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Abstract— This paper proposes a hierarchical modeling
method and a fuzzy speed control strategy for nonlinear
networked induction motor systems subject to network induced
time delay and packets dropout. The networked induction
motor control system consists of a networked speed controller
and a local controller. Fuzzy gain scheduling is applied on the
networked speed controller to guarantee the robustness against
complicated variations on the communication network. The
state predictor is to compensate the time delay occurred in data
transmission in the feedback channel. In stability analysis, the
upper allowed limits of the time delay and packets dropout are
calculated using the Lyapunov-Krasovskii theorem, respectively.
Simulation and experimental results are given to illustrate the
effectiveness of the proposed approach.

I. INTRODUCTION

The applications of NCSs have been an important trend in
modern industry owing to the convenient remote operation
and cost-effective installation. In such systems, spatially dis-
tributed sensors, actuators, and controllers share information
through the network instead of complex wiring, resulting
in flexible and open architecture. NCSs have been found
applications in a broad range of areas such as mobile
robots [1]–[3], unmanned aerial vehicles [4]–[6], and re-
mote surgery [7]–[9]. Considering the common grounds that
they are driven by electrical motors and communicate via
network, such systems are called networked motion control
systems (NMCSs) [10]. NMCSs are constructed on the basis
of remote motion controller and local motor drivers, using
network to realize transmission of control orders and motion
states. NMCSs are hot research topics of NCSs and play
important roles in factory automation.

Most of the current NMCSs focus on networked DC motor
control [11]–[13], for DC motor is an ideal networked control
plant with linear model. Actually, induction motors play a
dominant part in industrial applications for their merits of
simple structure and high reliability. However, networked
induction motor control is rather more complicated due to the
nonlinear dynamics of induction motors. In this paper, the
modeling and speed control of nonlinear networked induction
motor control systems are investigated. Using field orienta-
tion technique, the induction motor model is linearized, and
the NMCS is built as a hierarchical control system, with the
merit of free of complicated modeling and data processing.
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Fuzzy logic is applied on gain adaptation in designing
the networked speed controller, such that the variation of
the network QoS can be compensated. Considering the
time delay from sensor to controller can be seized owing
to the time stamped message, a time delay compensator
is designed in the feedback channel. As an indispensable
part, the stability of the controlled system is analyzed using
Lyapunov-Krasovskii theorem, with the maximum allowed
bounds of time delay and packets dropout are provided.

The paper is organized as following. After the introduction
in section I, the system description is presented in section
II. The networked speed controller is proposed in section
III. The stability analysis is presented in section IV. The
simulation and experimental results are stated in section V.
Finally, the conclusions are summarized in section VI.

II. SYSTEM DESCRIPTION

As shown in Fig. 1, the components of the considered
NMCS can be grouped into five modules, which are de-
scribed in the following subsections, respectively.

A. Induction Motor and the Sensor

The dynamics of a three-phase squirrel induction motor
in the stator fixed α−β reference frame is described as the
following differential equations [14]:

i̇αs =−γiαs +αβψαr +npβωψβ r +uαs/(σLs), (1a)

i̇β s =−γiβ s +αβψβ r−npβωψαr +uβ s/(σLs), (1b)

ψ̇αr = αMiαs−αψαr−npωψβ r, (1c)

ψ̇β r = αMiβ s−αψβ r +npωψαr, (1d)

ω̇ = µ(ψαriβ s−ψβ riαs)− (TL +K f ω)/J. (1e)

where the two-dimensional vectors is =
[
iαs iβ s

]T, ψr =[
ψαr ψβ r

]T, and u =
[
uαs uβ s

]T are the stator currents,
rotor fluxes, and stator voltages, respectively. ω is the
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Fig. 1. Structure of the investigated NMCS
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mechanical rotor speed, Rs and Rr are the stator and rotor
resistances, respectively; Ls and Lr are the stator and rotor
self-inductances, respectively; M is the stator-rotor mutual
inductance, TL is the load torque, K f is the friction co-
efficient, J is the motor-load moment of inertia, and np
is the number of pole pairs. Denote the leakage factor by
σ = 1−M2/(LsLr), the rotor time constant by Tr = Lr/Rr,
and the other parameters by α = 1/Tr, β = M/(σLsLr),
γ = M2Rr/(σLsL2

r )+Rs/(σLs), and µ = 3npM/(2JLr). The
mechanical equation (1e) can be expressed in terms of the
electromagnetic torque Te:

Te = Jω̇ +K f ω +TL. (2)

The induction motor speed is measured by the sensor pe-
riodically, and be sent to the networked controller via the
network together with its time stamp.

