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Abstract 

Many robotic hands have been designed and a number have been built. Because 
of the difficulty of controlling and using complex hands, which usually have nine or 
more degrees of freedom, the simple one- or two-degree-of-freedom gripper is still the 
most common robotic end effector. This thesis presents a new category of device: a 
medium-complexity end effector. With three to five degrees of freedom, such a tool is 
much easier to control and use, as well as more economical, compact and lightweight 
than complex hands. In order to increase the versatility, it was necessary to identify 
grasping primitives and to implement them in the mechanism. In addition, power and 
enveloping grasps are stressed over fingertip and precision grasps. The design is based 
upon analysis of object apprehension types, requisite characteristics for active sensing, 
and a determination of necessary environmental interactions. Contained in this thesis 
are the general concepts necessary to the design of a medium-complexity end effector, 
an analysis of typica.1 performance, and a computer simulation of a grasp planning 
algorithm specific to this type of mechanism. Finally, some details concerning the 
UPenn Hand-a tool designed for the research laboratory-are presented. 
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Chapter 1 

Introduction 

Although robots have become cbmmon tools in manufacturing and assembly, their 

uses have been limited to the repetition of simple fixed tasks. Programmed to perform 

certain operations over and over, they have little capability to adapt to changes in 

their working environment. This deficiency of hard automation has resulted in a 

search for more flexible solutions-robots that can react, learn, and adapt. 

An important part of an intelligent system of this type is a combination of mech- 

anisms which form the "body" and comprise a dynamic physical agent for the com- 

mands of the "brain." Huma.n intelligence is generally considered to be a character- 

istic of the human mind, yet it is the form of our hands which most differentiates 

us ana.tomically from other primates. The design of a simple mechanical hand is the 

subject of this thesis. 

Most robots use one of a great variety of end effectors, each specialized for an 

individual task. Rather tha.n use a single dextrous hand to hold and manipulate 

objects and tools, the end effector itself is changed. This approach is most efficient 

in automated manufacturing, where the surroundings are rigidly controlled and the 

number of tasks is quite limited. In order to expand the use of robots to applications 

where the environment is dyna.mic a.nd unpredictable, one versatile end effector is 

necessa,ry. It should be able to ha.ndle tools for specific task categories, but also be 



versatile enough for genera.1 object manipulation and unplanned operations. Such a 

mechaaism would a.llow a robot t,o a.pproa.cl1 a.n unfa.miliar task in much the way that 

a human does: with a general-purpose hand, a toolbox, some rudimentary physics, 

and the ability to  learn. 

Although such aa a.pproa.ch requires duplica,tjon of many of the functions of the hu- 

man hand, it does not necessa.rily prescribe a.n exact copy. The components available 

to  the designer of a robot system are very different from those found in the human 

system. A successful design should use the strengths and avoid the weaknesses of 

these resources. In order to compensate for a lack of computational intelligence, a 

greater degree of mechanical intelligence is necessary; an intelligent mechanical de- 

sign can complement limited reasoning ca.pabilities. The designer of a robotic end 

effector must not only consider the criteria imposed by the application, but also must 

confront the limitations of current control and planning systems. 

Previous Hand Designs 

Many mechanical "hands" ha.ve been designed. The Stanford/JPL hand, designed by 

Kenneth Salisbury, was the first to be used widely[l]. The hand has three fingers, 

ea.ch with three joints and three degrees of freedom. Salisbury used numerical analysis 

techniques to  find the optimal palm and finger geometry for fingertip manipulation. 

Although the hand ha.s been successfully programmed for a number of fine motion 

tasks, only the fingertips of the hand are used. Such grasps depend on frictional 

forces to  maintain stability. The device has allowed researchers to learn about the 

movement of small objects within such a fingertip grasp, but it was not designed to  

explore other types of object apprehension. 

The Utah/MIT Dextrous Hand is an imitation of the human hand. It has four 

fingers, each with four degrees of freedom, and requires a large actuation package of 

32 pneumatic cylinders. The actuation is therefore removed from the hand by means 



of a "remotizer" which routes the 32 tendons to the base of the manipulator[2]. 

Resea.rch intso control a.nd pla,nning techniques will allow the Dextrous Hand to be 

useful in understanding the 1luma.n manipula.tion system, and other applications are 

being explored. 

Another approximately anthropomorphic design is the Belgrade hand. Although 

originally designed as -a prosthetic solution for veterans in Yugoslavia after the Second 

World War[3], a recent collaboration with the University of Southern California has 

produced an updated design[4]. It uses one motor per pair of fingers, one motor for 

the thumb and a set of mechanical linkages to produce cocontraction of finger joints. 

Another linkage allows the fingers of each pair to  move together and to comply to 

object shape. The new design can be more fully evaluated when it is complete and 

under computer cont,rol. 

A previous research effort a.t the University of Pennsylvania produced the Penn- 

sylva,nia Articulated hJecha,nical Hand (PAMH). A unique type of actuation method 

using lead screws and cams moved three two-jointed fingers. A seventh degree of 

freedom moved a "thumb" around the pa.lm[5]. It was used for research into tactile 

sensing and rea.ctive ma.nipula.tion. 

Other hand designs, which have used innovative techniques such as shape mem- 

ory alloy (SMA) actua.tion and pneumatic "elephant-trunk" rubber fingers, have been 

proposed[6]. Although ma.ny ha.ve been built and tested in research labs, the only 

end effector in common use is the simple one- or two-degree-of-freedom gripper. This 

device-in its many varia.tions-has found acceptance because it is robust, economi- 

cal, simple, and easy to control. 

There is a need for a, lnore versatile research tool than these grippers. Theoretical 

results and progress in other areas of robotics has created an opportunity for a more 

complex end effector. Ho~i~ever, the hands described above are still too cumbersome 

to use in most applications. A compromise is possible. The ideal general-purpose 

end effector would combine the versa.t,ilit\r of a complex hand with the strength, 



robustness, and control simplicity of a simple gripper. Such a solution may require 

unconventional or previously-ignored a.pproac11es to grasping. 

Grasping Analysis 

In order for an object to  be moved from one place to another, it is necessary t o  consider 

the interactions between the object and the manipulating device. One approach is to 

attempt to  push objects to the desired configuration[7, 81. This is a valid strategy in 

certain situations, but almost any end effector mechanism can perform the function 

of "pusher." More demanding of a device is the stable apprehension of an object. 

There a.re two distinct approaches to grasp stability. The most attention has been 

focused on using three or more fingertips, strategically placed on an object's surface, 

for grasping. The dyna,mics of such a. contact situation are quite straightforward, and 

investigating the conditions of sta*bilit'y and the "manipulability" of a hand design is 

an active resea.rch topic[9]. 

There are several problems with this a.pproa.ch to grasping. Because seven fric- 

tionless point contacts a.re the minimum necessary to  fully constrain an object in 

space[lO], fingertip grasping with less than seven fingers requires frictional forces for 

stability. The determination of the conditions of contact, the coefficient of friction, 

a.nd slip detection introduce complica.tions into the analysis. As the weight of the 

grasped object increa.ses a.nd the coefficient of friction decreases, the contact forces 

necessary for stability become extremely large. This imposes severe demands upon 

the grasping mechanism. 

In contrast, enveloping grasps use the inner surfaces of the fingers and the palm to 

contact an object. Because ea.ch finger has more than one contact, and the palm has 

one or more conta.cts, such grasps can generally constrain an object without friction. 

This type of gra,sping ha.s recently received some attention[ll]. For many objects, 

for example, most tools, this is a better grasp because the contact forces are evenly 



distributed over the mechanism. In practice, both fingertip and enveloping grasps are 

useful. 

The mathematics used to describe gra,sping forces and stability is well-represented 

in the literature. An analysis using these methods is presented in Chapter 5 .  

Grasp Types and Classifications 

Many different classifications of the grasp types used by humans have been proposed. 

Although a robotic end effector may not use the exact grasping geometry preferred 

by a, human, it is instructive to consider these descriptions. Each type of grasp is a 

function not only of the size and shape of a given object, but also of the task to be 

performed. A power grasp is usually an enclosure grasp, a grasp that must be able to  

hold heavy objects or exert large forces. A precision grasp generally uses the fingertips 

for object manipulation, where delicate movement of the object is necessary[12]. The 

same object could be handled in both types of grasp; a screwdriver could be held 

in a power grasp for loosening a rusted screw, then in a precision grasp for starting 

another screw in a threa.ded hole. 

Within these two general categories are various types of grasps which are di- 

rectly related to the geometry of the grasped object. Iberall cites a number of works 

which discuss classifications[l3]; those of Schlesinger[l4] and those of Cutkosky and 

Wright[l5] are most relevant. In 1919, Schlesinger proposed a set of six "prehension 

modes" which represented those gra.sps most commonly used by humans. Because 

of the date of his work, Schlesinger was obviously not considering the application of 

these modes in robotics research, but they concisely cover the wide range of manip- 

ulations possible with the human hand. Figure 1 shows these classifications, where 

the oval represents the palm of the hand and the heavy lines represent fingers. Each 

grasp is shown in a top view showing the rela.tionship of the fingers to  the palm, then 

in a side view depicting a hand grasping a.n object typical of the category. 
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Figure 1: Schlesinger's prehension modes 



Schlesinger's prehension modes a.re general and address only the geometric cat- 

egory of a. grasped object. However, it ca.n be seen from the sketches in Figure 1 

that the cylindrical, spherical, and hook modes would be used to manipulate heavy 

objects or perform tasks that require large forces, while the tip, palmar, and lateral 

pinch would be more suited to small, delicate objects. 

