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Abstract: In this paper the objective is to force the outputs of nonlinear nonaffine multi-input multi-
output (MIMO) systems to track those of a linear system with the desired properties. The approach
is based on designing higher order sliding mode controller (HOSMC) with the definition of a new
proportional-integral (PI) sliding surface. To this end, a linear state feedback with an adaptive
switching gain (ASG) is applied to the nonlinear MIMO systems. Therefore, the switching gain can
increase or decrease based on the system conditions. Then, the chattering is completely removed
using a combination of HOSMC and ASG. Moreover, the proposed procedure is independent from
the upper bound of the matched uncertainty, which is in the direction of system inputs. The finite
time convergence to the sliding surface is also proved, which provides an invariance property in
finite time. Note that invariance is the most important property of SMC. Finally, the general model of
MIMO induction motors (IM) is used to address and to verify the proposed controller.

Keywords: higher order sliding mode control; multi-input multi-output system; chattering; adaptive
control; induction motor
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1. Introduction

In recent years and decades, much research has been conducted using a variable struc-
ture based on sliding mode control (SMC) to control nonlinear systems [1–7]. For example,
SMC is used for the cart-pendulum model [2], for an electric furnace [3], for spacecraft [4],
for a permanent magnet synchronous motor (PMSM) [5,6], for linear motor positioning [7],
etc. This is because a traditional SMC can overcome the matched uncertainties since it is in-
variant, which is its most important property [8–10]. It should be noted that the robustness
is weaker than the invariance [10]. Therefore, uncertainty and disturbance cannot affect the
performance of SMC [10], since it is invariant [11]. However, SMC suffers from chattering
phenomena, which can harm the plants [12]. Chattering is often due to the high frequency
excitation of the ignored dynamics of the plants, such as sensors or actuators [9,13,14].
High frequency switching of plants’ input and high controller gain are two reasons, which
would exited these neglected dynamics and can produce chattering [1,15].

Generally, boundary layer SMC (BSMC), adaptive boundary layer SMC (ABSMC),
dynamic SMC (DSMC), higher order SMC (HOSMC), and intelligent-based approaches
are provided to remove the chattering. The invariance property is dismissed in BSMC and
ABSMC, but these methods are traditionally used for SMC [8]. Nevertheless, the chattering
can be reduced or suppressed using high gain inside the boundary layer [8,16]. The high
gain produces instability and chattering inside the boundary [1,14].

DSMC can remove the chattering completely using an integrator. The integrator
would remove high switching without using a large gain [17]. But this approach needs
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an observer [17]. HOSMC can remove chattering [18], because it transfers the switching
to the higher order derivatives of the sliding surface or output [9,19,20]. Some proposed
approaches are based on second or higher order SMC [20,21].

Finally, intelligent-based approaches can remove the chattering, such as fuzzy sys-
tems [22,23] or neural networks. [24–27]. Most of these works focus on single-input single-
output (SISO) systems or affine systems [22–27]. The intelligent-based approach can be
categorized into direct and indirect structures [28]. In direct structures, intelligent methods
play a direct role in the controller; but in indirect structures, intelligent methods play a
secondary role in the controller [28]. However, the intelligent approaches cannot address
systematic nonlinear controllers.

Note that the chattering occurs through two phenomena: high switching of input
control signals and a large gain especially in a closed loop system. For example, in the
literature of SMC [29,30], it is shown that the chattering can be available in super-twisting
algorithms [20] or in power-fractional algorithms [31]. Both of these algorithms use a
continuous input control signal with infinite gain. Then, in the concept of chattering
suppression, the large gain should be considered [32]. One method to reduce the switching
gain is based on an adaptive procedure, such as adaptive switching gain (ASG).

Moreover, some works in the literature focus on the control of induction motors
(IM) [33,34]. But, in these works, the linearized SISO model of IM is used. The general
models of IM are nonlinear, with a multi-input multi-output (MIMO) structure [35].

In this paper, HOSMC with ASG is presented to overcome these two phenomena,
which can produce chattering by the excitation of unmolded dynamics of sensors or
actuators. The combination of HOSMC and ASG is extended to control the general model
of IM, which is MIMO and nonlinear. To this end, a linear state feedback with a new
input control signal is applied to the system at first. Then, HOSMC is designed using this
new input. This means that we have two types of feedback: state feedback and HOSMC
feedback. In this sense, the proposed control scheme overcomes the aforementioned
problems that usually appear in the traditional SMC schemes. For example, the noise on
the sliding surface cannot be affected the overall system. Then, the closed loop system has
an invariance property. Note that BSMC and ABSMC cannot reserve the invariance as the
most important issue of a traditional SMC.

The paper is presented in six sections. In Section 2, the preliminary background of the
main problem is provided. In this section, some necessary definitions and assumptions
are presented. Section 3 is devoted to the HOSMC design. Definitions of the system
formulation, state feedback, and sliding surface are presented in this section. The adaptive
procedure and proof of the closed loop stability are presented in Section 4. In Section 5, the
simulation results are presented to verify the concepts of the theory. Two simulations were
conducted and are described for comparison in this section. The conclusion is available in
Section 6.

