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ABSTRACT

In this dissertation. we document the progress in the control design for a class of MIMO

nonlinear uncertain system from five papers. In the first part, we address the problem of

adaptive control design for a class of multi-input multi-output (MIMO) nonlinear systems. A

Lypaunov based singularity free control law, which compensates for parametric uncertainty

in both the drift vector and the input gain matrix, is proposed under the mild assumption

that the signs of the leading minors of the control input gain matrix are known. Lyapunov

analysis shows global uniform ultimate boundedness (GUUB) result for the tracking error

under full state feedback (FSFB). Under the restriction that only the output vector is avail-

able for measurement, an output feedback (OFB) controller is designed based on a standard

high gain observer (HGO) stability under OFB is fostered by the uniformity of the FSFB

solution. Simulation results for both FSFB and OFB controllers demonstrate the efcacy of

the MIMO control design in the classical 2-DOF robot manipulator model.

In the second part, an adaptive feedback control is designed for a class of MIMO nonlin-

ear systems containing parametric uncertainty in both the drift vector and the input gain

matrix, which is assumed to be full-rank and non-symmetric in general. Based on an SDU

decomposition of the gain matrix, a singularity-free adaptive tracking control law is pro-

posed that is shown to be globally asymptotically stable (GAS) under full-state feedback.
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Output feedback results are facilitated via the use of a high-gain observer (HGO). Under

output feedback control, ultimate boundedness of the error signals is obtained the size of

the bound is related to the size of the uncertainty in the parameters. An explicit upper

bound is also provided on the size of the HGO gain constant.

In third part, a class of aeroelastic systems with an unmodeled nonlinearity and external

disturbance is considered. By using leading- and trailing-edge control surface actuations, a

full-state feedforward/feedback controller is designed to suppress the aeroelastic vibrations

of a nonlinear wing section subject to external disturbance. The full-state feedback control

yields a uniformly ultimately bounded result for two-axis vibration suppression. With the

restriction that only pitching and plunging displacements are measurable while their rates

are not, a high-gain observer is used to modify the full-state feedback control design to an

output feedback design. Simulation results demonstrate the ef cacy of the multi-input multi-

output control toward suppressing aeroelastic vibration and limit cycle oscillations occurring

in pre and post utter velocity regimes when the system is subjected to a variety of external

disturbance signals. Comparisons are drawn with a previously designed adaptive multi-input

multi-output controller.

In the fourth part, a continuous robust feedback control is designed for a class of high-order

multi-input multi-output (MIMO) nonlinear systems with two degrees of freedom containing

unstructured nonlinear uncertainties in the drift vector and parametric uncertainties in the

high frequency gain matrix, which is allowed to be non-symmetric in general. Given some

mild assumptions on the system model, a singularity-free continuous robust tracking con-
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trol law is designed that is shown to be semi-globally asymptotically stable under full-state

feedback through a Lyapunov stability analysis. The performance of the proposed algorithm

have been verified on a two-link robot manipulator model and 2-DOF aeroelastic model.
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CHAPTER 1

INTRODUCTION

Most real-world systems comprise multiple interrelated states which are simultaneously af-

fected by multiple control inputs or disturbances. For example, a typical industrial robotic

manipulator may contain 6 or even more Degree of Freedoms (DOFs) with multiple actu-

ators. In a chemical plant, there may be hundreds or even thousands of state variables

with strong and complicated interactions and various inputs. The simplest airplane has at

least three main control surfaces, namely, ailerons, elevator, and rudder to control the roll,

pitch, and yaw angles of the aircraft. To improve the flight performance and accomplish cer-

tain tasks, secondary control surfaces are employed in advanced modern aircraft, e.g., both

Trailing Edge Control Surface (TECS) and Leading Edge Control Surface (LECS) have been

applied in the wing section model to suppress aeroelastic flutter and Limit Circle Oscillations

(LCOs) that would yield to catastrophic failure. Obviously, all these kinds of Multi-Input

Multi-Output (MIMO) systems are complex to model, understand, and control, which makes

the MIMO control design much more interesting and challenging than the Single-Input Single

Output (SISO) counterpart.
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This dissertation presents progress in Lyapunov-based design and engineering applica-

tion in the research field of MIMO control design for a class of nonlinear MIMO systems.

