movement is an aggregated acceleration toward its best previously
visited position. Another best value that is tracked by PSO is the best value obtained so far
by any particle in the neighborhood of the particle. The main idea is to change the position
and velocity of each particle toward global best location at each time step. As a result, after
number of iterations the particles among populations are found to have accumulated around
one or more of the optima and tends to find the global optima among all.

Given the size of the problem and the system complexities, the solution is assumed to lie in
the range of an N-dimensional space, where each potential solution is called a particle. Par-
ticle has a position and a velocity and moves in the search space toward an optimal solution.
Through the course of this study, PSO is applied to electric power system for tuning nonlin-
ear backstepping controller gains. The particles represent the controllers with this respective
gains that are sought [3], [4].

Some definitions are given below:

Particle K;(t): A candidate solution (controller gains) for i*" controller at iteration ¢.
Population: A set of n particles { Ky (t), Ka(t) - - - K, (t)}, where n is the number of candidate
solutions.

Swarm: Disorganized population of moving particles that tend to gather (with each other),
while each particle seems to be moving in a random direction.

Individual best K (¢): This is the best value of the objective function J that this particle

has ever achieved up to ' iteration.

Ki(t) = {K(t): Ji(K[ (1) < Ji(Ki(r)), 7<t}
Ji(t) = Ji(Ki(t)) (3.55)

Global best K**(t): Among all individual best positions achieved so far, the best position
for all particles is called global best.

K () = {7 (1) - J(K™(1) < Ji(K7 (1), i = 1, - -n} (3.56)

The steps of the PSO algorithm are:

e Step 1: Initialization
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(a) Given a number of controllers n, population size (m), maximum number of iterations
tmaz, maximum number of performance evaluation counter ¢,q., admissible range for gains

min  1.max
ki ki

k%zn S k’i,j < kZLjax — 1’2’... , M, ]: 1,2,... ,m (357)

and number of intervals in j*" dimension (p). Set speed range

-y <y <yl (3.58)
where
mar _ pmin
I/;;n}ax — Y 2,] (359)
’ w

(b) Initialize position and speed using uniformly distributed random numbers, and evaluate
the objective function J;(t) of each particle.

(c) Let Jf(t) = Ji(t), K (t) = K;(t) and

J*(t,¢) = minlJ (8) - J; (1)

(d)Sett=t+1l,c=c+1

e Step 2: Velocity Update with constriction factor approach

Velocity is updated by the following equation [59]%:

vij(t) = W(vij(t — 1) +ear(ki;(t = 1) = kij(t = 1)) + cora(ki5(E = 1) — ki3 (£ — 1)) (3.61)

where ¢ = c1 4+ co, p >4 (3.62)

2
U —
12— — V2 — 4y

where positive constants cj, co are weighting factors. As ¢ > 4 increases above 4.0, the ¥ gets

smaller and the damping effect is more pronounced. Hence the amplitude of the individual

SN~ N d

local best position weights global best position

2 Particle =V | Particle+ ¢ rand( pbest —Particle) + ¢ Rand gbest — Particle
— —— ~ —_—— —~— ~—

new velocity velocity weights

Particle =  Particle + Particle (3.60)
—— —— ——

new position current position new velocity



CHAPTER 3. BACKGROUND 38

particle’s oscillations decrease as it focuses on a previous best point. This formulation for
velocity results in particle convergence over time, meaning that the amplitude of individual’s
particles oscillations are decreased as it focuses over the previous point. r1,r9 are uniformly
distributed random number between 0 and 1. In case the velocity violates its range, it will be

set to its limit (3.58).
e Step 3: Position Update

For each particle, update each gain using the velocity equation (3.61)
kij(t) = vig(t) + ki (t — 1) (3.63)

Update the position K;(t) = [ki1,- -, kim] fori=1,---n
e Step 4: Performance Evaluation

Using the updated position, evaluate the objective function

[J1(2) -+ Tn(B)] = [ (K (2)) - - Jn(Kn(t))]-
e Step 5: Individual Best Update

Find individual best using (3.55), i.e. ,find J(t) and the associated K7 (t) for each i.
e Step 6: Global Best Update

Find global best using (3.56), i.e. find J**(¢,¢c) = J(K**(¢t,c)) and K**(¢t,c). If
J*(te) < J*(t—1,c—1) (3.64)

then the objective function has improved, and the gains are updated, set ¢ = ¢+ 1 and go to

next step. Otherwise, update J**(¢,¢), K**(t) and set ¢ = 0. Then go to next step.
e Step 7: Stopping criteria

(a) If the best global solution J**(¢,¢) can no longer be improved and the counter has reached

its maximum number, ¢ = ¢4z, the optimal solution is then the current K**(t). Exit.
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Figure 3.7: Particle movement toward new position

(b) If t reaches (tnas), the maximum number of allowed iterations has been reached and no
feasible solution was found, stop. Otherwise: t =t + 1 and go to Step 2.
Schematic view of particle movement is shown in Figure 3.7. Matlab code for PSO algorithm

is given in appendix E. Steps for PSO algorithm is given in following:

1. Initialize each particle with random solution in problem domain (initialization)
2. For each particle evaluate the objective function

3. For each particle, calculate the objective function and compare it with its pbest. If the
current value of the objective function is better than the pbest then set the value as the

pbest and the current position of the particle.

4. Among all pbest, identify the particle that has the best objective function value. The

value of the objective function is assigned as gbest with its new position.
5. For each particle update the velocity vector and then the position vector.

6. Repeat steps 2 — 5 until stopping criteria are met. These criteria are maximum iteration

and minimum error criteria

Parameter Selections: One important issue by implementing the algorithm is how to

initialize the population. The positions and velocities of the particles are usually initialized



CHAPTER 3. BACKGROUND 40

randomly [59]. For instance positions are distributed over the dynamic range of each dimen-
sion and initial velocities are distributed randomly over the range of minimum and maximum.
Where most of the time the maximum value for velocity is specified according to the char-
acteristics of the problem. Note that the velocity of the particle is a stochastic variable and
may subject to create an uncontrolled trajectory for the particle. Upper and lower limits are

defined for the velocity, in order to damp these oscillations.

. o mazx .. __ . mazr
if vig>vj then  v;j=uv]"
if vig<-—vi" then  vij=-—u" (3.65)

Based on the characteristic of the problem the value for maximum velocity can be chosen.
One common technique to obtain the maximum velocity is formulated in (3.59).

Weighting factors cp, ca control the movement of each particle toward its individual and global
best position. Small weights will limit the movement of particle and large weights may cause
the particles to diverge. The proper inequality condition is given in (3.62). Note that by
considering uneven values for these weights, an uneven cycling for the trajectory of the particle
is obtained in searching around an optimum value.

Constriction factor as formulated in (3.62) improves the convergence of the particle over time
by damping the oscillations once the particle is focused on the best point in optimal region.

And finally a number of particles that is usually around 10 — 50.
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4

Transient Stability
Enhancement Using
Excitation Control

4.1 Power System Stability Enhancement using Backstepping
Controller Tuned by Particle Swarm Optimization Tech-

nique
4.1.1 Introduction

This section describes an algorithm for function optimization in order to obtain optimum set
of gains for backstepping controller. Problem formulation for generator is given in subsection
3.1.3. Controller design, obtained in 3.1.2, is used to stabilize multi-machine power system.
The organization of this section is as follows. Subsection 4.1.2 presents the procedure to
obtain optimal settings for backstepping controller gains. Three machine nine bus test system

is presented in Subsection 4.1.3 for implementing the proposed technique.
4.1.2 Optimal Settings for Controller Gains

This subsection describes the procedure for controller tuning. An important aspect of any

optimization process is the criterion used to define the goal in system performance, which is

41
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known as optimization criterion. It is through the selection of this optimization criterion that
one can specify the manner in which the system to perform. In following a quadratic perfor-
mance measure seems appropriate for stability analysis due to contingencies in the system.
Optimization problem for selecting the gains for backstepping controller to enhance optimal
performance is solving via a Particle Swarm Optimization (PSO). The algorithm has been

described in Subsection 6.4.
Objective Function

Here the goal of PSO procedure is to explore the search space and obtain optimum gains that
minimize the defined objective function. Once the optimum controller gains are obtained,
controller signal is implemented. In this setting, each backstepping controller has two gains.
In multi-machine system gains for the controller are presented as k; ; is used, where i stands
for number of controllers and j refers to the sequence number of gains for each controller. The
problem is formulated in form of constrained optimization by minimizing objective functions
(4.1-4.3). Three different functions are considered for optimizations which are listed in the
following. Awj; is speed deviation, Ad;; relative rotor angle deviation, and AV, generator

terminal voltage deviation. «, (3,7 are weighting factors in optimization problem.