In contrast to the -genera.li ty of Schlesinger 's categories, Cut kosky and Wright at- 

tempted to  codify specifically those grasps used by a machinist. Because a flexible 

robot will be most va.lua.ble in settings simi1a.r to a machine shop-factories, auto- 

mated fabrication facilities, outer spa.ce, underwater, etc.-these classifications are 

of particular interest. Their more specific and numerous grasp types are shown in 

Figure 2. Although these nine grasp types include five of Schlesinger's, the tip grasp 

is divided into four categories based on the number of active fingertips, and the power 

grasp, in which the thumb is used to lock the fingers around an object, is included as 

well. 

Although these representations are a convenient means to  describing objectlhand 

relationships, they are una.voida.bly linked to  the human hand model. In order to 

design a.n end effector without. prejudice towards anthropomorphism, these grasping 

classifications must be considered more as one possible means to  successful object 

apprehension than as a pa,ttern which must be followed. The function of each of 

these gra.sps is more importa.nt than the specific implementation. For example, the 

2-, 3-, 4-, and 5-fingertip grips of Cutkoksy and Wright, as well as Schlesinger's tip 

prehension, are all exa.mples of precision gra.sps used by humans when they wish to 

ha.ve fine control over object movement, and are usually associated with small objects. 

But the chuck of a drill, the collet of a la.the, chopsticks, and a quadraplegic's lips can 

all perform similar functions. Even a human child may prefer Schlesinger's cylindrical 

grasp over tip prehension when first learning to  write. There are necessarily overlaps 

and ambiguities in any at,t,empt, at. grasp cla.ssification; rather than attempt to  exactly 

duplicate these modes, it is preferable to to span their range of function. 
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Figure 3: Exploratory procedures used by humans 
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An end effector can be used for far more than just grasping objects. Because it is 

one connection between a, robot and the world, an end effector can also be used to 

gain information about its environment. In many cases, such sensing is integral to  

successful task completion-vision and other remote sensing requires the use of such 

active sensing to remove uncertainty. The research of Klatzky and Lederman has 

shown that human perception is extremely dependent upon physical contact with the 

world, and that the human vision system is used interdependently with other types 

of sensing[l6, 17, lS ,  191. 

From their experimental results, I<la.tzky and Lederman were able to  define several 

exploratory procedures (EP's) \vhich were used by their subjects to obtain information 

about unknown objects. Figure 3,  adapted from [20], shows the properties of an object 

and the corresponding EP's used to investigate these features. 

Robotics resea,rchers 11a.ve used similar a.pproa.ches. Allen used a sensor-covered 

finger to identify surfaces, cavities, and holes in a visual object image[21]. His work 

proved conclusively that although vision can give much of the information necessary 

for a.n accurate object description, the use of active sensing is absolutely necessary 

t,o supplement the visual image. Because'remote sensing can easily be fooled-even 

the sophistica.ted human visual syst,em-a.ctua1 physical contact with an object is 

Properties 

Texture 
Hardness 
Temperature 
Weieht 

(Weight) 
Global Shape 
Exact Shape 
Volume 



necessary. Although the tool he used for his research was crude, simply one rigid 

finger with a number of tactile sites covering its surface, the amount of information 

that could be acquired wa.s quite impressive. 

Stansfield used the set of exploratory procedures defined by Klatzky and Lederman 

to  attempt to identify and .classify objects[22]. Her expert system used active haptic 

exploration, guided by a passive visual system, to learn about the environment, and, 

in combination with low-level sensing, to recognize generic objects. Her work helped 

justify the hypothetical connection between human psychological sensing research and 

artificial intelligence as applied in robotics. 

Tsikos used laser range data and a gripperlarm manipulation system to  determine 

the nature of the connections between objects[23, 241. His work has shown definitively 

that active sensing, in fact, a.ctive manip~la~tion of object attributes, is necessary in 

order to  segment a sensed object into its component pieces. Without the additional 

informa.tion provided by dynamic exploration, a remote sensing system is incapable 

of determining the nature of the connection between perceived objects; e.g., whether 

they are rigidly attached or simply resting one upon the other. 

The research into active sensing is hampered by ineffective tools. One of the goals 

of the work presented here is to provide an end effector which will serve as a platform 

for the sensors necessary to explore objects, a.s well as a tool for manipulation these 

objects. 

Thesis Outline 

The chapters within this thesis show the progression of the design process. In reality, 

this does not follow strict chronological order; rather, the path which illustrates the 

elements of the design most clearly and logically was chosen. 

This chapter has shown what previous researchers have done in fields related 

t,o end effector design. Chapter Two will combine these ideas and some practical 



considerations into a concise expression of the design problem and goals. It will also 

explain the philosophy of the designer. The next two chapters present the solution: 

Chapter Three is concerned with the palm design, Chapter Four with the finger design. 

In Chapter Five, an ana.lysis of some a.spects of the design is presented, as well as a 

computer simulation based on the results. A grasp planning algorithm using these 

tools is also described and its implementation demonstrated. Chapter Six concludes 

with an evaluation of the success of the design, and discusses areas of future research. 

An attempt has been made to emphasize underlying principles rather than a 

specific implementation. For this reason, the main body of the thesis does not contain 

precise design details, nor does it discuss mechanical design elements such as bearings, 

motors, or gears. Instead, Appendix A presents the details of the first version of the 

UPenn Hand, an end effector specifically for the research laboratory and Appendix 

B describes the Rotary Breakaway Mechanism, a type of friction clutch invented to  

actuate the fingers. Finally, Appendix C presents control and sensing systems. 



Chapter 2 

Design Criteria 

Any solution requires a. precise definition of the problem, as well as the constraints 

under which that problem must be solved. An end effector mechanism is no different. 

Chapter One discussed the previous research important to hand design. This chapter 

will attempt to clearly define the criteria for a, successful design. 

For a mechanism as sophistica.t,ed a.s a robotic end effector, there are a wide variety 

of solutions to  any given a.pplication. These variances reflect the philosophy of the 

designer. This cha.pter will present the design philosophy expressed later in the thesis, 

and justify several choices made at the outset of the design process. 

The design discussed here is meant to be useful in a. wide range of applications, 

from flexible n~anufa.cturing to underwater to a research laboratory. The aim is to 

present the ba.sis for a. wide ra.nge of medium-complexity end effectors, which are 

strong, robust, self-contained, and easy to control and use. The UPenn Hand, 

which was specifically designed for a research laboratory, is described in detail in 

Appendix A. 



Goals 

From the grasping classifica.tions descril>ed in the previous chapter, we can obtain 

a very specific set of requirements for an end effector. The design will be consid- 

ered successful if it can achieve the grasping modes of Schlesinger and Cutkoksy and 

Wright, or, alternatively, can grasp the same types of objects that are represented by 

these modes. An emphasis on power grasps is preferred to precision grasping. 

One practical goal is a self-contained end effector which can be mounted on a 

conventional robot arm. However, from grasping analysis, the consensus is that nine 

degrees of freedom (DOF) are necessary for manipulation of an object within a fin- 

gertip grasp[l, 9, 251. While other hands with 9 or more DOF have had the actuators 

mounted remotely or have used special-purpose arms, neither of these options is ideal. 

The control of a large number of degrees of freedom is also considered a major prob- 

lem, since experience in control of complica.ted systems has shown that computational 

complexity increases exponentially with the number of degrees of freedom. This is 

evident from the ma,thema.tics used to describe seria.1 manipulators[26]. In order to 

meet weight and spa.ce constraints, a.s well as to simplify control, a successful design 

would have fewer thall five a.ctua.tors. 

With less than 9 degrees of freedom, it is not possible to arbitrarily position three 

fingertips in space, which mea.ns that object manipulation within a grasp requires in- 

teraction with the environnlent or another ha.nd. However, an emphasis on enveloping 

grasps for object apprehension-which require fewer degrees of freedom and provide 

geometrically stable prehension-will extend utility. 

Enveloping grasps also give much information about object shape and size. By 

lifting an object free of support, weight and density can be obtained. But the ex- 

plora,tory procedures of Klatzky and Lederman, as well as the research of Allen and 

Stansfield, show the need for several other end effector characteristics. One finger 

should be extensible as a probe. This finger should have tactile, force/moment, and 

ot,her specia.lized sensors to allow for discovery of object attributes such as texture, 



hardness, and temperature, as well as for contour following. A large surface, such 

as the palm, should be covered with a ta.ctile array which allows "footprints" of an 

object. These attributes a,re quite compatible with other design imperatives, and 

they allow the determinati,on of object properties which are essential for successful 

manipulation of unknown objects. 

Design Philosophy 

In the design of a mechanical hand, it is tempting to try to  duplicate the human 

hand. However, most applications for robotic hands require a small subset of the 

abilities required of the human hand; it is better to design for the advantages and 

disad~anta~ges of the tools that are a.vaila,ble. There is no reason that a robotic end 

effector can't be better in some situa.tions than the human hand, in much the same 

wa8y that autonlobiles are faster than humans when traveling on smooth roads. 

We can, however, learn from the human model. Because a designer has the human 

hand readily a,va,ilable a.s a, referent, it is unrea.sonable to avoid using it as a model 

on some level. There are certa.in operations tha.t the human hand uses over and over 

aga.in when grasping a.nd ~na,nipula.ting objects. These grasping p r i m i t i v e s  are a way 

of reducing the complexity of a grasping operation to a sequence of preprogrammed 

motions. The human ha.nc1 performs these on a reflexive level; with concentration, 

ea,ch joint in the human hand can be moved individually, but this is rarely necessary.' 