Given different model structures, properties, and performance requirements, robust adaptive

control, adaptive output control, model-free control, and continuous robust control design

have been proposed and verified in simulation on robot manipulators and aeroelastic models

with multiple control surfaces. The future work during the rest of my Ph. D. study will

focus on generalizing the continuous robust control design procedure for the systems with

arbitrary dimension of input and output and adaptive output-feedback block-backstepping

control design for systems with arbitrary relative degree.
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CHAPTER 2

BACKGROUND

The control design problem for the minimum phase Linear Time Invariant (LTI) SISO sys-

tems with parametric or structure uncertainty has successfully solved as far as twenty years

ago [2]. Early results related to the adaptive control design problem for uncertain MIMO

linear systems can be found in the work of [2, 3, 4]. Most of these approaches were based

on assuming certain properties on High Frequency Gain (HFG) matrix Kp. In [2], Kp was

assumed to be known while [5] assumed knowledge of the upper bound of ‖Kp‖. In [3], the

existence of a matrix Sp was assumed such that KpSp is positive definite and symmetric. The

matrix decomposition approach Kp = LU used in [6] required apriori knowledge of the lower

bounds of the diagonal entries for the matrix U . By supposing that the signs of the leading

principal minors of Kp were known, an adaptive controller was designed for minimum-phase

systems with relative degree one in [7], and later extended in [8] to solve MRAC problem for

systems with uniform relative degree two by using a matrix decomposition approach which

facilitates the ensuing algebraic loop free control design.

For uncertain MIMO nonlinear systems, research has been focused on special classes of

such systems. Under the assumption that the control gain matrix is known, adaptive back-
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stepping was applied in [9]. For a class of feedback linearizable systems, various controllers

were designed in [10, 11, 12]. A general procedure was presented in [13] to design switching

adaptive controllers for several classes of systems. In [14], a neural network-based adap-

tive controller was formulated for a class of MIMO nonlinear systems where the unknown

control gain matrix is positive-definite but not symmetric. Three control parametrizations

were proposed in [15] to design stable direct MRAC for a class of MIMO linear systems with

minimum phase, diagonal interactor, and arbitrary vector relative degree. In [16], adap-

tive neural controllers were designed for two classes of MIMO systems with block-triangular

forms. Later in [17], an adaptive neural controller is proposed for the MIMO nonlinear

system with time-varying delay while its dead-zone and gain sign are unknown. When the

sign of the high-frequency gain is unknown, an adaptive control is proposed in [18] where

the so-called Nussbaum gain was utilized. In [19], the output of a class of MIMO systems

was tracked via full-state feedback adaptive control, which achieves global asymptotic con-

vergence for the tracking error. In [20], an adaptive output feedback control was designed to

extend the work in [19] but the proposed control law was susceptible to singularities owing

to the existence of an algebraic loop in the controller. In [21], a robust adaptive control law

was proposed with guaranteed performance through application of an error transformation

while neural network approximator was utilized to compensate the unknown nonlinearity

in the drift vector and HFG matrix. Later in [22], a robust adaptive switching control

law was proposed to solve the Prescribed Performance Adaptive Control (PPAC) problem.

An inner loop controller was designed in [23] with guaranteed robust transient performance

4



through designing a feedback loop that approximates the difference between the system and

the nominal model to generate the compensating signal. In [24], a backstepping control law

was designed to solve the tracking problem for a class of MIMO system with adaptive mech-

anism embedded. Applications of control design for MIMO uncertain systems to thermal

management, visual servoing, and aeroelasticity can be found in [25, 26, 27, 28].
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CHAPTER 3

PROBLEM STATEMENT

For the following general affine in the control nonlinear MIMO system

x(n) = h
(
x, ẋ, ẍ, ..., x(n−1)

)
+G

(
x, ẋ, ẍ, ..., x(n−1)

)
u, (3.1)

full state feedback or output feedback control laws are designed given certain properties on

the drift vector h (·) and HFG matrix G (·) as well as various performance requirements. Note

that in (3.1), x(i) (t) ∈ Rm, i = 0, 1, ..., n−1 are the system states variables while y (t) = x (t)

∈ Rm denotes the output. One can further define x , [xT ẋT ... (x(n−2))T ]T ∈ Rmn−m to

facilitate the ensuing analysis while u(t) ∈ Rm represents the control input signal. We also

define a smooth desired trajectory xd(t) ∈ Rm in the sense that

x
(i)
d (t) ∈ L∞, i = 0, 1, ..., n+ 1 (3.2)

and xd ,

[
xTd ẋTd ...