2. Problem Formulation

The traditional SMC has three stages: reaching stage, sliding stage, and steady-state
stage. To provide the invariance characteristic in the sliding and steady-state stages, the
finite time to the sliding surface should be guaranteed. To this end, the following reaching
law is used [10]:

.
s = −η sign(s),

in which, is the sliding surface, and η is a positive large enough scalar number, which
is called the switching gain. But the available Signum function produces high frequency
oscillations with amplitude η in the input control signal of the systems, called chattering.
The chattering is destructive and can damage the plants. Therefore, chattering should be
removed by [36]:

1. Reducing the amplitude of the switching gain.
2. Eliminating high frequency switching.
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The first issue is achieved using ASG, and the second issue is achieved using HOSMC.
Now, consider the general model of IM in the form of a time-varying nonlinear nonaffine
MIMO system as follows:

.
x = f (x, u, t)

y = h(x, t)
, (1)

with the input vector signal u = [u1, u2, . . . , um]
T ∈ Rm×1, the output vector signal

y = [y1, y2, . . . , yp]
T ∈ Rp×1, and the state vector signal x = [x1, x2, . . . , xn]

T ∈ Rn×1.

Definition 1 (Zero Dynamics). The corresponding zero dynamics of the system in Equation (1)
are defined as state variables, when the outputs are set to zero.

{ x|yi(x, t) = 0 : i = 1, 2, . . . , p}

The system in Equation (1) is called minimum phase, if these zero dynamics are uniformly asymptot-
ically stable [8,9].

Assumption 1. Consider the case of p = m. This is not a restriction assumption [14,37] (and also,
see Definition 3).

Assumption 2. Output functions yi(x, t) : i = 1, 2, . . . , m are smooth, and their first (ρi − 1)
derivatives are assumed to be available either through direct measurement or via an estimator
[1–9,14,19–21,38–41].

Assumption 3. We assume the relative degree of outputs yi : i = 1, 2, . . . , m with respect to the
input control signals ui : i = 1, 2, . . . , m; i.e., ri is known, and the associated zero dynamics are
stable [1–9,14,19–21,38–41] (see Definition 1).

Assumption 4. If s = [s1, s2, . . . , sm]
T ∈ Rm×1 is a vector function, then:

sign(s) = [sign(s1), sign(s2), . . . , sign(sm)]
T .

Finally, the goal is to have the outputs yi : i = 1, 2, . . . , m of the system and their
first (ρi − 1) derivatives track ydi : i = 1, 2, . . . , m in the following desired reference
linear system.

ydi(ρi) = f iYdi + vdi, (2)

where
Ydi = [ydi, y(1)di , . . . , y(ρi−1)

di , 0, . . . , 0]
T
∈ Rρ×1

fi = [ fi1(t), fi2(t), . . . , fiρi (t), 0, . . . , 0] ∈ R1×ρ
,

Such that ρi ≥ ri : i = 1, 2, . . . m, and

ρ = max(ρi) : i = 1, 2, . . . m. (3)

Note that the system in Equation (2) can be written in the following form.

Yd =
m

∑
i=1

(ΛiFYdi) + Vd, (4)

With
Yd = [y(ρ1)

d1 , y(ρ2)
d2 , . . . , y(ρm)

dm ]
T
∈ Rm×1

Vd = [vd1, vd2, . . . , vdm]
T ∈ Rm×1

F = [ f1
T , f2

T , . . . , fm
T ]

T ∈ Rm×ρ

,
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and Λi = diag(λj) ∈ Rm×m : i, j = 1, 2, . . . , m is a diagonal matrix defined as follows:

λj =

{
1 j = i
0 j 6= i

.

Definition 2. Consider the outputs of the system in Equation (1) and let the system be closed by
some possibly dynamical discontinuous feedback (such as the Signum function). Then, provided
that the functions yi

(j)(x, t) : Rn × R+ → R : i = 0, 1, . . . , m, j = 0, 1, . . . , ρi − 1 , with ρ in
Equation (3), are continuous, the motion on Hρ is called the (ρ)th order sliding mode with respect
to the sliding variable h(x, t) [39,40].

Hρ =

x

∣∣∣∣∣∣∣∣
h1(x, t) =

.
h1(x, t) = . . . = h1

(ρ1−1)(x, t) = 0
...

hm(x, t) =
.
hm(x, t) = . . . = hm

(ρm−1)(x, t) = 0


Therefore, output h satisfies the following equation [41]:

Ya = φ(x, u, t) + γ(x, u, t)Ua, (5)

where
Ya = [y(ρ1)

1 , y(ρ2)
2 , . . . , y(ρm)

m ]
T
∈ Rm×1

Ua = [u(ρ1−r1)
1 , u(ρ2−r2)

2 , . . . , u(ρm−rm)
m ]

T
∈ Rm×1

φ = [φ1, φ2, . . . , φm]
T ∈ Rm×1

γ =


γ11 γ12 . . . γ1m
γ21 γ22 . . . γ2m

...
...

. . .
...

γm1 γm2 . . . γmm

 ∈ Rm×m.

In φi(x, u, t) : i = 1, 2, . . . , m and γij(x, u, t) : i, j = 1, 2, . . . , m, we have:

u = [u1, u2, . . . , um]
T

uk = [uk,
.
uk, . . . , uk

(ρi−ri−1)]
T

: k = 1, 2, . . . , m
.

The (ρ)th order sliding mode control allows the finite time convergence to the sliding
surface by defining a suitable discontinuous signal ui

(ρi−ri) [39–41].

Assumption 5. Suppose φ and γ are unknown bounded functions probably with known bounds
[19,20,38,40,41].

Assumption 6. Suppose γii 6= 0 : ∀t ≥ 0, i = 1, 2, . . . , m. This assumption is not restrictive
[19,20,38,40,41].

