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The problem of designing an adaptive backstepping controller for nonlinear static var compensator (SVC) system is addressed
adopting two perspectives. First, instead of artificially assuming an upper bound or inequality scaling, the minimax theory is used
to treat the external unknown disturbances. The system is insensitive to effects of large disturbances due to taking into account
the worst case disturbance. Second, a parameter projection mechanism is introduced in adaptive control to force the parameter
estimate within a prior specified interval. The proposed controller handles the nonlinear parameterization without compromising
control smoothness and at the same time the parameter estimate speed is improved and the robustness of system is strengthened.
Considering the short-circuit ground fault and mechanical power perturbation, a simulation study is carried out. The results show
the effectiveness of the proposed control method.

1. Introduction

With the expansion of the scale of electric network, static
var compensators (SVCs) have been employed in power
systems for several years in a cost-effective manner [1].
SVCs play important roles in voltage regulation and stability
improvement due to simple structures and reactive power
compensation [2]. Numerous control techniques with vary-
ing levels of success for SVC have been used to enhance
power system stability [3, 4]. The fixed-gain PID controllers
are designed for improving the dynamic impact of SVCs
based on the linearization model without taking nonlinear
characteristic into consideration [5]. The exact feedback
linearization design depends on the basis of nonlinear SVC
model [6]; however, such a solution requires a completely
accurate model, which is rarely satisfying from the practical
point of view.TheHamiltonian functionmethod cannot only
develop nonlinear control for the SVC, but also solve the
problem of 𝐿

2
disturbance attenuation [7], whereas it is hard

work to express the nonlinear system into a Hamiltonian
system. Adaptive backstepping technique has received a
considerable attention in recent robust control literatures of
power systems [8, 9].

Several papers have studied the adaptive backstepping
SVC control strategies and gave insights into the effect of
external disturbance. There are many causes of variations
in a power system’s operating conditions, such as continual
changes in power consumption and changes in the generation
and transmission device structure. Significant progress has
been made in disturbance treatment linking with backstep-
ping method; the 𝐻

∞
control problem can be solved by

inequality-scaling the item including disturbance in energy
function [10, 11], while the scaling way may have brought
conservativeness. Although many works successfully deal
with the disturbances, the disturbances are always restricted
with a certain bound or a certain expression [12–14]. The
upper bound is difficult to be selected because of the difficulty
of exact measurement in some practical applications [15].
It is the objective of this paper to provide an effective
way in unknown disturbance treatment to overcome the
above disadvantages. The minimax method is an efficient
approach to deal with large disturbance attenuation problem
by estimating the degree of damage [16, 17]; an in-depth
study on the large disturbance attenuation problems of the
nonlinear TCSC and STATCOM is conducted via adaptive
backstepping and minimax method [18, 19].
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References [18, 19] also play a key role in uncertain
parameter estimation. However, conventional adaptive con-
trols always ignore the available prior information of the
uncertainties, which may lead to poor and slow convergence,
because the parameter search process possibly takes place
outside the region of true value. It is often reasonable to obtain
the knowledge on bounds of unknown parameter of the
SVC model. To absorb the prior information, the projection
technique can be adopted [20, 21]. A novel adaptive control
solution is provided; this approach enforces prior known
upper and lower bounds of the uncertain parameters always
on their corresponding estimates, without compromising
control smoothness or global stability guarantees for the
closed-loop dynamics [22].

This paper addresses the nonlinear robust control prob-
lem for the SVC system with unknown external distur-
bances and parameter uncertainties using modified adaptive
backstepping and minimax approach. In order to avoid
the conservativeness brought by conventional disturbance
treatment, a test function related to the performance index
is constructed to maximize the impact of the disturbances,
and the feedback control is investigated by taking account of
the worst case. Moreover, the class-𝜅 functions are used in
the design procedure to keep the balance between transient
response and controller gain. For the uncertainties, a projec-
tionmechanism is applied depending on the available bounds
on the plant parameters, which can promote the efficiency
of parameter search process. Compared with traditional
adaptive backstepping method, numerical simulations of
two kinds of disturbances to the SVC system demonstrate
that the proposed control gives superiorities on transient
performance.

2. Dynamic Model and Problem Statements

Consider the following dynamic model of single-machine
infinite-bus (SMIB) power system with SVC as shown in
Figure 1 [11].