(
x

(n−2)
d

)T ]T ∈ Rmn−m. The drift vector h
(
x,x(n−1)

)
∈ Rm and

HFG matrix G (x) ∈ Rm×m are assumed to be locally Lipschitz in their arguments over the

domain of interest in this dissertation. In this dissertation, we suppose that G (x) is a real

matrix with nonzero leading principal minors. The control design problems solved in this

dissertation are listed as follows:
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• Robust adaptive control design without algebraic loop [29]: We address the problem

of adaptive control design for a subclass of multi-input multi-output (MIMO) nonlin-

ear systems defined in (4.1). A Lyapunov based singularity free control law, which

compensates for parametric uncertainty in both the drift vector and the input gain

matrix, is proposed under the mild assumption that the signs of the leading minors

of the control input gain matrix are known. Lyapunov analysis shows global uniform

ultimate boundedness (GUUB) result for the tracking error under full state feedback.

Under the restriction that only the output vector is available for measurement, an out-

put feedback controller is designed based on a standard high gain observer — stability

under output feedback is fostered by the uniformity of the full state feedback solution.

Simulation results for both full-state and output feedback controllers demonstrate the

efficacy of the MIMO control design in the classical 2-DOF robot manipulator model.

• Adaptive output feedback control design and its stability analysis [31]: In this work,

an adaptive feedback control is designed for a class of MIMO nonlinear systems con-

taining parametric uncertainty in both the drift vector and the input gain matrix,

which is assumed to be full-rank and non-symmetric in general. Based on an SDU

decomposition of the gain matrix, a singularity-free adaptive tracking control law is

proposed that is shown to be Globally Asymptotically Stable (GAS) under full-state

feedback. Output Feedback (OFB) results are facilitated via the use of a high-gain

observer (HGO). Under output feedback control, ultimate boundedness of the error

signals is obtained – the size of the bound is related to the size of the uncertainty in

7



the parameters. An explicit upper bound is also provided on the size of the HGO gain

constant.

• Model-free MIMO nonlinear control design for an aeroelastic system [30]: In this work,

a class of aeroelastic systems with an unmodeled nonlinearity and external disturbance

is considered. By using leading- and trailing-edge control surface actuations, a full-state

feedforward/feedback controller is designed to suppress the aeroelastic vibrations of a

nonlinear wing section subject to external disturbance. The Full State Feedback (FSB)

control yields a Uniformly Ultimately Bounded (UUB) result for two-axis vibration

suppression. With the restriction that only pitching and plunging displacements are

measurable while their rates are not, a HGO is used to modify the full-state feedback

control design to an OFB design. Simulation results demonstrate the efficacy of the

MIMO control toward suppressing aeroelastic vibration and Limit Cycle Oscillations

(LCOs) occurring in pre- and post-flutter velocity regimes when the system is subjected

to a variety of external disturbance signals. Comparisons are drawn with a previously

designed adaptive MIMO controller.

• Continuous robust control design for 2-DOF MIMO nonlinear system [32]: In this

work, a continuous robust feedback control is designed for a class of high-order MIMO

nonlinear systems with two degrees of freedom containing unstructured nonlinear un-

certainties in the drift vector and parametric uncertainties in the high frequency gain

matrix, which is allowed to be non-symmetric in general. Given some mild assump-

tions on the system model, a singularity-free continuous robust tracking control law
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is designed that is shown to be semi-globally asymptotically stable under full-state

feedback through a Lyapunov stability analysis. Simulation results demonstrate the

efficacy of the proposed control design in a classical 2-DOF robot model. In the special

case that G is a unknown constant matrix [33], the proposed control design has been

applied to the 2-DOF aeroelastic wing section model to suppress aeroelastic flutter and

LCOs.