Definition 3. The differential system in Equation (1) is called proper if [37]:

• p = m; i.e., the input and output dimensions are equal,
• All φi : i = 1, 2, . . . , m are C1 functions,
• All γi j : i, j = 1, 2, . . . , m are C1 functions,
• γi i 6= 0 : ∀t ≥ 0, i = 1, 2, . . . , m.
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3. Controller Design

Defining

ei = yi− ydi : i = 1, 2, . . . , m
Ea = [e1(ρ1− 1), e2(ρ2− 1), . . . , em(ρm− 1)]− T ∈ Rm× 1
Ei = [ei, ei(1), . . . , ei(ρi− 1), 0, . . . , 0]− T ∈ Rρ× 1
Yi = [yi, yi(1), . . . , yi(ρi− 1), 0, . . . , 0]− T ∈ Rρ× 1,

We have:

.
Ea = Ya −Yd = φ + γ Ua −

m
∑

i=1
(ΛiFYdi)−Vd =

φ + γ Ua −
m
∑

i=1
(ΛiFYdi)−Vd +

m
∑

i=1
(ΛiFYi)−

m
∑

i=1
(ΛiFYi) + Vr −Vr + Ua −Ua =

m
∑

i=1
(ΛiFEi) + Vr −Vd + (φ + γ Ua −Ua) + (Ua −

m
∑

i=1
(ΛiFYi)−Vr)

(6)

Now, we apply the following linear state feedback with Vr ∈ Rm×1 as the new input control
signal to Equation (6):

Ua =
m

∑
i=1

(ΛiFYi) + Vr, (7)

with the matched uncertainty variable as

W = (φ + γ Ua −Ua).

We conclude that
.
Ea =

m

∑
i=1

(ΛiFEi) + Vr −Vd + W. (8)

Note that the matched uncertainties are in the inputs’ directions and can be cancelled out
directly by the input control signals of the plant [42].

The greatest challenge of SMC is providing a suitable input control signal Vr(t) in
Equation (7), such that the states of system Equation (5), Ya, track the states of system
Equation (4), Yd; in other words, the error dynamic in Equation (8) converges to zero in
finite time, even in the presence of the matched uncertainties. Therefore, we define the
following PI sliding surface.

s(t) = σ Ea(t)−
∫ t

0

(
m

∑
i=1

(Λi[σ F(τ) + K(τ)]Ei(τ)) + ξ(τ)

)
dτ, (9)

in which
s = [s1, s2, . . . , sm]

T ∈ Rm×1

ξ = [ξ1, ξ2, . . . , ξm]
T ∈ Rm×1

K =


k11 k12 . . . k1ρ1 0 . . . 0
k21 k22 . . . k2ρ2 0 . . . 0

...
...

...
...

...
. . .

...
km1 km2 . . . kmρm 0 . . . 0

 ∈ Rm×ρ,

Whenever K(t), ξ(t) and σ ∈ Rm×m are design parameters. The derivative of the sliding
surface Equation (9) with respect to time leads to:

.
s(t) = σ

.
Ea(t)−

m

∑
i=1

(Λi[σ F(t) + K(t)]Ei)− ξ(t). (10)
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The matrix σ can be chosen such that the interferences between the input and output in
different channels of the MIMO system are removed. In this case, the MIMO system is
decoupled to several SISO systems with specific input and output directions, leading to a
simpler design. Then, we have chosen σ = Im×m, in which I is the identity matrix. Now, by
substitution of Equation (8) into Equation (10) one obtains:

.
s(t) = (Vr −Vd + W)−

m

∑
i=1

(ΛiK(t)Ei)− ξ(t).

The control input Vr(t) has two parts in the sliding stage and the steady-state stage,
a smooth equivalent part when

.
s = 0 and W = 0 and a discontinuous part when

.
s = −ηsign(s) to overcome the matched uncertainty W 6= 0 [8–10].

Therefore, the equivalent section Vreq is obtained as follows.

Vreq = (Vd + ξ(t)) +
m

∑
i=1

(ΛiK(t)Ei)

In this case, the dynamic of error is obtained by substituting Vreq into Equation (8) and
setting W = 0.

.
Ea(t) =

m

∑
i=1

(Λi(F + K)Ei) + ξ (11)

Linear Equation (11) yields the zero dynamics of the sliding surface, which should be stabi-
lized by the proper choosing of matrix K(t) and vector signal ξ(t) (refer to Assumption 3).

At first, we suppose that ξ(t) = 0, and we choose

K(t) = M− F(t), (12)

where

M =


m11 m12 . . . m1ρ1 0 . . . 0
m21 m22 . . . m2ρ2 0 . . . 0

...
...

. . .
...

...
. . .

...
mm1 mm2 . . . mmρm 0 . . . 0

 ∈ Rm×ρ.

Then the following Linear-Time-Invariant (LTI) system is obtained and should be stabilized
by the proper choice of the constants mij.

.
Ea =

m

∑
i=1

(Λi MEi)

Now, consider the case ξ(t) 6= 0 in equation (11). It can be calculated to have terminal
SMC [4–6,31,43,44] i.e., the error signal converges to zero in finite time. We consider t f
as the time reaching to the sliding surface. Suppose the system is on the sliding surface
Equation (9), which means that t ≥ t f . Then, the error trajectories converge to zero in finite
time te + t f with

te ≤
‖Ea(0)‖

ηe
. (13)

To this end, we choose:

ξ(t) = −ηe sign

(
Ea(t)−

∫ t

0

m

∑
i=1

(Λi MEi(τ))dτ

)
,
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with ηe > 0, and we define se ∈ Rm×1 as follows:

se = Ea(t)−
∫ t

0

m

∑
i=1

(Λi MEi(τ))dτ.