The mathematical dynamics of SVC control system can
be expressed by the following nonlinear differential equations
[11]

̇𝛿 = 𝜔 − 𝜔
0
,

𝜔̇ =
𝜔
0

𝐻
(𝑃
𝑚

− 𝐸
󸀠

𝑞
𝑉
𝑠
𝑦svc sin 𝛿) −

𝐷

𝐻
(𝜔 − 𝜔

0
) ,

̇𝑦svc =
1

𝑇svc
(−𝑦svc + 𝑦svc0 + 𝑢) .

(1)

In the above equations, 𝛿 is the rotor angle; 𝜔 is the
angular speed; 𝐻 and 𝐷 are the inertia constant and damping
coefficient; 𝑃

𝑚
is the mechanical power; 𝐸

󸀠

𝑞
and 𝑉

𝑠
are the 𝑞

axis transient reactance and infinite bus voltage; 𝑦svc is the
susceptance of the overall system, 𝑦svc = 1/(𝑋

1
+ 𝑋
2

+

𝑋
1
𝑋
2
(𝐵
𝐿

+ 𝐵
𝐶

)), 𝑋
1

= 𝑋
󸀠

𝑑
+ 𝑋
𝑇

+ 𝑋
𝐿
, 𝑋
2

= 𝑋
𝐿
, 𝑋
󸀠

𝑑
, 𝑋
𝑇

and 𝑋
𝐿
are, respectively, the direct axis transient reactance of

the generator, the reactance of the transformer, and the line
reactance, and 𝐵

𝐿
and 𝐵

𝐶
are the susceptance of the inductor
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Figure 1: Single machine infinite bus system with SVC.

and the capacitor in SVC; 𝑇svc is the time constant of SVC; 𝑢

is the equivalence input of SVC regulator.
Denote 𝑥

1
= 𝛿 − 𝛿

0
, 𝑥
2

= 𝜔 − 𝜔
0
, and 𝑥

3
= 𝑦svc − 𝑦svc0,

where (𝛿
0
, 𝜔
0
, 𝑦svc0) represent an operating point of the

power system. Consider the external disturbance vector 𝜀 =

[𝜀
1

𝜀
2
]
𝑇; 𝜀
1
and 𝜀
2
are unknown functions that belong to 𝐿

2

space.Then, system (1) can be transformed into the following
form:

𝑥̇
1

= 𝑥
2
, (2a)

𝑥̇
2

= 𝜃𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 𝑏
0

(𝑥
3

+ 𝑦svc0) sin (𝑥
1

+ 𝛿
0
) + 𝜀
1
, (2b)

𝑥̇
3

= −𝑚
0
𝑥
3

+ 𝑚
0
𝑢 + 𝜀
2
, (2c)

where 𝑎
0

= 𝜔
0
/𝐻, 𝑏

0
= −𝜔

0
𝐸
󸀠

𝑞
𝑉
𝑠
/𝐻, 𝑚

0
= 1/𝑇svc. Let

𝜃 = −𝐷/𝐻 be an uncertain constant parameter in view of the
damping coefficient 𝐷 that cannot be measured accurately.
However, it is reasonable to obtain a prior knowledge on its
bound, both from literatures and practice [23–25]. Hence, the
upper and lower bounds of 𝜃 can also be acquired; we assume
𝜃 ∈ (𝜃min, 𝜃max).

3. Adaptive Disturbance Attenuation Design
for SVC Control System

In the control of large scale power system, one usually faces
limited knowledge on plant parameters and the appearance of
sudden large disturbances. A well-designed controller should
have the ability to perform its desired function in the presence
of changes and uncertainties in the system. The proposed
approach is aiming to attenuate the external disturbance and
estimate the uncertainty. We adopt the minimax method
and parameter projection mechanism based on backstepping
technique to deal with the problems.
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Step 1. Start with (2a); we define 𝑒
1

= 𝑥
1
and view 𝑥

2
as a

control variable. Design a virtual control law𝑥
∗

2
as𝑥
∗

2
= −[𝑐
1
+

𝜑
1
(|𝑒
1
|)]𝑒
1
, where 𝑐

1
> 0, and 𝜑

1
(⋅) is a class-𝜅 function; we

select 𝜑
1
(|𝑒
1
|) = 𝑘

1
𝑒
2

1
, 𝑘
1

> 0. Define an error variable 𝑒
2

=

𝑥
2

− 𝑥
∗

2
representing the difference between the actual and

virtual controls.Then, we can derive the dynamics of the new
coordinate

̇𝑒
1

= − [𝑐
1

+ 𝜑
1

(
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨)] 𝑒
1

+ 𝑒
2
. (3)

