1,468 research outputs found

    Composite Disturbance Filtering: A Novel State Estimation Scheme for Systems With Multi-Source, Heterogeneous, and Isomeric Disturbances

    Full text link
    State estimation has long been a fundamental problem in signal processing and control areas. The main challenge is to design filters with ability to reject or attenuate various disturbances. With the arrival of big data era, the disturbances of complicated systems are physically multi-source, mathematically heterogenous, affecting the system dynamics via isomeric (additive, multiplicative and recessive) channels, and deeply coupled with each other. In traditional filtering schemes, the multi-source heterogenous disturbances are usually simplified as a lumped one so that the "single" disturbance can be either rejected or attenuated. Since the pioneering work in 2012, a novel state estimation methodology called {\it composite disturbance filtering} (CDF) has been proposed, which deals with the multi-source, heterogenous, and isomeric disturbances based on their specific characteristics. With the CDF, enhanced anti-disturbance capability can be achieved via refined quantification, effective separation, and simultaneous rejection and attenuation of the disturbances. In this paper, an overview of the CDF scheme is provided, which includes the basic principle, general design procedure, application scenarios (e.g. alignment, localization and navigation), and future research directions. In summary, it is expected that the CDF offers an effective tool for state estimation, especially in the presence of multi-source heterogeneous disturbances

    Real-time Adaptive Detection and Recovery against Sensor Attacks in Cyber-physical Systems

    Get PDF
    Cyber-physical systems (CPSs) utilize computation to control physical objects in real-world environments, and an increasing number of CPS-based applications have been designed for life-critical purposes. Sensor attacks, which manipulate sensor readings to deceive CPSs into performing dangerous actions, can result in severe consequences. This urgent need has motivated significant research into reactive defense. In this dissertation, we present an adaptive detection method capable of identifying sensor attacks before the system reaches unsafe states. Once the attacks are detected, a recovery approach that we propose can guide the physical plant to a desired safe state before a safety deadline.Existing detection approaches tend to minimize detection delay and false alarms simultaneously, despite a clear trade-off between these two metrics. We argue that attack detection should dynamically balance these metrics according to the physical system\u27s current state. In line with this argument, we propose an adaptive sensor attack detection system comprising three components: an adaptive detector, a detection deadline estimator, and a data logger. This system can adapt the detection delay and thus false alarms in real-time to meet a varying detection deadline, thereby improving usability. We implement our detection system and validate it using multiple CPS simulators and a reduced-scale autonomous vehicle testbed. After identifying sensor attacks, it is essential to extend the benefits of attack detection. In this dissertation, we investigate how to eliminate the impact of these attacks and propose novel real-time recovery methods for securing CPSs. Initially, we target sensor attack recovery in linear CPSs. By employing formal methods, we are able to reconstruct state estimates and calculate a conservative safety deadline. With these constraints, we formulate the recovery problem as either a linear programming or a quadratic programming problem. By solving this problem, we obtain a recovery control sequence that can smoothly steer a physical system back to a target state set before a safe deadline and maintain the system state within the set once reached. Subsequently, to make recovery practical for complex CPSs, we adapt our recovery method for nonlinear systems and explore the use of uncorrupted sensors to alleviate uncertainty accumulation. Ultimately, we implement our approach and showcase its effectiveness and efficiency through an extensive set of experiments. For linear CPSs, we evaluate the approach using 5 CPS simulators and 3 types of sensor attacks. For nonlinear CPSs, we assess our method on 3 nonlinear benchmarks

    Current issues of the management of socio-economic systems in terms of globalization challenges

    Get PDF
    The authors of the scientific monograph have come to the conclusion that the management of socio-economic systems in the terms of global challenges requires the use of mechanisms to ensure security, optimise the use of resource potential, increase competitiveness, and provide state support to economic entities. Basic research focuses on assessment of economic entities in the terms of global challenges, analysis of the financial system, migration flows, logistics and product exports, territorial development. The research results have been implemented in the different decision-making models in the context of global challenges, strategic planning, financial and food security, education management, information technology and innovation. The results of the study can be used in the developing of directions, programmes and strategies for sustainable development of economic entities and regions, increasing the competitiveness of products and services, decision-making at the level of ministries and agencies that regulate the processes of managing socio-economic systems. The results can also be used by students and young scientists in the educational process and conducting scientific research on the management of socio-economic systems in the terms of global challenges