Using Equations (11) and (12) yields

.
se = ξ = −ηesign(se).

The Lyapunov function candidate as V(t) = 0.5se
Tse results in

.
V = se

.
se = −ηesesign(se),

Which is Negative-Definite (ND); therefore,

sei
.
sei = −ηeseisign(sei) = −ηe|sei| : i = 1, 2, . . . , m.

Integration of this equation leads to (see proof of Theorem 2):

tei =
|sei(0)|

ηe
≤ ‖se(0)‖

ηe
=
‖Ea(0)‖

ηe
: i = 1, 2, . . . , m.

This leads to Equation (13), where te = max(tei) : i = 1, 2, . . . , m.
The second part of the input variable, Vr(t), is discontinuous and the force moving

the states of the system toward the sliding surface in finite time even in the presence of a
matched uncertain W. This causes the closed loop system to be invariant. Therefore, the
following adaptive input control signal is proposed, which consists of an equivalent control
part plus a discontinuous control part.

Vr(t) =
m

∑
i=1

(ΛiK(t)Ei) + Vd + ξ(t)− η sign(s), (14)

where η = (p1 + 1)β is the switching gain, p1 > 0 is a constant, and β(t) > 0 : ∀t is an
adaptive parameter.

Assumption 7 (Upper Bound of Matched Uncertainty). We assume that W(x, u, Ua, t) is
norm-bounded by a probably known function Ω(x, u, Ua, t), which means that ‖W(x, u, Ua, t)‖ ≤
Ω(x, u, Ua, t) < ∞. Generally, this inequality is popular and is not restrictive [1,8,9,20,39,41].
Moreover, with respect to other available uncertainty handling approaches [8,9,14,19–21,38–41],
we need the matched uncertain W to be norm-bounded, but the magnitude of this bound Ω can be
unknown (see Remark 1).

4. Adaptive Approach

A simple adaptive method of β(t) is as follows:

.
β =

.
Ω + p2‖s‖, β(0) = β0, Ω(0) = Ω0

Ω0 = Ω(x(0), u(0), Ua(0), 0)
, (15)

where p2 > 0 is a constant parameter, and Ω0 and arbitrary β0 are the bounded initial values
of Ω and β, respectively. Equation (15) has practical important drawbacks. Parameter β
is increasing. For example, the available noise or chattering on the sliding surface or a
large initial distance from the sliding surface causes the parameters β and switching gain
η to increase quickly, which results in closed loop instability. Moreover, when the system
conditions change such that a smaller switching gain is permitted, the law of Equation (15)
cannot adapt itself to these new circumstances.
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Therefore, to overcome these practical challenges, the adaptive parameter β is modified
as follows, which can be increased and decreased based on the circumstances.

.
β =

.
Ω + p2(‖s‖ − ψ(β)), β(0) = β0, Ω(0) = Ω0

ψ(β) = ε1
2 (sign(β−Ω− ε0) + 1) ≥ 0

(16)

Due to the available negative feedback in this equation, the instability will not occur.
Constants p2 > 0, ε1 > 0, and ε0 > 0 are design parameters, and Ω0 and arbitrary β0 are
the bounded initial values of Ω and β, respectively. Integrating the first part of Equation
(16), we conclude:

β(t) = Ω(t) + β0 −Ω0 + p2

∫ t

0
(‖s(τ)‖ − ψ)dτ. (17)

Lemma 1. The following inequality:

µ(0) = µ0 = β0 −Ω0 > ε0 > 0, (18)

together with Equation (16) results in:

µ(t) = β−Ω ≥ ε0 : ∀t > 0.

Proof. Equations (16) and (17) lead to

µ(t) = µ0 + p2

∫ t

0
‖s(τ)‖dτ − p2ε1

2

∫ t

0
(sign (µ− ε0) + 1)dτ.

It is clear that µ(t) is continuous function and also µ0 > ε0. Then, there is a finite time t1,
such that:

µ(t) > ε0 : ∀t ∈ [0, t1)

t1 ≥ 2(µ0−ε0)
p2ε1

.

Therefore, at time t = t1, we have µ(t1) = ε0; i.e.,

ε0 = µ0 + p2

∫ t1

0
‖s(τ)‖dτ − p2ε1t1

2
.

Now, suppose that there is a time t2 such that,

µ(t) < ε0 : ∀t ∈ (t1, t2). (19)

Then, the equation:

µ(t) = µ0 + p2

∫ t1

0
‖s(τ)‖dτ + p2

∫ t

t1

‖s(τ)‖dτ − p2ε1t1

2

results in the following equality.

µ(t) = ε0 + p2

∫ t

t1

‖s(τ)‖dτ

The righthand side is always positive; therefore,

µ(t) ≥ ε0 : ∀t ∈ (t1, t2).

This contradicts Equation (19); i.e., µ(t) ≥ ε0 : ∀t. �
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Theorem 1. Input control Equation (14) and adaptive procedure Equation (16) cause error dynamic
Equation (8) to converge to sliding surface Equation (9), when the inequality in Equation (18)
is fulfilled.

Proof. Using the Lyapunov candidate function as follows:

V(t) =
1
2

(
sTs + p2

−1µ2
)

, (20)

one can write

.
V = sT .

s + p2
−1µ

.
µ = sT(Vr −Vd + W −

m

∑
i=1

(ΛiKEi)− ξ) + p2
−1µ(

.
β−

.
Ω).