Ra,ther than implement these grasping primitives at the control level, which means 

we must have actuation and low-level control for each movement, we define the con- 

cept of m e c h a i ~ i c a l  in te l l igence.  It is possible to imbue a mechanism with the ability to 

respond and react to the environment without guidance from a controller. By nature, 

the performa.nce of such a device is predicta.ble and invariant, but in some situations 

'I am indebted to  David Brock of AiIIT's Artificial Intelligence Laboratory for pointing this out.  
I was previously under the mist,aken impression that we could not control the last two finger joints 
independently. They are apparently coupled as part of the learning process, as well as mechanically. 
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this is an attractive alternative. In this case, a n~echanically intelligent end effector 

would implement grasping primitives at the mechanical level, as far outboard as pos- 

sible. There are several atl\.a.ntages to this: it allows for simpler control, it provides 

for fewer actuators, as well as making the device self-contained, low-maintenance, and 

reliable. 

Throughout the design process, we also attempt to adhere to the principles of good 

design. Whenever presented with a set of options, choose the one which is simplest, 

cheapest, and most reliable, all other things being equal. By avoiding exotic options, 

the design may prove to be less interesting, but it will be much more useful and 

robust. 

In addition, an emphasis was placed on "quick-and-dirty" prototyping; that is, 

the implementation of design ideas in a, form that is easy to  test and takes little 

time to build. In some ca.ses, ma.nua1ly controlled prototypes were built to test ideas 

without the investment of time and money into computer-control architectures and 

equipment. One such device is discussed in deta.il in Chapter Three. Although some 

computer and mathematical simula.tion techniques were used (one is discussed in 

Chapter Five), actual physical implementation was considered necessary to confirm 

theoretical results. 

The overall design philosophy of this hand design is to  emphasize practicality, 

common sense, a,nd ease of use over all else. After all, the resulting end effector is 

mea.nt to be a, tool, in whatever applica.tion, and the ideal tool is transparent to the 

user, whether man or ma.chine. 



Chapter 3 

The Palm 

A hand design can be separated int,o two parts: the design of the palm and how the 

fingers relate to each other, and the finger design itself. This chapter will discuss the 

palm design, the next will present the finger design. 

A palm is essentially a junction for a number of serial manipulators. In many hand 

designs, this is the only function that it serves. But if we look a t  how the human 

hand works, we see that the palm is much more than simply where the fingers attach. 

The palm is used as a platform for grasping, a surface against which objects are held 

in enveloping grasps. These enclosure grasps, as mentioned in the previous chapter, 

are especially important for a hand design with limited degrees of freedom. In such 

a prehension mode, the hand provides one or more "free" contacts, that  is, contacts 

which do not require a.ddit8iona.l degrees of freedom, and therefore do not require an 

increase in the number of actuators a ~ l d  the control complexity. 

As mentioned previously, the palm can also serve as a sensing medium. With 

the fingers folded out of the wa.y, the palm can be pressed against objects and a 

tactile sensing array can be used to obta.in information about the object. A tactile 

footprint can also be obtained by graaping an object in an enclosure grasp. In this 

ca,se, the conta,ct pressure of t,he object against the palm can be varied by increasing 

or decreasing the finger contact forces. 



The palm, if well-designed, can serve another function. Mason and others[7, 81 

have analyzed the behavior of objects when pushed. The palm is an ideal surface for 

this. since it is rigidly attached to the end of the robot arm. The contact force in this 

case is limited only by the strength of the arm, not by the fingers. The fingers can be 

used to  guide the object against the palm, and to change the shape of the "pusher." 

A Class of Junctions for Serial Linkages 

A serial mechanical linka.ge, in general, is a sequence of "screw joints" connected 

in a series of links, each link being connected to only one other link. In robotics, 

mechanisms with only transla.tiona1 or rotational joints-special cases of the more 

general screw joint- a.re most common. The movement of a link is only dependent 

on the movement of the links previous to it, and this movement can be explicitly 

and uniquely defined for each set of the previous joint movements by use of forward 

kinematics. The human arm, a snake's body, and a backhoe are all examples of serial 

mechanical linkages. 

There has been much research into the behavior of robot arms, fingers, and legs, 

and the dynamics a.nd kinema.tics of these mechanisms has been thoroughly studied. 

However, these linkages are often connected together in some fashion to form hands, 

walking machines, or multi-arm robot systems. Very little-attention has been paid to  

connections or junctioizs between serial 1inka.ges. In order for a combination of linkages 

to be considered serial, they must be connected only a t  their base, or zeroth link. 

The geometry of this connection is what determines the properties of the combined 

mecha.nism. 

The number of so-called junctions of serial linkages is infinite, but one special class 

of these mechanisms is of particular interest to the work presented here. Because of 

their suitability for hand designs, this area has been explored extensively, but current 

work investigat.es other a.pplicat'ions. 



Figure 4: The palm of the Compliant Articulated Mechanical Manipulator 

One Special Set 

The author originally proposed one type of junction in the Compliant Articulated 

Mechanical Manipulator (C ,4h4M), a multi-jointed three- fingered mechanical hand[27] 

(see Figure 4) .  The palm of CAMM is a specific implementation of a more general 

class of junctions for serial manipulators. 

If we consider 72 serial linkages which are to connected a t  their base, then for each 

72?  we can define this method of linking the base of each linkage. Let us assume that 

the axes of rotation for the first joint of each of these linkages pass through points 

equally spaced along a circle of radius d, and that these axes are perpendicular to the 

plane which contains the circle. \lie further assume that the first link which contains 

this first rotational joint has width w and length T. The geometry of this case is 

shown in Figure 5 for n = 4. 

The degenerate case is when d = 0 ,  and the axes of rotation coincide. In this 

situation, for non-zero values of w and n > 1, the interference between joints limits 

the rotational range of the linkages. The linkages can never move until they are 

parallel to each other. However, if we increase d, we increase the maximum angular 

displacement of each linkages first joint. One very useful result of this is that  we can 

find an expression for a d \vhich allows a link to be parallel with the links on either 



rotation 

Figure 5 :  An example with n = 4 

side of it. In this case, 

where 8 = :. If we establish radii of rotation around these separated centers, then 

we see tha.t the 1inka.ges move around lobes of the junction. It is important to  note 

that in this class of junctions, the second joint of the serial linkages is displaced by a 

radius r from the center of rota.tion. This separa,tion is what allows such a wide range 

of movement for the serial linkage. MThen r = 0, we have a degenerate case. Figure 

4 shows several simple examples for n = 1 to 4. 

It is possible to  vary the possible junctions widely with the addition of fixed serial 

junctions between lobes. If n = 2 and a fixed finger is placed between the two 

movable fingers, then we ha.ve a configuration which is quite versatile. If we couple 

the movement of the fingers around the pa,lm, we ha,ve a, junction with only one degree 

of freedom, but one that ca.n achieve a very wide range of grasping configurations. 

Figure 7 shows the five t,ypes of grasps possible. 

Another a.dvanta.ge to this configuration is that the palmar surfaces of the fingers 



Figure 6: Severa.1 possible jullctions for serial manipulators 
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Figure 7: Five gra.sping modes 

are always facing directly inwards-simplifying the sensing of an object within a 

grasp-in contrast to the hun~an hand, where the lateral movement of the fingers 

does not allow this. The five grasping modes a,re described below with their parallels 

in Schlesinger's and Cutkosky and MJright's work defined as well: 

The pinch grip occurs when the two movable fingers are brought together on the 

opposite side of the palm from the thumb. The inside of these two fingers are lined 

with rubber, which allows for friction grasping of small objects. This is primarily 

a precision grasp, used for picking up small, delicate objects. It is similar to  the 

1a.tera.l pinch gra.sp described by both Schlesinger and Cutkosky and Wright. In ad- 

dition, some opera,tions which a.re usually performed by Schlesinger's tip prehension 

and Cutkosky and \Vright's two-finger precision grasp can be achieved in this config- 

uration. The flexibility of this gra.sp is enhanced by the ability to change its nature 

by cha.nging the angle of the fingers. In Figure S, this technique is illustrated. This 

grasp is very simila,r to the precision gra,sp used by amputees who have been fitted 

with a split hook prost,hesis. In this case, a cylindrica.1 groove between the halves 

of the hook a.llow for sta.ble gra.sping of a pencil or similar sma.11 cylindrical objects. 
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Figure 8: Variations of the pinch grasping mode 
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Figure 9: \iaria.tions in the cylindrical grasping mode 

Such an implementation in the robotic end effector could prove useful. 

The cylindrical grasp, when the two fingers are opposite the thumb, is analogous 

to Schlesinger's cylindrical gra.sp and Cutkosky and Wright's cylindrical power and 

precision grips. This mode allows for the a.pprehension of a wide range of shapes 

and sizes, from small cylindrical objects to  larger rectangu1a.r box-shaped objects (see 

Figure 9). In addition, this mode allows a version of the lateral pinch grasp, when an 

object is held between the three fingertips. The attractiveness of this grasp lies in its 

strength. Since the palmar surfa.ces of all three fingers are holding the object against 

the palm, objects are held very securely. 