The objective of this step is to make 𝑒
1

→ 0, by
considering the Lyapunov function as

𝑉
1

=
𝜎

2
𝑒
2

1
, (4)

where 𝜎 > 0; then the time derivative of 𝑉
1
becomes

𝑉̇
1

= −𝜎𝑐
1
𝑒
2

1
− 𝜎𝜑
1

(
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨) 𝑒
2

1
+ 𝜎𝑒
1
𝑒
2
. (5)

Apparently, if 𝑒
2

= 0, then 𝑉̇
1

= −𝜎𝑐
1
𝑒
2

1
− 𝜎𝑘
1
𝑒
4

1
≤ 0,

and 𝑒
1
is guaranteed to converge to zero asymptotically. The

coupling term 𝜎𝑒
1
𝑒
2
will be canceled in the next step.

Step 2. Consider (2b) by viewing 𝑥
3
as a virtual control

variable. Define a virtual control law 𝑥
∗

3
and the error variable

𝑒
3

= 𝑥
3

− 𝑥
∗

3
. Our objective in this step is to make 𝑒

2
→ 0,

and then choose a Lyapunov function by augmenting (4):

𝑉
2

= 𝑉
1

+
1

2
𝑒
2

2
. (6)

Before virtual control law design, we plot out a regulated
output 𝑧 = [𝑞

1
𝑒
1

𝑞
2
𝑒
2
]
𝑇 into system (2a), (2b), and (2c),

where 𝑞
1
and 𝑞

2
are nonnegative weighted coefficients rep-

resenting weighting proportion of 𝑒
1
and 𝑒
2
. Then, construct

a performance index based on minimax theory as

𝐽
1

= ∫

∞

0

(‖𝑧‖
2

− 𝛾
2󵄩󵄩󵄩󵄩𝜀
1

󵄩󵄩󵄩󵄩

2

) 𝑑𝑡, (7)

where 𝛾 > 0, and 𝛾 is disturbance attenuation constant.
Further, construct a test function related to the performance
index to estimate the worst case disturbance, which means
the highest degree of critical disturbance that can be endured
by the system:

𝐻
1

= 𝑉̇
2

+
1

2
(‖𝑧‖
2

− 𝛾
2󵄩󵄩󵄩󵄩𝜀
1

󵄩󵄩󵄩󵄩

2

) . (8)

Substituting 𝑉̇
2

= 𝑉̇
1

+ 𝑒
2

̇𝑒
2
into (8) yields

𝐻
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1
𝑒
2

1
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1
𝑒
4

1
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𝑒
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2
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)
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1
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.

(9)

We assume that the upper value of (7) is 𝐽
∗

1
. If a

disturbance exists and makes 𝐽
1
no larger than 𝐽

∗

1
, then the

degree of damage is greatest on the system performance.
Thus, our task here is to maximize 𝐽

1
by making the first-

order derivative of 𝐻
1
with respect to 𝜀

1
equal to zero, which

is equivalent to 𝑒
2

− 𝛾
2
𝜀
1

= 0; then we derive

𝜀
∗

1
=

𝑒
2

𝛾2
. (10)

Furthermore, we compute the second-order derivative;
that is, 𝜕

2
𝐻
1
/𝜕𝜀
2

1
= −𝛾
2

< 0. Therefore, the maximum value
of 𝐻
1
about 𝜀

1
exists, and

max𝐻
1

= max [𝑉̇
2

+
1

2
(‖𝑧‖
2

− 𝛾
2󵄩󵄩󵄩󵄩𝜀
1

󵄩󵄩󵄩󵄩

2

)] . (11)

Integrating both sides of (11) yields

max∫

∞

0

𝐻
1
𝑑𝑡

= max [∫

∞

0

𝑉̇
2
𝑑𝑡 +

1

2
∫

∞

0

(‖𝑧‖
2

− 𝛾
2󵄩󵄩󵄩󵄩𝜀
1

󵄩󵄩󵄩󵄩

2

) 𝑑𝑡] .