B. Communication Network

The network-induced delay consists of the sensor-to-
controller delay τsc and the controller-to-actuator delay τca,
and can be lumped together as τ = τsc+τca. Two switches S1
and S2 are used to model the packets dropout in the forward
and feedback channels of the network.

C. Networked Controller

The networked controller consists of two parts: the speed
controller and the state predictor. A fuzzy logic PI controller
is employed as the speed controller, where the gain values
are tuned online by the fuzzy logic mechanism. The state
predictor estimates the motion state x̂(t) based on the plant
state x(t) and the feedback delay τsc, as shown in Fig. 2.

D. Actuator

The actuator is triggered when receiving data from the
controller. The buffer size of the actuator is 1, to guarantee
the latest control packet is used. Any newly arrived control
packet at the actuator will update the control signal with
older time stamp (if existing) in the buffer, otherwise, it will
be discarded. At each sampling instant, the control command
in the buffer is read by the zero-order hold (ZOH) circuit and
sent to the motor.

E. Local Controller

The local controller consists of the current regulator and
the flux observer, to implement the inner loop torque control,
which is assumed fast enough in tracking the commands of
the stator currents. Is is reasonable with power electronics are
available today. A sliding mode estimator and a PI controller
are adopted as the flux observer and current regulator,
respectively. The readers can refer to [15] for more details
and the references therein. Using field orientation technique,

the induction motor model is simplified as a DC motor linear
model. The synchronous rotating angle of the rotor flux can
be calculated from the estimated flux:

θ̂e = arctan(ψ̂β r/ψ̂αr). (3)

The stator currents under the synchronous rotating d − q
coordination are obtained by[

ids
iqs

]
=

[
cos(θ̂e) sin(θ̂e)

−sin(θ̂e) cos(θ̂e)

][
iαs
iβ s

]
, (4)

and the rotor fluxes ψ̂qr = 0 and ψ̂dr =
√

ψ̂2
αr + ψ̂2

β r are
satisfied under rotor field orientation. Accordingly, the me-
chanical equation (1e) can be represented as

ω̇ =
Kt

J
iqs−

K f

J
ω− TL

J
, (5)

where Kt = µψ̂dr.

III. NETWORKED CONTROLLER DESIGN

Considering the influence of the QoS variation on the
control performance of the induction motor, fuzzy logic is
adopted in gain adaptation of the networked speed controller.
Furthermore, the state predictor placed in the feedback
channel is employed to minimize the trajectory deviation due
to the time delay.

A. Speed Controller Design

The fuzzy control rules are defined in Table I. KP and
KI are initialized according to the no-delay system and are
tuned online by the fuzzy inference according to the feedback
speed error, such that the control command is updated to
compensate the delay. The updating law of the gains are

K
′
P = KP +∆KP

K
′
I = KI +∆KI

, (6)

where ∆KP and ∆KI are the increment values of KP and KI ,
respectively, while K

′
P and K

′
I are the updated gains.

B. State Predictor Design

The state predictor is based on the feedback data measured
by the speed sensor. τsc and τca are different in nature where
τsc can be known when the controller uses the sensor data
to generate the control signal, provided the sensor message
is time stamped. Therefore, a predictor can be used to
estimate the available plant state in calculating the control
law. However, τsc can not be compensated using the time

TABLE I
FUZZY CONTROL RULE BASE

E P
NB NM NS ZO PS PM PB

I

NS NB
NS NM
ZO NS
ZO ZO
ZO PS
PS PM
PS PB
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Fig. 3. Timing diagram of the signals in NMCS

stamp method in decision making of control laws. The state
predictor is used to compensate τsc, to obtain a more accurate
plant state estimation. It is supposed a separated cooling fan
is used, then K f can be neglected. Therefore, (5) can be
expressed as