Equations (14) and (16) result in

.
V = sT(W − (p1 + 1)β sign(s)) + p2

−1(β−Ω)p2(‖s‖ − ψ)
≤ Ω‖s‖ − (p1 + 1)β‖s‖+ (β−Ω)(‖s‖ − ψ) = −p1β‖s‖ − ψµ

. (21)

Using lemma 1 leads to
.

V ≤ −p1β‖s‖. By definition of the variable ω(t) = p1β‖s(t)‖, one
can write

.
V ≤ −ω(t) ≤ 0. The integration of this inequality is concluded to be

0 ≤
∫ t

0
ω(τ)dτ ≤

∫ t

0
ω(τ)dτ + V(t) ≤ V(0).

Note that V(0) is positive and finite; then, based on Barbalat’s lemma [8,45], we obtain the
following equality even in the case of t→ ∞ .

lim
t→∞

ω(t) = lim
t→∞

p1β‖s(t)‖ = 0

Since p1 > 0 and β > 0, then lim
t→∞
‖s‖ = 0 or lim

t→∞
s = 0. Now, the proof of the theorem is

complete. �

In SMC, convergence to the sliding surface should happen in finite time to preserve
the invariance property. The next theorem proves the finite time convergence to the sliding
surface.

Theorem 2. The error trajectory converges to the sliding surface Equation (9) in finite time t f ,
when Equation (18) is provided.

t f ≤
‖Ea(0)‖

ε0
(22)

Proof. From Equations (20) and (16), one can write:

.
V = sT .

s + p2
−1µ(

.
β−

.
Ω) = sT .

s + p2
−1µp2(‖s‖ − ψ) = sT .

s + µ‖s‖ − µψ.

Using Equation (21),

.
V = sT .

s + µ‖s‖ − µψ ≤ −p1β‖s‖ − ψµ.

Thus,
sT .

s + µ‖s‖ ≤ −p1β‖s‖.
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Since p1 > 0, β > 0 and ‖s‖ ≥ 0, we have sT .
s + µ‖s‖ ≤ 0 or sT .

s ≤ −µ ‖s‖. From Lemma 1,
we can write −µ ≤ −ε0; therefore,

sT .
s ≤ −ε0‖s‖ = −ε0

(
sTs
) 1

2 .

Then, si
.
si ≤ −ε0(sisi)

1
2 = −ε0si : i = 1, 2, . . . , m, where ε0 > 0. Suppose t f i is the reaching

time to the sliding surface si; i.e., si(t f i) = 0. Now, consider two cases: First case: if
si > 0, then

.
si ≤ −ε0, and integrating this equation between t = 0 and t = t f i leads to

−si(0) ≤ −ε0t f i; therefore,

t f i ≤
si(0)

ε0
.

Second case: if si < 0, then
.
si ≥ ε0, and integrating this equation between t = 0 and t = t f i

leads to −si(0) ≥ ε0t f i; therefore,

t f i ≤
−si(0)

ε0
.

Combining these two last equations results in

t f i ≤
|si(0)|

ε0
≤ ‖s(0)‖

ε0
: i = 1, 2, . . . , m,

which lead to Equation (22), where t f = max(t f i) : i = 1, 2, . . . , m. �

Remark 1. If Ω is set to a large positive constant, then
.

Ω = 0; in this case, Ω is only used to prove
the theorems, the controller and adaptive procedure are independent of the uncertainty bound, and
we have .

β = p2(‖s‖ − ψ(β)), β(0) = β0, Ω(0) = Ω0
ψ(β) = ε1

2 (sign(β− ε0) + 1) ≥ 0
β0 > ε0 > 0⇒ β(t) > ε0 > 0 : ∀t

. (23)

Remark 2. In the proposed method, the singular case, as discussed in [6,26], will not occur.

5. Simulation Results

The overall dynamics of an IM in stationary reference framework under the assump-
tions of equal mutual inductances and linear magnetic circuits are given by the following
general equations [35].

.
x1.
x2.
x3.
x4.
x5

 =


λ(x2x5 − x3x4)− Tl

J
−ax2 − npx1x3 + aMx4
−ax3 + npx1x2 + aMx5
abx2 + npbx1x3 − γx4
abx3 − npbx1x2 − γx5

+


0 0
0 0
0 0
1
σ 0
0 1

σ


[

u1
u2

]
, (24)

where x = [x1, x2, x3, x4, x5]
T = [ω, ψa, ψb, ia, ib]

T and

λ =
np M
JLr

, a = Rr
Lr

, b = M
σLr

,

σ = Ls − M2

Lr
, γ = M2Rr

σLr2 + Rs
σ

.

The IM motor parameters values are set as Rs = 0.1 Ω, Rr = 0.15 Ω, Ls = 0.0699 H,
Lr = 0.0699 H, M = 0.068 H, J = 0.0586 kg m2, np = 1, and Tl = 70 Nm. Moreover, Rs
and Rr are the stator and rotor resistances, respectively, and Ls and Lr are the stator and
rotor inductances, respectively, M is the mutual inductance, J is the rotor inertia, np is the
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number of pole pairs, ω is the rotor speed, ψa and ψb are the rotor flux components, ia and
ib are the stator current components, and finally, Tl is the load torque. These parameters
are used in the simulation of system itself not in the controller, since Ω is supposed to be
constant; i.e., the controller is model free. The outputs to be controlled are the motor speed
ω and the square of the rotor flux magnitude, i.e., (ψa

2 + ψb
2), with the relative degrees

r1 = r2 = 2 as follows: [
y1
y2

]
=

[
x1

x2
2 + x3

2

]
.