The spherical gra.sp, with the three fingers roughly 120 degrees apart, is similar 

to Schlesinger's spherica.1 gra.sp a.nd Cut,koskj~ and Wright's spherical power and 3- 

finger, 4-finger, and 5-finger precision grasps. In a power grasp, the palmar surfaces of 



Figure 10: Variations of the spherical grasp 

Figure 11: Variations of the hook grasp 

the fingers are used to hold a spherical object against the palm, while in a precision 

grip, the three fingertips form a three-sided fingertip grasp which is similar to the 

chuck on a drill. In Figure 10, the application of this grasp to various objects is 

shown. 

When the two fingers are rotated until they are opposite each other, they can 

be used in a tip grasping mode. This is exactly the tip prehension described by 

Schlesinger and the 2-finger precision grip described by Cutkosky and Wright. Al- 

though this grasp relies primarily on friction for stability, it can be useful in appre- 

hending objects that are a.ckwardly pla.ced or for manipulating objects securely held 

in some manner. The pinch gra.sp provides a more stable grasp of most small objects. 

The hook mode of gra.sping uses all three fingers located together on one side of 

the palm. This allows for two types of grasping: a passive grip on a handle or similar 

structure where the fingers a,ct as a hook, or an active grasp where all three fingers 

hold a large object against the pa.lm. This is a grasp that could be used to  lift one 

side of a large flat object (in cooperation with another hand) where the size of the 

object precludes a.n enveloping gra.sp. Figure 11 shows these uses. 



Experiment at ion 

To test the perfornla,nce of such a, palm/finger relationship, a crude teleoperated 

prototype of the hand was built. Rather than invest a great deal of time and money 

into developing a computer-controlled prototype, this simple device, machined from 

aluminum, has three single-jointed fingers which are actuated by means of stainless- 

steel cable. A grip which fits the human hand allows the experimenter to control the 

fingers and the movement of the fingers around the palm. The current implementation 

has flexible sheaths which allow the hand itself to be moved independently of the 

control grip. 

In order to effectively test the a.bilities of such a mechanism, a small internal- 

combustion engine wa.s chosen as a typical disassembly subject' Using standard tools, 

such as screwdrivers and wrenches, the hand was used to partially disassemble the 

engine. This experiment, along with ot,her, more specific, analyses of each grasp, 

a.llowed a precise determination of the abilities and weaknesses of the palm geome- 

try. From these results the thickness of the fingers relative to the palm, the actual 

palm shape, and the optimum movement of the fingers relative to each other was 

determined. 

It is surprising that a mechanism with such a limited number of degrees of 

freedom-especially in this poor implementa.tion-could perform such a complicated 

task. All of the credit for this success cannot go to the design. In this case, a human 

arm replaced a robot arm, the human brain replaced a control computer, and human 

muscles replaced actuators; these components greatly increased the ability of the 

mechanism. However, only the palmlfinger geometry was being tested in this exper- 

iment; no claims as to the eventual performance of a computer-controlled prototype 

are made based on these experiments. 

This configuration wa.s found suitable and a.dopted in the design of the first version 

'This a t  the suggestion of Dr. Richard Paul,  rho felt the usefulness of the hand could be tested 
best manually and in a real application. 
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Figure 12: Assembly of pall11 and finger bases in the UPenn Hand 

of the UPenn Hand. Figure 12 shows an assembly drawing of the palm and finger 

bases. 

Although the palm/finger relationship seemed close to optimum, there were sig- 

nificant problems with the fingers. It was found that fingers with only a single joint 

have serious difficulties in wrapping around objects and obtaining the enveloping- 

type grasps discussed in Chapter Two. Although various finger shapes were tried, 

each wa,s found to be optimal for only a limited number of objects. And although it 

was possible to use the fingertips in friction-type grasping, the stability was variable 

a,nd relied upon a rubber coa.ting for the fingers. The next chapter will present an 

alternative approach to tl-le finger design. 



Chapter 4 

The Finger 

The previous chapter defined a type of palm/finger relationship with one degree of 

freedom. Although five distinct grasp modes are obtained with this configuration, a 

finger design which is useful in a,ll of these modes is necessary for the best performance. 

Optimally, each finger would use only one actuator, which would give a total of four 

a.ctuators for the complete hand. 

However, based on the experimentation described earlier, it seems that  single- 

jointed fingers have limited usefulness. At least two joints are necessary to achieve the 

preferred enveloping grasps, a,nd in order to  obta.in the number of contacts necessary 

for stable frictionless grasping. One option would be to switch actuation from joint 

to joint by means of clutches, brakes, or sole~loids, and let the controller decide the 

relative motion of ea,ch finger joint. But, in keeping with the design philosophy 

expressed in Chapter Two, it is prefera.ble to look for a mechanical solution. 

Coupled Joints 

The author originally proposed the concept of coupled joints in his Compliant Ar- 

ticulated Rlechanical hlanipulator, which used two motors per finger to actuate four 

tendon-driven joints[27]. Leaver based a later three-jointed two-act,uator finger design 



on this idea, and also proposed a matrix method of representing such coupling[28]. 

These designs used tendons to tra.nsmit torque from the actuator to the joints. By 

varying the tendon routing and the size of the pulleys used, various coupled motions 

can be produced. Joints ca,n be driven by other joints in a similar manner. 

The advantage of coupled joints is that fingers can be designed so as to  more easily 

conform to  the shape of objects. This is extremely useful in enveloping grasps, where 

stability depends on conta.cts on the palmar surfaces of the fingers, that is, on the 

inside surfaces of joints instea.d of just the fingertips. Such grasps are stronger and 

more stable since they do not rely on friction for stability[ll]. However, rigid coupling 

between joints defines a single set of joint angles for each actuator displacement. 

For example: if two joints are coupled by pulleys with radii of rl and r2 ,  the joint 

displa.cements O1 and O2 are defined by the rela.tion: 

Such rigid coupling means that conta.ct on both joints will occur only for a small 

set of convex objects-most objects will only contact the finger on only one joint. 

However, if we place a spring or rubber section in the coupling tendon the finger will 

wra.p a.round an object and insure multiple conta.cts. This design is compliant only 

in closing, a,nd in most ca.ses can exert large contact forces; a description of such a 

finger ca.n be found in [29]. 

Neither of these implementations is ideal. Rigid coupling does not fully utilize 

the a.dvanta.ges of coupled joints, and compliant tendons can adversely affect grasp 

stability in certain cases. 

A Two- Jointed Compliantly Coupled Finger 

A new transmission and actuation method for coupled joints is shown in Figure 13. 

Two worm gears a.re connected to the finger actuator. One worm wheel is rigidly at- 

ta.ched to the first joint of the finger, the other is a.ttached to a pulley. Stainless-steel 
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Figure 13: Actuation of Coupled Joints 

cable connects this pulley to a.nother a t  the second joint. In the current implemen- 

ta.tion, a novel "breakawa,yV mechanism allows for compliance. This mechanism is 

integral to the worm gea.r reduction, acts as a clutch which stops movement of the 

first joint a t  a certain tl~reshold torque, and has a memory which causes the joints to  

always return to the same rela.tive position when fully open. 

Function 

When there is no contact between the finger and the object, the joints will move 

in a relationship defined by the relative worm gear reductions. When the first joint 

requires a joint torque higher than the breakawa.~ torque, it decouples from the finger 

actuator (it will still passively maintain this breakaway torque because of the non- 

backdrivable worm gear reduction). The second joint will remain coupled to  the finger 

actuator and continue to rotate. If the object shifts within the grasp and the first 

joint torque falls below the breakaway torque, the first joint will re-couple with the 

motor and move until the breakaway torque is encountered again. 



Two advantages of this design are evident. First, multiple fingerlobject contacts 

will result with most objects. Second, after breakaway, the torque around the second 

joint can be actively controlled. Before breakaway (and in rigidly coupled finger 

joints), the joint torques @re indeterminate, and can be related only by the single 

equation 

where r1 and r2 represent the torques a t  joints 1 and 2, GI and G2 represent the gear 

reductions for joints 1 a.nd 2,  and rmolo+ represents the torque provided by the joint 

actuator. After breakaway, the torques are defined by the equations: 

Now, the torque around the first joint is constant, and any variation in actuator 

torque will cause a corresponding va.riation in joint two torque. This allows r2-and 

the joint two contact force-to be actively controlled, which is the ideal situation to 

insure grasp stability. 

The breakaway torque is proportional to the motor torque on the fingers when 

they are fully opened against their stops, and can be changed before each grasp. This 

is useful if the same haad is to be used to pick up both eggs and hammers. 

One result of the use of a non-backdrivable worm gear reduction is that large 

contact forces can be passively resisted to the limit of the strength of the materials 

used in construction. The use of enveloping gra.sps allows such a hand to pick up 

heavy objects which tend to produce high joint torques. In similar situations, a 

backdrivable gear reduction ~ilould require much larger motors. 

Because the motors can be smaller and lighter, they are mounted at the finger base. 

The motor shaft directly drives the two worm gears, and as a result, there is very little 

backlash in the system. Unlike conventional tendon-driven fingers, which require long 

tendon runs and complicated pretensioning systems, this design allows for an accurate 

servo control loop to be closed around the motor-there is ninimal error in the 



transmission. However, altllough the joint positions are read by potentiomotors a t  the 

joints, these displacements are not strictly defined with respect to motor displacement 

and cannot be actively controlled. Rather, although a function of the two joint 

positions defines the motor position, there is an infinite range of joint displacements 

for each motor position, and the joint displacement depends on the shape of the object 

being grasped. 