ω̇ =
Kt

J
iqs−

TL

J
, (7)

therefore the motor speed can be obtained by

ω(t) = ω(t0)+
Kt

J

∫ t

t0
iqs(s)ds− TL

J
(t− t0). (8)

The timing diagram of the signals in NMCS considering
the state prediction is shown as Fig. 3, where τk denotes
the lumped time delay in the sampling period

[
kh,(k+1)h

]
,

τsc,k denotes the sensor-to-controller delay for the sampled
motor speed ω(kh), τca,k denotes the controller-to-actuator
delay for the control command iqs(kh), and ω̂(kh + τsc,k)
denotes the compensated feedback speed. The compensated
speed signal within

[
kh,(k+1)h

]
can be represented by the

following discretized equation:

ω̂(kh+ τsc,k) = ω(kh)+
(

Kt

J
iqs(kh)− 1

J
TL

)
τsc,k. (9)

IV. STABILITY ANALYSIS

In this section, the influences of the time delay and the
packets dropout on the stability of the NMCS are investi-
gated. The time delay τk is assumed less than the sampling
period h. The packets dropout rate satisfies 0 ≤ r ≤ 1. The
mechanical equation (5) can be written in form of the state
space equation:{ ˙̄x(t) = Ax̄(t)+Bu(t)+E, (10a)

y(t) =Cx̄(t) , (10b)

where x̄(t) = ω(t), u(t) = iqs(t), E =−TL
J , and y(t) = ω(t),

with the coefficients of A =−K f
J , B = Kt

J , and C = 1. Taking
into account that (10a) can be represented as

d
d t

(
x̄+

E
A

)
= A

(
x̄+

E
A

)
+Bu(t), (11)

the closed loop NMCS model can be expressed as{
ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)
, (12)

in stability analysis for convenience.

A. Stability Analysis with Time Delay

The maximum allowed time delay bound for a stable
system is independent of network protocols, denoted as τ̄ .
The Lyapunov-Krasovskii function (LKF) method is used to
calculate τ̄ . For KI is primarily used to eliminate the steady
state error, the networked controller can be treated as a state
feedback controller in stability analysis:

u(t) =−KPx(t− τ). (13)

The closed-loop NMCS model (12) is represented as:

ẋ(t) = Ax(t)+Mx(t− τ) , (14)

with M =−BKP. Several criteria are introduced in analyzing
the stability of NMCS:

Lemma 1: [16] Assume that a(·) ∈ Rna , b(·) ∈ Rnb ,
and W (·) ∈ Rna×nb are defined on the interval Ω. For any
matrices X ∈ Rns×ns , Y ∈ Rns×nb , and Z ∈ Rnb×nb satisfying[

X Y
Y T Z

]
≥ 0, the following inequality holds:

−2
∫

Ω

aT (α)Wb(α)dα

≤
∫

Ω

[
a(α)
b(α)

]T [ X Y −W
Y T−W T Z

] [
a(α)
b(α)

]
dα.

(15)

The Schur complement lemma can be transformed into the
form of Riccati inequality:

Lemma 2: [17] For the given constant matrices A and
Q = QT, if exists matrix variable P > 0 satisfying[

Q A
A T −P−1

]
< 0, (16)

then the following inequality holds:

A PA T +Q < 0. (17)
The following theorem represents the delay-dependent

stability condition of the NMCS:
Theorem 1: If there exist matrices P > 0, Q > 0, and X ,

Y , Z with appropriate dimensions such that Γ PM−Y τ̄AZ
MTPT−Y T −Q τ̄MZ

τ̄ZTAT τ̄ZTMT −τ̄Z

< 0, (18)

and [
X Y

Y T Z

]
≥ 0, (19)

where Γ=ATP+PA+Y +Y T+Q+ τ̄X , then the system (14)
is asymptotically stable for any time delay 0≤ τ ≤ τ̄ .

Using Theorem 1, τ̄ can be obtained via the given net-
worked speed controller gain KP.
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Fig. 4. Data transmission in NMCS with packets dropout

B. Stability Analysis with Packets Dropout

The discrete NMCS model is given as{
x((k+1)h) = Fx(kh)+Gu(kh)

y(kh) =Cx(kh)
, (20)

with F = eAh and G =
∫ h

0 eAtBdt. The discrete networked
controller is

u(kh) =−KPx̂(kh) , (21)

where x̂(kh) ∆
= x(kh− τk).

