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Non-Fragile H∞ Control with Randomly

Occurring Gain Variations, Distributed

Delays and Channel Fadings
Zhen’na Li, Zidong Wang, Derui Ding and Huisheng Shu

Abstract

This paper is concerned with the non-fragile H∞ control problem for a class of discrete-time systems subject to

randomly occurring gain variations (ROGVs), channel fadings and infinite-distributed delays. A new stochastic phe-

nomenon (ROGVs), which is governed by a sequence of random variables with a certain probabilistic distribution, is put

forward to better reflect the reality of the randomly occurring fluctuation of controller gains implemented in networked

environments. A modified stochastic Rice fading model is then exploited to account for both channel fadings and random

time-delays in a unified representation. The channel coefficients are a set of mutually independent random variables

which abide by any (not necessarily Gaussian) probability density function on [0, 1]. Attention is focused on the analysis

and design of a non-fragile H∞ output-feedback controller such that the closed-loop control system is stochastically

stable with a prescribed H∞ performance. Through intensive stochastic analysis, sufficient conditions are established

for the desired stochastic stability and H∞ disturbance attenuation, and the addressed non-fragile control problem is

then recast as a convex optimization problem solvable via the semi-definite programme method. An example is finally

provided to demonstrate the effectiveness of the proposed design method.
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I. Introduction

In recent years, the study of networked control systems (NCSs) has gradually become an active research

area due to the advantages of using networked media in many aspects such as the ease of maintenance

and installation, the large flexibility and the low cost. It is well known that the devices in networks are

mutually connected via communication cables which are of limited capacity. Therefore, some network-induced

phenomena have inevitably emerged in the areas of signal processing and control engineering, of which the

most popular one is the communication delays that have attracted a great deal of research effort for the

control/filtering problems of NCSs, see e.g. [1–11]. Among various types of time-delays, the distributed delays

have recently drawn a growing research interest because of its engineering significance [4, 12,13], where most

corresponding results have been concerned with continuous-time systems with continuously distributed delays

described by either a finite or infinite integral. Nevertheless, the distributed delays in the discrete-time setting
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have not gained adequate research attention yet despite the fact that current digitalized control systems are

inherently discrete-time ones, see [14–16] and the references therein. As such, it makes practical sense to focus

more attention on the discrete-time NCSs with infinite-distributed delays.

In addition to the communication time-delays, some other network-induced phenomena inevitably emerge

in the areas of control engineering and signal processing due to the limited bandwidth of the communication

channels with examples including data missing [17–20], quantization [14,21] and randomly occurring nonlin-

earities [22, 23]. There is, however, yet another special phenomenon typically induced by wireless networks

that has been largely overlooked in the NCS community. Such a phenomenon is commonly known as channel

fadings which have a great impact on the wireless channels and therefore constitute one of the most predom-

inant features of wireless communication networks [24]. Generally speaking, two major causes for the fading

effects are the multi-path propagation and the shadowing from obstacles. The channel fading phenomenon

is widely regarded as a kind of channel unreliability described by a random process reflecting the random

changes of phase and amplitude of the transmitted signal [1, 25]. With measurements transmitted through

fading channels in a NCS, the overall system performance could deteriorate drastically and, accordingly, it

becomes necessary to investigate how the effects from the channel fadings upon the dynamic behaviors of the

NCSs can be attenuated. Very recently, some pioneering work has been done on the linear quadratic Gaussian

(LQG) control [26] and the Kalman filtering problems [27, 28], and there is still plenty of room for further

investigation, say, on the combinational influences from both the distributed delays and the fading channels.

Traditionally, most available controller design approaches rely on the implicit assumption that the designed

controller can be accurately implemented [29]. Such an assumption, however, is not always true in reality as the

controllers do have a certain degree of imprecisions due to 1) the finite word length in any digital system; and

2) the need for additional tuning of parameters in the final controller implementation. It has been revealed in

[29] that a comparatively tiny perturbation in controllers may lead to undesirable oscillatory behavior or even

instability, and it is desirable to ensure the insensitivity of the controller to certain parameter perturbations.

In the past two decades, considerable research attention has been paid to the non-fragile controllers capable

of tolerating some level of controller parameter gain variations because of their clear engineering insights in

many practical applications (see, e.g. [29–37]). For example, in [30], a non-fragile control strategy has been

presented for the output tracking control problem of the longitudinal dynamics of flexible hypersonic air-

breathing vehicles (HAVs) model. Moreover, in engineering applications, the prevalence of modern NCSs have

resulted in the random nature of the occurrence of the controller gain variations mainly for two reasons: 1) the

controller parameters may be randomly varied during transmission or implementation due to network-induced

problems such as truncations, saturations, quantizations, disorders or distortions; and 2) certain parameters

in the control devices may experience random yet abrupt changes due to unpredictable circumstances such

as random network load variations. As such, it is interesting to examine how the randomly occurring gain

variations (ROGVs) impact on the overall system performance, where the gain variations of the controller

occur probabilistically with certain types and intensity. Note that a similar concept has been proposed in

[38] for the synchronization problem. Nevertheless, there is a lack of systematic investigation on the design

problem of NCSs with particular emphasis on ROGVs, not to mention the case when both distributed delays

and fading channels are also the concerns.

Motivated by the above discussion, in this paper, we consider the non-fragile output feedback H∞ control

problem for discrete-time stochastic systems involving ROGVs, channel fadings and infinitely distributed time-

delays. The main contributions of this paper can be highlighted as follows. 1) In the context of output feedback
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H∞ control, the phenomenon of ROGVs is considered that is governed by a sequence of random variables with

a known conditional probability. 2) A modified Rice fading model, whose coefficients are mutually independent

stochastic variables with the probability density function on the interval [0, 1], is employed to describe the

wireless communication networks. 3) This paper represents one of the first few attempts to cope with the

non-fragile H∞ control problem, within a unified framework, for discrete-time stochastic systems subject to

simultaneous presence of ROGVs, channel fadings and distributed time-delays.