    Consensual Resilient Control: Stateless Recovery of Stateful Controllers

    Get PDF
    Safety-critical systems have to absorb accidental and malicious faults to obtain high mean-times-to-failures (MTTFs). Traditionally, this is achieved through re-execution or replication. However, both techniques come with significant overheads, in particular when cold-start effects are considered. Such effects occur after replicas resume from checkpoints or from their initial state. This work aims at improving on the performance of control-task replication by leveraging an inherent stability of many plants to tolerate occasional control-task deadline misses and suggests masking faults just with a detection quorum. To make this possible, we have to eliminate cold-start effects to allow replicas to rejuvenate during each control cycle. We do so, by systematically turning stateful controllers into instants that can be recovered in a stateless manner. We highlight the mechanisms behind this transformation, how it achieves consensual resilient control, and demonstrate on the example of an inverted pendulum how accidental and maliciously-induced faults can be absorbed, even if control tasks run in less predictable environments

    Machine Learning Algorithm for the Scansion of Old Saxon Poetry

    Get PDF
    Several scholars designed tools to perform the automatic scansion of poetry in many languages, but none of these tools deal with Old Saxon or Old English. This project aims to be a first attempt to create a tool for these languages. We implemented a Bidirectional Long Short-Term Memory (BiLSTM) model to perform the automatic scansion of Old Saxon and Old English poems. Since this model uses supervised learning, we manually annotated the Heliand manuscript, and we used the resulting corpus as labeled dataset to train the model. The evaluation of the performance of the algorithm reached a 97% for the accuracy and a 99% of weighted average for precision, recall and F1 Score. In addition, we tested the model with some verses from the Old Saxon Genesis and some from The Battle of Brunanburh, and we observed that the model predicted almost all Old Saxon metrical patterns correctly misclassified the majority of the Old English input verses

    Undergraduate and Graduate Course Descriptions, 2023 Spring

    Get PDF
    Wright State University undergraduate and graduate course descriptions from Spring 2023

    Pushing the Boundaries of Spacecraft Autonomy and Resilience with a Custom Software Framework and Onboard Digital Twin

    Get PDF
    This research addresses the high CubeSat mission failure rates caused by inadequate software and overreliance on ground control. By applying a reliable design methodology to flight software development and developing an onboard digital twin platform with fault prediction capabilities, this study provides a solution to increase satellite resilience and autonomy, thus reducing the risk of mission failure. These findings have implications for spacecraft of all sizes, paving the way for more resilient space missions

    Impacts of Connected and Automated Vehicles on Energy and Traffic Flow: Optimal Control Design and Verification Through Field Testing

    Get PDF
    This dissertation assesses eco-driving effectiveness in several key traffic scenarios that include passenger vehicle transportation in highway driving and urban driving that also includes interactions with traffic signals, as well as heavy-duty line-haul truck transportation in highway driving with significant road grade. These studies are accomplished through both traffic microsimulation that propagates individual vehicle interactions to synthesize large-scale traffic patterns that emerge from the eco-driving strategies, and through experimentation in which real prototyped connected and automated vehicles (CAVs) are utilized to directly measure energy benefits from the designed eco-driving control strategies. In particular, vehicle-in-the-loop is leveraged for the CAVs driven on a physical test track to interact with surrounding traffic that is virtually realized through said microsimulation software in real time. In doing so, model predictive control is designed and implemented to create performative eco-driving policies and to select vehicle lane, as well as enforce safety constraints while autonomously driving a real vehicle. Ultimately, eco-driving policies are both simulated and experimentally vetted in a variety of typical driving scenarios to show up to a 50% boost in fuel economy when switching to CAV drivers without compromising traffic flow. The first part of this dissertation specifically assesses energy efficiency of connected and automated passenger vehicles that exploit intention-sharing sourced from both neighboring vehicles in a highway scene and from traffic lights in an urban scene. Linear model predictive control is implemented for CAV motion planning, whereby chance constraints are introduced to balance between traffic compactness and safety, and integer decision variables are introduced for lane selection and collision avoidance in multi-lane environments. Validation results are shown from both large-scale microsimulation and through experimentation of real prototyped CAVs. The second part of this dissertation then assesses energy efficiency of automated line-haul trucks when tasked to aerodynamically platoon. Nonlinear model predictive control is implemented for motion planning, and simulation and experimentation are conducted for platooning verification under highway conditions with traffic. Then, interaction-aware and intention-sharing cooperative control is further introduced to eliminate experimentally measured platoon disengagements that occur on real highways when using only status-sharing control. Finally, the performance of automated drivers versus human drivers are compared in a point-to-point scenario to verify fundamental eco-driving impacts -- experimentally showing eco-driving to boost energy economy by 11% on average even in simple driving scenarios
    • …
    corecore