e Objective function I

Iillljnz Ji = Z /Ot o Aw;)?dt (4.1)
e Objective function II
ain Y 5= 3 [ fal80) +2(AVy i (4:2)
e Objective function III
pin Y= 3 [ 08 + 507 80 + (Vi Pl (4.3)
with same constraints as subject to

i jmin < Kij < Kijmas

Awimm < Awi < Awimaz

A(Sijmm < A(SZ] < Aéijmaz
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AVjen, < AVgen, < AVgen, (4.4)

Equations (4.1-4.3) present a PSO objective functions subject to set of constraints to obtain
optimum gains for each generator as controlled by (3.51). More weight («) is assigned to Aw

in comparison with 3, -, x which has ratio of % =2 =100.

a
¥
Assumptions

Objective function (4.3) requires remote signals () Ad;;) and can not be computed locally
unlike (4.1-4.2). Performance of proposed controller with different objective functions is com-
pared. Design of objective function is not unique and depends on designer choice. Three
different objective functions are considered in Sections 4.2 and 4.3. Here, in selecting the con-
troller gains, the main objective is to minimize speed deviation, angle deviation, and terminal

voltage deviations from their nominal.
4.1.3 Case Study
Three Machine Nine Bus Test System

Three machine nine bus test system is considered in this case study. Detailed of the data are
provided in [9] and also presented in Appendix B. Single line of the system is shown in Figure

4.1.
Excitation System Control Design

Generators’ excitation systems, type-AC4A, based on fast acting power electronic exciters
are considered [42] (Figure 4.2). A voltage regulator with gain Kr = 1 and time constant
Tr = 0.01 is added. A lead-lag stage is used to model equivalent time constant for voltage
regulator and parameters. These parameters are obtain through PSO search technique and
are given in Table 4.1. Amplifier stage has first order delay element with gains and time
constants of K4 = 200 and T4 = 0.015, respectively. Ideal actuator is considered for this case
study with gain Kp = 1 and time constant Tr = 0. Backstepping control inputs are speed
deviation Aw and electric power deviation AP,. To implement control law (3.51), Ad is also

required. Integration of shaft speed Aw is used to obtain Aéd with zero initial condition.
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Figure 4.1: Three Machine Nine Bus Power System
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Figure 4.2: Ezcitation system control

Table 4.1: Parameters for Lead-Lag Stage (T.,Tg)

Generator Te Ty
1 0.0675 | 0.3401
2 0.2125 | 0.2687
3 0.1269 | 0.1199
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Scenario

The proposed controller, based on (3.51), is implemented on generators 1,2 and 3. A three
phase fault is applied on transmission line 6 — 9 at 100 msec. The line is removed and fault is
cleared at 180 msec. Following control strategies are analyzed:

e Backstepping controller with actuator (Figure 4.2), is implemented on each generator. Con-
troller gains are tuned by PSO technique by optimizing the objective functions(4.1-4.3). Fol-
lowing gains ki, ko are obtained through PSO search algorithm (Table 4.2). Parameters for

wash-out stage and lead-lags for PSS are given in [9]

Table 4.2: Parameters for Backstepping Controller with Different Objective Functions

(1) k1 ko (II1) k1 ko

Gen#1 | 2.2635 | 2.9467 | Gen#1 | 1.753 | 2.9983

Gen#2 | 2.5462 | 2.2950 | Gen#2 | 2.3071 | 1.4592

Gen#3 | 1.4030 | 1.8439 | Gen#3 | 1.2654 | 1.006
(I1) k1 ko (IV) k1 ko

Gen#1 | 2.3032 | 2.5140 | Gen#1 | 1.5136 | 1.7463

Gen#2 | 1.9657 | 2.990 | Gen#2 | 2.4022 | 2.5833

Gen#3 | 2.0906 | 2.70978 | Gen#3 | 2.1806 | 2.7408

Table 4.3: Parameters for PSS
Generators K, Tw T T T; Ty
Gen#1 —3 | 13.7750 | 1.410 | 0.154 | 0.033 | 0.154 | 0.033

Figure 4.3 shows comparison between backstepping controllers tuned by objective functions
(4.1-4.3). Relative rotor angles d2; and d3; indicates that the system finds new operating point
that is different from pre-fault operating point. This happens because transmission line 6 — 9
does not reclose afterward, and system configuration has changed. Also proposed controller
can effectively damp generator shaft oscillations. Terminal voltages of generators 2,3 and

control signals are shown in Figures 4.4 and 4.5 respectively.
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Figure 4.3: Relative rotor angles 2 — 1 and 3 — 1 (rad), exciter with backstepping damping controller
with objective function J (I) (solid line — ), Objective function J (II) (dash line —— ), Objective function
J (III) (dash-dot line —.), PSS (dot line :)
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Figure 4.4: Terminal voltages for generators 2 and 3, exciter with backstepping damping controller
with objective function J (I) (solid line — ), Objective function J (II) (dash line —— ), Objective function
J (I1I) (dash-dot line —.), PSS (dot line :)

An approach to design controls of generator excitation based on backstepping were pre-
sented in this subsection. The control parameters are tuned by a particle swarm optimization
technique. The objective is to enhance stability of the power system and damp the oscilla-
tions during and after the contingencies. Based on numerical simulations, in this subsection,

it is concluded that proposed controllers improves transient stability in 3 machine 9 bus test
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Figure 4.5: Control signals for generators 2 and 3, exciter with backstepping damping controller with
objective function J (I) (solid line —), Objective function J (II) (dash line ——), Objective function
J (III) (dash-dot line —.), PSS (dot line :)

system.
It is assumed that interconnection terms with /4 and I; and remote information is available
measurements for each generator, in order to implement damping controller through excita-

tion control of generator. To remove this assumption, two approaches will be considered in

section 4.2 and 4.3 respectively.
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4.2 Extended-Backstepping Control of Power Systems

4.2.1 Introduction

In this section backstepping controller with additive nonlinear damping is applied for stability
enhancement of multi-machine power systems. The decentralized control scheme is practical
in systems especially when remote information are estimated locally. Remote information
from one generator to other through transmission lines are modeled and considered as exter-
nal disturbance through each plant. Controller has additive nonlinear damping to compensate
the effect of this disturbance.

The organization of this section is as follows: In subsection 4.2.2 controller, extended-backstepping,
is designed based on a recursive technique to obtain stabilizing control via Lyapunov function.
Additive nonlinear damping (extended term) is added to backstepping controller and is used
to counteract the effect of disturbance. Power system differential and algebraic equations
are given in subsection 4.2.3. Subsection 4.2.4 explains interface modeling as external dis-
turbance. Subsection 4.2.5 presents the optimal settings for extended-backstepping controller
gains. Gain setting for the controller is obtained with Particle Swarm Optimization. Bench-
mark system with 50 machines 145 buses system presented in subsection 4.24 for implementing

the proposed technique.
4.2.2 Backstepping Control Design in Presence of Disturbance

In this subsection a brief overview of backstepping control design for a nonlinear system with
a disturbance is presented. To apply this method, the system is assumed to have a parametric

strict-feedback form (3.6), which for a system with two states (z, z1):

& = fo(x)+ go(x)z1 (4.5)
z1 = fi(z,21) + g1(x, 21)(u + d) (4.6)

The designed controller u has two components. First component, up, is obtained using back-
stepping techniques while ignoring the disturbance d, and a second component, up, is an
additional damping term added to counteract the effect of the disturbance. Hence, the final

control has two parts u = ug + up.
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Backstepping Control

The first component up (backstepping controller) is designed as follows. The disturbance d is
neglected here.

