82 research outputs found

    Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining

    Get PDF
    This study evaluates the machining performance of newly developed modified jatropha oils (MJO1, MJO3 and MJO5), both with and without hexagonal boron nitride (hBN) particles (ranging between 0.05 and 0.5 wt%) during turning of AISI 1045 using minimum quantity lubrication (MQL). The experimental results indicated that, viscosity improved with the increase in MJOs molar ratio and hBN concentration. Excellent tribological behaviours is found to correlated with a better machining performance were achieved by MJO5a with 0.05 wt%. The MJO5a sample showed the lowest values of cutting force, cutting temperature and surface roughness, with a prolonged tool life and less tool wear, qualifying itself to be a potential alternative to the synthetic ester, with regard to the environmental concern

    Practice of law in the provisioning of accessibility facilities for person with disabilities in Malaysia

    Get PDF
    Malaysia’s significant changes can be seen clearly through the improvement of social welfare of the disabled and people with disabilities. Although the governments has carried out various policies and provide facilities as well as provision for the disabled but there are still many obstacles encountered by people with disabilities, especially the legal and the accessibility of facilities and services. Therefore, this paper attempts to discuss the practice of law relating of legal procedure particularly for disabled users which affects the movement of these people from one destination to another. This paper discusses the practice of law adopted in the preparation of facilities for disabled people to help them make movement independently. The study was conducted by secondary data to the Malaysia legal and policies for disabled person by comparing with United Kingdom (UK). Malaysia has come out with a strong legal framework for disabled person through People with Disabilities Act 2008 (Act 685). There are several areas in the act that still can be improved to support disabled person

    Active compliance control strategies for multifingered robot hand

    Get PDF
    Safety issues have to be enhanced when the robot hand is grasping objects of different shapes, sizes and stiffness. The inability to control the grasping force and finger stiffness can lead to unsafe grasping environment. Although many researches have been conducted to resolve the grasping issues, particularly for the object with different shape, size and stiffness, the grasping control still requires further improvement. Hence, the primary aim of this work is to assess and improve the safety of the robot hand. One of the methods that allows a safe grasping is by employing an active compliance control via the force and impedance control. The implementation of force control considers the proportional–integral–derivative (PID) controller. Meanwhile, the implementation of impedance control employs the integral slidingmode controller (ISMC) and adaptive controller. A series of experiments and simulations is used to demonstrate the fundamental principles of robot grasping. Objects with different shape, size and stiffness are tested using a 3-Finger Adaptive Robot Gripper. The work introduces the Modbus remote terminal unit [RTU] protocol, a low-cost force sensor and the Arduino IO Package for a real-time hardware setup. It is found that, the results of the force control via PID controller are feasible to maintain the grasped object at certain positions, depending on the desired grasping force (i.e., 1N and 8N). Meanwhile, the implementation of impedance control via ISMC and adaptive controller yields multiple stiffness levels for the robot fingers and able to reduce collision between the fingers and the object. However, it was found that the adaptive controller produces better impedance control results as compared to the ISMC, with a 33% efficiency improvement. This work lays important foundations for long-term related research, particularly in the field of active compliance control that can be beneficial to human–robot interaction (HRI)

    Hybrid fuzzy-sliding grasp control for underactuated robotic hand

    Get PDF
    A major part of the success of human-robots integration requires the development of robotic platforms capable of interacting in human environments. Human beings have an environment designed for their physical and morphological capacity, robots must adapt to these conditions. This paper presents a fuzzy-sliding hybrid grasp control for a five-finger robotic hand. As a design principle, the scheme takes into account the minimum force required on the object to prevent the object from slipping. The robotic hand uses force sensors on each finger to determine the grasp state. The control is designed with two control surfaces, one when there is slippage, the other when there is no slippage. For each surface, control rules are defined and unified by means of a fuzzy inference block. The proposed scheme is evaluated in the laboratory for different objects, which include spherical and cylindrical elements. In all cases, an excellent grasp was observed without producing deformations in the fragile objects