The non-backdrivable worm gear reduction is not without drawbacks. First of 

all, although compact, the efficiency of this type of transmission is low. Theoretical 

values on the order of sixty-five percent are obtained in this application. This varies 

a great deal depending on lubrication, worm lead, and gear materials. Also, the 

reaction forces a t  the supports of the worm wheel and the worm must also be taken 

into consideration and compensated for in the design of the transmission. And force 

control of low-efficiency linkages, though a subject of some successful research, is 

generally considered quite difficult. However, in this specific application, it was found 

that these trade-offs were acceptable. Further, it proved impossible to achieve the 

design goals through a,ny ot,her approa.ch. 

Mounting the motors at the finger bases allows for all four motors to be placed 

under the palm. Sensor a.nd power cables a.re terminated by connectors also located 

under the palm. The result is a self-contained unit which can be quickly attached or 

removed from the robot a,rm and the control system. This is important in situations 

where multiple end effectors a,re used on one arm, when repairs have to be made to 

the device, or when one end effector is to be used on different arms. 

The use of the breaka~va~y mechanism in the actuation of coupled joints leads to  a 

near optimal performance for a two-jointed finger. After breakaway, actuator torque 

is transferred to  the second joint, with its shorter moment arm, and (usually) more 

advantageous conta,ct position. In addition, the compliance provided by this actuation 

method means that the fingers will a,chieve enveloping grasps on almost all objects. 

Figure 14 shows the finger a.ssembly as implemented in the UPenn Hand. The next 



Figure 14: Assembly of the fingers of the UPenn Hand 

chapter demonstrates the a.dvantages of this design through analytical methods. 



Chapter 5 

Analysis 

The previous two chapters described the end effector design. In this chapter, analyses 

of selected aspects of the mechanism are presented in order to  show its theoretical 

behavior. Rather than indulge in a lengthy exposition of all calculations made in the 

design of the hand, those derivations are shown which illustrate the performance of 

the hand most clearly, and which are crucial to  a justification of the design. These 

include a kinematic analysis of the fingers relative to  the palm, a static analysis of 

two fingers and a palm in the plane, and a computer simulation of the hand. A grasp 

planning algorithm is a.lso presented, and its implementation in simulation shown. 

Throughout, boldface letters are used to indicate vector or matrix quantities, 

and non-boldface letters a.re used to indicate scalar quantities. All other terms and 

conventions are defined at their first use. Much of this chapter is taken from a previous 

publication by the author[30], with some modification. 

Kinematic Analysis 

The position of any point in the reference frame of joints 1 or 2 can be expressed 

in the reference frame of the palm quite easily using homogeneous transformation 

matrices[26]. In Figure 15, two points a and b are shown with coordinates expressed 



Figure 15: Forward I<inematics of a Finger with Two Parallel Joints 

in the reference frames of joints 1 and 2,  respectively. If the superscript O is used to  

indica.te resolution in the reference frame of the palm, then 

where T: is the transformation matrix relating a point expressed in frame j to frame 

i (joint 1 coordina.tes a.re fra.me 1; joint 2 coordina.tes are frame 2).  These equations 

allow us to find the global position of any point expressed in joint coordinates, given 

the sensed joint angles el and O2 and the geometry of the finger. Similar equations 

extended to the three-space of planar wrenches aid us in the following static analysis 

of conta.ct forces and joint torques.' 

'The inverse kinematics (finding the joint angles g;iven the global position of a point fixed in the 
finger) are of no use; the compliant coupling described in the previous chapter does not allow us t o  
arbitrarily det.ermine both joint angles. 



Figure 16: Two fingers and a pa.lm grasping an object 

Static Analysis 

A static analysis of one isolated finger will not prove instructive. However, if we'  

connect the bases of two fingers by a palm, we can consider enveloping grasps of planar 

objects. This is a. modification of an idea used by Trinkle in analyzing enveloping 

gra.sps of p1ana.r objects using single-jointed stmight fingers[ll]. Figure 16 shows a 

typical case of such a system holding an object. In general, if there are n frictionless 

point contacts[l] between an object and the hand, the condition for static equilibrium 

is tha.t [25 ] :  

Wc = wext (2) 

where W is the 3x12 matris of the planar contact wrenches: c is the l x n  matrix 

of wrench intensities, and WeXt is the external wrench being applied to the object 

(forces and moments exerted by gra.vity or the environment). The matrix c can be 

decomposed into a particular and a homogeneous matrix, such that: 

The homogeneous solution cl, can be found by solving Equation 2 for a WeXt of zero 

magnitude. The particular solution cp will then vary with the value of WeXt. If there 

esists a homogeneous solut,ion suck that all the components of cl, are positive, then 

we ca.n find a. d u e  of the rea,l const,ant X such that the sign of all of the components 



of c are positive. This is useful in the case when we have unisense contact forces; 

i.e. forces which can push b u t  not pull. 

A majority of operations t11a.t need to be performed by dextrous robot hands 

require that the grasped object by completely constrained by the hand. Such a 

situa.tion ha,s been called form closure[lO, 311. In other words, the grasping forces may 

be combined to resist any external wrench on the object. As opposed to  that,  force 

closure characterizes a situation in which the object is in equilibrium only because the 

load wrench acting on the object belongs to the union of the non-negative span of the 

unisense contact wrenches and the span of the other contact wrenches. For example, 

a human hand tightly grasping a baseball is form closure, where the geometry of the 

palm and fingers physically prevents the ball from moving, while a coat hanging on 

a llook is force closure, where sta.bility depends on an external wrench, in this case 

the weight of the coat. Clearly, form closure is a more stringent condition than force 

closure. 

In this paper, we define grasp stability as form closure in two dimensions. The 

hand must be able to resist a.ny zero pitch wrench2 in the plane of the fingers. In 

other words, the contact wrenches should span the fifth special three-system[32] that 

consists of screws of zero pitch along all lines in the plane and screws of infinite pitch 

along all lines perpendicu1a.r to  the plane. In practice, however, a more rigorous defi- 

nition for gra.sp stability which incorpora.tes the constra,ints arising from the contact 

interactions (for example, the frictional constraints) must be used. Here, a geometric 

definition of grasp stability which is equivalent to form closure in two dimensions is 

felt to  be adequate. 

For our analysis, we make several simplifications: 

The contacts between object and finger or palm are considered frictionless point 

contacts. A line conta.ct is modelled as a, single frictionless point contact at the 

midpoint of the contact segment. 

'See [32] for an understanding of screw theory. 



Each finger link (and the palm) has only one contact point. 

The fingers function in the manner discussed in the previous chapter. 

We know the point of contact from tactile sensors or from knowledge of the size 

and shape of the object. We know the torques (after breakaway) by reference 

to Equation 1. 

It is important to note that these are conservative assumptions; a pessimistic analysis 

will insure stability when the results are used in real-world situations. Each of these 

conditions reduce the number of solutions which will give us form closure. Frictional 

forces are reaction forces and can only resist the movement of an object away from 

stability. Frictionless point conta,cts can only exert forces along the contact normal, 

and in the case of fingerlobject contact, only with positive sense. But line contacts can 

also exert moments on a object, so a line conta.ct will improve stability over a point 

contact. hlultiple contacts on a given link will happen with only very irregularly- 

sha,ped objects; however, it can be shown that, in general, multiple contacts will 

produce the same conditions for stabilit,y a.s a single contact[ll]. Form closure in 

this idealized case is a. sufficient, but not necessary, condition for form closure with 

friction, line or multiple contacts. 

Next, we solve for cl, in the equation: 

In our case, the contacts betxveen the fingers and the object are defined as shown in 

Figure 16. \\re can then specify W and c ,  which yields: 



In the planar case, a wrench can be expressed as: 

If we express all wrenches in a reference fra.me with an origin a t  the joint between 

the pa.lm and finger 1, we obta.in: 

where s;j is short for sinOij, s;, represents sin(Oil + Oi2) ,  and the distances are as 

shown in Figure 16. 

From the functional description of the finger, we can determine two of the compo- 

nents of the matrix c: the magnitudes of the forces Fll and Fzl. Assuming breakaway, 

which we can always obtain by increasing the motor torque, 

where q T e o k , i  refers to the breakaway torque of finger i. To find the homogenous 

solution, we use the equality in these two expressions and reduce: 

The a.bove equation fits the general form of a linear system of equations, Ax = b, 

and can be easily solved by premultiplying each side by A-l.  The expression then 



reduces to: 

where 

and 

Computer Simulation of Planar Grasping 

This closed-form solution lends itself to computer implementation. By using a com- 

puter simulation of planar grasping, the conditions for form closure can be shown 

graphically. The first version of the simula.tor has output of the form shown in Fig- 

ures 17, IS and 19. The graph shows the final position of the object with the hand. 

The data below shows the numerical values of the distances, angles, and forces, as 

represented in Figure 16; as well as the A, A-l ,  x, and b matrices defined in Equa- 

tion 6. The input is in the form of a number of coordinate pairs representing the 

vertices of a polygon. Smooth surfaces and curves are approximated by closely-spaced 

points. The program will rotate the object a specified number of degrees, center it in 

the grasp, and close each joint of the two fingers until contact is made. The forces Fo, 

F12, and FZ2 are then computed using Equation 6. If these forces are positive, then 

form closure can be obtained simply by increasing the motor torque until the object 

is completely cons trained. 