Define virtual control upy:

up = M[uBl—fl(x,Zl)] (47)

Hence, equation (4.6) can be written as:

21 = upy (4.8)

z1 drives subsystem z as seen from (4.5). It is composed of two components, one of which,
¢o(x), is to stabilize this subsystem, and a second part is to guarantee the stability of the

overall system (see steps 1 and 2 below). Hence:
z1 = ¢o(x) + v (4.9)

The above equation is used to eliminate z;. Taking the derivative with respect to time of (4.9)

yields:
2 =10+ ¢oz) = up (4.10)
Equation (4.10) is re-arranged as:
b = % —¢o(x) =up1 — go(x)

Finally, the original system without disturbance is written as:

& = [fo(x) + go(x)do(2)] + go(z)v (4.11)
Vo= w (4.12)

where
w = U31—¢0<$) (4.13)

Step 1: Let W(x) > 0 be positive definite function. Find a Lyapunov function Vj(x) (simple
quadratic function) for the unforced system (4.11) and ¢g(z) such that

Vo(e) = Do) + g0(w)o0(a)) < W)

Vo) = a(fo(x) + go(z)go(x)) < =W (x) (4.14)
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In this case the unforced system is asymptotically stable.

Step 2: Find w to stabilize (4.11), (4.12)

Let Vi(z,21) = Vo(z) + 3v% be a Lyapunov function for (4.11) and (4.12). Its derivative along
the state trajectory is given by:

Vi(z,21) = Vol(a)i + b
87V0(f (z) + goz1) + vw
= 2(fo(2) + gol¢o(@) +v]) +vw
z(fo(z) + godo(z)) + zgo(z)v + vw
(4.15)

Substitution of (4.14) in (4.15) yields:
Vi(z,z1) < =W (z) + zgo(z)v + vw (4.16)
w is chosen in a way to cancel the indefinite term and provide more negative definite to (4.16).
w = —zgo(z)— kv (4.17)
then
Vi(z,2z1) < —W(z) — k1o?
Vi(z,21) < =W (2) = ki (21 — ¢o())? (4.18)

Therefore, (4.18) results in negative definite if the control gain k; is positive.
up1 is obtained from (4.13) (4.9) and (4.17). Finally, the backstepping controller up is obtained
by substituting up; in (4.7) as follow:

upl = w + o(x) = —xgo(x) — k1v + do(x)
up = gll[—xgo(:r) — k121 = ¢o(@)] + go(z) — f1] (4.19)

Additive Nonlinear Damping

Now, including disturbance d to the local system, nonlinear damping term up, is added using
the results provided in the following lemma [64],[49]
Lemma: Consider the system (4.5, 4.6), The following control

8V1 (."L‘, 21)

4.2
9 gi(x,z1), v>0 (4.20)

U =up — 7
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where up is given in (4.19), guarantees global uniform boundedness of X = (z, z;) and con-

vergence to the residual set

d2
%::{XE]XlﬁgfloQo§§l<H4%”>} (4.21)

where <1, ¢2, and ¢3 are called ko, function such that

a(X]) V(X)) < X)) (4.22)
(X)) < W(X) (4.23)

Hence:
up :—v%fl’zl)gl(x,zl) (4.24)

Proof of lemma is given in appendix F. A continuous function ¢; is said to belong to ko if

Disturbance System

d —— x=f(x)+g,(0)z
z =fi(6z)+8 (xz)u+d)

Output

Up
o(x,z,)
Backstepping Controller
I _ (%, 2)) N
-1 7 1( Z]/ |
| 0z, !
I

Nonlinear damping Term

Figure 4.6: Backstepping Control and Nonlinear Damping

it is strictly increasing, <i1(r) — oo as r — oo and ¢1(0) = 0. Once ¢ is a class koo then the
inverse gfl belongs to the same class. Also gfl 0G0 g:,:l(-) is composition of ¢1, ¢2, and ¢3 and
defined as ¢; ' o 063t = ¢ Hsa(s3(+))) [60].

ki, v are controller and nonlinear damping gains respectively. A large 7 results in small

disturbance, i.e. |[|d||,, << 1 and will guarantee stability of the system. Hence, v is a
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design parameter. Large v will however saturate the controller signal. Therefore, it will put
some restriction on the size of the disturbance. A schematic block diagram of the extended-

backstepping is shown in Figure 4.6.
4.2.3 Disturbance Modeling

To apply the extended-backstepping method as described in subsection 4.2.2 to power systems,
the system has to be in strict feedback form. The power system is an interconnection of many
generating power plants to load centers through transmission lines. To design decentralized
controllers, each generator is modeled as an independent subsystem in a strict feedback form,
and the effect of the external system is in a form of a disturbance, consistent with the modeling

presented previously (3.46, 4.33, 3.48). Hence, each generator is modeled as:

r = f()(.f)—i-g()(:(})zl

s = filw,z1) + g1(z, 21)22
Zo = falx,21,22) + g2(x, 21, 22) (u + d). (4.25)
where
r = A fo = 0 g = 1
2= Aw fi = —Fn g = -5
z2 = AP, = Lok = 1
2 e f2 . 92 T
(T AEﬂd
and d = g2(x, 21, 22)d is
, IIs(X, - X, | 1 P°
d = _M+Eq[q(7/_7/)_7,e+
Tyo Too Ty, Tyo
- v LIj(Xg— X))  E%4l
+ Ejly+ B+ al d 2, Jld 4 (4.26)
Tdo Tdo

Parameters and variables for synchronous generators and transmission lines are given in Table
3.1. Following the extended-backstepping technique in subsection 4.2.2, the final controller is
given by

OVa(z, 21, 22)

929 g2(x, 21, 22) (4.27)

u = ¢2(x7 Z17 ZQ) - 7

where ¢o(x, 21, 22), Va(z, 21, 22) are obtained from (3.30) and (3.28), respectively. Extended-

backstepping control has the ability to work under diverse operating conditions and damp
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the oscillations effectively under small and large disturbances. Note that here fo term can be

computed locally and does not include remote information.
4.2.4 Overall System View

A complete centralized control scheme in electric power system has excessive computation
time, distortion in information transfer, and high cost. More feasible structure is obtained
by decentralized scheme, where controllers only utilize local information and operate without
the need for remote signals. To design decentralized controllers, each generator is modeled
as an independent subsystem in a strict feedback form. The effect of the external system
is considered as disturbances to the generator which is in concern. Extended-backstepping
controller (4.27) is designed to stabilize each generator and to counteract the effect of external
disturbances.

Note that based on aforementioned lemma (Appendix F), stability of n-machine power system,
is guaranteed when a positive definite candidate Luapunov function

n

Viotal = Z(Vb(%) + %[Zu — poi(7))? + %[221‘ — ¢15(w4, 214)]%) (4.28)
i1

and has a negative definite derivative along state trajectories. Negative value of the derivative
Viotas means that Lyapunov functions Viotar decreases with time and tends toward it minimum

value.
) n 1
Viotal < Z —Wi(2) — k1i(215 — doi(xi))® — kai(z2i — d1i(wi, 215))* + e Idil|%,  (4.29)
i=1 ’

This condition is satisfied as long as

n

1
Z ~Wi(2i) — k1i(z15 — doi(2:))? — kai(22i — b1i(zi, 210)) + 1 Hdszo <0 (4.30)
i=1 ¢

The effect of control gains and nonlinear damping factor somehow provide a balance to obtain

the inequality condition of Lypunov stability and minimize the effect of disturbance.
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4.2.5 Optimal Settings for Controller Gains

Particle Swarm Optimization technique is used in this subsection to obtain optimal regions

for controller gains. Performance index relating to optimization for control gains is defined as

J controller;

Control constraints

System constraints

/ot{a(sz')Q + B(Ad;)* + M(AEpgq,)?]dt
(4.31)

min max
i1 < ki1 < ki1
man max
2 < kio < K2

AERT < AEpg, < AERS

AT < Aw; < Awl®

ASIm < NSy < AT
AV < AVgen, < AV

gen,

Table 4.4 shows parameters for controller performance index.