    Grasping With Mechanical Intelligence

    Get PDF
    Many robotic hands have been designed and a number have been built. Because of the difficulty of controlling and using complex hands, which usually have nine or more degrees of freedom, the simple one- or two-degree-of-freedom gripper is still the most common robotic end effector. This thesis presents a new category of device: a medium-complexity end effector. With three to five degrees of freedom, such a tool is much easier to control and use, as well as more economical, compact and lightweight than complex hands. In order to increase the versatility, it was necessary to identify grasping primitives and to implement them in the mechanism. In addition, power and enveloping grasps are stressed over fingertip and precision grasps. The design is based upon analysis of object apprehension types, requisite characteristics for active sensing, and a determination of necessary environmental interactions. Contained in this thesis are the general concepts necessary to the design of a medium-complexity end effector, an analysis of typica.1 performance, and a computer simulation of a grasp planning algorithm specific to this type of mechanism. Finally, some details concerning the UPenn Hand - a tool designed for the research laboratory - are presented

    Optical Proximity Sensing for Pose Estimation During In-Hand Manipulation

    Full text link
    During in-hand manipulation, robots must be able to continuously estimate the pose of the object in order to generate appropriate control actions. The performance of algorithms for pose estimation hinges on the robot's sensors being able to detect discriminative geometric object features, but previous sensing modalities are unable to make such measurements robustly. The robot's fingers can occlude the view of environment- or robot-mounted image sensors, and tactile sensors can only measure at the local areas of contact. Motivated by fingertip-embedded proximity sensors' robustness to occlusion and ability to measure beyond the local areas of contact, we present the first evaluation of proximity sensor based pose estimation for in-hand manipulation. We develop a novel two-fingered hand with fingertip-embedded optical time-of-flight proximity sensors as a testbed for pose estimation during planar in-hand manipulation. Here, the in-hand manipulation task consists of the robot moving a cylindrical object from one end of its workspace to the other. We demonstrate, with statistical significance, that proximity-sensor based pose estimation via particle filtering during in-hand manipulation: a) exhibits 50% lower average pose error than a tactile-sensor based baseline; b) empowers a model predictive controller to achieve 30% lower final positioning error compared to when using tactile-sensor based pose estimates.Comment: 8 pages, 6 figure

    The role of morphology of the thumb in anthropomorphic grasping : a review

    Get PDF
    The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of success. Nevertheless, manipulation ability in those hands is to be ameliorated even though they can grasp objects successfully. An appropriate model of the thumb is important to manipulate the objects against the fingers and to maintain the stability. Modeling these complex interactions about the mechanical axes of the joints and how to incorporate these joints in robotic thumbs is a challenging task. This article presents a review of the biomechanics of the human thumb and the robotic thumb designs to identify opportunities for future anthropomorphic robotic hands

    Whole-Hand Robotic Manipulation with Rolling, Sliding, and Caging

    Get PDF
    Traditional manipulation planning and modeling relies on strong assumptions about contact. Specifically, it is common to assume that contacts are fixed and do not slide. This assumption ensures that objects are stably grasped during every step of the manipulation, to avoid ejection. However, this assumption limits achievable manipulation to the feasible motion of the closed-loop kinematic chains formed by the object and fingers. To improve manipulation capability, it has been shown that relaxing contact constraints and allowing sliding can enhance dexterity. But in order to safely manipulate with shifting contacts, other safeguards must be used to protect against ejection. “Caging manipulation,” in which the object is geometrically trapped by the fingers, can be employed to guarantee that an object never leaves the hand, regardless of constantly changing contact conditions. Mechanical compliance and underactuated joint coupling, or carefully chosen design parameters, can be used to passively create a caging grasp – protecting against accidental ejection – while simultaneously manipulating with all parts of the hand. And with passive ejection avoidance, hand control schemes can be made very simple, while still accomplishing manipulation. In place of complex control, better design can be used to improve manipulation capability—by making smart choices about parameters such as phalanx length, joint stiffness, joint coupling schemes, finger frictional properties, and actuator mode of operation. I will present an approach for modeling fully actuated and underactuated whole-hand-manipulation with shifting contacts, show results demonstrating the relationship between design parameters and manipulation metrics, and show how this can produce highly dexterous manipulators

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time
    corecore