1,831 research outputs found

    Terminal sliding mode control strategy design for second-order nonlinear system

    Full text link
    This study mainly focuses on the terminal sliding mode control (TSMC) strategy design, including an adaptive terminal sliding mode control (ATSMC) and an exact-estimator-based terminal sliding mode control (ETSMC) for second-order nonlinear dynamical systems. In the ATSMC system, an adaptive bound estimation for the lump uncertainty is proposed to ensure the system stability. On the other hand, an exact estimator is designed for exact estimating system uncertainties to solve the trouble of chattering phenomena caused by a sign function in ATSMC law in despite of the utilization of a fixed value or an adaptive tuning algorithm for the lumped uncertainty bound. The effectiveness of the proposed control schemes can be verified in numerical simulations.<br /

    Robust Integral of Sign of Error and Neural Network Control for Servo System with Continuous Friction

    Get PDF

    Genetic programming for the automatic design of controllers for a surface ship

    Get PDF
    In this paper, the implementation of genetic programming (GP) to design a contoller structure is assessed. GP is used to evolve control strategies that, given the current and desired state of the propulsion and heading dynamics of a supply ship as inputs, generate the command forces required to maneuver the ship. The controllers created using GP are evaluated through computer simulations and real maneuverability tests in a laboratory water basin facility. The robustness of each controller is analyzed through the simulation of environmental disturbances. In addition, GP runs in the presence of disturbances are carried out so that the different controllers obtained can be compared. The particular vessel used in this paper is a scale model of a supply ship called CyberShip II. The results obtained illustrate the benefits of using GP for the automatic design of propulsion and navigation controllers for surface ships

    Higher Order Sliding Mode Control of MIMO Induction Motors: A New Adaptive Approach

    Get PDF
    In this paper the objective is to force the outputs of nonlinear nonaffine multi-input multi-output (MIMO) systems to track those of a linear system with the desired properties. The approach is based on designing higher order sliding mode controller (HOSMC) with the definition of a new proportional-integral (PI) sliding surface. To this end, a linear state feedback with an adaptive switching gain (ASG) is applied to the nonlinear MIMO systems. Therefore, the switching gain can increase or decrease based on the system conditions. Then, the chattering is completely removed using a combination of HOSMC and ASG. Moreover, the proposed procedure is independent from the upper bound of the matched uncertainty, which is in the direction of system inputs. The finite time convergence to the sliding surface is also proved, which provides an invariance property in finite time. Note that invariance is the most important property of SMC. Finally, the general model of MIMO induction motors (IM) is used to address and to verify the proposed controller.The authors wish to express their gratitude to the Basque Government, through the project EKOHEGAZ II (ELKARTEK KK-2023/00051), to the DiputaciĆ³n Foral de Ɓlava (DFA), through the project CONAVANTER, to the UPV/EHU, through the project GIU20/063, and to the MobilityLab Foundation (CONV23/14. Proy. 16) for supporting this work

    Intelligent tracking control of a DC motor driver using self-organizing TSK type fuzzy neural networks

    Get PDF
    [[abstract]]In this paper, a self-organizing Takagiā€“Sugenoā€“Kang (TSK) type fuzzy neural network (STFNN) is proposed. The self-organizing approach demonstrates the property of automatically generating and pruning the fuzzy rules of STFNN without the preliminary knowledge. The learning algorithms not only extract the fuzzy rule of STFNN but also adjust the parameters of STFNN. Then, an adaptive self-organizing TSK-type fuzzy network controller (ASTFNC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller uses an STFNN to approximate an ideal controller, and the robust compensator is designed to eliminate the approximation error in the Lyapunov stability sense without occurring chattering phenomena. Moreover, a proportional-integral (PI) type parameter tuning mechanism is derived to speed up the convergence rates of the tracking error. Finally, the proposed ASTFNC system is applied to a DC motor driver on a field-programmable gate array chip for low-cost and high-performance industrial applications. The experimental results verify the system stabilization and favorable tracking performance, and no chattering phenomena can be achieved by the proposed ASTFNC scheme.[[notice]]č£œę­£å®Œē•¢[[incitationindex]]SCI[[booktype]]ē“™ęœ¬[[booktype]]電子

    Lyapunov-based Control Design For Uncertain Mimo Systems

    Get PDF
    In this dissertation. we document the progress in the control design for a class of MIMO nonlinear uncertain system from five papers. In the first part, we address the problem of adaptive control design for a class of multi-input multi-output (MIMO) nonlinear systems. A Lypaunov based singularity free control law, which compensates for parametric uncertainty in both the drift vector and the input gain matrix, is proposed under the mild assumption that the signs of the leading minors of the control input gain matrix are known. Lyapunov analysis shows global uniform ultimate boundedness (GUUB) result for the tracking error under full state feedback (FSFB). Under the restriction that only the output vector is available for measurement, an output feedback (OFB) controller is designed based on a standard high gain observer (HGO) stability under OFB is fostered by the uniformity of the FSFB solution. Simulation results for both FSFB and OFB controllers demonstrate the efcacy of the MIMO control design in the classical 2-DOF robot manipulator model. In the second part, an adaptive feedback control is designed for a class of MIMO nonlinear systems containing parametric uncertainty in both the drift vector and the input gain matrix, which is assumed to be full-rank and non-symmetric in general. Based on an SDU decomposition of the gain matrix, a singularity-free adaptive tracking control law is proposed that is shown to be globally asymptotically stable (GAS) under full-state feedback. iii Output feedback results are facilitated via the use of a high-gain observer (HGO). Under output feedback control, ultimate boundedness of the error signals is obtained the size of the bound is related to the size of the uncertainty in the parameters. An explicit upper bound is also provided on the size of the HGO gain constant. In third part, a class of aeroelastic systems with an unmodeled nonlinearity and external disturbance is considered. By using leading- and trailing-edge control surface actuations, a full-state feedforward/feedback controller is designed to suppress the aeroelastic vibrations of a nonlinear wing section subject to external disturbance. The full-state feedback control yields a uniformly ultimately bounded result for two-axis vibration suppression. With the restriction that only pitching and plunging displacements are measurable while their rates are not, a high-gain observer is used to modify the full-state feedback control design to an output feedback design. Simulation results demonstrate the ef cacy of the multi-input multioutput control toward suppressing aeroelastic vibration and limit cycle oscillations occurring in pre and post utter velocity regimes when the system is subjected to a variety of external disturbance signals. Comparisons are drawn with a previously designed adaptive multi-input multi-output controller. In the fourth part, a continuous robust feedback control is designed for a class of high-order multi-input multi-output (MIMO) nonlinear systems with two degrees of freedom containing unstructured nonlinear uncertainties in the drift vector and parametric uncertainties in the high frequency gain matrix, which is allowed to be non-symmetric in general. Given some mild assumptions on the system model, a singularity-free continuous robust tracking coniv trol law is designed that is shown to be semi-globally asymptotically stable under full-state feedback through a Lyapunov stability analysis. The performance of the proposed algorithm have been verified on a two-link robot manipulator model and 2-DOF aeroelastic model
    • ā€¦
    corecore