(12)

Let 𝐻
1

= ∫
∞

0
𝐻
1
𝑑𝑡; then (12) becomes max𝐻

1
=

max[𝑉
2
(∞) − 𝑉

2
(0) + (1/2)𝐽

1
], and then

max (
1

2
𝐽
1
) = max (𝐻

1
− Δ𝑉
2
) ≤ max (𝐻

1
) − min (Δ𝑉

2
) .

(13)

When the system suffers sufficiently large disturbances,
𝑉
2
will not be reduced, in other words, the disturbance 𝜀

1
is

assumed to reduce 𝑉
2
to 0; that is, min(Δ𝑉

2
) = 0. Thus, it

proves that max((1/2)𝐽
1
) = max(𝐻

1
), and 𝜀

∗

1
is the worst case

disturbance for the subsystem.

Remark 1. From the equivalent analysis of max(𝐻
1
) and

max((1/2)𝐽
1
), it is obvious that if 𝜀

1
allows 𝐻

1
to obtain the

maximum value, 𝜀
1
also allows 𝐽

1
to obtain the maximum

value. That is, system performance damage via 𝜀
1
is the

largest.

The stabilizing function 𝑥
∗

3
needs to be designed by

undertaking the disturbances with such damage degree into
system; our approach is to replace 𝜀

1
in (9) with (10):

𝐻
1
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1
𝑒
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1
− 𝜎𝑘
1
𝑒
4

1
+ 𝜎𝑒
1
𝑒
2

+ 𝑒
2

(𝜃𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 𝑏
0

(𝑥
3
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+ 𝛿
0
)
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𝑒
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+ 𝑐
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𝑥
2
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𝑥
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1
𝑥
2
)

+
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𝑞
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1
+

1

2
𝑞
2

2
𝑒
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2
−
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𝛾
2
(

𝑒
2

𝛾2
)

2

.

(14)
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Figure 2: Transient response of closed-loop system under the short circuit ground fault.

Suppose that ℎ
1

= 𝜎𝑐
1

− (1/2)𝑞
2

1
; ℎ
2

= 𝑐
2

+ (1/2)𝑞
2

2
+ 1/2𝛾

2,
𝑐
2

> 0; 𝑓sin = sin(𝑥
1

+ 𝛿
0
). Now we select

𝑥
∗

3
= −

1

𝑏
0
𝑓sin

[ℎ
2
𝑒
2

+ 𝜑
2

(
󵄨󵄨󵄨󵄨𝑒2

󵄨󵄨󵄨󵄨) 𝑒
2

+ 𝜎𝑒
1

+ 𝜃𝑥
2

+𝑐
1
𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 3𝑘
1
𝑥
2

1
𝑥
2
] − 𝑦svc0,

(15)

where 𝜑
2
(⋅) is a class-𝜅 function; we choose 𝜑

2
(|𝑒
2
|) = 𝑘

2
𝑒
2

2
,

𝑘
2

> 0; 𝜃 is an estimate of 𝜃, and 𝜃 = 𝜃 − 𝜃. If the rotor angle
𝛿 = 𝑘𝜋, 𝑘 = 0, 1, . . ., synchronism of the power system will
be lost. Fortunately, under the normal operating conditions
in the system 0 < 𝛿 < 𝜋 holds, and therefore, the condition
sin(𝑥
1

+ 𝛿
0
) ̸= 0 can be guaranteed.

Then,𝐻
1

= −ℎ
1
𝑒
2

1
−𝜎𝑘
1
𝑒
4

1
−𝑐
2
𝑒
2

2
−𝑘
2
𝑒
4

2
+𝑒
2
𝜃𝑥
2

+𝑏
0
𝑒
2
𝑒
3
𝑓sin.

In the final step, the coupling term 𝑏
0
𝑒
2
𝑒
3
𝑓sin will be canceled,

and the uncertainty item 𝑒
2
𝜃𝑥
2
will be dealt with.