To remove the switching of the input control signal, we choose ρ1 = ρ2 = 3 [39], and then
the third-order SMC i.e., ρ = 3 is applied to the system. Therefore,[

y1
(3)

y2
(3)

]
=

[
φ1(x)
φ2(x)

]
+

[
γ11(x) γ12(x)
γ21(x) γ22(x)

][ .
u1.
u2

]
. (25)

We want the states of system Equation (25), i.e., yi
(j) : i = 1, 2, j = 0, 1, 2, to track the states

of the linear system ydi(3) = f iYdi + vdi : i = 1, 2; i.e., Ydi = [ydi, y(1)di , y(2)di ]
T

: i = 1, 2.

F =

[
−3 −5 −3
0 0 0

]
,

and
vd1 = sin(0.5 t), ξ1 = 0
vd2 = 0, ξ2 = 0

.

This means that when the motor speed varies, the rotor flux is maintained constant at 0.7
Weber. Then, we choose

K =

[
0 0 0
−3 −5 −3

]
.

Other parameters are chosen as p1 = 1.08, p2 = 0.05, ε0 = 0.01, ε1 = 1.2. All the initial
values of the system states are assumed to be set randomly. The simulations were conducted
on a PC computer with an Intel(R) Pentium(R) two cores CPU with G4400@3.30GHz and a
3.30 GHz processor, with 16 GB of memory, running MATLAB version 2022. In order to
carry out the simulations, a sample time of 0.01 was used. The procedure and algorithm for
calculating the input control signal u = [u1, u2, . . . , um]

T ∈ Rm×1 is as follows:

1. Calculate K and ξ (or one can set ξ = 0).
2. Calculate Ea and also Ei.
3. Calculate the sliding surface using Equation (9).
4. Calculate the switching gain β using Equation (23).
5. Calculate Vr via Equation (14).
6. Calculate Ua based on the previous parameters.
7. Calculate the elements of input vector u by numerical integration.

Example 1. The simulation results are shown in Figures 1–4 for two channels of input–output.
Figure 1 shows the good tracking of the first output and its derivatives. From Figure 2, we can see
that the switching gain increases at first to force the sliding surface toward zero in the presence of
uncertainty. In this case, chattering is seen in the input control signal of the state feedback and the
input control signal of the system. After that, the switching gain decreases, and the chattering is
removed from all closed loop signals such as the sliding surface, input signal of state feedback, and
input control of the system. Note that chattering-free of input control signal is very important, since
it is applied to the plant directly. The same good tracking and chattering-less in the input control
signal of the plant is also shown in Figures 3 and 4.
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Figure 4. (a) Sliding surface, (b) switching gain, (c) input control signal of state feedback, and the
(d) second input control signal of system in the second channel (in Example 1).

Example 2. All the parameters are chosen as in the previous example except the ψ(β), which
is set to zero; i.e., ψ(β) = 0. Only the sliding surface, switching gain, input control of state feedback,
and input control signal of the system are shown in the two channels. The drift and increase in the
switching gain are shown in Figures 5 and 6. This can cause instability of the closed loop system.
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From the figures presented in Examples 1 and 2, one can see the advantages of the
proposed approach in chattering suppression over traditional SMC schemes. Moreover,
due to negative feedback, the drift and instability can be avoided.

6. Conclusions

A new method of higher order sliding mode control (HOSMC) for nonlinear multi-
input multi-output (MIMO) systems is proposed. Linear state feedback was used at first,
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and then sliding mode control (SMC) was designed. After that, an adaptive procedure
was constructed, which can increase and decrease the switching gain based on the system
conditions. Therefore, using a combination of the HOSMC and adaptive switching gain
(ASG), the performance of the closed loop system in chattering suppression was improved.
To preserve the invariance property, as the most important characteristic of the SMC, finite
time convergence to the proportional-integral (PI) sliding surface was proved. Finally, in the
proposed approach, the upper bound of the uncertainty does not need to be available. The
proposed method is applied to the control of MIMO induction motors (IM). The simulation
results showed the effectiveness of this method. The proposed method also preserves all the
main properties of SMC, such as invariance and simplicity of a systematic implementation.
Future work can be based on designing fractional HOSMC for MIMO systems.

Author Contributions: Conceptualization, methodology, and writing: A.K.-M.; original draft prepa-
ration, validation, review, and editing: O.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: There is no data availability.

Acknowledgments: The authors wish to express their gratitude to the Basque Government, through
the project EKOHEGAZ II (ELKARTEK KK-2023/00051), to the Diputación Foral de Álava (DFA),
through the project CONAVANTER, to the UPV/EHU, through the project GIU20/063, and to the
MobilityLab Foundation (CONV23/14. Proy. 16) for supporting this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Young, K.D.; Utkin, V.I.; Ozguner, U. A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol. 1999, 7,

328–342. [CrossRef]
2. Li, Y.; Zhang, H.; Xie, X.; Xia, J. Stability analysis of a cart-pendulum model with variable convergence rate: A sliding mode

control approach for impulsive stochastic systems. Chaos Solitons Fractals 2023, 175, 114044. [CrossRef]
3. Rsetam, K.; Al-Rawi, M.; Cao, Z. Robust adaptive active disturbance rejection control of an electric furnace using additional

continuous sliding mode component. ISA Trans. 2022, 130, 152–162. [CrossRef] [PubMed]
4. Liu, K.; Wang, Y.; Ji, H.; Wang, S. Adaptive saturated tracking control for spacecraft proximity operations via integral terminal

sliding mode technique. Int. J. Robust Nonlinear Control 2021, 31, 9372–9396. [CrossRef]
5. Zhao, K.; Liu, W.; Zhou, R.; Dai, W.; Wu, S.; Qiu, P.; Yin, Y.; Jia, N.; Yi, J.; Huang, G. Model-free fast integral terminal sliding-mode

control method based on improved fast terminal sliding-mode observer for PMSM with unknown disturbances. ISA Trans. 2023,
in press. [CrossRef]