Table 4.4: Performance Index Parameters for Controller

k;

Aw;
NS
AVgen;
AFEf4
a,B,A

Controller’s gains

Speed deviation

Relative rotor angle deviation

Terminal Voltage deviation

Control signal deviation from initial values

Weighting factors

4.2.6 Case Study

Fifty Machine System

Mid-sized benchmark that retains the dynamic behavior of large scale power system is con-

sidered for implementing the proposed controller design. It consists of 50 generators, 44 are
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classical, and 6 are transient models [31]. Complete data related to generators and exciter
data are given in Appendix D. Four nonlinear controllers are implemented on generators at
related buses 93,104, 110, and 111 [31]. Schematic block diagram for 50 machine power system

is shown in Figure 4.7. Control gains are tuned with PSO algorithm and considered the same

®

Transrisson Line

[ Exiended-Backstepping i
Control
I Bus

' LT 77 [—
G i DL‘T I
B 111% 2l
4]

Figure 4.7: Fifty Machine System Single Line Diagram

for all scenarios.
Excitation System Control Design

Extended-backstepping control has ability to work under diverse operating points of the sys-
tem, and as will be shown in case studies this nonlinear control works effectively under small

and large disturbances. Figure 4.8 shows schematic block diagram of supplementary damping
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signal with exciter. Damping control signal u is applied through the exciter. Comparison is
held between the proposed damping controller and the PSS. It consists of amplifier gain K 4,
amplifier time constant T4, and saturation hard limit. The actuator is ideal with Kg = 1
and Ty = 0. In power system stability and control, the main idea of damping control is to
suppress generator rotor oscillations under influence of contingencies and improve dynamic
performance. Conventional damping control, power system stabilizer (PSS), is design based
on linearized model of power system around small region of operating points. Comparison

between extended-backstepping control and PSS is shown in following scenarios.

Extended-backstepping

,

u : U Backstepping | i o0 Aw.
i ) : ° APei
I”D '
Nonlinear ) Synchronous
DAmRINg e g Actuator Generator
i A + KA _)‘/Ry . l [
Terminal K. +sT. 3
Voltage t 1+s7, Vi T , -«
I Amplifier Limiter Field d
I voltage Disturbance
Reference T ———
Voltage 0 :
s Ts+1 Ts+l KT, | |
—_————q — M T, | we'w q—f—oAa)
5 Ts+l1 Ls+1 1+sT |
é Lead-Lag =

Wash-out

Power System Stabilizer

Figure 4.8: Supplementary Damping Controllers with Exciter

Scenario-I Three Phase Fault

For this scenario three phase fault is applied on transmission line 59 — 107 at 100 msec, the
fault is cleared at 300 msec. Controllers will sustain the stability of overall system even though
the type and location of fault is altered. Same parameters (Table 4.5) are used for extended-

backstepping controller gains. Comparison is done between extended-backstepping control
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and power system stabilizer. PSS has two similar lead-lag with a wash-out stage (3.53). Two
algorithms are used for tuning PSS gains. First, PSO is used to obtain PSS gains (Table 4.6).
Second technique, Genetic Algorithm (GA), the gains are obtained from survey on tuning
PSS gains [36]. The parameters for the excitation system are given in Appendix D. In Figure
4.9 extended-backstepping control with damping factor v = 150 (solid line) damp the rotor
oscillations effectively when compared with PSS tuned by PSO (dash-dot line), PSS tuned by
GA (dash line), and simple exciter with no damping controller (dot line). Controller signals
for generators 2, 6 are shown in Figure 4.10. Larger control effort signals is used by the
proposed controller to damp oscillations, since nonlinear damping term is introduced for this
new control. Hence, there is a trade-off in balance between saturation of control signals and

magnitude of nonlinear damping signal.

Table 4.5: Parameters for Backstepping control

Generator # | Bus # | Gain k; | Gain ks
1 93 272.7240 | 63.6678
2 104 | 251.1236 | 211.4062
5 110 180.3733 | 240.5763
6 111 277.0844 | 355.0586

Table 4.6: Parameters for PSS tuned by PSO

Generator # | Bus # Ky Ty T Ts
1 93 92.4223 | 3.4140 | 0.59 | 0.39
2 104 | 28.3032 | 1.6609 | 1.01 | 0.35
5 110 | 81.3726 | 8.5178 | 0.38 | 0.28
6 111 7.1390 | 0.5353 | 0.99 | 0.40

Scenario-11 Effect of Nonlinear Damping

Three-phase to ground fault is applied on transmission line 61 —63. Fault duration is 100 msec.
The transmission line is removed at 200 msec but not reclosed afterward. In this scenario the

objective is to demonstrate the effect of nonlinear damping term to suppress the oscillations.
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Figure 4.9: Relative rotor angles (rad) 6 — 1, 6 — 3. Fuxciter with PSO-tuned extended-backstepping
(solid line —), simple exciter with PSO-tuned PSS (dash-dot line —. ), simple exciter with GA-tuned

PSS (dash line —— ), simple exciter without damping control (dot line .)
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Figure 4.10: Excitation Control signals for Generators 2 and 6. Exciter with PSO-tuned extended-
backstepping (solid line — ), simple exciter with PSO-tuned PSS (dash-dot line —. ), simple exciter with
GA-tuned PSS (dash line —— ), simple exciter without damping control (dot line .)
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Figure 4.11 shows the effect of nonlinear damping factor v, on speed deviation of generator 1
from nominal value. By increasing the gain + the system obtains additional damping and the
oscillations are suppressed. Note that for very large value of y control signal will be saturated
on upper and lower limits. The effect of saturation for generator 1 is also shown in Figure
4.12. In this section, coupling among generators through transmission lines is considered as
external disturbance. Controllers were designed based on backstepping technique to stabilize
the system, plus additive nonlinear damping were added to controller to counteract the effect

of disturbance.

In selecting controller gains, emphasis was placed on damping the oscillations of rotor angle,

Speed deviation Gen # 1
Control signal Gen# 1

5

-6 L L I L L I I I I ) L L L I

I I I I I
0 1 2 3 4 5 6 7 8 9 10 0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1

time(sec) time(sec)

Figure 4.11: Effect of nonliear damping speed deviation and control signal for generator 1, v = 1500
(solid line —), v = 100 (dash-dot line .), v = 15 (dot line .)

speed, power and terminal voltages from their nominal. The latter were achieved by PSO

tuning technique.

Effect of Noise

Consider Scenario-II with reclosing the line at 250 msec. For this case Gaussian noise is
included in disturbance term. The latter change makes the interface term a more realistic

condition. Also the objective function has local information that includes speed deviations
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speed deviation Gen # 5
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Control signal Gen # 5
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0 1 2 3 4 5 6 7 8 9 10 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
time(sec) time(sec)

-4 L L L I

Figure 4.12: Effect of nonlinear damping speed deviation and control signal for generator 5, v = 1500
(solid line — ), v = 100 (dash-dot line .), v = 15 (dot line .)

from generators.

t
Jcontrolleri = / a (sz ) 2dt
0
(4.32)

Backstepping controller gains are given in Table 4.7. Effect of control signals for generators

Table 4.7: Parameters for Backstepping control

Generator # | Bus # | Gain k1 | Gain ko
1 93 189.8 16.21
2 104 151.1 370.5
5 110 400 395.5
6 111 246.4 0.14

1, 2, 5 and 6 with v = 1000 are shown in 4.13. Sudden jumps in control signals are caused by
the disturbances. The effect of nonlinear damping + is investigated on suppressing the oscil-
lations of generator. Figures 4.13 show that by increasing ~y, the oscillations will damp faster.
Gaussian noise is included in disturbance d. The noise has zero mean, fixed variance of 0.2
and sample time 1 second that has direct effects on actuator signal. Nonlinear damping added

to backstepping controller can suppress the oscillations in presence of noisy measurement.
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Backstepping technique that presented here can solve stabilization problems under conditions
less restrictive that those encountered in other methods, since it exploits the flexibility as-
sured by lower-order and scalar systems. Moreover, backstepping exhibits its full power in the
presence of uncertain nonlinearities such as interface between generators. In summary In this
section backstepping design and nonlinear damping have been proposed as a new approach for
controlling a generator dynamics. Each generator is modeled as a subsystem connected to the
grid. The effect of interconnection on each subsystem is considered as external disturbance.
Backstepping controller and nonlinear damping are provided to stabilize the generator and

counteract the effect of disturbance respectively.
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4.3 PSO-tuned Adaptive Backstepping Control

4.3.1 Introduction

In this section, the approach toward decentralized control is based on adaptive backstepping.
The adaptation laws are used to estimate the effects of the rest of the system on concerned
generator, which allows for a decentralized control design. The section is organized as follows.
In Subsection 4.3.2 a strict feedback generator model suitable for decentralized control design
is presented. In Subsection 4.3.3 the adaptive backstepping control design algorithm is pre-
sented. Interface variables are estimated with linear estimator whose coefficients are adapted.
The control and adaptation gains are obtained using a Particle Swarm Optimization (PSO)
search technique in Section 4.3.4. Case study is provided in Subsection 4.3.5 to illustrate the

effectiveness of the proposed controller.
4.3.2 Problem Formulation

To apply the design technique proposed in this section, the generator model is (1) cast in
a strict feedback form [64], and (2) each machine is modeled as an independent dynamic
subsystem. The starting point is the transient two-axis generator model given in section 3.1.3.
To obtain the strict feedback form model, acceleration power instead of direct and quadrature
voltages is used as a state variable. The decoupling of the generator from the rest of the
system is obtained by considering the effect of the rest of the system on each generator as a

disturbance. Therefore, each generator is modeled by the following state equations.