Step 3. For the uncertainty, as mentioned in Section 2, it
is reasonable to expect availability of a prior knowledge in
terms of lower and upper bounds of 𝜃 in (2a), (2b), and (2c).
Thereby, we reparameterize the uncertain parameter 𝜃 in an
associated uncertain variable 𝜙 as follows [22]:

𝜃 =
1

2
(𝜃max − 𝜃min) (1 − tanh𝜙) + 𝜃min. (16)
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It is clear that is for all values of 𝜙 ∈ 𝑅, tanh𝜙 ∈

(−1, 1), hence, 𝜃 is restricted to lie within the region of
(𝜃min, 𝜃max). Consequently, the system governing equation in
(2b), which is linear in terms of 𝜃, immediately becomes
nonlinear in terms of 𝜙. We are in the position to develop a
smooth adaptive controller in order to handle the nonlinear
parameterization of (16). We define 𝑧 = 𝜙 − 𝜙, wherein 𝜙 is
the estimate of 𝜙; then choose the following nonnegative, and
therefore, lower-bounded function of 𝑧 and 𝜙 as

𝑉
𝑧

=
1

2
(𝜃max − 𝜃min) [ln cosh (𝑧 + 𝜙) − 𝑧 tanh𝜙] . (17)

Consider the candidate Lyapunov function as

𝑉
3

= 𝑉
2

+
1

2
𝑒
2

3
+

1

𝜌
𝑉
𝑧
. (18)

The time derivative of 𝑉
3
becomes

𝑉̇
3

= 𝑉̇
2

+ 𝑒
3

̇𝑒
3

+
1

2𝜌
(𝜃max − 𝜃min) [tanh (𝑧 + 𝜙) − tanh𝜙] 𝑧̇.

(19)

The performance index is expressed as

𝐽
2

= ∫

∞

0

(‖𝑧‖
2

− 𝛾
2
‖𝜀‖
2
) 𝑑𝑡. (20)

The test function is

𝐻
2

= 𝑉̇
3

+
1

2
(‖𝑧‖
2

− 𝛾
2
‖𝜀‖
2
) . (21)

Substituting (19) into (21) yields

𝐻
2

= − ℎ
1
𝑒
2

1
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1
𝑒
4

1
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2
𝑒
2

2
− 𝑘
2
𝑒
4

2
+ 𝑒
2
𝜃𝑥
2

+ 𝑏
0
𝑒
2
𝑒
3
𝑓sin

+ 𝑒
3

{−𝑚
0
𝑥
3

+ 𝑚
0
𝑢 + 𝜀
2

+
1

𝑏
0
𝑓sin

× [ (𝜎 +
̇̂

𝜃) 𝑥
2

+ 6𝑘
1
𝑥
1
𝑥
2

2

+ (ℎ
2

+ 3𝑘
2
𝑒
2

2
) (𝑐
1
𝑥
2

+ 3𝑘
1
𝑒
2

1
𝑥
2
)

+ (𝜃 + 𝑐
1

+ 3𝑘
1
𝑥
2

1
+ ℎ
2

+ 3𝑘
2
𝑒
2

2
)

× (𝜃𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 𝑏
0

(𝑥
3

+ 𝑦svc0) 𝑓sin +
𝑒
2

𝛾2
)]

−
𝑓cos𝑥2
𝑏
0
𝑓
2

sin
(ℎ
2
𝑒
2

+ 𝑘
2
𝑒
3

2
+ 𝜎𝑒
1

+ 𝜃𝑥
2

+𝑐
1
𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 3𝑘
1
𝑥
2

1
𝑥
2
) }

−
1

2
𝛾
2
𝜀
2

2
+

1

2𝜌
(𝜃max − 𝜃min)

× [tanh (𝑧 + 𝜙) − tanh𝜙] 𝑧̇,

(22)

where 𝑓cos = cos(𝑥
1

+𝛿
0
). A similar procedure is employed to

make 𝜕𝐻
2
/𝜕𝜀
2

= 0; we can obtain the worst case disturbance
(𝜕2𝐻
2
/𝜕𝜀
2

2
= −𝛾
2

< 0)

𝜀
∗

2
=

𝑒
3

𝛾2
. (23)