The rest of this paper is organized as follows. In Section II, a class of discrete-time stochastic systems

with ROGVs, channel fadings and infinite-distributed delays are presented. In Section III, some sufficient

conditions are established to guarantee the stability and the H∞ performance of the closed-loop control

system. In Section IV, an example is presented to demonstrate the effectiveness of the results obtained.

Finally, conclusions are drawn in Section V.

Notation The notation used here is fairly standard except where otherwise stated. Rn and R
n×m denote,

respectively, the n dimensional Euclidean space and the set of all n×m real matrices. The set of all non-positive

integers is denoted by Z
−. l2([0,∞);Rn) is the space of square-summable n-dimensional vector functions over

[0,∞). I denotes the identity matrix of compatible dimension. The notation X ≥ Y (respectively, X > Y )

where X and Y are symmetric matrices, means that X − Y is positive semi-definite (respectively, positive

definite). MT represents the transpose of M . E{x} stands for the expectation of stochastic variable x. ||x||

describes the Euclidean norm of a vector x. The shorthand diag{M1,M2, · · · ,Mn} denotes a block diagonal

matrix with diagonal blocks being the matrices M1, ...,Mn. The symbol ⊗ denotes the Kronecker product.

In symmetric block matrices, the symbol ∗ is used as an ellipsis for terms induced by symmetry. B⊥ denotes

an orthogonal basis for the null space of BT .

II. Problem Formulation and Preliminaries

Consider the following class of discrete time-delay systems:







































xk+1 = Axk +Ad

∞
∑

d=1

µdxk−d +Buk +Dvk

yk = Cxk + Evk

zk = Lxk

xk = φk, ∀k ∈ Z
−

(1)

where xk ∈ R
nx, yk ∈ R

ny , zk ∈ R
nz and uk ∈ R

nu are the state vector, the transmitted measurement output

(without fading), the controlled output vector and the input vector, respectively. vk ∈ l2([0,∞);Rq) is the

exogenous disturbance signal. φk (∀ k ∈ Z
−) is an initial sequence. A, Ad, B, C, D, E and L are known real-

valued matrices with appropriate dimensions. The constants µd ≥ 0 (d = 1, 2, · · · ,∞) satisfy the following

convergence condition:

µ̄d :=

∞
∑

d=1

µd ≤
∞
∑

d=1

dµd < +∞ (2)

and the term
∞
∑

d=1

µdxk−d represents the so-called infinitely distributed delays in the discrete-time setting.

Remark 1: Distributed time delays have been widely recognized and intensively studied for continuous-time

systems [12,13]. However, the corresponding results for discrete-time systems have been very few due mainly

to the difficulty in formulating the distributed delays in a discrete-time domain. The delay term
∑∞

d=1 µdxk−d
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in (1) is the the so-called infinitely distributed delay in the discrete-time setting, which was first proposed in

[16] and can be regarded as the counterpart of the infinite integral form
∫ t

−∞
kt−sxsds for the continuous-time

system. Note that the constants µd (d = 1, 2, · · · ) are assumed to satisfy the convergence condition (2) so as to

make sure that the terms of the distributed time delays (i.e.
∑∞

d=1 µdxk−d) as well as the Lyapunov-Krasovskii

functional to be constructed later are convergent.

In a networked environment, it is quite common that the measurements yk are affected by channel fadings

during the signal transmission. According to Lth-order Rice fading model in [24], the received signal ỹk is

expressed by

ỹk =

ℓ
∑

s=0

βs
kyk−s + Eyξk (3)

where ℓ is a given positive scalar and βs
k (s = 0, 1, · · · , ℓ) are the channel coefficients which are mutually

independent. Furthermore, βs
k have the probability density function on the interval [0, 1] with mathematical

expectation β̄s and variance (β̃s)
2. ξk ∈ l2([0,∞);Rny ) is an external disturbance and Ey is a known real-valued

matrix with appropriate dimension.

Remark 2: The research on the phenomenon of channel fadings has started to gain a momentum for its

theoretical and practical significance in the area of signal processing. Traditionally, the channel coefficients in

the Lth-order Rice fading model are assumed to be independent and identically distributed Gaussian random

variables. In this paper, such an assumption has been relaxed to allow the coefficients in model (3) to be

random variables obeying any probabilistic distribution on the interval [0, 1]. Note that the stochastic Rice

fading model (3) could simultaneously characterize the phenomena of channel fadings and random time-delays.

The traditional output feedback controller is uk = Kỹk, where K ∈ R
nu×ny is the controller gain to

be designed. In this paper, as discussed in the introduction, the practical controller within a networked

environment is sometimes subject to randomly occurring gain variation. In such a case, the actual controller

can be described by:

uk = (K + αk∆K)ỹk, (4)

where the stochastic variable αk has the expectation ᾱ and variance α̃2 and is uncorrelated with βs
k (s =

0, 1, · · · ℓ). ∆K quantifies the controller gain variation satisfying the following norm-bounded multiplicative

form [39]:

∆K = KHmFmEm (5)

where Hm and Em are known matrices with appropriate dimension and Fm is an unknown matrix satisfying

F T
mFm ≤ I.

Remark 3: In real-world systems, the controller gain variations are inevitable due to the actuator degrada-

tions and the requirements for re-adjustment of controller gains during the controller implementation process

[34]. The models of such uncertain gain variations can be classified into two types: the additive uncertain-

ties proposed by Keel et al. [29] and the multiplicative uncertainties with the form of (5). In addition, for

networked systems, the actual values of the component parameters in control devices may experience random

yet abrupt changes due mainly to the random fluctuations of the network loads with impact on the controller

parameter implementation. In (4), the random variable αk is exploited to govern the probabilistic appearance

of such a controller gain variation.
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Denote β̃s
k := βs

k − β̄s, α̃k := αk − ᾱ, and ζk := [vTk ξTk ]
T with {ζk}k∈[−ℓ, −1] = 0. Applying the controller