A(SZ = Awi
D; wj
Ay = ———Aw; — —>AP,,
“ DY T Y: P
. 1 ,
AP, = —AP, i + BiAFE 4, + d; (4.33)

qot

where the coupling term d; is given by equation (4.26). This term includes local and remote
information. Here, it is expressed as a linear uncertain function from two local measurements
with parameters that will be estimated. Here, uncertain function is considered as first order

differential equation,

d; =~ eliAPei + QQiAPei (434)
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where 601; and 6y; from 4.34) are uncertain values which has to be estimated through adaptation

law. In generic terms, the equation set (4.33) for i*" generator is:

Zbl = bl.’EQ (435)
Ty = boxs+ byzs (4.36)
&3 = Pu-+bgrs+ d (4.37)

where, disturbance d’ is chosen as (4.34). State variables are 1 = Ad 2 = Aw z3 = AP,.
Parameters are by = 1 by = —5f b3 = —% by = _%’ and control input u = AFEyq

qoi

appears in the last equation. (3,61, 02 are uncertainties, not known a priori.
4.3.3 Adaptive Backstepping Control Design

The objective is to stabilize the system (4.35-4.37) using backstepping control which is to
steer x1 to its desired value z¢ = ag = constant, then find x5 to stabilize (4.35), and 3 to
stabilize (4.36) and finally u to stabilize (4.37) and hence the overall system. Consequently
once the control signal u is obtained, it can stabilize dynamic of x3. Backstep to equation
(4.36), x3 controls the dynamic of xo. Again backstep to equation (4.35), xo grasps dynamic
of 1. Hence the overall system is stabilized. Each of the states xo and z3 will have virtual

trajectories ar; and o to follow. Define the error variables:
Z; = Tj — 1, 1= 1, 2, 3 (4.38)

The problem then is to find a1, ae and u to drive the error variables z; to zero. The control

signal is obtained following these steps:
Step 1: Find o

The dynamics of z1, using (4.38) and (4.35)
Z2l=1I1— Qo =21 =bixo = bl(al + 22) (4.39)
Let the Lyapounov function for this subsystem be
L,

its derivative along the trajectory, using (4.38), is:

"/1 = 2121 = bjo1z1 + b1z (441)
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Choose
k
a1 = (11Rk1 = — 171 (4.42)
by
where provide a negative definite term plus an indefinite term provided for next step
Vi = —kizi+bizn (4.43)

Parameter and trajectory k; and z» will be chosen later to render V; < 0 and hence guaran-

teeing asymptotic stability of subsystem (4.39).
Step 2: Find a»

Consider now the dynamics of zp and «;, using (4.38), (4.36), (4.42), and (4.39). Therefore

: k2  kib
%9 = T9 — & = boxg + b3xrg + kl% = boxg + (—bfl — %)Zl + (bg + kl)ZQ (4.44)
1 1 1

The following augmented Lyapounov function is chosen for the system described by (4.39)

and (4.44)

1
Vy = V1+§(22)2 (4.45)

its derivative along the trajectory, using (4.43) and (4.44), is:
Vo = Wi+ 2 (4.46)

using (4.43) and (4.44) and let x5 = z3 + a9

. k? kb
Vo = —klz% + [blzl + boavg — (bil + %)Zl + (bg + kl)ZQ]ZQ + bozoz3 (4.47)
1 1
Choose trajectory oo
Qo = 92121 + Q9229 (4.48)

where aia1 and awos are defined by

b K kiby
by babi  biby
_ ki + ko + b3

gy = —ATT2TO8 (4.49)
bo

Qo1 =
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then, V4 becomes
VQ = —klz% — kgzg + bozoz3 (4.50)

Decision on choosing as is based on making the term inside the bracket (4.47) negative definite.
In following, ki, ko, and z3 will be chosen to make Vo < 0 and hence subsystem (4.39), (4.44)
asymptotically stable.

Step 3: Find u
Consider the dynamics of z3 and as using equations (4.38), (4.37), (4.48), (4.39), and (4.44)
i3 =iy — G = Bu+ bgxs +d — dn (4.51)
where d’ is given in (4.34) and ¢y is obtained using (4.39) and (4.44)
Go = 9121 + a2t = (—kiaor — biags)z1 + (braor — kaagz)za + (bacvaz) 23 (4.52)
Equation (4.51) becomes

Z3 = Pu+ (baaar + k11 + biags)zr + (baaaa — biasr + kaaz)za + (ba — bacva)zs + d
(4.53)

Consider the following augmented Lyapounov function for (4.39), (4.44), and (4.53)

V=V+ %(z:’))2 + %(ﬁ - By + %[(91 —01) (62— 02)]T1[(01 — 01) (02— 02)]" (4.54)

where él, ég, and B are estimate of 01,02, 3. T' = diag[l'1,T's] is an adaptation gain matrix,

and -y is a scalar positive value. Then

V = —ki2? — k23 + [Bu+ o121 + aspzo + aszzs + d |23 —
— (B=B)y 18— (61 — 01T 701 — (82 — 62)T5 16, (4.55)
where
a3] = bgasgr + k1ol + biass
a3z = by —biag + byags + koo

azg = by — boan (4.56)
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Now consider d as given in equation (4.34). The adaptation laws 3, 61,0 in (4.55) are chosen

in a way to obtain (4.55) independent of 61, 62, 3

01 = Tizzs
ég = FQZg.i‘g
B = yz3u (4.57)

Adaptation laws 4.57 are obtained as follow. Consider equation 4.55

. /
V = —klzf — kgzg + Buzg + a312123 + 302023 + 043323 +dz3 —

— ﬁ’y_lﬁ + B’)/_lB — 911“1_191 + éll“l_lél — 921_‘2_1@2 + éQFQ_IéQ (4.58)
substitute d = 0123 + O2d3 and factorize 61, f3 and 3. Equation (4.58) becomes

V o= —k12? — ko2d + Bluzs — v 1B) + aziz123 + azazezs + azzzd +

+ 01(z323 — Fl_lél) + O2(d323 — Fz_léz) + 6771,3 + élrl_lé1 + égrg_léz (4.59)

Since 01, 02, and 3 are unknown, terms related to them are canceled. Set

Tr3z3 — F%él = 0
uzz—y '3 = 0
323 — Dyl = 0 (4.60)

Equation (4.59) becomes
V= —klzf — kgz% + 312123 + Q322223 + aggz?, + 37_15 + élfl_lél + éF§1§2 (4.61)
Substitute (4.57) in (4.62)
V= —klzf — kgzg + 312123 + Q322223 + a33z§ + Buz;e, + 012323 + Oz (4.62)
factorizing z3
V = —k12% — ko2 + [Bu + a3121 + 3920 + 3323 + J]z;:, (4.63)

where d = éll‘g + égi?g. The controller u is then designed to make V < 0. This is achieved

with the following controller and positive values k1, ks, k3:

u = [ '—asiz1 — aspz — aszzs — kszs — d] (4.64)
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B # 0 for normal operating conditions, and make the controller feasible. In fact, with this

controller, V is expressed by:
V = —ki2} — ko2 — k322 (4.65)
Finally, this control law is written in terms of the original state variables as
u = [ UFi2 + Fyxo + Fyas — d] (4.66)

where

—k1ag2 + kiagaaszs + k1ksaoo

Fi(k1, ko, ks) = [—as1 + agi1033 + k3o + b ] (4.67)
Fo(ki, ko, k3) = [—as2+ aszas + kzag)] (4.68)
F3(k1, ko, k3) = [—ass — k3] (4.69)

This controller u(x1, zo, 3, 01, 02, 3) (4.66) is a nonlinear function that is affected by the choice

of the control parameters:
K =1k ko ks kg ks ke (4.70)

where: ky =11, ks =12, k¢ = .