Taking (23) into account, (22) is rewritten as

𝐻
2

= − ℎ
1
𝑒
2

1
− 𝜎𝑘
1
𝑒
4

1
− 𝑐
2
𝑒
2

2
− 𝑘
2
𝑒
4

2

+ 𝑒
3

{𝑏
0
𝑒
2
𝑓sin − 𝑚

0
𝑥
3

+ 𝑚
0
𝑢 +

𝑒
3

2𝛾2

+
1

𝑏
0
𝑓sin

[ (𝜎 +
̇̂

𝜃) 𝑥
2

+ 6𝑘
1
𝑥
1
𝑥
2

2

+ (ℎ
2

+ 3𝑘
2
𝑒
2

2
) (𝑐
1
𝑥
2

+ 3𝑘
1
𝑒
2

1
𝑥
2
)

+ (𝜃 + 𝑐
1

+ 3𝑘
1
𝑥
2

1
+ ℎ
2

+ 3𝑘
2
𝑒
2

2
)

× (𝜃𝑥
2
+𝑎
0
𝑃
𝑚

+𝑏
0
(𝑥
3
+𝑦svc0)𝑓sin+

𝑒
2

𝛾2
)]

−
𝑓cos𝑥2
𝑏
0
𝑓
2

sin
(ℎ
2
𝑒
2

+ 𝑘
2
𝑒
3

2
+ 𝜎𝑒
1

+ 𝜃𝑥
2

+ 𝑐
1
𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 3𝑘
1
𝑥
2

1
𝑥
2
) }
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+ [𝑒
2
𝑥
2

+
𝑒
3
𝑥
2

𝑏
0
𝑓sin

(𝜃 + 𝑐
1

+ 3𝑘
1
𝑥
2

1
+ ℎ
2

+ 3𝑘
2
𝑒
2
)] 𝜃

+
1

2𝜌
(𝜃max − 𝜃min) [tanh (𝑧 + 𝜙) − tanh𝜙] 𝑧̇,

(24)

in which 𝜃 = (1/2)(𝜃max − 𝜃min)(1 − tanh𝜙) + 𝜃min, and then
𝜃 = (1/2)(𝜃max − 𝜃min)(tanh𝜙 − tanh𝜙).

For the purpose of making 𝐻
2

≤ 0, we select an adaptive
controller consisting of an actual control input 𝑢 and a
reparameter estimator, which provides the estimate of 𝜙:

𝑢 = −
1

𝑚
0

×

{

{

{

(𝑐
3

+
1

2𝛾2
+ 𝜑
3

(
󵄨󵄨󵄨󵄨𝑒3

󵄨󵄨󵄨󵄨)) 𝑒
3

+
1

𝑏
0
𝑓sin

[

[

(𝜎 −
1

2
(𝜃max − 𝜃min)

̇̂
𝜙

cosh2𝜙
) 𝑥
2

+ 6𝑘
1
𝑥
1
𝑥
2

2
+ (ℎ
2

+ 3𝑘
2
𝑒
2

2
) (𝑐
1
𝑥
2

+ 3𝑘
1
𝑒
2

1
𝑥
2
)

+ (𝜃 + 𝑐
1

+ 3𝑘
1
𝑥
2

1
+ ℎ
2

+ 3𝑘
2
𝑒
2

2
)

× (𝜃𝑥
2

+ 𝑏
0

(𝑥
3

+ 𝑦svc0) 𝑓sin + 𝑎
0
𝑃
𝑚

+
𝑒
2

𝛾2
) ]

]

−
𝑓cos𝑥2
𝑏
0
𝑓
2

sin
(ℎ
2
𝑒
2

+ 𝑘
2
𝑒
3

2
+ 𝜎𝑒
1

+ 𝜃𝑥
2

+ 𝑐
1
𝑥
2

+ 𝑎
0
𝑃
𝑚

+ 3𝑘
1
𝑥
2

1
𝑥
2
)

+𝑏
0
𝑒
2
𝑓sin − 𝑚

0
𝑥
3

}

}

}

,

(25)

̇̂
𝜙 = −𝜌[𝑒

2
𝑥
2

+
𝑒
3
𝑥
2

𝑏
0
𝑓sin

(
1

2
(𝜃max − 𝜃min) (1 − tanh𝜙)

+𝜃min + 𝑐
1

+ 3𝑘
1
𝑥
2

1
+ ℎ
2

+ 3𝑘
2
𝑒
2

2
) ] ,

(26)

where 𝜑
3
(⋅) is a class-𝜅 function. We choose 𝜑

3
(|𝑒
3
|) = 𝑘

3
𝑒
2

3
,

𝑘
3

> 0, and then 𝜙 is generated through the solution of the
differential equations governed by (26). And 𝜃, the estimate
of 𝜃, is indirectly obtained by 𝜙:

𝜃 =
1

2
(𝜃max − 𝜃min) (1 − tanh𝜙) + 𝜃min. (27)

Then, we can obtain

𝐻
2

= −ℎ
1
𝑒
2

1
− 𝜎𝑘
1
𝑒
4

1
− 𝑐
2
𝑒
2

2
− 𝑘
2
𝑒
4

2
− 𝑐
3
𝑒
2

3
− 𝑘
3
𝑒
4

3
≤ 0. (28)

If we define 𝑉(𝑥) = 2𝑉
3
(𝑥) as the overall Lyapunov

function, then it follows readily that

𝑉̇ ≤ 𝛾
2
‖𝜀‖
2

− ‖𝑧‖
2
. (29)

Equation (29) indicates that all increased energy of SVC
system from 𝑡 = 0 to any final time is always smaller than or
equal to the ones from outside; that is, the system energy is
decreasing.

Theorem 2. For the given disturbance attenuation constant
𝛾 > 0, the 𝐿

2
disturbance attenuation problem of system (1)

can be solved by adaptive controller (25) to (27), and a positive
storage function𝑉(𝑥) exists such that the dissipation inequality

𝑉 (𝑥 (𝑡)) − 𝑉 (𝑥 (0)) ≤ ∫

𝑇

0

(𝛾
2
‖𝜀‖
2

− ‖𝑧‖
2
) 𝑑𝑡 (30)

holds for any final time 𝑇, and the closed-loop system is char-
acteristic with disturbance rejection.

When 𝜀
1

= 0, 𝜀
2

= 0, the closed-loop system is
asymptotically stable. When 𝜀

1
̸= 0, 𝜀
2

̸= 0, the 𝐿
2
gain from

the disturbance to the output of the system is smaller than or
equal to 𝛾. According to the definition of virtual control, the
𝑥
1
, 𝑥
2
, and 𝑥

3
are bounded convergences.

Remark 3. The class-𝜅 function 𝜑
𝑖
(⋅) is introduced into the

selection of stabilizing function 𝑥
∗

𝑖
, 𝑖 = 1, 2, 3, during

the recursive design procedure, in order to keep the bal-
ance between transient response and controller gain. This
approach promotes convergent speed remarkably without
increasing the controller gain.

Remark 4. Exist disturbance treatment usually assumes the
plant with bounded disturbance or zooms the items of
the energy function about the disturbance, which probably
increase the conservativeness.This paper adopts theminimax
method to maximize the effects of disturbances. The control
law is designed by undertaking the worst case disturbance
to ensure the stability of the closed-loop system. Thus, the
system is theoretically not sensitive to disturbance effects.

Remark 5. Different from the previous adaptive method in
power systems, we fully and properly utilize all the available
prior information on the bound of unknown parameter
by adopting parameter projection technique. We select a
specific uncertain parameter structure to force the parameter
estimate to staywithin the valid region and generate a smooth
adaptive control law. Accordingly, the transient performance
is significantly improved.

4. Results and Discussion

We will consider two kinds of disturbances in the digital
simulation for the single-machine infinite-bus system with
SVC. The physical parameters are selected as follows: 𝐻 =

5.9 s, 𝐷 = 1.0, 𝐸
󸀠

𝑞
= 1.123 pu, 𝑉

𝑠
= 1.0 pu, 𝑇svs = 0.02 s,

𝑋
1

= 0.84 pu, 𝑋
2

= 0.52 pu, and 𝐵
𝐿

+ 𝐵
𝐶

= 0.3 pu. The
operating point is 𝛿

0
= 0.9 rad, 𝜔

0
= 314.159 rad/s, and
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Figure 4: Transient response of closed-loop system under the mechanical power perturbation.

𝑦svc0 = 0.4 pu.The control parameters are selected as follows:
𝑞
1

= 0.4, 𝑞
2

= 0.6, 𝑐
1

= 2, 𝑐
2

= 2, 𝑐
3

= 2, 𝑘
1

= 1, 𝑘
2

= 1, 𝑘
3

= 1,
𝛾 = 0.2, and 𝜌 = 1. The upper and lower bound of uncertain
parameter are 𝜃max = 0 and 𝜃min = −0.5.