9



CHAPTER 4

METHODOLOGY

4.1 Robust Adaptive Control Design

We consider a class of MIMO nonlinear system of the form

x(n) = h
(
x, ẋ, · · ·, x(n−1), θ1

)
+G

(
x, ẋ, · · ·, x(n−2), θ2

)
u (4.1)

where x(i) (t), x (t), u (t) have been defined in (3.1). For the purpose of adaptive control

design, we suppose that h (·) and G (·) are affine in the unknown constant parameter vector

θi ∈ Rli ∀ i = 1, 2. The following matrix decomposition result plays a critical role in the

control design

Lemma 1 Any real matrix G ∈ Rm×m with nonzero leading principal minors can be decom-

posed as [1]

G = SDU (4.2)

where S ∈ Rm×m is a symmetric positive definite matrix, D ∈ Rm×m is a diagonal matrix

with diagonal entries +1 or −1, U ∈ Rm×m is a unity upper triangular matrix. The proof

for Lemma 1 can be found in [1].

10



We make two mild assumptions for the purposes of control design, first that there exists

a lower bound for the determinant of S such that det (S) ≥ ε > 0, and second that D is

known. Motivated by Lemma 1, (4.1) can be given as

M (x, θ2)x(n) = ϕ
(
x,x(n−1), θ1, θ2

)
+ det (S)DU (x, θ2)u (4.3)

where S (x, θ2) , U (x, θ2) , and D have been previously defined. M (x, θ2) , adj (S) ∈ Rm×m

is a symmetric and positive definite matrix while ϕ(x,x(n−1), θ1, θ2) , adj (S)h(x,x(n−1), θ1) ∈

Rm is an auxiliary vector. Here, det (S) can be linearly parameterized as follows

det (S) = ys (x) θs (4.4)

where ys (x) ∈ R1×p2 is the regression vector while θs ∈ Rp2 is the unknown constant param-

eter vector. We assume that the matrix M(·) is bounded by

m ‖ξ‖2 6 ξTM (·) ξ 6 m̄ (·) ‖ξ‖2 ∀ξ ∈ Rm (4.5)

where m ∈ R denotes a positive constant function and m̄ (·) ∈ R represents a positive,

non-decreasing function.

The control objective is to guarantee the practical convergence of the tracking error as

well as to ensure boundedness for all signals during closed-loop operation. The tracking error

e1 ∈ Rm is defined as follows

e1 = xd − x. (4.6)

11



In order to simplify the control design procedure, the following auxiliary error signals are

designed as

e2 = ė1 + e1

e3 = ė2 + e2 + e1

e4 = ė3 + e3 + e2

...

en = ėn−1 + en−1 + en−2.

(4.7)

From [34], it is easy to see that

ei (t) =
i−1∑
j=0

cije
(j)
1 (t) ∀ i = 2, 3, ..., n (4.8)

where the known constant coefficients cij are generated via a Fibonacci number series [34].

Furthermore, we define the error signal r (t) ∈ Rm and z (t) ∈ Rmn as follows

r = en + en−1, z , [ eT1 eT2 ... eTn−1 rT ]T . (4.9)

By taking the time derivative of r in (4.9), we obtain

Mṙ = −1

2
Ṁr + Y θ − det (S)Du− en−1 (4.10)

where the linear parameterization Y (·) θ ∈ Rm is defined as follows

Y (·) θ = M

(
x

(n)
d +

n−2∑
j=0

an,je
(j+1)
1 + ėn−1

)
− ϕ

(
x,x(n−1), θ1, θ2

)
+1

2
Ṁr − det (S)DŪ (x, θ2)u+ en−1

(4.11)

where Y (·) ∈ Rm×p1 is a measurable regression matrix while θ ∈ Rp1 is the correspond-

ing unknown system parameter vector containing θ1 and θ2. Also note that Ū (x, θ2) =

U (x, θ2)− Im is a strictly upper triangular matrix.

12



Assume that all state variables in (4.1) are available for measurement. We begin by

defining the following auxiliary control matrices

T = diag

[
||Y1||2 · · · ||Ym||2

]
∈ Rm×m

R = diag

[
||ys||2||W1||2 · · · ||ys||2||Wm||2

]
∈ Rm×m

(4.12)

where ys has previously been defined in (4.4), Yi (·) denotes the ith row of the measurable

regression matrix Y (·) while Wi (·) denotes the ith row of the following measurable auxiliary

control vector

W =
(
ysθ̂s

)−1 (
Y θ̂ +Kr + kTTr

)
∈ Rm. (4.13)

Based on the open-loop dynamics of (4.10) as well as the subsequent stability analysis, we

propose the following state feedback adaptive control law

u(t) = D−1

[(
ysθ̂s

)−1 (
Y θ̂ +Kr + kTTr

)
+ kRRr

]
(4.14)

where K ∈ Rm×m is a positive-definite, diagonal gain matrix while kT ∈ R and kR ∈ R are

auxiliary control gains. Motivated by [35], the parameter adaptation law for θ̂ (t) ∈ Rp1 is

given as follows

.