There a.re several situations where the program will reject the grasp. First, if 



Based on breakaway at 0.1 N-m: fll = 3.0629 N 
f21 = 2.0786 N 

do = 30.0 mm thetall = 104.8 deg 
dl1 = 32.6 mrn theta12 = 49.8 deg 
dl2 = 20.6 mm theta21 = 100.0 deg 
d21 = 48.1 mm theta22 = 67.1 deg 
d22 = 34.4 mm 

det ( A )  = -24.6806 

This grasp is stable. 

Figure 17: Grasping a Five-Sided Polygon 
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Figure 18: Grasping an  Elliptical Object 
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Based on breakaway at 0.1 N-m: ill = 1.8558 N 
f21 = 3.5514 N 

do = 55.9 mm thetall = 101.0 deg 
dl1 = 53.9 mm theta12 = 103.4 deg 
dl2 = 39.7 mm theta21 = 112.9 deg 
d21 = 28.2 mm theta22 = 72.8 deg 
d22 = 39.8 mm 

det (A) = 21.9743 

This grasp is NOT stable. 

Figure 19: Grasping an Irregular Object 



the fingertip will contact an object before the inside surface of the finger. Second, 

as described a.bove, if any of the three forces are negative. Third, if there is no 

solution to the matrix equa.tion. Again, this analysis is based on the very conservative 

assumptions outlined earlier. The computer simulation results show several cases 

which in fact would "settle'' into stable configurations, as well as cases which were 

unacceptable because of fingertip contacts3. 

One result of the simula,tion has been the justification of the finger design. By 

running the program on a wide variety of object shapes, it has been shown that the 

finger will achieve form closure for a.t least one range of approach angles for almost 

every shape. With additional stability provided by friction contacts in most real 

situations, and the resistance to moments provided by line contacts, the finger will 

achieve form closure in many more situations. But the real significance of the result is 

that form closure can be achieved without precomputing the grasp and without force 

feedback. By simply sensing the contact positions and the joint angles, not only can 

we determine a sufficient condition for grasp stability, but we can do so without any 

complicated planning algorithm. The process will be complicated by an extension 

to three-dimensional grasping, but these results are significant for grasps involving 

objects with constant cross-section-a, large percentage of the objects encountered in 

the real world. 

A Simple Grasp Planning Algorithm 

In order to  consider how the hand described previously will interact with its environ- 

ment, a basic outline of a typical grasping sequence was developed. This relies on the 

stability results developed earlier and uses a modification of the computer simulation 

illustrated previously to test its viability. 

The ba.sic objective of this algorithm is to to implement a grasp ing  by grop ing  

31n pra.ctice, these are viable configurations, however, they require the a consideration of specific 
fingert,ip shapes and contact interactions. 



philosophy and thus keep the planning simple. As mentioned in Chapter One, var- 

ious researchers ha.ve shown t,l~at it is necessary to use active sensors to  supplement 

informa.tion provided by such remote sensors a.s vision or laser rangefinding[21, 22, 331 

and that human psychological research has defined a number of exploratory procedures 

which require the stable apprehension and movement of objects to  determine such 

structural properties as weight and volume[l6]. In situations where there is little a 

priori knowledge of object characteristics, it is not possible to implement sophisti- 

cated grasp planning routines-these require detailed object information to  calculate 

the position of fingertip contacts. 

Because this finger design will passively shape itself to  an object, we can often 

obtain a stable grasp with no more than the approximate spatial location. In addi- 

tion, the iterative nature of this algorithm will allow us to learn about the shape of 

the object by combining contact information from successive grasps. There are six 

primitives involved in this process: 

reach The arm is moved until the palm contacts the object. 

r e t r a c t  The arm is moved a.way from the object. These are gross manipulation tasks 

a.s opposed to fine n~anipulation and thus may be relegated to the robot arm 

controller. However, ta.ctile sensors on the palm must be used to  sense contact 

in reach.  

flex The fingers are closed until contact is ma.de with both joints. (Contact with 

only the second joint can indicate several things, among them, the object is too 

far away or the object is too small for a.n enveloping grasp). Interaction with 

the robot arm is necessa.ry a.t this sta.ge to a.ttempt to  keep the joint angles as 

close as possible to each other, which ~c~ill  center the object in the grasp. 

uilflex The fingers are opened. 

squeeze(rl ,  r2)  The torques on the two motors are increased to TI and r2. 



closure This is a boolean function which incorporates the computation required to 

determine whether or not a stable grasp can be obtained. In the event form 

closure is possible, it \vould also compute rl and 72. 

A simple planning scheme could be as shown in Figure 20. The "simple strategy" 

mentioned above could involve computation of a more appropriate approach angle 

based on learned knowledge of the object shape. In Figures 21 and 22, we show an 

implementa.tion based on a 5 degree cha~lge in a.pproa.ch angle. The graph shows the 

fina.1 stable configuration. Although this is blind groping and does not incorporate 

any knowledge of desirable conditions, in these two examples, as well as most of many 

others tried, stability was eventually achieved. In fact, the only regular shape which 

was not successfully grasped was a circle; without friction, the fingers are unable to 

resist moments about the center of the circle and stability (as it is defined here) is 

impossible. 

Other Analysis 

One area for further research involves experimentation with the hand to test the 

utility of these theories. It is also necessary to extend our grasping model to  three 

dimensions and to include friction effects. With a knowledge of the coefficient of static 

friction at finger contacts, the frictional reaction forces can be calculated and stability 

predicted for ca.ses that a.re rejected by our approach. However, in the situation where 

these frictional forces cannot be calculated and the coefficient varies or is unknown, 

it is necessary that stability can be maintained with frictionless contact. 

The analysis of the stability of a grasp in three dimensions relies on the use of 

wrenches with sis components. This complicates the computation, but the equilib- 

rium conditions give six equations to calculate the contact forces necessary for stabil- 

ity. But it a.ppears that a, genera,l a.na1ysis is not necessary or useful for this specific 

end effector. Instead, five analyses, one for each grasping mode, will be performed. 

This will allow for more efficient computation of the stability conditions. 
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Figure 20: An Algorithm for Grasping Unknown Objects 
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Figure 21: Finding a Stable Grasp on a Polygon 
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T o t a l  r o t a t i o n  ( i n  degrees) : 1 5  T h i s  grasp i s  NOT s tab le .  
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Figure 22: Finding a Stable Grasp on a Irregular Object 



The choice of which grasp type to use for a specific sensed object will rely heavily 

on these deriva.tions. The use of three fingers and a palm in spa,tial manipulation can 

provide the seven contacts required for form closure without friction[lO], but only 

with correct hand and arm positioning. The method used to choose grasp mode and 

approach strategy is a subject of future research. 



Chapter 6 

Conclusion 

This thesis has presented the design fundamentals for a class of robotic end effectors. 

In doing so, the intent has been not only to communicate the details of the design, 

but to illuminate the process a.s well. Given the problem presented in Chapter One, 

and subject to the philosophy described in Chapter Two, the design described in 

the remainder of the thesis was synthesized. However, the progression was not that 

orderly. Although each individual approaches the uniquely creative process of design 

differently, for this author it is never the simple orderly progression outlined here or in 

various texts on the subject. Rather, it is more a random brainstorming which moves 

from idea to idea until eventua.11~ a possible approach is found and tested, usually to 

be rejected. Left out of the thesis, but nonetheless important, are the many blind 

alleys and frustrating twists and turns folloived by the designer. 

Because the hand has only four actuators, there are only four variables over which 

it is possible to exert control. However, the hand has seven degrees-of-freedom: two 

per finger, and one for the fingerlpalm relationship. These "extra" degrees of free- 

dom are dependent upon the object shape, as described in Chapter Four. Although 

locating the grasping operation as much as possible in the mechanism has simplified 

most apprehension tasks, it also limits the versatility for other tasks which require 

more degrees of freedom or a different set of primitives. 



However, this design is a compromise between many extremes: it is less com- 

plicated, less expensive, and easier to control than existing robot hands, yet more 

complicated, more expensive, and harder to control than simple grippers. In Chap- 

ter Two the idea of mechanical intelligence was introduced. Rather than expect to  

duplicate the human brain, which can perform miracles with less than perfect tools, 

it is more realistic to approa.ch a design problem from both points of view; that is, 

to create more intelligent mechanical devices, which, combined with better control 

techniques, will significantly increase performance. 

It is also important to consider the strengths and weaknesses of control techniques 

and planning methods in the design of any robotic or automatic machinery, just as 

the strengths and wea.knesses of a gear or motor are considered. This approach has 

been used here, and the resulting mechanism implements in the mechanical design 

many primitives that would otherwise be left to the control. The simplicity of the 

planning algorithm presented in Chapter Five is significant in itself, but there is a 

broa.der result: complex tasks such as gra.sping are most efficiently performed with 

a combination of mechanical and artificial intelligence. The mechanical techniques 

have been presented here; the control techniques and planning methods necessary for 

other ta.sks are subjects for future work. 

Future Research Topics 

The body of research which is concerned with grasp planning and control has almost 

universally considered a complex ha.nd model. The uniqueness of the hand design 

presented here requires that a new framework be built which is based on its operation 

a,nd which includes enveloping grasps as well as limited fingertip grasping. 

This means that the ana.lysis of Cha.pter Five must be extended. Rather than 

consider only a planar situation, a three-dimensional analysis must be performed. 

And the five grasps possible with the hand must each be considered in detail. The 



results will allow accurate planning algorithms to be implemented for the different 

types of situa.tions likely to be encountered by the hand. In addition, the analysis 

must be extended to dyna,mic situations and to perturbations away from stability. 

A rigorous consideration of these conditions is essential to  intelligent control of the 

hand. 