(4) with both (5) and (3) to the system (1), we obtain the closed-loop system as follows:



































































































xk+1 = (A+ β̄0BkC)xk +

ℓ
∑

s=1

β̄sBkCxk−s +Ad

∞
∑

d=1

µdxk−d +

ℓ
∑

s=0

β̃s
kBkCxk−s

+

ℓ
∑

s=0

β̄sBkEĨ1ζk−s +

ℓ
∑

s=0

β̃s
kBkEĨ1ζk−s + (Bk Ĩ2 +DĨ1)ζk + α̃kβ̄0B̃kCxk

+ α̃kβ̃
0
kB̃kCxk + α̃k

ℓ
∑

s=1

β̄sB̃kCxk−s + α̃k

ℓ
∑

s=1

β̃s
kB̃kCxk−s

+ α̃k

ℓ
∑

s=0

β̄sB̃kEĨ1ζk−s + α̃k

ℓ
∑

s=0

β̃s
kB̃kEĨ1ζk−s + α̃kB̃k Ĩ2ζk,

zk = Lxk,

xk = φk, ∀ k ∈ Z
−,

(6)

where Bk := B(K + ᾱ∆K), B̃k := B∆K, Ĩ1 := [I 0] and Ĩ2 := [0 Ey].

The objective of this paper is to design a non-fragile H∞ controller (4) for the discrete-time systems (1)

with both channel fadings (3) and infinitely distributed delays. More specifically, we are interested in looking

for the parameter K such that the following requirements are met simultaneously:

a) for ζk = 0, the closed-loop system (6) is stochastically stable;

b) under the zero-initial condition, for a given disturbance attenuation level γ > 0 and all nonzero ζk, the

output zk satisfies
∞
∑

k=0

E{||zk||
2} ≤ γ2

∞
∑

k=0

||ζk||
2. (7)

III. Main Results

In this section, by resorting to the Lyapunov functional method and the stochastic analysis technique,

sufficient conditions are provided to guarantee the stability and the H∞ performance for the closed-loop

systems (6).

Before proceeding, we introduce the following lemmas that will be used in deriving our main results.

Lemma 1: (Liu et al. [16]) Let M ∈ R
nx×nx be a positive semidefinite matrix, xi ∈ R

nx, and constants

ai > 0 (i = 1, 2, · · · ). If the series {ai}i≥1 is convergent, then we have

(

∞
∑

i=1

aixi

)T

M
(

∞
∑

i=1

aixi

)

≤
(

∞
∑

i=1

ai

)

∞
∑

i=1

aix
T
i Mxi.

Lemma 2: (Boyd et al. [40]) Let M = MT , U and W be real matrices of appropriate dimensions with V

satisfying V TV ≤ I, then

M + UVW +W TV TUT < 0.

if and only if there exists a positive scalar ε such that

M + εUUT + ε−1W TW < 0
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or, equivalently,

Π =







M εU W T

εUT −εI 0

W 0 −εI






< 0.

First of all, we provide the following analysis result which serves as a theoretical basis for the subsequent

design issue.

Theorem 1: Consider the discrete-time system (1) subject to infinite-distributed delays, channel fadings

and ROGVs. Let the prescribed H∞ performance index γ > 0 and the controller parameter K be given.

The closed-loop system (9) is stochastically stable while achieving the performance constraint (7) if there

exist symmetric positive definite matrices P , Ri (i = 1, 2, · · · , ℓ) and Q satisfying the following linear matrix

inequality:

Π =













Π11 Π12 Π13 Π14

∗ Π22 Π23 Π24

∗ ∗ Π33 Π34

∗ ∗ ∗ Π44













< 0 (8)

where

Λ1 = [β̄1I, β̄2I, · · · , β̄lI], Λ0 = [β̄0I, β̄1I, · · · , β̄lI],

I1v = diag{β̃2
1 , β̃

2
2 , · · · , β̃

2
l }, I0v = diag{β̃2

0 , β̃
2
1 , · · · , β̃

2
l },

Π11 = (A+ β̄0BkC)TP (A+ β̄0BkC) + β̃2
0C

TBT
k PBkC

+ (α̃2β̃2
0 + α̃2β̄2

0)C
T B̃T

k PB̃kC +
∑ℓ

j=1
Rj − P + µ̄Q+ LTL,

Π12 = (A+ β̄0BkC)TPBkCΛ1 + α̃2β̄0C
T B̃T

k PB̃kCΛ1, Π13 = (A+ β̄0BkC)TPAd,

Π14 = (A+ β̄0BkC)TP (BkEĨ1Λ0 +Bk Ĩ2ID +DĨ1ID) + β̃2
0C

TBT
k PBkEĨ1ID

+ α̃2β̄0C
T B̃T

k PB̃kEĨ1Λ0 + α̃2β̄0C
T B̃T

k PB̃kĨ2ID + α̃2β̃2
0C

T B̃T
k PB̃kEĨ1ID,

Π22 = ΛT
1 C

TBT
k PBkCΛ1 + I1v ⊗ (CTBT

k PBkC) + α̃2ΛT
1 C

T B̃T
k PB̃kCΛ1

+ α̃2
(

I1v ⊗ (CT B̃T
k PB̃kC)

)

− diag{R1, R2, · · · , Rℓ},

Π23 = ΛT
1 C

TBT
k PAd, Π33 = AT

d PAd − µ̄−1Q, ID = [I 0....0],

Π24 = ΛT
1 C

TBT
k P (BkEĨ1Λ0 +Bk Ĩ2ID +DĨ1ID) +

[

0 I1v ⊗ (CTBT
k PBkEĨ1)

]

+ α̃2ΛT
1 C

T B̃T
k P (B̃kEĨ1Λ0 + B̃kĨ2ID) + α̃2

[

0 I1v ⊗ (CT B̃T
k PB̃kEĨ1)

]

,

Π34 = AT
d P (BkEĨ1Λ0 +Bk Ĩ2ID +DĨ1ID),

Π44 = (BkEĨ1Λ0 +Bk Ĩ2ID +DĨ1ID)
TP (BkEĨ1Λ0 +Bk Ĩ2ID +DĨ1ID)

+ I0v ⊗ (ĨT1 E
TBT

k PBkEĨ1) + α̃2
(

I0v ⊗ (ĨT1 E
T B̃T

k PB̃kEĨ1)
)

+ α̃2(B̃kEĨ1Λ0 + B̃k Ĩ2ID)
TP (B̃kEĨ1Λ0 + B̃kĨ2ID)−

γ2

ℓ+ 1
I.