The stability of the NMCS with packets dropout can
be analyzed according to the criteria in the asynchronous
dynamical system (ADS). Consider an ADS

x(k+1) = fi(x(k)), i = 1,2, . . . ,n. (22)

If existing α ≥ 1 such that

lim
k→∞

α
k‖x(k)‖= 0, (23)

then the ADS (22) is called exponentially stable, and the
upper allowed bound of α is referred to as the decay rate of
the system. Hassibi et. al. proposed the stability condition of
the ADS, which is described as the following theorem [18]:

Theorem 2: If there exist a Lyapunov function V (x(k)) :
Rn→ R+:

β1‖x‖2 ≤V (x)≤ β2‖x‖2, (24)

and scalars α1,α2, . . . ,αn, with corresponding packets drop-
ing rate ri such that

α
r1
1 α

r2
2 · · ·α

rn
n > α > 1, (25)

and
V (x(k+1))−V (x(k))≤ (α−2

i −1)V (x(k)), (26)

then the ADS (22) remains exponentially stable with the
decay rate greater than α .

Fig. 4 illustrates the data transmission in NMCS with
packets dropout in both the forward channel and feedback
channel. The two switches S1 and S2 are used to simulate the
packets dropout at a certain rate r. When the switches Si (i=
1,2) are closed, the packets are transmitted successfully,
otherwise the packets are lost and the output of the switches

are held as the previous value. Therefore the dynamics of
the switches can be modeled as:

S1 : ū(kh) = u(kh) ,

S̄1 : ū(kh) = u((k−1)h) ,

S2 : x̄(kh) = x(kh) ,

S̄2 : x̄(kh) = x((k−1)h) .

(27)

A new vector about the switches is introduced as

S =
[
S̃1 S̃2

]
, (28)

where S̃i can be Si or S̄i, (i = 1,2). Defining a new state
vector in the NMCS as

z(kh) =
[
x(kh) x̄(kh) ū(kh)

]
, (29)

then the NMCS with packets dropout can be modeled as

z((k+1)h) = Θiz(kh) , (30)

with i = 1,2,3,4. Therefore, the inequality (25) can be
rewritten as

α
r
1α

r
2α

1−r
3 α

1−r
4 > α > 1. (31)

Depending on the status of switches, Θi is represented as

1) Θ1 =

F 0 G
0 I 0
0 0 I

, if S =
[
S̄1 S̄2

]
;

2) Θ2 =

F 0 G
F 0 G
0 −KP 0

, if S =
[
S1 S2

]
;

3) Θ3 =

F 0 G
0 I 0
0 −KP 0

, if S =
[
S1 S̄2

]
;

4) Θ4 =

F 0 G
F 0 G
0 0 I

, if S =
[
S̄1 S2

]
.

Choosing the Lyapunov function of NMCS (30) as

V (z) = zTPz, P > 0, (32)

then finding the upper allowed bound of packets dropout r̄
can be formulated as an optimization problem:

Maximize : αr
1αr

2α
1−r
3 α

1−r
4 ,

Subject to : ΘT
1 PΘ1−P≤

(
(α3α4)

−2−1
)

P,

ΘT
2 PΘ2−P≤

(
(α1α2)

−2−1
)

P,

ΘT
3 PΘ3−P≤

(
(α3α2)

−2−1
)

P,

ΘT
4 PΘ4−P≤

(
(α1α4)

−2−1
)

P.

(33)

The inequalities in (33) can be rewritten as bilinear matrix
inequalities (BMI) in finding P and α1,α2,α3,α4. Several
methods such as genetic algorithms [19] can be used in
solving (33). In the case of packets dropout, the control
performance of a NMCS can be improved by reducing the
sampling period.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, the performance of the proposed fuzzy
tuned gain scheduling control method and state predictor are
verified in simulation and experiment.