θ̂ = Proj1
{

ΓY T r, θ̂
}

(4.15)

where Γ ∈ Rp1×p1 is a constant diagonal, positive definite matrix. The parameter projection

operator Proj1{·} is designed to bound θ̂ (t) in a known compact set Ωε in the sense that

θ̂ (t) ∈ Ωε ∀t > 0 if θ̂ (0) ∈ Ωε. (4.16)

Similarly, the parameter adaptation law for θ̂s (t) ∈ Rp2 is designed as follows

˙̂
θs = Proj2 {Γsµ} , µ = − yTs

ysθ̂s

(
Y θ̂ +Kr + kTTr

)T
r (4.17)
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where Γs ∈ Rp2×p2 is a constant diagonal, positive definite matrix and Proj2{·} is a parameter

projection operator as defined in [9] and [36]. This projection operation is used to ensure

that ysθ̂s ≥ ε > 0 and θ̂s ∈ Ωεs for all time if θ̂s (0) ∈ Ωεs. For details, the reader is referred

to [19]. The triangular structure of Ū in (4.11) implies that ui only depends on ui+1, . . . , um

while um can be determined independently of other control inputs. So, the control law can

be implemented by designing um first, then using that design in the computation of um−1

and so forth until we finish the control design for u1. The proposed control design effectively

solves the algebraic loop problem of the previous method in [20].

After substituting (4.14) into (4.10), and subsequently multiplying both sides by M(x,θ2),

one can obtain the following closed-loop system dynamics

Mṙ = −1

2
Ṁr − en−1 −Kr + Y θ̃ − kTTr −

ysθ̃s

ysθ̂s

(
Y θ̂ +Kr + kTTr

)
− ysθskRRr (4.18)

where θ̃ (t) and θ̃s (t) are parameter estimation errors defined as follows

θ̃ (t) , θ − θ̂, θ̃s (t) , θs − θ̂s (4.19)

In order to analyze the stability of the full state feedback control law in (4.14), we define

a non-negative Lyapunov candidate function V (t, z) ∈ R as follows

V (t, z) =
1

2

n−1∑
i=1

eTi ei +
1

2
rTMr (4.20)

which can be upper and lower bounded as

α1 (‖z‖) 6 V 6 α2 (‖z‖) (4.21)
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where α1 (‖z‖) and α2 (‖z‖) are class K∞ functions given as

α1 (‖z‖) , 1

2
min(1,m) ‖z‖2 , α2 (‖z‖) , 1

2
max(1, m̄(·)) ‖z‖2 . (4.22)

where we have utilized the assumption stated in (4.5). By taking the time derivative of (4.20),

and then substituting from (4.7) and (4.18), one can obtain following result for V̇ (t, z)

V̇ = −
n−1∑
i=1

eTi ei − eTn−1en−1 − rTKr + rT
(
Y θ̃ − kTTr

)
−rTysθskRRr − rT

ysθ̃s

ysθ̂s

(
Y θ̂ +Kr + kTTr

)
.

(4.23)

By utilizing the expressions given in (4.12) and (4.13), we can rewrite the expression in (4.23)

as follows

V̇ 6 −
n−1∑
i=1

eTi ei − eTn−1en−1 − rTKr +
m∑
i=1

(
−kT ‖Yi‖2 ‖ri‖2 +

∥∥∥θ̃∥∥∥ ‖Yi‖ ‖ri‖)
+

m∑
i=1

(
−ysθskR ‖ys‖2 ‖Wi‖2 ‖ri‖2 + ‖ys‖

∥∥∥θ̃s∥∥∥ ‖Wi‖ ‖ri‖
)
.