Proof: For notational simplicity, we denote the following variables:

x∗k := [xTk−1 xTk−2 · · · xTk−ℓ]
T , ζ∗k := [ζTk ζTk−1 ζTk−2 · · · ζTk−ℓ]

T ,

χxd :=
∑∞

d=1
µdxk−d, x̃k =

[

xTk x∗Tk χT
xd

]T
, η̃k :=

[

xTk x∗Tk χT
xd ζ∗Tk

]T
.
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Then, define the following Lyapunov-Krasovskii functional candidate:

Vk := V1,k + V2,k + V3,k, (9)

where

V1,k = xTk Pxk, V2,k =
ℓ

∑

j=1

k−1
∑

i=k−j

xTi Rjxi, V3,k =
∞
∑

d=1

µd

k−1
∑

τ=k−d

xTτ Qxτ . (10)

Calculating the difference of V1,k along the trajectory of system (6) and taking the mathematical expectation,
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we have

E{∆V1,k} := E{V1,k+1 − V1,k}

= E

{

xTk (A+ β̄0BkC)TP (A+ β̄0BkC)xk + 2xTk (A+ β̄0BkC)TP
(

ℓ
∑

s=1

β̄sBkCxk−s

)

+ 2xTk (A+ β̄0BkC)TP
(

Ad

∞
∑

d=1

µdxk−d

)

+ 2xTk (A+ β̄0BkC)TP
(

ℓ
∑

s=0

β̄sBkEĨ1ζk−s

)

+ 2xTk (A+ β̄0BkC)TP (Bk Ĩ2 +DĨ1)ζk +
(

ℓ
∑

s=1

β̄sBkCxk−s

)T

P
(

ℓ
∑

s=1

β̄sBkCxk−s

)

+ 2
(

ℓ
∑

s=1

β̄sBkCxk−s

)T

P
(

Ad

∞
∑

d=1

µdxk−d

)

+ 2
(

ℓ
∑

s=1

β̄sBkCxk−s

)T

P
(

ℓ
∑

s=0

β̄sBkEĨ1ζk−s

)

+ 2
(

ℓ
∑

s=1

β̄sBkCxk−s

)T

P (Bk Ĩ2 +DĨ1)ζk +
(

Ad

∞
∑

d=1

µdxk−d

)T

P
(

Ad

∞
∑

d=1

µdxk−d

)

+ 2
(

Ad

∞
∑

d=1

µdxk−d

)T

P
(

ℓ
∑

s=0

β̄sBkEĨ1ζk−s

)

+ 2
(

Ad

∞
∑

d=1

µdxk−d

)T

P (Bk Ĩ2 +DĨ1)ζk

+
ℓ

∑

s=0

β̃2
sx

T
k−s

(

BkC
)T

PBkCxk−s + 2
ℓ

∑

s=0

β̃2
sx

T
k−s

(

BkC
)T

PBkEĨ1ζk−s

+
(

ℓ
∑

s=0

β̄sBkEĨ1ζk−s

)T

P
(

ℓ
∑

s=0

β̄sBkEĨ1ζk−s

)

+ 2
(

ℓ
∑

s=0

β̄sBkEĨ1ζk−s

)T

P (Bk Ĩ2 +DĨ1)ζk

+
ℓ

∑

s=0

β̃2
sζ

T
k−s

(

BkEĨ1
)T

PBkEĨ1ζk−s + ζTk (Bk Ĩ2 +DĨ1)
TP (Bk Ĩ2 +DĨ1)ζk

+ xTk α̃
2(β̄0B̃kC)TP (β̄0B̃kC)xk + 2α̃2xTk (β̄0B̃kC)TP

(

ℓ
∑

s=1

β̄sB̃kCxk−s

)

+ 2α̃2xTk (β̄0B̃kC)TP
(

ℓ
∑

s=0

β̄sB̃kEĨ1

)

ζk−s + 2α̃2xTk (β̄0B̃kC)TPB̃k Ĩ2ζk

+ xTk α̃
2β̃2

0(B̃kC)TPB̃kCxk + 2α̃2β̃2
0x

T
k (B̃kC)TPB̃kEĨ1ζk

+ α̃2
(

ℓ
∑

s=1

β̄sB̃kCxk−s

)T

P
(

ℓ
∑

s=1

β̄sB̃kCxk−s

)

+ 2α̃2
(

ℓ
∑

s=1

β̄sB̃kCxk−s

)T

P
(

ℓ
∑

s=0

β̄sB̃kEĨ1ζk−s

)

+ 2α̃2
ℓ

∑

s=1

β̄sx
T
k−s

(

B̃kC
)T

PB̃k Ĩ2ζk + α̃2
ℓ

∑

s=1

β̃2
sx

T
k−s

(

B̃kC
)T

PB̃kCxk−s

+ 2α̃2
ℓ

∑

s=1

β̃2
sx

T
k−s

(

B̃kC
)T

PB̃kEĨ1ζk−s + α̃2
(

ℓ
∑

s=0

β̄sB̃kEĨ1ζk−s

)T

× P
(

ℓ
∑

s=0

β̄sB̃kEĨ1ζk−s

)

+ 2α̃2
(

ℓ
∑

s=0

β̄sB̃kEĨ1ζk−s

)T

P (B̃k Ĩ2)ζk

+ α̃2
ℓ

∑

s=0

β̃2
sζ

T
k−s

(

B̃kEĨ1
)T

PB̃kEĨ1ζk−s + ζTk α̃
2(B̃k Ĩ2)

TP (B̃k Ĩ2)ζk − xTk Pxk

}

.