6. Zhang, L.; Tao, R.; Zhang, Z.-X.; Chien, Y.-R.; Bai, J. PMSM non-singular fast terminal sliding mode control with disturbance
compensation. Inf. Sci. 2023, 642, 119040. [CrossRef]

7. Shao, K.; Zheng, J.; Huang, K.; Wang, H.; Man, Z.; Fu, M. Finite-time control of a linear motor positioner using adaptive recursive
terminal sliding mode. IEEE Trans. Ind. Electron. 2020, 67, 6659–6668. [CrossRef]

8. Slotine, J.-J.E.; Li, W. Applied Nonlinear Control; Prentice-Hall: Hoboken, NJ, USA, 1991.
9. Perruquetti, W.; Pierre-Barbot, J. Sliding Mode Control in Engineering; Marcel Dekker: New York, NY, USA, 2002.
10. Gao, W.; Hung, J.C. Variable structure control of nonlinear systems: A new approach. IEEE Trans. Ind. Electron. 1993, 40, 45–55.
11. Hansen, A.; Li, Y.; Hedrick, J.K. Invariant sliding domains for constrained linear receding horizon tracking control. IFAC J. Syst.

Cont. 2017, 2, 12–17. [CrossRef]
12. Su, J.-P.; Wang, C.-C. Complementary sliding control of non-linear systems. Inter. J. Cont. 2002, 75, 360–368. [CrossRef]
13. Bartolini, G.; Pydynowski, P. An improved, chattering free, V.S.C. scheme for uncertain dynamical systems. IEEE Trans. Automat.

Contr. 1996, 41, 1220–1226. [CrossRef]
14. Bartolini, G.; Ferrara, A.; Usai, E.; Utkin, V.I. On multi-input chattering-free second-order sliding mode control. IEEE Trans.

Automat. Contr. 2000, 45, 1711–1717. [CrossRef]
15. Boiko, I.; Fridman, L.; Pisano, A.; Usai, E. Analysis of chattering in systems with second-order sliding modes. IEEE Trans. Automat.

Contr. 2007, 52, 2085–2102. [CrossRef]
16. Chen, M.-S.; Hwang, Y.-R.; Tomizuka, M. A state-dependent boundary layer design for sliding mode control. IEEE Trans. Automat.

Contr. 2002, 47, 1677–1681. [CrossRef]
17. Karami-Mollaee, A.; Shojaei, A.A.; Barambones, O.; Fauzi Othman, M. Dynamic sliding mode control of pitch blade wind turbine

using sliding mode observer. Trans. Inst. Meas. Control 2022, 44, 3028–3038. [CrossRef]

https://doi.org/10.1109/87.761053
https://doi.org/10.1016/j.chaos.2023.114044
https://doi.org/10.1016/j.isatra.2022.03.024
https://www.ncbi.nlm.nih.gov/pubmed/35428479
https://doi.org/10.1002/rnc.5774
https://doi.org/10.1016/j.isatra.2023.09.025
https://doi.org/10.1016/j.ins.2023.119040
https://doi.org/10.1109/TIE.2019.2937062
https://doi.org/10.1016/j.ifacsc.2017.11.001
https://doi.org/10.1080/00207170110112250
https://doi.org/10.1109/9.533691
https://doi.org/10.1109/9.880629
https://doi.org/10.1109/TAC.2007.908319
https://doi.org/10.1109/TAC.2002.803534
https://doi.org/10.1177/01423312221099304


Mathematics 2023, 11, 4558 16 of 16

18. Emelyanov, S.V.; Korovin, S.K.; Levant, A. Higher-order sliding modes in control systems. Comput. Math. Modeling. 1996, 7,
294–318. [CrossRef]

19. Barambones, O.; Cortajarena, J.A.; Calvo, I.; Conzales de Durana, J.M.; Alcorta, P.; Karami-Mollaee, A. Real time observer and
control scheme for a wind turbine system based on a high order sliding modes. J. Franklin Inst. 2021, 358, 5795–5819. [CrossRef]

20. Levant, A. Sliding order and sliding accuracy in sliding mode control. Inter. J. Contr. 1993, 58, 1247–1263. [CrossRef]
21. Bartolini, G.; Ferrara, A.; Usai, E. Chattering avoidance by second-order sliding mode control. IEEE Trans. Automat. Contr. 1998,

43, 241–246. [CrossRef]
22. Amer, A.F.; Sallam, E.A.; Elawady, W.M. Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar

robot manipulators. Appl. Soft Comput. 2011, 11, 4943–4953. [CrossRef]
23. Xu, G.; Liu, F.; Xiu, C.; Sun, L.; Liu, C. Optimization of hysteretic chaotic neural network based on fuzzy sliding mode control.