(4.24)

From simple algebraic manipulations, it is clear that the following terms

m∑
i=1

(
−kT ‖Yi‖2 ‖ri‖2 +

∥∥∥θ̃∥∥∥ ‖Yi‖ ‖ri‖) ,
m∑
i=1

(
−ysθskR ‖ys‖2 ‖Wi‖2 ‖ri‖2 + ‖ys‖

∥∥∥θ̃s∥∥∥ ‖Wi‖ ‖ri‖
) (4.25)

reach their maximum value at

√
kT ‖Yi‖ ‖ri‖ =

∥∥∥θ̃∥∥∥
2
√
kT

and
√
ysθskR ‖ys‖ ‖Wi‖ ‖ri‖ =

∥∥∥θ̃s∥∥∥
2
√
ysθskR

(4.26)

∀ i = 1...m. Thus, V̇ (t, z) can be further upperbounded as

V̇ ≤ −

(
m−1∑
i=1

eTi ei + eTn−1en−1 + rTKr

)
+

m∑
i=1


∥∥∥θ̃∥∥∥2

4kT
+

∥∥∥θ̃s∥∥∥2

4 det (S) kR

 (4.27)
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where we have utilized the fact det (S) = ysθs. Based on the definition of z (t) given in (4.9),

V̇ (t, z) of (4.27) can be further upperbounded as follows

V̇ 6 −λ3 ‖z‖2 + δ (4.28)

where λ3 , min {1, λmin(K)} , λmin(K) denotes the minimum eigenvalue of K, while δ is

given by

δ =
m∑
i=1

(
εδ1 + δ2

4εk

)
, k = min (kT , kR) (4.29)

In the above expression, ε is the aforementioned lower bound for det (S) while δ1, δ2 ∈ R are

positive constants defined as follows

δ1 = sup
θ̂∈Ωε

∥∥∥θ̃∥∥∥2

, δ2 = sup
θ̂s∈Ωεs

∥∥∥θ̃s∥∥∥2

(4.30)

where the supremum exist due to the boundedness of the parameter estimates resulting from

the parameter projection operators defined in (4.15) and (4.17). From (4.28), it is also easy

to show that

V̇ 6 −γ (‖z‖) , ∀ ‖z‖ > ς > 0 (4.31)

where ς =
√
λ−1

3 δ while γ (‖z‖) is a function that assumes positive values. From the results

in (4.22) and (4.31), all conditions for Theorem 4.18 in [37] are satisfied. So one can easily

draw the conclusion that error signal ‖z‖ is Globally Uniformly Ultimately Bounded (GUUB)

in the sense that

‖z‖ < β (‖z0‖ , t− t0) , ∀t0 < t ≤ t0 + T

‖z‖ ≤ α−1
1 (α2 (ς)) , ∀t ≥ t0 + T

(4.32)
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where β (·, ·) is a class KL function while T depends on ‖z0‖ and ς. From (4.29), it is clear

that the upper bound for ‖z‖ can be made arbitrarily small by choosing k large enough.

Also note that similar results can be obtained by using Theorem 2.15 in [38].

Remark 1 We remark here that it is possible to augment the Lyapunov function of (4.20)

with quadratic terms related to the parameter estimation errors θ̃ (t) and θ̃s (t) in order to fos-

ter a global asymptotic stability (GAS) result — instead, a UUB result is obtained here via the

damping of the estimation error through nonlinear injection of the terms D−1
(
ysθ̂s

)−1

kTTr

and D−1kRRr in the control design given in (4.14). The GAS result is not pursued because

the subsequent output feedback control design is fostered by the uniformity of the result ob-

tained here. Thus, asymptotic convergence under state feedback is sacrificed here in order to

obtain uniform practical convergence under state and subsequently output feedback.

When the only available measurement is the system output vector while all other system

states are not measurable, the error signal z (t) can be obtained from estimating

ẑ (t) =

[
êT1 êT2 · · · êTn−1 r̂T

]T
∈ Rmn (4.33)

through use of the following high gain observer (HGO) [39]

·
ê1 = ê2 − ê1 +

a1

ε
(e1 − ê1)

·
ê2 = ê3 − ê2 − ê1 +

a2

ε2
(e1 − ê1)

...

·
ên−1 = r̂ − 2ên−1 − ên−2 +

an−1

εn−1
(e1 − ê1)

·
r̂ =

an
εn

(e1 − ê1)

(4.34)
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For the details of the determination of ai ∈ Rm×m ∀ i = 1, 2, · · ·, n and ε, the reader is

referred to [39].