4.3.4 Optimal Settings for Controller Gains

Following a system disturbance, the main objective of damping controllers is to prevent loss of
synchronism and withstand large deviations of states from their nominal. In order to achieve
this goal, effective controllers need to act fast. Improperly design or tuned controllers may
contribute to unstability problem. Hence in selecting controller gains, emphasis is placed on

stability of all the system.

The controller designed Subsection 4.3.3 is at each machine and the control gains (4.70)
are denoted K; = ki1 kio ki3 kia kis kig]. If the system comprises n substations, then
there are N = 6n control parameters that need to be selected simultaneously so that each
substation is asymptotically stable. A vector Lyapounov Function for the entire system is

taken as V = [V} Va---V,] which is positive definite and its derivative along the trajectory
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is [V1 Vo Vi-- Vn] . V; is the derivative along the trajectory of the Lyapounov function
of subsystem (i) given by (4.65). Therefore, the goal is to minimize the objective function
J=1[J1 Jy -+ Jp], where J; = VZ fori=1,2,---n, i.e. to make each entry of J as negative as
possible by tuning the control gains. The problem is formulated as follows:

max (Al (4.71)
K; such that V;<0, i=1:n

Given the size of the problem, and the system complexities, this problem is solved using the

Particle Swarm Optimization (PSO). Advantages with this approach are

e Appropriate Lyapunov function (4.54) is obtained through adaptive backstepping pro-
cedure

e With optimization technique, adaptive backstepping controller maximizes (4.65)

e Adaptation laws (4.57) are obtained to estimate interface variables locally

e Local control signals are used to implement control structure (4.66)
4.3.5 Case Study

Fifty Machine System

Fifty machine system, as explained in 4.24, is considered as case study [31]. Adaptive back-
stepping controllers (4.66), are implemented as supplementary damping signal to excitation

system for generators 2 and 6 at related buses 104 and 111 respectively.
Excitation Control Design

Following figure shows schematic block diagram of adaptive backstepping control for a genera-
tor with Exciter. Exciter consists of amplifier gain K 4, amplifier time constant T4, saturation
hard limit, actuator gain K g, actuator time constant Tr. Parameters for exciter is given in

appendix D.
Scenario-I

The ability of the system to tolerate a three phase fault on transmission line 6 — 9 is in-
vestigated. For this scenario the system is analyzed in two operating conditions. First the

configuration of system as shown in Figure 4.7. And second, the system with the line 6 — 9
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Figure 4.14: Adaptive backstepping Controller with Exciter

out of service for 250 msec. The control and adaptation gains are obtained in a way that sat-
isfy (4.71) for generators 2,6. Figure (4.15) compares performance of exciter with proposed
controller, exciter with power system stabilizer, and exciter without supplementary signal.
Proposed controller damp the oscillation of rotor angles more effectively in comparison to
PSS. The PSS for each generator (2 and 6) has a wash-out stage and two identical lead-lag

stages. Control and adaptation gains are given in Tables 4.11 and 4.12.

Table 4.8: Adaptive Backstepping Controller Gains

Backstepping k1 ko ks
Gen #2 67.45 | 36.87 | 116.05
Gen #6 151.04 | 7.91 0.93

Adaptation gains ky ks ke
Gen #2 359.90 | 402.00 | 275.07
Gen #6 557.40 | 30.80 | 53.15

Table 4.9: PSS Gains
PSS Tw Ky Ty 15
Gen #2 | 3.18 | 14.85 | 0.71 | 0.49
Gen #6 | 6.92 | 7.75 | 1.33 | 1.10
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Figure 4.17: Relative rotor angle do1 (deg) and Control signal generator 2. Adaptive Backstepping
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Scenario-11

Consider the same gains from Table 4.11, but type and location of fault is altered (Line to
ground Fault on line 6 — 7 at 0.5 second, the transmission line remains open). Adaptive
backstepping control is applied for generators 2 and 6 at buses 104 and 111. Figures (4.18)
compares the coupling terms, exact term in dot-line (4.25) and estimated interface variables
with solid line (4.34) for generator 2 and 6. The adaptation laws adjusts fraction of incoming
power and it is being used by backstepping control to produce effective control signals which

damp oscillations and stabilize the system.

In this section PSO based optimization algorithm for damping control design with rel-
atively large scale system is presented. The PSO algorithm allows simultaneous tuning of
multiple power system nonlinear controllers in different operating conditions. Two different
scenarios were presented for this system, three phase fault and loss of transmission line. The
obtained results show that PSO can be effectively utilized for nonlinear damping controllers
with their local settings at two generators 2 and 6. Furthermore, comparison with conventional

PSS shows that the performance of the proposed technique is superior.
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Two Area System:

Second system is the benchmark two-area power system (Figure 4.19) that has been extensively

used in the literature for analyzing inter-area oscillations [61].

Area | Area?2

/ IVl /

| 10 20 3‘6 101 13 120 110 11
Generator % g % % Generator
Ao

| It 41

e -
%2 2

Generator Generator
2 4

Figure 4.19: Two area system

Excitation Control Design

Figure 4.20 shows the schematic block diagram of the proposed adaptive backstepping con-
troller acting as supplementary signal. The actuator consists of an exciter gain K 4, an time
constant T, a filter time constant 7;. and a saturation hard limit with upper and lower bounds

(VR,in  VRimas)- Excitation data is given in Table 6.5.

Table 4.10: Parameters for Static Fxcitation

Exciter 1,2,3,4
K 4 Regulator gain p.u. 200
T4 Regulator time constant p.u. 0.05
T, Filter time constant p.u. 0.01
Vimaz upper bound for saturation p.u. 10
Vimin lower bound for saturation p.u. —10
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Figure 4.20: Adaptive backstepping Controller with static exciter

Table 4.11: PSS Gains
PSS Ty | Ky Ty Ty
Gen #2 | 20 | 2.36 | 0.7109 | 0.155
Gen #3 | 20 | 15 0.15 | 0.0843

Scenarios

Scenarios are presented to illustrate the effectiveness of the proposed controller and to compare
it to existing PSS. PSS at generators 2 and 3 have been successfully designed by authors
previously to damp local and inter-area oscillations [37]. The data for generators are given in
Appendix C. Following control strategies are analyzed:

e Two PSSs, whose transfer functions are given below, are implemented on generators 2 and

3.

K sTy (14 sT1)?
Y14 5Ty, (1 + sT3)2

Wash—out Lead—Lag

(4.72)

Where T, wash-out time constant, K,, wash-out gain, and 77,7, are lead-lag time constants.
PSS parameters are given in Table 4.11 [37].

e Two Adaptive Backstepping controllers, designed using the proposed approach, are imple-
mented on generators 2 and 3. Gains, tuned by PSO, are given in Table 4.12. Here, intercon-

nection coupling term d; is approximated locally with a second order polynomial function of
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Table 4.12: Adaptive Backstepping Controller Gains

Backstepping k1 ko ks
Gen #2 2.40 1.27 | 19.34
Gen #3 10.73 | 16.76 | 28.20

Adaptation gains ka4 ks ke
Gen #2 13.5 | 14.41 | 10.72
Gen #3 1.15 | 3.81 | 11.34

Table 4.13: Analyzed Scenarios
Scenarios # 1 1I 111

Transmission line (13 — 101) | double | single | single

Fault occurrence time(sec) 1.00 1.00 | 1.00
Fault clearance time (sec) 1.026 | 1.046 | 1.06
Line re-closing time (sec) 1.03 1.05 | 10.00

electric power deviation. Its parameters are estimated, using local information:

d; = 01;AP,, + 02, AP? (4.73)

where 01; and 60;2 are values estimated using adaptation laws. The modification is done in

(4.55) where adaptation laws are denoted as:

«91 = Flzgl‘g
éz = FQZBJ;%
B = 7zu (4.74)

The scenarios that have been analyzed are tabulated in Table 4.13. A three phase fault is
applied at bus 3 for each scenario. In scenario-I, simulation results show that relative rotor
angle oscillations Ads1, Ady; is damped fast enough, in less than 8 seconds (Figure 4.21).