Neurocomputing 2016, 189, 72–79. [CrossRef]
24. Yildiz, Y.; Sabanovic, A.; Abidi, K. Sliding-mode neuro-controller for uncertain systems. IEEE Trans. Ind. Electron. 2007, 54,

1676–1685. [CrossRef]
25. Hao, Z.; Xing-Yuan, W.; Xiao-Hui, L. Synchronization of complex-valued neural network with sliding mode control. J. Franklin

Inst. 2016, 353, 345–358. [CrossRef]
26. Yang, Y.; Yan, Y. Neural network approximation-based nonsingular terminal sliding mode control for trajectory tracking of robotic

airships. Aerosp. Sci. Technol. 2016, 54, 192–197. [CrossRef]
27. Wu, H.; Wang, L.; Niu, P.; Wang, Y. Global projective synchronization in finite time of nonidentical fractional-order neural

networks based on sliding mode control strategy. Neurocomputing 2017, 235, 264–273. [CrossRef]
28. Karami-Mollaee, A.; Tirandaz, H.; Barambones, O. State tracking control of nonlinear systems using neural adaptive dynamic

sliding mode. Trans. Inst. Meas. Contr. 2019, 41, 3033–3042. [CrossRef]
29. Boiko, I.; Fridman, L. Analysis of chattering in continuous sliding-mode controllers. IEEE Trans. Autom. Control 2005, 50,

1442–1446. [CrossRef]
30. Boiko, I.; Fridman, L.; Iriarte, R. Analysis of chattering in continuous sliding mode control. In Proceedings of the 2005 IEEE

American Control Conference (ACC), Portland, OR, USA, 8–10 June 2005; pp. 2439–2444.
31. Man, Z.; Poplinsky, A.P.; Wu, H.R. A robust terminal sliding-mode control scheme for rigid robot manipulators. IEEE Trans.

Autom. Control 2005, 39, 2439–2444.
32. Shao, K.; Zheng, J.; Tang, R.; Li, X.; Man, Z.; Liang, B. Barrier function based adaptive sliding mode control for uncertain systems

with input saturation. IEEE/ASME Trans. Mechatron. 2022, 27, 4258–4268. [CrossRef]
33. Karami-Mollaee, A.; Tirandaz, H. Estimation of load torque in induction motors via dynamic sliding mode control and new

nonlinear state observer. J. Mech. Sci. Tech. 2018, 32, 2283–2288. [CrossRef]
34. Karami-Mollaee, A.; Tirandaz, H.; Barambones, O. Dynamic sliding mode position control of induction motors based load torque

compensation using adaptive state observer. COMPEL 2018, 37, 2249–2262. [CrossRef]
35. Yousef, H.A.; Wahba, M.A. Adaptive fuzzy MIMO control of induction motors. Expert Sys. Appl. 2009, 13, 4171–4175. [CrossRef]
36. Lee, H.; Utkin, V.-I. Chattering suppression methods in sliding mode control systems. Annu. Rev. Contr. 2007, 31, 179–188.

[CrossRef]
37. Khalid, K.M.; Spurgeon, S.K. Robust MIMO water level control in interconnected twin-tanks using second order sliding mode

control. Contr. Eng. Pract. 2006, 14, 375–386.
38. Laghrouche, S.; Plestan, F.; Glumineau, A. Higher order sliding mode control based on optimal linear quadratic control. In

Proceedings of the 2003 European Control Conference (ECC), Cambridge, UK, 1–4 September 2003.
39. Levant, A. Universal SISO sliding-mode controllers with finite time convergence. IEEE Trans. Automat. Contr. 2001, 49, 1447–1451.

[CrossRef]
40. Levant, A. Higher-order sliding modes, differentiation and output-feedback control. Int. J. Contr. 2003, 76, 924–941. [CrossRef]
41. Levant, A. Homogeneity approach to high-order sliding mode design. Automatica 2005, 41, 823–830. [CrossRef]
42. Edvards, C.; Spurgeon, S. Sliding Mode Control: Theory and Applications; Taylor and Francis: Milton Park, Oxfordshire, 1998.
43. Zhihong, M.; Glumineau, X.H.Y. Terminal sliding mode control of MIMO linear systems. IEEE Trans. Circuits Syst. 1997, 44,

1065–1070. [CrossRef]
44. Yang, J.; Li, X.; Fei, J. Intelligent global fast terminal sliding mode control of active power filter. Mathematics 2023, 11, 919.

[CrossRef]
45. Khalil, H.K. Nonlinear Systems; Prentice-Hall: Englewood Cliffs, NJ, USA, 1996.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/BF01128162
https://doi.org/10.1016/j.jfranklin.2021.05.022
https://doi.org/10.1080/00207179308923053
https://doi.org/10.1109/9.661074
https://doi.org/10.1016/j.asoc.2011.06.005
https://doi.org/10.1016/j.neucom.2015.12.055
https://doi.org/10.1109/TIE.2007.894719
https://doi.org/10.1016/j.jfranklin.2015.11.014
https://doi.org/10.1016/j.ast.2016.04.021
https://doi.org/10.1016/j.neucom.2017.01.022
https://doi.org/10.1177/0142331218819705
https://doi.org/10.1109/TAC.2005.854655
https://doi.org/10.1109/TMECH.2022.3153670
https://doi.org/10.1007/s12206-018-0439-7
https://doi.org/10.1108/COMPEL-12-2017-0525
https://doi.org/10.1016/j.eswa.2008.04.004
https://doi.org/10.1016/j.arcontrol.2007.08.001
https://doi.org/10.1109/9.948475
https://doi.org/10.1080/0020717031000099029
https://doi.org/10.1016/j.automatica.2004.11.029
https://doi.org/10.1109/81.641769
https://doi.org/10.3390/math11040919

	Introduction 
	Problem Formulation 
	Controller Design 
	Adaptive Approach 
	Simulation Results 
	Conclusions 
	References