Although the High Gain Observer (HGO) is a powerful tool in solving state estimation

problems and is widely used in numerous fields, it also suffers from a serious drawback,

namely the peaking phenomenon, due to the use of high gain. In order to suppress the

amplitude peaking, we modify the full-state control design of (4.14) to an output feedback

saturated control

u(t) = D−1

[(
ŷsθ̂s

)−1 [
Ŷ θ̂ +Ksat {r̂}+ kT T̂ sat {r̂}

]
+ kRR̂sat {r̂}

]
(4.35)

where sat{·} denotes a standard saturation function, ŷs (·) , Ŷ (·) , T̂ (·), and R̂ (·) are the

same measurable regressor and auxiliary control signals defined in (4.4), (4.11), and (4.12)

with respect to sat{ẑ (t)}, while K, kT and kR are control gains that have been previously

defined. Here, the saturation is applied in the variable ẑ (t) outside a compact set. In (4.35),

θ̂ (t) and θ̂s (t) are generated by the projection algorithm in (4.15) and (4.17) with respect

to Ŷ (t) and sat{r̂ (t)}

˙̂
θ = Proj1

{
ΓŶ T sat{r̂}, θ̂

}
,

˙̂
θs = Proj2 {Γsµ̂}

µ̂ = − ŷTs

ŷsθ̂s

(
Ŷ θ̂ +Ksat{r̂}+ kT T̂ sat {r̂}

)T
sat{r̂}

(4.36)

For details of the stability analysis of the output feedback control design, the reader is

referred to [20].

In the simulation, the following two DOF robot manipulator model has been considered

[40]
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 τ 1

τ 2

 =

 H11 H12

H21 H22


 q̈1

q̈2

+

 −hq̇2 −h(q̇1 + q̇2)

hq̇1 0


 q̇1

q̇2

 (4.37)

where qi (t) denotes the ith DOF position. H11 = a1 + 2a3 cos q2 + 2a4 sin q2, H12 = H21 =

a2 + a3 cos q2 + a4 sin q2, H22 = a2, h = a3 sin q2 − a4 sin q2. The control input is defined as

 τ 1

τ 2

 = a(q1, q2)

 1 1

0 1


 u1

u2

 ,
a(q1, q2) = H11H22 −H12H21

(4.38)

where a1 = 4.42, a2 = 0.97, a3 = 1.04, and a4 = 0.60. In (4.38), u1 (t), u2 (t) are the control

inputs. a (q1,q2) is a scalar function, which can be considered as a sort of environment related

factor (as in [41]), or items shown in the input-output module, e.g., see [36] and [42]. The

control objective is to make q (t) =

[
q1 (t) q2 (t)

]T
track the following reference trajectory

qd (t) = (1 − e−0.3t3)

[
30 sin (t) 45 sin (t)

]
deg. The initial conditions of the robot manipu-

lator are set to q1 (0) = q2 (0) = 0.05 rad and q̇1 (0) = q̇2 (0) = 0 rad . s−1. The control gains

in (4.14) have been chosen to be K = diag {7.5, 4.5}, kT = 0.1, and kR = 0.1 through trial-

and-error method. In (4.36), the gains for the adaptive parameter estimation law are chosen

as Γ = 0.01I9 and Γs = I3. The parameter estimates are initialized to the following values:

θ̂ (0) = [4.42, 0.97, 1.04, 0.60, 4.28, 0.62, 0.94, 1.08, 0.36]T , θ̂s (0) =

[
2.98 1.08 1.25

]T
. In

the FSFB scenario, Figure 4.1 shows the output tracking errors defined as e = qd (t)− q (t).