In scenario-II, when one transmission line between buses 13 — 101 is removed, the system is
under stress. Adaptive backstepping controller dampen rotor oscillation in approximately 8

sec, while it takes almost twice that time for PSS to suppress the oscillations (Figure 4.22).
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Figure 4.21: Relative rotor angles 031, d41. Adaptive backstepping (solid line), PSS (dash-dotted line)

and uncontrolled system (dotted line) for Scenario-I
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Figure 4.22: Relative rotor angles 031, d41. Adaptive backstepping (solid line), PSS (dash-dotted line)

and uncontrolled system (dotted line) for Scenario-II
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Figure 4.23: Relative rotor angle d31, Speed deviations Aws for Generator 3. Adaptive Backstepping
(solid line — ), and PSS (dash-dot line —.) in Scenario-IIT

In scenario-III, unlike aforementioned scenarios, the fault duration is increased. The transmis-
sion line is removed at 1.06 sec. The transmission line is reconnected at 10 seconds. Proposed
controllers stabilize the system which returns to its pre-fault equilibrium point. Relative ro-
tor angle d31,041 depicts the fact that pre-fault steady state and post-fault steady state are
equal (Figure 4.24). Instability, with PSS controller, is the result of low frequency inter-area

oscillations that arise due to long duration of fault.
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Figure 4.24: Terminal voltage at buses 11 and excitation field voltage E 4, for Generator 3. Adaptive
Backstepping (solid line —), and PSS (dash-dot line —.) in Scenario-IIT
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Finally Figures (4.25) compares the estimated and actual d and d coupling terms. The
adaptation laws adjust the fraction of incoming power to decouple each generator from the
effects of the rest of the system, and produce decentralized control signals. Simulation results
reveal that the system is well damped and stable during and after large disturbances occur in

the system.

Coupling Term Generator 2

time (sec)

Coupling Term Generator 3
o

—0.25} I i -
Wi
Il Il Il Il Il Il Il Il Il

(o] 2 4 6 8 10 12 14 16 18 20
time (sec)

Figure 4.25: Interface modeling for generator 2 and 3. Ezact term (solid line —) and estimated term

(dash-dot line —.) in Scenario-III

The proposed technique presented an adaptive controller for improving the damping of
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oscillations in a power system during large disturbances. This controller is decentralized, that
has been achieved by estimating the external system as uncertain linear function (4.73). The
linear estimate of the disturbance has given adequate results, and the global optimization that
is performed, counteract any errors in this estimate. Simultaneous optimization is performed
to produce the minimum objective function for the over all system under the structure that
each local control act as local optimizer. The well damped optimal nonlinear control illustrates
the successful solution of the problem, indicating that the technique is a valuable tool dealing

with transient control problems for power system.
4.3.6 Modeling Error

In reality the dynamic environment for large scale system has uncertainties. Some factors that

might contribute to this are listed as follow:

e Operating conditions might be different from those considered in planning and designing

stage
e Planning models are inaccurate with respect to system dynamics

e Large changes in system operating conditions might happened due to outside distur-

bances

Performance of controller is evaluated with respect to generator modeling error. Important
requirement is that the tuning procedure must ensure that the proposed damping controller
tuned are robust enough to changes in system parameters and they provide adequate damping
for a range of parameter changes on the system. To verify the robustness of the optimized
tuning controller, scenario-II is investigated as given in Table 4.13. A random change of gen-
erator parameters from their nominal values within the range of £50% are considered for the
following parameters of each generator (ACL‘:], AT C/lo, A:L“;l, AT, ;O, AH). Figure 4.26 shows speed
deviation for generator 3 for several number of simulations. Proposed controller numerically
shows robust performance due to modeling errors for all. The mean (solid line), maximum
(dash-dot line) and minimum (dotted line) values are given in Figure 4.26. Relative rotor
angle 3 — 1 has shown for several simulations. Despite the fact that the proposed technique

is model based, the damping effectiveness of the proposed controller has been ascertained by

nonlinear time simulation. For all the cases the controller performs effectively and damp the
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oscillations as shown in Figure 4.27 with minimum, maximum and mean values. In brief,
decentralized adaptive backstepping control is presented and implemented to stabilize multi-
machine power systems where generator parameters have bounded uncertainties. Test results

show the effectiveness of the proposed controller in presence of parameter uncertainties of

generators.
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Figure 4.26: Speed deviation Aws for several simulations, minimum (dash-dotted line), mean (solid

line), and mazimum (dotted line) values for Aws, Scenario-II
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Figure 4.27: Relative rotor angle Adsy for several simulations, minimum (dash-dotted line), mean

(solid line), and mazimum (dotted line) values for Adsy, Scenario-IT
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The controller which is presented is a model-based control and designed based on transient
dynamics of generator. Detailed dynamics of generators (subtransient model) is considered
to implement same controllers. For this case four subtransient generators are considered
for two area system benchmark. The controllers are implementing on generators 2 and 3.
Comparison is done between the response of controlled system with two different generator
dynamics as transients and subtransients. Parameters for the generators are given in appendix
7.3. Direct and quadrature subtransient impedances are denoted by X(/i/ and X ;, respectively.

Also time constant for direct and quadrature open circuit are T}, T(;O. State equations related

to subtransient voltages on direct and quadrature projections are

1

-7

B = (E;, + (X — X)), — E;;) — (4.75)

T,

. 1 / ! 1 1’ 1

El = (Eq (X, — XD — Eq> - (4.76)

do

with algebraic stator equations

E, ~Vy; = R+ X1 (4.77)
E;—Va = Ruy—X,I, (4.78)

Direct and quadrature transient voltages, angle, and speed dynamics for transients are given
in equations (3.33), (3.34), (3.31), and (3.32) respectively.

Figure 4.28 show that the responses of the both systems (transients and subtransients models)
are close to each and the controller shows robust performance due to different generator model.
Figures 4.28 and 4.29 compares the relative angles and electric power deviations of generators
for same contingency. Three phase fault occurs on line 3 — 101 at 1.00 second. The fault is
cleared after 45 msec and line is reconnected back at 50 sec. Solid line is provided through
simulation of transient model and dotted line presents the simulated model with subtransient
model. Numerical simulations demonstrate that the proposed controller provides the proper
response that behavior of transient and subtransient synchronous generator over a time scale
of transient stability are almost the same. Depending on the time frame of stability of power
system, different study model for generator can be selected. The results show that the response

of the system based on transient and subtransient models have negligible error.
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Figure 4.28: Relative angles Aday, Ads1, and Adyy. FElectric power deviation output of Subtransient

generator model (dotted line) and transient model (solid line)
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5

Transient Stability
Enhancement Using SVC

5.1 Static Var Compensator

FACTS concept is related to incorporating of power electronic devices into high voltage side of
the grid to make it more controllable. Static Var Compensators (SVCs) are shunt FACTS de-
vices which can provide continuous and rapid control of reactive power and voltage, enhancing
several aspects of transmission system performance. Including prevention of voltage collapse,
enhancement of transient stability, and enhancement of damping of system oscillations. These
devices are certainly playing an increasing role in the operation and control of today’s power
systems. FACTS devices can provide more power transfer with no major changes in the
system transmission or generations. It can be placed in transmission and increase power
transfer capabilities. In addition, it reduces the operation and transmission investment cost
significantly. As mentioned, these devices increase the controllability of power systems but it
requires proper damping control technique. Contribution of SVC to the damping of system
oscillations resulting from voltage regulation is not significant and usually it requires damping
controller. In addition, appropriate damping control requires the designer to have concern
about the choice of the device, the most effective measurement to be utilized as input signal,

the damping scheme, the control design strategy, and evaluation of the resulting overall system

87
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performance.