TABLE II
PARAMETERS OF THE SIMULATED INDUCTION MOTOR

Parameters Values Units
Rr 5.5 Ω

Rs 6.7 Ω

Lr 0.475 H
Ls 0.475 H
M 0.45 H
J 0.015 kgm2

np 2 -

TABLE III
RATED PARAMETERS OF THE EXPERIMENTAL INDUCTION MOTOR

Parameters Values Units
PN 0.287 kW
VN 220/380 V
fN 50 Hz
IN 2.69/1.55 A
nN 1400 rpm

A. Simulation Results

Simulations of the NMCS are carried out on the Mat-
lab/Simulink platform using the Truetime toolbox. The net-
work protocol is selected as CSMA/AMP (CAN), with the
data rate of 105 bits/s, and the minimum frame size of
64 bits. The parameters of the induction motor is shown in
Table II, and the reference speed and reference rotor flux are
selected as ω∗ = 100 rad/s and ψ∗dr = 1 Wb, respectively. It
is supposed that τsc = τca = τ/2.

Substituting KP0 into Theorem 1, τ̄ = 0.04 s is obtained
using the functions in Matlab linear matrix inequalities (LMI)
toolbox. The sampling period is selected as h = 0.01 s, and
the corresponding r̄ is obtained as 84.6% via Theorem 2.

The performance of the networked speed controller at
time-varying τ is depicted in Fig. 5. As a comparison, the
control performance of using the traditional PI controller and
the memoryless state feedback controller (P controller) are
both given. The simulation results illustrate that the fuzzy
PI controller behaves better than the other two methods.
The P controller holds the slowest transient performance and
largest steady state error, for the least feedback information
has used. The PI controller improves the steady state error,
but the transient performance is still far from acceptable,
because of the initial values of KP and KI are set manually.
The proposed fuzzy PI controller has the best transient
performance, due to KP and KI are tuned online, to adapt
variations on the network QoS.

The state predictor behaves as an important part in im-
proving the feedback information. Its performance at con-
stant delay and time-varying delay are evaluated in Fig.
6. The performance of the networked controller without
state predictor and without time delay are also plotted. It
is clear that the NMCS has the best tracking performance
under ideal network circumstance. The controller with state
predictor holds better tracking performance than that without
state predictor under both of the two test conditions, for the
feedback delay τsc is compensated by the state predictor.

The control performance of the NMCS with packets

dropout is shown in Fig. 7, while the packets dropout rate is
set as r = 30%. Using the conclusion in stability analysis with
packets dropout, the control performance can be improved
by reducing the sampling period. Therefore, by resetting the
sampling period as h = 0.007 s and h = 0.002 s, respectively,
the corresponding speed curves illustrate that the NMCS
performance is significantly improved.
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Fig. 5. Control performance evaluation with 5 ms≤ τ ≤ 20 ms
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B. Experimental Results

To verify the proposed control strategy, a NMCS experi-
ment platform is built, whose structure is shown as Fig. 8.
The local control system consists of the local control module,
drive module, induction motor, and encoder; the networked
control module behaves as the networked speed controller.
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Fig. 10. Experimental results using different networked controllers

The communication module is employed to transform the
signals between the two spatially distributed parts with
different communication protocols. The signals transmission
between the networked control module and the communica-
tion module is fulfilled by the fiber with high rate. The CAN
cable is used in data transmission between the local control
system and the communication module, which is widely used
in modern industrial applications. It is supposed that no load
on the motor. The real NMCS experiment platform is shown
in Fig. 9, and the rated parameters of the induction motor is
listed in Table III. The experimental results are illustrated in
Fig. 10, which show that the proposed control method hold
faster response than the conventional PI control.

VI. CONCLUSIONS

This paper extends the application areas of NMCSs into
nonlinear induction motors field. A hierarchical modeling
approach is proposed, such that the simplified linearized
induction motor model can be adopted in NMCSs. The fuzzy
gain scheduling of the networked speed controller enables
flexibility against the QoS variation in the network. A state

predictor is designed in the feedback channel. Simulation and
experimental results showed the effectiveness of the proposed
approach. There are several aspects to be investigated in the
future: (1) more reasonable modeling and control methods
in applications; (2) networked position control of induction
motors; and (3) rational ways in selecting controller gains.
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