(11)
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By using the Kronecker product operation, it follows from (11) that

E{∆V1,k} = E

{

xTk (A+ β̄0BkC)TP (A+ β̄0BkC)xk + 2xTk (A+ β̄0BkC)TPBkCΛ1x
∗
k

+ 2xTk (A+ β̄0BkC)TPAdχxd + 2xTk (A+ β̄0BkC)TPB̄kζ
∗
k + x∗Tk ΛT

1 C
TBT

k PBkCΛ1x
∗
k

+ 2x∗Tk ΛT
1 C

TBT
k PB̄kζ

∗
k + 2x∗Tk ΛT

1 C
TBT

k PAdχxd + χT
xdA

T
d PAdχxd + 2χT

xdA
T
d PB̄kζ

∗
k

+ ζ∗Tk B̄T
k PB̄kζ

∗
k + β̃2

0x
T
kC

TBT
k PBkCxk + 2β̃2

0x
T
kC

TBT
k PBkEĨ1IDζ

∗
k + x∗Tk C̃1x

∗
k

+ 2x∗Tk C̃2ζ
∗
k + ζ∗Tk Ẽ1ζ

∗
k + (α̃β̄0)

2xTkC
T B̃T

k PB̃kCxk + 2α̃2β̄0x
T
kC

T B̃T
k PB̃kCΛ1x

∗
k

+ 2α̃2β̄0x
T
kC

T B̃T
k PB̃kEĨ1Λ0ζ

∗
k + 2α̃2β̄0x

T
kC

T B̃T
k PB̃k Ĩ2IDζ

∗
k + α̃2β̃2

0x
T
kC

T B̃T
k PB̃kCxk

+ 2α̃2β̃2
0x

T
kC

T B̃T
k PB̃kEĨ1IDζ

∗
k + α̃2x∗Tk ΛT

1 C
T B̃T

k PB̃kCΛ1x
∗
k + 2α̃2x∗Tk ΛT

1 C
T B̃T

k PB̃kEĨ1Λ0ζ
∗
k

+ α̃2ζ∗Tk ΛT
0 Ĩ

T
1 E

T B̃T
k PB̃kEĨ1Λ0ζ

∗
k + 2α̃2x∗Tk ΛT

1 C
T B̃T

k PB̃k Ĩ2IDζ
∗
k + α̃2ζ∗Tk ITD Ĩ

T
2 B̃

T
k PB̃k Ĩ2IDζ

∗
k

+ 2α̃2ζ∗Tk ΛT
0 Ĩ

T
1 E

T B̃T
k PB̃kĨ2IDζ

∗
k + α̃2x∗Tk C̃3x

∗
k + 2α̃2x∗Tk C̃4ζ

∗
k + α̃2ζ∗Tk Ẽ2ζ

∗
k − xTk Pxk

}

.

(12)

where

B̄k = BkEĨ1Λ0 +BkĨ2ID +DĨ1ID, C̃1 = I1v ⊗ (CTBT
k PBkC),

C̃2 =
[

0 I1v ⊗ (CTBT
k PBkEĨ1)

]

, Ẽ1 = I0v ⊗ (ĨT1 E
TBT

k PBkEĨ1),

C̃3 = I1v ⊗ (CT B̃T
k PB̃kC), C̃4 =

[

0 I1v ⊗ (CT B̃T
k PB̃kEĨ1)

]

,

Ẽ2 = I0v ⊗ (ĨT1 E
T B̃T

k PB̃kEĨ1)

Next, it can be derived that

E{∆V2,k} := E{V2,k+1 − V2,k} =

ℓ
∑

j=1

E

{

xTkRjxk − xTk−jRjxk−j

}

= E

{

∑ℓ

j=1
xTkRjxk − x∗Tk diag{R1, R2, · · · , Rℓ}x

∗
k

}

(13)

and

E{∆V3,k} := E{V3,k+1 − V3,k}

= E

{

∞
∑

d=1

µd

k
∑

τ=k+1−d

xTτ Qxτ −
∞
∑

d=1

µd

k−1
∑

τ=k−d

xTτ Qxτ

}

= E

{

µ̄xTkQxk −
∞
∑

d=1

µdx
T
k−dQxk−d

}

.

(14)

From Lemma 1, it can be easily seen that

−
∞
∑

d=1

µdx
T
k−dQxk−d ≤ −

1

µ̄

(

∞
∑

d=1

µdxk−d

)T

Q
∞
∑

d=1

µdxk−d = −µ̄−1χT
xdQχxd (15)

where µ̄ is defined in (2).

Substituting (15) into (14) results in

E{∆V3k} ≤ E

{

µ̄xTkQxk − µ̄−1χT
xdQχxd

}

. (16)
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Obviously, for ζ∗k = 0, the combination of (12), (13) and (16) shows that

E{∆Vk|ζ
∗
k = 0} = E{Vk+1|ζ

∗
k = 0} − E{Vk|ζ

∗
k = 0}

:= E{∆V1,k|ζ
∗
k = 0}+ E{∆V2,k|ζ

∗
k = 0}+ E{∆V3,k|ζ

∗
k = 0}

≤ E

{

xTk (A+ β̄0BkC)TP (A+ β̄0BkC)xk + 2xTk (A+ β̄0BkC)TPBkCΛ1x
∗
k

+ 2xTk (A+ β̄0BkC)TPAdχxd + x∗Tk ΛT
1 C

TBT
k PBkCΛ1x

∗
k + χT

xdA
T
d PAdχxd

+ 2x∗Tk ΛT
1 C

TBT
k PAdχxd + β̃2

0x
T
kC

TBT
k PBkCxk + x∗Tk C̃1x

∗
k

+ (α̃β̄0)
2xTkC

T B̃T
k PB̃kCxk + 2α̃2β̄0x

T
kC

T B̃T
k PB̃kCΛ1x

∗
k + α̃2β̃2

0x
T
kC

T B̃T
k PB̃kCxk

+ α̃2x∗Tk ΛT
1 C

T B̃T
k PB̃kCΛ1x

∗
k + α̃2x∗Tk C̃3x

∗
k +

∑ℓ

j=1
xTkRjxk

− x∗Tk diag{R1, R2, · · · , Rℓ}x
∗
k + µ̄xTkQxk − µ̄−1χT

xdQχxd − xTk Pxk

}

= E{x̃Tk Π̃x̃k}

(17)

where

Π̃ =







Π̃11 Π12 Π13

∗ Π22 Π23

∗ ∗ Π33






(18)

with

Π̃11 = (A+ β̄0BkC)TP (A+ β̄0BkC) + β̃2
0C

TBT
k PBkC

+ (α̃β̄0)
2CT B̃T

k PB̃kC + α̃2β̃2
0C

T B̃T
k PB̃kC +

∑ℓ

j=1
Rj − P + µ̄Q.