Static var compensators are used to control the voltage at the bus through variable reactive
impedance. Because SVC has no rotating part, it is called static. The SVC, type that is used,
contains a thyristor switched capacitor bank in parallel with a phase angle controlled reactors.
By modifying thyristor firing angle « the current flow through the inductor is adjusted. Firing
angle range is [5, 7], that makes SVC reactance changes from inductive to capacitive. The
algebraic difference between these two capabilities (capacitive and inductive) is called the

dynamic range. Equivalent model for SVC in transient stability study is shown in 5.1. SVC

- Transformer
Damping Reactance
Controller

Look-up 1

Table > 1+ sT

Fl

Thyristor firng
delay =

=
|_,|:1 1
=

Figure 5.1: SVC Equivalent Model

is used to keep the bus voltage at specific value. By varying its reactive power output in
response to the demand of an automatic voltage regulator, it can maintain constant voltage
at the point in the system to which it is connected. It can presented as generator bus where
injected active power is set to zero and the required reactive power is computed through load

flow algorithm. Desired steady state values are obtained as follow

T - <JQB>
VB
V = Vg —i—jXTT (5.1)
I
B - _L
J Vv
200 — sin(2a) — (2 — 2L
B (20) = m(2 = )

X7,

Qg injected reactive power, Vp bus voltage. B is equivalent SVC admittance. The firing
angle is input to the look up table using Xy, X¢, and 90° < o < 180°. Actual admittance for
SVC is found from pre-computed look up table using X, X¢, and o range. Dynamic of the
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thyristor firing delay is approximated by first order block with time delay constant (7' ~ 3ms).

P1I controller is used to set the o within the limits.

5.2 SVC Backstepping Damping Nonlinear Controller Design

for Power Systems

5.2.1 Introduction

In this section a damping controller for a Static Var Compensator (SVC) is designed using a
backstepping controller technique to enhance voltage regulation and power system stability.
The damping control design is formulated as an optimization using detailed model of power
system including dynamic and static load. A PSO algorithm (3.2) is used to obtain optimal
control parameter gains. Nonlinear time domain simulations are carried out to examine the
performance of the proposed control technique on a single and multi machine power system.
The results for both systems show that the proposed SVC damping controller is superior to
conventional lead-lag design especially under high loading conditions and severe contingen-
cies. Much of the effort involved in stability control concerns the avoidance or suppression of

oscillations and avoiding cascade failure of the entire power system.
5.2.2 SVC Control Design

Static Var Compensators are used in power system to increase transmittable power by reg-
ulating the bus voltage and suppressing power oscillations. The main purpose of this device
is to control the voltage. Since damping contribution from voltage regulation is not enough,
providing a proper damping control signal to voltage control loop is required. Proposed damp-
ing controller is based on backstepping technique. Dual input signals are considered for this
controller, which are generator speed and electric power deviations from their nominal val-
ues, as shown in Figure 5.2. The backstepping controller is nonlinear function of a form:
u = ®(Aw, Ad, AP, ki, ko, ks), where Aw, Ad, AP, are speed, angle and electric power de-
viation. ki, ko, k3 are control gains. The schematic block diagram with conventional lead-lag
controller is shown in Figure 5.2. Electric power deviation is used as the input to the con-
troller. It consists of a filter and lead-lag blocks. Backstepping is a model based controller and

is applied to a system whose dynamics are transformed into a specific form. The procedure
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Figure 5.2: SVC damping controllers with nonlinear control structure (backstepping) and Lead-Lags

to obtain backstepping control is similar as explained in Section 3.1. In brief for the system

of differential equations (5.2)

T = fo+ goz1
21 = [+ gz
Z2 = fat+gou (5.2)
The closed form backstepping controller is as follows
1 oV (z, z1) ¢y . 01 .
=—|-———q— k — - — 5.3
92 9., 0 3(22 = ¢1(2, 21)) + 5 ~dn + 92, A 2 (5.3)
and Lyapunov function of the system (5.2) is given below.
1 1 1 )
Va(w, 21, 22) = 596 +5 1~ dolz )+ 5 [72 = d2(@, 21)] (5.4)

Controller u provides signal that stabilizes the dynamics of x, z1, z3. Note that controller gains

k1, ko, k3 require tuning to obtain optimal performance of the closed loop system.
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5.2.3 Optimal Settings of SVC Control Gains

The task of PSO (as explained in Section 3.2) is to search for an optimal set of gains for
SVC to regulate the voltage and damp the power oscillations. The objective function J to
be optimized by PSO is therefore formulated as a weighted quadratic sum of generator speed
and bus voltage deviations from their nominal values.
t
min J = [ [a(Aw)?® + 7(AVpys)] dt (5.5)
PSO method for obtaining the damping controller gain is implemented without linearizing the

system. The technique is implemented on a single and a multi machine power system.
5.2.4 Single Machine Infinite Bus

A single machine infinite bus system with AC transmission link is analyzed here [65]. The
system is presented by nonlinear differential and algebraic equations including synchronous
generator, load, SVC with damping controller and very large AC network represented by an
infinite bus. Parameters for generator and line reactance are given in Table 5.1. SVC is
connected at the load bus that is separated from generator bus through a transformer and an

additional line reactance.

Inputs to the damping controller of SVC are speed and electric power deviation respectively
Aw = w — Wyep, AP, = P, — P?. Hence it is needed to bring the generator speed deviation

back to zero [53]. Dynamic equations related to generator are:

Ad = Aw
. D Wref
AP, = ¢+ pu (5.6)

Where £ and 3 are functions defined below and w is a damping control signal.

AP@ - Pe us in ¢
§ = ——= + 2 %d—i-Pewcotd— f—i—M
Ty ZL‘qud Ty quTd
Vius sind -~
gy

Equation 5.7 is in strict feedback form, so backstepping controller can be applied. Note that

SVC is basically a shunt connected device whose output is adjusted to exchange capacitive
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or inductive current in order to maintain and control specific power system variables. Active
power equation 5.8 with SVC installed is obtained as:

EyViusoo
l'ldz - xLBS’UC(:E;l + SUT)

P, = (5.8)

where r4y~ = z,+x4+x7, By is SVC susceptance, xf, = r11+x L2, and Vpys,, is the infinite
bus voltage [65], [38]. Static and dynamic loads are both connected at the load bus. Static
load is represented as a function of bus voltage. Induction motor represented the dynamic
load with the following parameters in per unit:

Stator resistance rg = 0.4063

Stator leakage reactance xg = 0.4373

Magnetizing reactance x,, = 1.9979

Rotor resistance r, = 0.4356

Rotor leakage reactance z, = 0.1337

Inertia constant H = 2.224 (sec)

Following scenarios are presented here for illustrating the performance of the proposed con-

troller.

o Effect of fault duration
e Effect of dynamic load (induction motor)

e Effect of low to high power generation

Effect of fault duration: The first scenario demonstrates the effect of fault duration on SVC
control performance. Proposed damping controller with backstepping is compared with a
lead-lag controller. PSO algorithm is used for tuning controller gains with defined objective
function 5.5. Tuning process is performed during a three phase fault on transmission line
2 — 3 (Figure 5.1). The fault is cleared by removing the line after 35 msec. The line is
reconnected after 60 msec. Table 5.2 shows the tuned controller gains. By increasing the fault
duration lead-lag damping controller cannot damp the oscillations effectively in comparison
with proposed backstepping controller. Figure 5.4 shows the relative angle of generator. For
longer fault duration (66 msec), it becomes subtle to achieve the stability of closed loop system.
Lead-lag damping controller can no longer stabilize the system while the proposed controller

does.
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Table 5.2: Damping Controller Gains

Lead-Lag Damping Controller Gains | Backstepping Damping Controller Gains
K =80.1749 kr=1
T = 6.4087 ko = 9.0768
Ty = 0.1687 ks = 0.42287
Ty = 0.4753
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Figure 5.3: SVC with lead-lag damping controller (dotted line :),SVC with backstepping damping

controller (solid line — ). Fault duration 40 msec

Effect of Dynamic load (induction motor): Dynamic load in this study is presented by an
induction motor. A three phase fault scenario away from nominal operation of system has
a 42 msec fault duration. Response of the proposed controller is compared with a lead-lag
controller. Terminal voltage and relative angle of generator are improved as shown in Figures
5.5 . The simulation results show that nature of load can affect the transient behavior of
the system. Induction motor with MVA base=75 and inertia H = 8.22 (sec) is included, the
model is obtained from [13]. Parameters of induction motor in per unit are:

Stator resistance rs = 0.0041

Stator leakage reactance xs = 0.04373

Magnetizing reactance x,, = 1.9799
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Figure 5.5: Terminal voltage under a large induction load and generator relative rotor angle (deg)

Rotor resistance r,. = 0.0044

Rotor leakage reactance z, = 0.1337

Effect of low to high generation: In this scenario effect of low power generation to high power
generation is investigated. For each set of power generation load flow solution is obtained for

each bus. Figure 5.6 demonstrate power and speed deviations. Figure 5.6 shows the effect of
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