16 research outputs found

    Robust Indoor Localization in a Reverberant Environment Using Microphone Pairs and Asynchronous Acoustic Beacons

    Get PDF
    In this paper, a robust indoor localization method using microphone pairs and asynchronous acoustic beacons was proposed. The proposed method is applicable even with a two-channel microphone pair, which is the minimal configuration of a microphone array. The proposed method estimates location by using the cross-correlation functions of the measured signals as location likelihoods. Three experiments were conducted to evaluate the proposed method. Four beacons were located at the corners of a localizing area of 4 m by 4 m and emitted signals with a bandwidth of 2 kHz. The localization results were compared to the previous method with deterministic direction-of-arrival estimation. The 90th percentiles of the localization error were 0.23 m for the proposed method with two microphones, 0.19 m for the proposed method with four microphones, and 0.30 m for the previous method under conditions without significant reverberation. Under a condition with reflective walls, the 90th percentile of the localization error of the previous method increased to 0.49 m, while that of the proposed method was only increased to 0.23 m for two microphones and 0.19 m for four microphones. The proposed method contributes to a robust localization in indoor environments and relieves the constraints of receiver configuration

    A survey on acoustic positioning systems for location-based services

    Get PDF
    Positioning systems have become increasingly popular in the last decade for location-based services, such as navigation, and asset tracking and management. As opposed to outdoor positioning, where the global navigation satellite system became the standard technology, there is no consensus yet for indoor environments despite the availability of different technologies, such as radio frequency, magnetic field, visual light communications, or acoustics. Within these options, acoustics emerged as a promising alternative to obtain high-accuracy low-cost systems. Nevertheless, acoustic signals have to face very demanding propagation conditions, particularly in terms of multipath and Doppler effect. Therefore, even if many acoustic positioning systems have been proposed in the last decades, it remains an active and challenging topic. This article surveys the developed prototypes and commercial systems that have been presented since they first appeared around the 1980s to 2022. We classify these systems into different groups depending on the observable that they use to calculate the user position, such as the time-of-flight, the received signal strength, or the acoustic spectrum. Furthermore, we summarize the main properties of these systems in terms of accuracy, coverage area, and update rate, among others. Finally, we evaluate the limitations of these groups based on the link budget approach, which gives an overview of the system's coverage from parameters such as source and noise level, detection threshold, attenuation, and processing gain.Agencia Estatal de InvestigaciónResearch Council of Norwa

    Audio-based localization for ubiquitous sensor networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (p. 97-101).This research presents novel techniques for acoustic-source location for both actively triggered, and passively detected signals using pervasive, distributed networks of devices, and investigates the combination of existing resources available in personal electronics to build a digital sensing 'commons'. By connecting personal resources with those of the people nearby, tasks can be achieved, through distributed placement and statistical improvement, that a single device could not do alone. The utility and benefits of spatio-temporal acoustic sensing are presented, in the context of ubiquitous computing and machine listening history. An active audio self-localisation algorithm is described which is effective in distributed sensor networks even if only coarse temporal synchronisation can be established. Pseudo-noise 'chirps' are emitted and recorded at each of the nodes. Pair-wise distances are calculated by comparing the difference in the audio delays between the peaks measured in each recording. By removing dependence on fine grained temporal synchronisation it is hoped that this technique can be used concurrently across a wide range of devices to better leverage the existing audio sensing resources that surround us.(cont.) A passive acoustic source location estimation method is then derived which is suited to the microphone resources of network-connected heterogeneous devices containing asynchronous processors and uncalibrated sensors. Under these constraints position coordinates must be simultaneously determined for pairs of sounds and recorded at each microphone to form a chain of acoustic events. It is shown that an iterative, numerical least-squares estimator can be used. Initial position estimates of the source pair can be first found from the previous estimate in the chain and a closed-form least squares approach, improving the convergence rate of the second step. Implementations of these methods using the Smart Architectural Surfaces development platform are described and assessed. The viability of the active ranging technique is further demonstrated in a mixed-device ad-hoc sensor network case using existing off-the-shelf technology. Finally, drawing on human-centric onset detection as a means of discovering suitable sound features, to be passed between nodes for comparison, the extension of the source location algorithm beyond the use of pseudo-noise test sounds to enable the location of extraneous noises and acoustic streams is discussed for further study.Benjamin Christopher Dalton.S.M

    Acoustic Echo Estimation using the model-based approach with Application to Spatial Map Construction in Robotics

    Get PDF

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    Predicting room acoustical behavior with the ODEON computer model

    Get PDF
    corecore