According to the Schur Complement Lemma, it follows from (8) that Π̃ < 0 holds. Therefore, the system (6)

is stochastically stable.

Let us now move to the analysis of the H∞ performance for the system (6). For this purpose, we establish

a cost function

J (n) :=

n
∑

k=0

E{||zk||
2} − γ2

n
∑

k=0

||ζk||
2. (19)

In terms of (12), (13), (16) and (17), we obtain

E{∆Vk}

≤ E

{

x̃Tk Π̃x̃k + 2xTk (A+ β̄0BkC)TPB̄kζ
∗
k + 2x∗Tk ΛT

1 C
TBT

k PB̄kζ
∗
k

+ 2χT
xdA

T
d PB̄kζ

∗
k + 2β̃2

0x
T
kC

TBT
k PBkEĨ1IDζ

∗
k + ζ∗Tk B̄T

k PB̄kζ
∗
k

+ 2x∗Tk C̃2ζ
∗
k + ζ∗Tk Ẽ1ζ

∗
k + 2α̃2β̄0x

T
kC

T B̃T
k PB̃kEĨ1Λ0ζ

∗
k

+ 2α̃2β̄0x
T
kC

T B̃T
k PB̃k Ĩ2IDζ

∗
k + 2α̃2β̃2

0x
T
kC

T B̃T
k PB̃kEĨ1IDζ

∗
k

+ 2α̃2x∗Tk ΛT
1 C

T B̃T
k PB̃kEĨ1Λ0ζ

∗
k + 2α̃2x∗Tk ΛT

1 C
T B̃T

k PB̃k Ĩ2IDζ
∗
k

+ 2α̃2x∗Tk C̃4ζ
∗
k + α̃2ζ∗Tk ΛT

0 Ĩ
T
1 E

T B̃T
k PB̃kEĨ1Λ0ζ

∗
k + α̃2ζ∗Tk Ẽ2ζ

∗
k

+ 2α̃2ζ∗Tk ΛT
0 Ĩ

T
1 E

T B̃T
k PB̃k Ĩ2IDζ

∗
k + α̃2ζ∗Tk ITDĨ

T
2 B̃

T
k PB̃k Ĩ2IDζ

∗
k

}

.

(20)
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Under the zero-initial condition and the hypothesis of {ζk}k∈[−ℓ, −1] = 0, it can be shown from (8) that

J (n) =

n
∑

k=0

E||zk||
2 −

γ2

ℓ+ 1

n
∑

k=0

ℓ
∑

s=0

||ζk−s||
2

+ γ2
n
∑

k=0

{ 1

ℓ+ 1

ℓ
∑

s=0

||ζk−s||
2 − ||ζk||

2
}

≤
n
∑

k=0

E||zk||
2 −

γ2

ℓ+ 1

n
∑

k=0

ℓ
∑

s=0

||ζk−s||
2

≤
n
∑

k=0

E

{

||zk||
2 −

γ2

ℓ+ 1

ℓ
∑

s=0

||ζk−s||
2 +∆V (k)

}

− EV (n+ 1)

≤
n
∑

k=0

E

{

η̃Tk Πη̃k

}

< 0.

(21)

Letting n → ∞, it follows immediately from the above inequality that

∞
∑

k=0

E{||zk||
2} ≤ γ2

∞
∑

k=0

||ζk||
2,

which completes the proof.

Next, in terms of the obtained results of Theorem 1, we aim at designing a controller in the form of

(4), i.e., we are interested in determining the controller parameters such that the closed-loop system in (6) is

stochastically stable with a guaranteed H∞ performance. The following theorem provides sufficient conditions

for the existence of such non-fragile H∞ controller for system (6).

Theorem 2: Consider the discrete-time system (1) with non-fragile controller, infinite-distributed delays as

well as channel fadings. For the given prescribed H∞ performance index γ > 0, the close-loop system (6) is

stochastically stable while achieving the performance constraint (7) if there exist symmetric positive definite

matrices P , Ri (i = 1, 2, · · · , ℓ) and Q, four matrices Ψ1, Ψ2, Ψ3 and K̄, and a positive constant scalar ε

satisfying

Υ =













Γ ∗ ∗ ∗

Υ21 Υ22 ∗ ∗

0 ΥT
32 −εI ∗

εN 0 0 −εI













< 0 (22)
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where

Î1v = diag
{

β̃1, β̃2, · · · , β̃l
}

, Î0v = diag
{

β̃0, β̃1, · · · , β̃l
}

,

Ω = [B((BTB)−1)T B⊥]T , Υ22 = I ⊗ (P −ΨΩ− ΩTΨT ), K̃ = [K̄T 0]T ,

Γ = diag
{

ℓ
∑

j=1

Rj − P + µ̄Q+ LTL, −diag{R1, R2, · · · , Rℓ}, −µ̄−1Q, −
γ2

ℓ+ 1
I
}

,

Υ21 =























ΨΩA+ β̄0K̃C K̃CΛ1 ΨΩAd K̃EĨ1Λ0 + K̃Ĩ2ID +ΨΩDĨ1ID

β̃0K̃C 0 0 K̃EĨ1ID

0 0 0 0

0 0 0 0

0 Î1v ⊗ (K̃C) 0 [0 Î1v]⊗ (K̃EĨ1)

0 0 0 0























,

Υ32 =























0 0 0 ᾱK̃Hm

0 ᾱK̃Hm 0 0

0 α̃K̃Hm 0 0

0 0 0 α̃K̃Hm

0 0 ᾱÎ1v ⊗ (K̃Hm) 0

0 0 α̃Î1v ⊗ (K̃Hm) 0























, Ψ =

[

Ψ1 Ψ3

0 Ψ2

]

,

M =























0 0 0 ᾱBKHm

0 ᾱBKHm 0 0

0 α̃BKHm 0 0

0 0 0 α̃BKHm

0 0 ᾱÎ1v ⊗ (BKHm) 0

0 0 α̃Î1v ⊗ (BKHm) 0























,

N =













0 0 0 0

β̃0EmC 0 0 β̃0EmEĨ1ID

0 I ⊗ (EmC) 0 [0 I]⊗ (EmEĨ1)

β̄0EmC EmCΛ1 0 Em(EĨ1Λ0 + Ĩ2ID)













.