Appendix A 

The UPenn Hand 

The main body of this thesis has been concerned with presenting a general class of end 

effectors for various applica.tions. However, the main purpose behind the synthesis of 

these concepts has been to produce a tool for use in the research environment. This 

device has been dubbed the UPenn Hand. In this section will be presented some 

specific details of this mechanism. 

The laboratory environment, especially the robotics research environment, places 

special dema.nds upon a,n end effector. I11 the General Robotics And Sensory Percep- 

tion (GRASP) La.boratory a t  the University of Pennsylvania., the following require- 

ments a,re anticipated: 

Because a number of individuals, each with different research projects, use the 

robot arms in the lab, mechanisms must be easily mounted and dismounted from 

each arm. At present, a single Puma arm may have attached to  it a simple gripper, 

a UPenn Hand, a force/displacement sensor, a laser rangefinding device, a compliant 

wrist sensor, and a set of stereo cameras, all in one day. Quick and easy mounting and 

dismounting is essential to reduce the robot downtime. In addition, site visits and 

special demonstra.tions may require several experiments to be shown within a very 

short period of time. The UPenn Hand is completely self-contained, and connected 

to the arm by means of a quick-disconnect device. One half of this is permanently 



connected to the lab arms, and all mounted devices connect with it in the same 

manner. Power and sensing cahles a.re terminated a t  the hand with connectors. The 

hand can be completely mount.ed and dismounted in seconds. 

The hand itself is undes the same constraints as the arms. Individual researchers 

often require completely different configurations. To accomodate this, the fingertips, 

first joint inside surfaces, and palm of the hand are easily removed, to be replaced 

by tactile, force/moment, or other specialized sensors. Appendix C discusses these 

instruments in more detail. Although several hands are being made, there will still be 

a need for reconfiguration within each one, so simple screw connections are provided 

at the palm and fingers. 

The same hand can consecutively be asked to pick up a hammer, then a fragile 

g1a.s~. The breakaway mechanism discussed in the next section allows variation in 

compliance, available in real-time and from the control program, to accomodate this 

requirement. 

Because research funds are used to pay for the hands, economy is important. For 

this reason, the UPenn Hand has three fingers which are essentially identical. This 

lowers the fabrication costs significantly, and also reduces the inventory of spare parts 

necessary. Experimental setups are notoriously unreliable, so this modular design 

allows repairs to be made quickly and inexpensively. Although the palm components 

a.re unique in each hand, the drive motor, encoder, potentiomotors, and some of 

the transmission components are the same for all of the three fingers and the palm 

movement. The majority of the fabrication is performed on NC milling machines 

through a.n outside independent machine shop. This further reduces the cost and 

allows for additional hands to be made easily. 

The physical size of the UPenn Hand is approximately that of a human hand. 

This is to a.ccomodate a, range of sensing and ma.nipulation experiments that are 

pa.rt of the GRASPla.b's collabora,tion with human psychologists, as well as to match 

ongoing research. The robot arms used in t,he 1a.b are Puma 560's, which have a 



maximum payload of about 2 kg. It is also important to limit the distance an end 

effector extends from the nlounting plate, as a, limiting factor of arm performance is 

the moment about the wrist. 

Although these requirements are more demanding than those required of the same 

device in, for example, an industrial environment, where it may be expected to per- 

form several sets of tasks over and over with little reconfiguration, there are advan- 

ta.ges to this application. Because the lab environment is rigidly controlled, there is 

no need to protect the halld from temperature extremes, dirt, moisture, other heavy 

equipment, or from excessive electro-magnetic interference (EMI). And because the 

number of cycles required of the hand is relatively low, long life is not a crucial 

requirement; redesign and rephcement is more likely than wear. 

The wiring and sensors do not need to be ruggedized either. The UPenn Hand has 

much of the cabling for the sensors outside of the mechanism envelope, which allows 

for easier remova.1, as well as simpler internal design. It' is felt that sensor design will 

change dramatically over the useful life of the hand, and it is not prudent to lock the 

device into one specific arrangement. 

The hand is expected to be used e~t~ensively in a cooperative arrangement with 

vision and other remot,e sensing devices. Most experimentation in the lab uses white 

objects to allow for more accura,cy and to differentiate shadows from surfaces with 

different values. Although recent research is focussing on objects of varying colors, 

the hand has been 1na.de with a bla.ck dye a.11odization in order to reduce reflection 

and to sepa.rate it from the environment. 

Figure 23 sho~vs a conceptual sketch of the UPenn Hand. Figure 24 shows a scale 

assembly drawing of the first version. Below are listed some specific details, based 

on the first prototype. 

Mass: 1.5 kg (3.3 lbs) 

Distance between palm and arm mounting plate: 8.0 cm (3.2 in). 



Figure 23: The UPenn Hand 

r Finger length: 11.5 cm (4.5 in). 

Finger Width: 2.25 cm (0.875 in) at  base, 2.0 cm (0.775 in) a t  tip. 

r Palm Size: 6.0 cm (2.2 in) by 10.0 cm (4.0 in). 

r Joint Ranges: 135 degrees for joint one, 90 degrees for joint two. 

r Maximum Fingertip Force: 50 N (11.0 lbs) dynamically, 225 N (49.5 lbs) stati- 

cally. 

Fully Open to Fully Closed, Minimum Time: 0.20 seconds. 

The design of the UPenn Hand is contained in a set of 104 mechanical drawings 

drawn on a Macintosh I1 with the CAD program MacDraft. This collection is titled 

the End Effector Design Drawings (EEDD). An example drawing of part of a finger 

base is found in Figure 25. Several of the novel aspects of the design are protected 

by pending pa.tents. 



University of Pennsylvania Nathan Ulrich 
GRASP Laboratory August 1989 

The UPenn Hand 
Version I 



Figure 25: A sample drawing from the EEDD 



Appendix B' 

A Rotary Breakaway Mechanism 

The functional behavior of the actuation mechanism for a two-jointed compliantly 
' 

coupled finger has been presented in Chapter Four. This rotary breakaway mecha- 

nism, invented specifically for application in these fingers, is an interesting device on 

its own. It combines the functions of a variable torque clutch, differential, and brake 

into one compact device integral with the actuation and gear reduction of the fingers. 

This appendix will present the specifics of this design. 

The operation can be most easily explained in reference to Figure 26, which is 

adapted from the fa.brication dra,wings for the UPenn Hand. At the core of this 

mechanism is a non-backdrivable gear reduction of some sort. In this case, a worm 

gear is used. Spur gear pinion 10 is the input of the device, which can be driven via 

another gear which is connected to a actuator. When pinion 10 is turned clockwise, 

it screws into worm 30 and compresses rubber spring 50. If there is sufficient torque 

applied a t  10 to  overcome any torque applied a t  worm wheel 32, then after spring 50 

is compressed to  a certain point, worm 30 will turn with pinion 10 and worm wheel 

32 will also rotate. Worm 30 is held in place by the preloaded bearings shown, and 

pinion shaft 12 is supported by the screw threads in worm 30 and by slide shaft 40. 

Slide shaft 40 is free to rota,te a.round its bearing. 

If there is sufficient resistance a.t worm wheel 32, then pinion shaft 12  can be 



Figure 26: A Rotary Breaka.way Mechanism 



screwed clockwise into worn1 30 and compress rubber spring 50 to various levels. 

The frictional resistance in threads 31 will vary depending on the axial force caused 

by spring 50. If pinion 10 is turned counter-clockwise, then worm 30 will also turn 

counter-clockwise, as long,as there is no resistance a t  wheel 32. When a resistive 

torque applied a t  wheel 32 is sufficient to overcome the frictional force in the threads, 

then pinion shaft 12 will unscrew from worm 30, causing worm 30 to stop rotating 

and therefore causing wheel 32 to stop rotating. Pinion 10 will continue to unscrew 

from worm 30 until it reaches the limit of its range of motion. 

Optionally, soft set screw 80 can be added to the mechanism. When this is 

tightened on slide shaft 40, then a resistance to the movement of pinion shaft 12 on 

slide shaft 40, and therefore a resistance to the unscrewing of pinion shaft 12 from 

worm 30, is added. This means that a constant torque-of a value dependent upon 

the force in set screw 80-must be maintained on wheel 32 to allow pinion shaft 12 

to continue to unscrew from worm 30. 

Rubber spring 50 could be replaced by other components, including a split collet, 

a helical coil spring, or a Belleville washer. 

In operation in a finger transmission, the worm wheel output is connected to  the 

first joint of the finger, \vhile the finger actuator drives the second joint through 

another worm gear reduction with no breakaway mechanism or clutch. A movement 

of the finger actuator always results in motion of the second joint, but only moves 

the first joint when the breakaway mechanism has not broken away. A closing of the 

finger corresponds to a counter-clockwise motion of pinion shaft 12, which would tend 

to  unscrew it from the worm 30. However, if the rubber spring is compressed, then 

the frictional force in the threads will resist the unscrewing and motion of the pinion 

will result in motion of the worm and motion of the first joint of the finger. When a 

resistive torque around the worm wheel, caused by object contact on the first joint, is 

sufficient to overcome the frictional force in the threads, then the pinion shaft starts 

to unscrew from the n70rm. and the mechanisln "breaks away." This causes the first 



joint to stop, but because the worm gear is non-backdrivable, it maintains the contact 

force on the object. If the object happens to shift, then the friction caused by set 

screw 40 will cause the first joint to start moving until it contacts the object again. 