In order to show the effectiveness of the proposed mod-
ified parameter projection adaptive backstepping minimax
(PBMK) controller, we will make comparisons with the
adaptive backstepping minimax (ABM) controller [18] and
the conventional adaptive backstepping (AB) controller [10]
under the same nonzero initial condition. Note that the
control parameters for ABM controller and AB controller are
selected as 𝑐

1
= 3, 𝑐
2

= 3, and 𝑐
3

= 3.

4.1. Short Circuit Ground Fault. In 4 s, a transient three-phase
short-circuit fault occurred on the transmission line. In 4.5 s,
the fault disappears, and the system restores to the normal
structure.The reactance of the transformer varies in different
stages after a short circuit ground fault as follows:

the period of pre-fault 𝑋
𝐿

= 0.52 pu;

the period of fault procedure 𝑋
𝐿

= ∞;

the period of after-fault 𝑋
𝐿

= 0.52 pu;

the transient response curves of the system are shown
in Figures 2 and 3.
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Figure 5: Control input curves under the mechanical power
perturbation.

Figures 2(a)–2(c) show that, under the proposed con-
troller PBMK, the response is improved without remarkably
increasing the controller gain; the convergent speed is faster;
the system reaches the stable state more rapidly than the ones
under ABM and AB controller. Moreover, PBMK and ABM
controllers, which are both designed by minimax method,
have advantages in the ability of disturbance attenuation.
Figure 2(d) shows that the proposed adaptive control in this
paper ensures that the estimates of the uncertain parameter
are always within the prior bounds, while for the ABM and
AB controllers, the parameter search process takes place
outside the feasible region where the corresponding “true”
parameters lie.

Figure 3 shows that, under PBMK controller, the control
input requires bigger energy in the initial period, but it
reaches the stable state in short time, and the amplitude of
oscillation is relatively smaller. The selected class-𝜅 functions
converge to zero along with the convergence to zero of the
errors. Then the control energy also coincides with that of
ABM controller.

4.2.Mechanical Power Perturbation. Unrecoverablemechan-
ical power perturbation occurs at 4 s, and the mechanical
power 𝑃

𝑚
changes to another value; that is,

𝑃
𝑚

= {
0.9, 0 ≤ 𝑡 < 4.0 s
0.9 + Δ𝑃

𝑚
, 4.0 s < 𝑡, Δ𝑃

𝑚
(𝑡) = 30%𝑃

𝑚
.

(31)

The dynamic responses of closed-loop system are shown
in Figures 4 and 5.

Figures 4 and 5 show that, after the presence of mechan-
ical power perturbation, the states are stable in a new
equilibrium point. And the proposed PBMK controller on

the convergence time and the amplitude of oscillation still
has advantages compared with ABM and AB controllers.The
dynamic response of the system does not change significantly
with the variety of disturbance form.Therefore, the controller
is insensitive to the change in disturbance.

5. Conclusions

In this paper, we present an improved robust disturbance
attenuation scheme for the nonlinear uncertain SVC sys-
tem based on improved adaptive backstepping and min-
imax method. The proposed control strategy gives some
advantages, such as the following. (a) The nonlinearities
of the SVC system model are completely retained for no
linearization process is put on the original system. (b) Our
disturbance treatment does not inquire artificially imposing
an upper bound on the disturbance or unequally scaling
the disturbance items existing in the energy function; then
the conservativeness is greatly reduced. (c) The closed-loop
system is insensitive to the disturbances because of taking
account of the maximum effect of the damage. (d) The
class-𝜅 functions introduced into the backstepping procedure
are helpful to speed up the response without significantly
increasing the control gain. (e) We develop a nonlinear
smooth function to map the uncertain parameter 𝜃 into 𝜙

in order to restrict 𝜃 to be lying within the prior specified
interval, and guarantee that the parameter estimate has a
higher convergence rate. Simulation research is under two
disturbances that; the results indicate that the proposed con-
trol strategy has advantages in terms of the convergence time
and oscillation amplitude in comparison with traditional
adaptive backstepping approach.
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[25] M. Ranlöf, J. Bladh, and U. Lundin, “Use of a finite element
model for the determination of damping and synchroniz-
ing torques of hydroelectric generators,” Electrical Power and
Energy Systems, vol. 44, pp. 844–851, 2013.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