Furthermore, if (22) holds, then the controller gain matrix is given by K = Ψ−1
1 K̄.

Proof: To begin with, the inequality (8) can be rewritten as

Π = Γ + ΓT
1 PΓ1 + ΓT

2 PΓ2 + ΓT
3 PΓ3 + ΓT

4 (I ⊗ P )Γ4 + ΓT
5 (I ⊗ P )Γ5 + ΓT

6 (I ⊗ P )Γ6 < 0 (23)

where

Γ1 = [ A+ β̄0BkC BkCΛ1 Ad BkEĨ1Λ0 +Bk Ĩ2ID +DĨ1ID ],

Γ2 = [ β̃0BkC 0 0 β̃0BkEĨ1ID ], Γ3 = [ α̃β̃0B̃kC 0 0 α̃β̃0B̃kEĨ1ID ],

Γ4 = [ α̃β̄0B̃kC α̃B̃kCΛ1 0 α̃B̃k(EĨ1Λ0 + Ĩ2ID) ],

Γ5 = [ 0 Î1v ⊗ (BkC) 0 [0 Î1v]⊗ (BkEĨ1) ],

Γ6 = [ 0 α̃Î1v ⊗ (B̃kC) 0 α̃[0 Î1v]⊗ (B̃kEĨ1) ].
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Then, applying the Schur Complement Lemma, the above inequality is equivalent to

Ξk :=

[

Γ Γ̃T
1k

∗ −I ⊗ P−1

]

< 0 (24)

where

Γ̃1k =























A+ β̄0BkC BkCΛ1 Ad BkEĨ1Λ0 +Bk Ĩ2ID +DĨ1ID

β̃0BkC 0 0 β̃0BkEĨ1ID

α̃β̃0B̃kC 0 0 α̃β̃0B̃kEĨ1ID

α̃β̄0B̃kC α̃B̃kCΛ1 0 α̃B̃k(EĨ1Λ0 + Ĩ2ID)

0 Î1v ⊗ (BkC) 0 [0 Î1v]⊗ (BkEĨ1) ]

0 α̃Î1v ⊗ (B̃kC) 0 α̃[0 Î1v]⊗ (B̃kEĨ1)























.

Furthermore, note that Ξk can be decomposed as follows:

Ξk = Ξ +∆Ξk (25)

with

Ξ =

[

Γ Γ̄T

∗ −I ⊗ P−1

]

, ∆Ξk =

[

0 Γ̃T
2k

∗ 0

]

,

Γ̄ =























A+ β̄0BKC BKCΛ1 Ad BKEĨ1Λ0 +BKĨ2ID +DĨ1ID

β̃0BKC 0 0 BKEĨ1ID

0 0 0 0

0 0 0 0

0 Î1v ⊗ (BKC) 0 [0 Î1v]⊗ (BKEĨ1)

0 0 0 0























,

Γ̃2k =























β̄0ᾱB∆KC ᾱB∆KCΛ1 0 ᾱB∆KEĨ1Λ0 + ᾱB∆KĨ2ID

β̃0ᾱB∆KC 0 0 ᾱβ̃0B∆KEĨ1ID

α̃β̃0B∆KC 0 0 α̃β̃0B∆KEĨ1ID

α̃β̄0B∆KC α̃B∆KCΛ1 0 α̃B∆K(EĨ1Λ0 + Ĩ2ID)

0 ᾱÎ1v ⊗ (B∆KC) 0 ᾱ[0 Î1v]⊗ (B∆KEĨ1)

0 α̃Î1v ⊗ (B∆KC) 0 α̃[0 Î1v]⊗ (B∆KEĨ1)























= M(I ⊗ Fm)N .

Denoting M̃ = [0 MT ]T , Ñ = [N 0], we have

Ξk = Ξ +∆Ξk = Ξ + M̃(I ⊗ Fm)Ñ + Ñ T (I ⊗ Fm)TM̃T < 0. (26)

In terms of Lemma 2, one has

Ξ + ε−1M̃M̃T + ε−1(εÑ )T (εÑ ) < 0 (27)

Combining (25) and (27) with the use of Schur Complement Lemma, we can see that the inequality (24) is

true if












Γ ∗ ∗ ∗

Γ̄ −I ⊗ P−1 ∗ ∗

0 MT −εI ∗

εN 0 0 −εI













< 0 (28)
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holds.

On the other hand, it follows from (22) that ΨΩ is invertible. As such, pre- and post-multiplying the

inequality (28) by diag{I, I ⊗ (ΨΩ), I, I} and diag{I, I ⊗ (ΨΩ)T , I, I}, and letting K̃ := [K̄T 0]T = ΨΩBK,

we can obtain












Γ ∗ ∗ ∗

(I ⊗ (ΨΩ))Γ̄ −I ⊗ (ΨΩP−1ΩTΨT ) ∗ ∗

0 (I ⊗ (ΨΩ)M)T −εI ∗

εN 0 0 −εI













= Υ+ diag
{

0, I ⊗ (ΨΩ + ΩTΨT −ΨΩP−1ΩTΨT − P ), 0, 0
}

< 0

(29)

Because of

ΨΩ+ ΩTΨT −ΨΩP−1ΩTΨT − P = −(P −ΨΩ)P−1(P −ΨΩ)T ≤ 0,

we have the conclusion that the inequality (29) can be satisfied if Υ < 0. Therefore, according to Theorem

1, the close-loop system (6) is stochastically stable while achieving the performance constraints (7), which

completes the proof.