Because the second joint is rigidly attached to the motor actuator, if the first 

joint has contacted an object and broken away, then the second joint will continue to 

rotate until it contacts the object as well. This causes a compliant behavior of the 

finger similar to that of the last two joints of the human finger. 

If the first joint breaks away, then the finger can be reset by completely opening it 

against its stops, which will cause the pinion shaft to screw back into the worm. How 

much motor torque is applied a t  this point determines the first joint torque which will 

cause breakaway to occur. This alloys the breakaway torque to be adjusted simply by 

a motion of the finger, whicl~ will allow the same fingers to grasp eggs and hammers. 

There is a. great deal of va.riation in performance that can be accomplished by 

the choice of materials in the screw threads, in the worm, in the soft set screw, and 

in the spring. 1Vea.r in the screw threads a.nd in the spring also can cause varia- 

tions of the material properties, but these have little effect on the performance of the 

mechanism. The only requirement is that the spring have predictable enough hyster- 

isis that the brea.kaway torque can be accura.tely predicted from the resetting torque 

applied. Experience with prototypes has shown that the breakaway torque can be 

a.ccurately predicted-to an a.ccura.cy of .5 percent-by simply experimentally deter- 

mining a scalar multiple of the motor current applied at resetting of the finger. The 

range of breakaway values which can be achieved depends on the materials selected 

for the screw threads and the ma.teria1 used as the spring. 

The latest finger prototype, which uses this breakaway mechanism, has shown the 

usefulness of this method of compliance. Because the fingers are not backdrivable, 

fingers will conform to object shape and hold on like a vise. Multiple object contacts 

are a.chieved for .almost every shape tested, and the computer simulation shown in 

Chapter Five further va.lidates the use of this mechanism in finger actuation. 



In the UPenn Hand, the fingers are actuated by means of 48 pitch worm gear 

reductions. The motor drives a 96 pitch 24 toot,h pinion which mates with two 32 

tooth gears. One of these is atta.ched through the breakaway mechanism to  a worm 

and a 48 tooth worm wheel. The other is directly attached to 30 tooth worm wheel. 

The threads on the pinion shaft are 4-40, and 1/16" diameter rubber section is used 

as a spring. The entire finger actuation, including the breakaway mechanism, gear 

reductions, and finger base pivot, measures approximately 2.25 cm (0.875 in) by 3.5 

cm (1.4 in) by 5.0 clll (2.0 in). Within this space are also contained some wiring 

connectors, finger pivot bearings, and motor mountings as well. 

The mechaaism itself ha,s yet to be accurately modeled. Currently, a predictive 

model based on experiment has sufficed. However, if the mechanism is to be used in 

other applica.tions or if academic interest prompts it, a investigation of the tribological 

basis of its operation will be undertaken. 



Appendix C 

Control and Sensing Issues 

One of the goals of a medium-complexity end effector is to reduce the control system 

to  a manageable size. However, the architecture and performance of this system is 

still important. Some of the same principles governing the mechanical design play a 

role in the electronic design-simplicity, ease of use, robustness, and economy are em- 

phasized. This appendix presents the preliminary system architecture for the control 

system to be used with the UPenn Hand and a robotic arm. 

Previous control systems have considered the hand and the arm as distinct mecha- 

nisms, both in the mechanical design and in the computer control. One of the goals of 

this end effector is to effectively attach an object to  the end of a robot arm. Because 

the limited degrees of freedom of the hand do not allow fine manipulation of objects 

within the grasp, more attention must be paid to the use of the arm as a manipulation 

tooi. The six or seven degrees of freedom of most robot arms is sufficient for this task, 

but it becomes important to consider the cooperative control of the hand and arm. 

Control Architecture 

Figure 27 s h o ~ ~ ~ s  the control architecture for the UPenn Hand. In this case, we are 

using a Puma 560 manipulator with the hand, but the scheme is sufficiently flexible 
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to  a.ccomodate other arms. 

The servo control of the motors in the hand is done in a IBM PC/AT. Position and 

velocity are controlled based on feedback from an optical encoder mounted directly 

on the motor shaft. The encoders used are Disk Instruments miniature size 11 etched 

glass/LED encoders with 4000 counts per revolution and index. Force is controlled via 

feedback from tendon tension sensors which mea.sures the torque around the second 

finger joints. These devices are composed of a 317 stainless steel beam and a pulley 

over which both halves of the tendon used to drive joint two pass. Semiconductor 

strain ga.ges are mounted on the beam in a conventional bridge, giving an output 

directly proportional to the net torque applied around joint two. 

Based on tests with a one-finger prototype under a similar control scheme, it is 

estimated that servo rates of greater than SO0 Hz are possible. The AT communicates 

with a VAXstation 3500, a machine similar to the microVAX 11, but with a different 

CPU and approximately 4 times the computational speed1. This machine was chosen 

beca.use its UNIX operating system (Ultrix 2.2) was compatible with that of the 

microVAX I1 (Ultrix 2.0); current robot control in the GRASPlab is run on microVAX 

11's and easy portability is essential. This machine will run a version of the Robot 

Control C Library (RCCL), a library of routines which are accessible from C programs 

developed in the UNIX environment. In addition, a new package of routines, called 

the Hand Control C Library (HCCL) ha.s been written to allow parallel control of 

the hand. Because both RCCL and HCCL are implemented on the same machine, 

cooperative movement of the hand and arm is improved. However, since the actual 

servo control is accomplished on separate dedicated CPU's, this machine is free to do 

computationally-expensive planning. 

The VAXstation is connected to the PC/AT and to  the Puma controller (a  PDP- 

11 173 which is supplied by Unimation with the arm) by means of parallel programmed 

'This machine was introduced early in 1988. Tests show a benchmark of approximately 1.58 
million whetst.ones/second, and kinematic computational performance of approximately 2.2 times a 
\'A); 11/785, 1.6 times a Sun 31260, and 0.6 that of a Sun 4. 



110. There is no need to synchronize machines, because all communication is buffered 

or DMA; however, because the Puma controller runs at a 7 ms interrupt rate, it is 

convenient to run the PC/AT and the VAXsta.tion at a multiple of this: currently, 

the VAXen run a t  28 ms, and the PC/AT at 1.75 ms. It is estimated that the 

interrupt rate on the VAXstation will be increased to 14 or 7 ms. The PC/AT and 

the Puma controller a-re also connected by a "panic" line, which allows for emergency 

communication between the two machines. 

The sensors on the hand a,re divided into two groups: primary and secondary. 

Primary sensors are the optical encoders, the tendon tension sensors, and joint po- 

tentiomotors. These are read directly by the PC/AT and used in the low-level control 

of the hand. Secondary sensors-ta.ctile, fingertip force/moment, temperature, etc.- 

are not integral to the servoing of the hand and are therefore read by the VAXstation, 

to be used in the higher-level planning. 

Irision, which is a passive sensing of the overall environment, is connected to this 

system via Ethernet, after being processed by its own machine. Other computers, such 

as a, system coordinator, an A1 processor, or a supercomputer such as the Thinking 

Machine, are connected through Ethernet in the GRASPlab. 

The goal is to achieve a flexible working environment which allows communication 

between various sensors and devices in a way that aids coordination. 

Sensors 

Although the actual technica.1 issues of the sensing system are beyond the scope of 

this document, the configuration of the sensors that are to be used is an important 

consideration; the UPenn Hand was designed partially as a "platform" for a number of 

t,ypes of sensors. This appendix will also present some aspects of the sensing system. 

The following sensors are expected to be used with the UPenn Hand: 

Tactile Array: Three different tactile arrays have been designed. There are 



three joint one arrays, which contain 72 taxels spaced 2.5 mm (0.100 in) apart, 

a palm sensor with 630 sites spa.ced 2.5 mm (0.100 in) apart, and a fingertip 

tactile sensor. The fingertip has two different taxel spacings. At the very tip, 

which is curved in a 6 mm (0.25 in) radius, there are 165 sites spaced 1.25 mm 

(0.050 in) apart. The remaining area has 54 taxels spaced 2.5 mm (0.100 in) 

apart. 

Fingertip Force/hfoment: The fingertip tactile array sensor is attached to  the 

finger body through a force/moment sensor. This is a semiconductor strain- 

gage based sensor which allows a determination of all six components of force 

and moment acting on the fingertip2. 

Texture: It is possible to replace the fingertip sensor mentioned above, on any 

of the fingers, with a texture sensor. This is essentially a flexible element which 

acts much like a phonograph needle and determines the amplitude and frequency 

of vibmtions excited by contact between the sensor and a surface. This can be 

combined with hand/arm dynamics to find precise textural information. 

Temperature: Also mounted at the fingertip is a specialized temperature sensor 

which tests t,he thermal cond~ct~ivity of a, surfa.ce or object by mea,suring the 

thermal resistance between two contacts. 

Proximity: There are two possible proximity sensors planned for the hand. 

One is a sonar-based instrument which measures distance by means of sound 

reflectance duration. This can be mounted at the palm. The other is a so- 

called "cat's whisker," which measures proximity by means of physical contact 

between flexible wands (cat's whiskers) and the environment. 

The above sensors are all processed by a machine dedicated to  this task and 

'The author would like t o  acknowledge the contributions of Michael Trull of Lord Corporation, 
who designed the sensors. Lord has generously agreed to  provide the  tactile, force/moment, and 
tendon tension sensors for the UPenn Hand. 



the condensed information is used by the \/Axstation in high-level planning and 

control. For example, the control scheme mentioned in Chapter 5 will rely on contact 

information from the tactile array sensors. 
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