Remark 4: Note that, similar to the analysis in [3], for the standard linear matrix inequality system, the

algorithm has a polynomial-time complexity. That is, the number N (ε) of flops needed to compute an

ε-accurate solution is bounded by O(MN 3 log(V/ε)), where M is the total row size of the linear matrix

inequality system, N is the total number of scalar decision variables, V is a data-dependent scaling factor,

and ε is relative accuracy set for algorithm. Let us look at the discrete-time stochastic system (1), where the

variable dimensions can be seen from x(k) ∈ R
nx , y(k) ∈ R

ny , v(k) ∈ R
q, u(k) ∈ R

u, Hm ∈ R
nh and Em ∈ R

ne .

ℓ is the order of the Rice fading model. From Theorem 2, we have M = 6nx+3ℓnx+(ℓ+1)(q+ny)+4nh+4ne

and N = 0.5(nx + 1)nx(ℓ + 2) + n2
u + n2

x − nxnu + nuny + 1. Therefore, the computational complexity of

the algorithms developed can be represented as O(n7
x). Obviously, the computational complexity of the

algorithm is dependent on the variable dimensions, which means that the overall computational burden is

mainly caused by the time complexity of performing computations on common mathematical operations.

Fortunately, research on the computational complexity of mathematical operations is a very active area in the

computational mathematics, optimization and the operations research community, and substantial speed-ups

can be expected in the future.

Remark 5: In this paper, the main result established in Theorem 2 contains all the information about the

system parameters, the occurring probability of the randomly occurring gain variations (ROGVs) and the

statistical information of channel coefficients. The main novelty is twofold: 1) the phenomenon of ROGVs,

which is governed by a sequence of random variables with a known conditional probability, is introduced to

reflect a more realistic controller characteristic; 2) intensive stochastic analysis is conducted to enforce the

non-fragile H∞ control problem for discrete-time stochastic systems subject to ROGVs, channel fadings, as

well as infinite-distributed time-delays within the same framework.

IV. Numerical Example

In this section, we aim to demonstrate the effectiveness of the proposed non-fragile H∞ controller design

scheme. Consider the system (1), where the nominal system matrix A and the measurement output matrix
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C are taken from the geared DC motor, which is a component of the MS150 Modular Servo system [42]:

A =

[

1 0.0098

0 0.9653

]

, C =
[

1 0
]

.

Suppose that, when modeling the MS150 Modular Servo system, there exist control inputs with randomly oc-

curring gain variations (ROGVs), infinite-distributed delays and disturbances. Furthermore, the measurement

information could suffer from fadings when it is transmitted through the wireless communication networks.

Accordingly, in addition to the main system parameters A and C, we set other parameters as follows:

Ad =

[

0.06 −0.036

0 0.03

]

, B =

[

1

0

]

, D =

[

0.08

−0.04

]

, L =

[

0.02

−0.02

]T

, E = 0.01, Ey = 0.25.

Let the constant sequence {µd}d∈[0,∞) be chosen as µd = 2−3−d. It is easy to check that µ̄ =
∑∞

d=1 µd = 2−3 <
∑∞

d=1 dµd = 2 < +∞, which satisfies the convergence condition (2).

Suppose that the order of the fading model is ℓ = 1 and the probability density functions of channel

coefficients are

f(β0) = 0.0005(e9.89β0 − 1), 0 ≤ β0 ≤ 1,

f(β1) = 8.5017e−8.5β1 , 0 ≤ β1 ≤ 1.

According to the given probability density functions, we can easily obtain that the mathematical expectation

β̄s (s = 0, 1) are 0.8991 and 0.1174, and variance β̃s (s = 0, 1) are 0.0133 and 0.01364.

In this example, the H∞ performance level γ is taken as 1.2. The stochastic variable αk obeys a Gaussian

distribution with the expectation 0.65 and variance 0.25, and the controller gain perturbation parameters are

assumed as

Em = 1.0, Hm = 0.5.

Using Matlab software with YALMIP 3.0, we can obtain the set of solutions to the non-fragile H∞ control

problem as follows

P =

[

1.6122 0.0357

0.0357 2.0118

]

, Ψ =

[

1.5795 0.1876

0 4.0432

]

, K̃ = −1.6026,

R1 =

[

0.6740 0.0212

0.0212 0.0036

]

, Q =

[

0.1717 0.0100

0.0100 0.0691

]

, ε = 0.3837.

Furthermore, we can obtain the controller gain matrix K = −1.0147.

To further demonstrate the effectiveness of the designed non-fragile H∞ controller, assume that the distur-

bances are given by

vk = 0.5e−0.2k sin(k), ξk = ak/(k + 1),

where ak is generated that obeys uniform distribution over [0 1]. The simulation results are shown in Figs. 1-

3. Fig. 1 plots the measurement outputs by sensors and the received signal by the controller, while Fig. 2

depicts the uncontrolled outputs of the open-loop system and the controlled outputs of the closed-loop system,

respectively. We can easily find that the closed-loop system has a perfect convergence performance. In Fig. 3,

it is further shown the outputs for three different cases of controller gain perturbations, that is ∆K = 0,

∆K = KHmFmEm and ∆K = 2KHmFmEm (the perturbations have not been sufficient considered). We can

find that the system performance is seriously degraded for the third case.
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V. Conclusions

This paper has been concerned with the non-fragile H∞ control problem for a class of discrete-time sys-

tems with ROGVs, channel fadings as well as infinite-distributed delays. The phenomenon of ROGVs has

been introduced to account for the random nature of the controller parameter drifts/fluctuations during the

implementation in a networked environment, and such ROGVs have been assumed to obey a certain proba-

bilistic distribution. In addition, a modified stochastic Rice fadings model has been considered to cater for

the phenomenon of channel fadings, where the probabilistic law for the random channel coefficients is not re-

stricted to Gaussian. By introducing a parameter-independent slack variable with lower-triangular structure

and employing the stochastic analysis approach, sufficient conditions have been obtained for the existence of

admissible controllers. Finally, an illustrative simulation example has been given to illustrate the effectiveness

of the proposed design method. One of the future research topics would be to extend the present results to

more complex systems such as descriptor systems and Markovian jump systems [41].
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Fig. 2. Outputs zk.
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Fig. 3. Outputs zk with the insufficient estimation of controller gain perturbations.