Fig. 4.2 shows the control input defined in (4.14). Fig. 4.3 shows a sampling of the results

from the parameter estimation (space constraints prevent us from showing all estimates). In
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Figure 4.1: Tracking Error under FSFB Control Input.

the OFB scenario, supposing that there is no sensor noise and sampling frequency is infinite,

we implement the HGO in (4.34) with parameters settings: n = 2, a1 = 0.91I2, a2 = 0.15I2,

and ε = 0.0029 obtained by trial and error. The maximum and minimum values for the

saturation for ẑ (t) are set at ±100. The simulation results show that the performance of

the FSFB control can be recovered by using the OFB control. Fig. 4.4 shows the tracking

errors. Fig. 4.5 shows the control input defined in (4.35). The parameter estimation results

under output feedback can be seen in Fig. 4.6.
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Figure 4.2: FSFB Control Input.
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Figure 4.3: Samples of Parameter Estimates under FSFB Control Input.
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Figure 4.4: Tracking Error Comparison between FSFB and OFB Control Input.
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Figure 4.5: Control Input Comparison between FSFB and OFB.
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Figure 4.6: Samples of Parameter Estimate Comparison between FSFB and OFB.

4.2 Adaptive Output Feedback Control Design

In the adaptive output feedback control design problem, the MIMO nonlinear system de-

fined in (4.1) is considered. Following the same procedure from (4.3) to (4.11) and taking

advantage of (4.8), the system open-loop dynamics can be compactly written as follows

ż(t) = Az +Bṙ (4.39)
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where z , [ eT1 eT2 ... eTn−1 rT ]T ∈ Rmn, A ∈ Rmn×mn, and B ∈ Rmn×m are defined as

follows

A ,



−Im Im 0m · · · 0m 0m

−Im −Im Im · · · 0m 0m

0m −Im −Im · · · 0m 0m

...
...

...
. . .

...
...

0m 0m 0m · · · −2Im Im

0m 0m 0m · · · 0m 0m


B ,

[
0m 0m 0m · · · 0m Im

]T

(4.40)

We firstly consider control design via full state feedback, i.e., we assume that x(i)(t),

i = 0, ..., n − 1 in (4.1) are measurable. Based on the open-loop dynamics of (4.10), (4.39),

and the subsequent stability analysis, the following state feedback adaptive control law is

proposed

u(t) = D−1

[(
ysθ̂s

)−1 (
Y θ̂ +Kr

)]
(4.41)

whereK ∈ Rm×m is a positive-definite, constant diagonal control gain matrix. The parameter

adaptation laws for θ̂ (t) and θ̂s (t) are designed as follows

.

θ̂ = Proj1
{

ΓY T r, θ̂
}

,
˙̂
θs = Proj2 {Γsµ} (4.42)

where µ = −yTs
(
Y θ̂ +Kr

)T (
ysθ̂s

)−1

r while Γ ∈ Rq×q and Γp×ps ∈ R are constant diagonal,

positive definite matrices. Here, Proj1{·} is a parameter projection operator defined in [35]

which is employed in order to bound θ̂ (t) to a known compact set Ωθ in the sense that
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θ̂ (t) ∈ Ωθ, ∀t > 0 if θ̂ (0) ∈ Ωθ while Proj2{·} is a parameter projection operator [9, 36] used

to ensure that (a) ysθ̂s > δs > 0, and (b) the estimate θ̂s stays inside a hypercube convex

set denoted by Ωθs ∀t > 0 if θ̂s (0) ∈ Ωθs . For details, the reader is referred to [19]. After

substituting (4.41) in (4.10), the closed-loop system dynamics for r can be obtained as

Mṙ = −1

2
Ṁr + Y θ̃ − en−1 −Kr −

ysθ̃s

(
Y θ̂ +Kr

)
ysθ̂s

(4.43)

where θ̃ (t) , θ − θ̂ and θ̃s (t) , θs − θ̂s are parameter estimation errors. Based upon the

boundedness of the parameters and the estimates (owing to the projection laws of (4.42)),

the parameter estimation errors θ̃ (t) and θ̃s (t) belong, respectively, to compact sets Ω̃θ and

Ω̃θs . In order to analyze the stability of the proposed control law, a non-negative function

V0 (t, z̄) ∈ R is defined as follows

V0 (t, z̄) =
1

2

∑n−1

i=1
eTi ei +

1

2
rTMr +

1

2
θ̃
T

Γ−1θ̃ +
1

2
θ̃
T

s Γ−1
s θ̃s (4.44)

where z̄ ,

[
zT θ̃

T
θ̃
T

s

]T
. Note that (4.44) can be upper and lower bounded as

λ1 ‖z‖2 6 V0 6 λ2(‖z‖) ‖z‖2 (4.45)

where λ1 , 1
2

min(1,m,Γ−1,Γ−1
s ) and λ2(‖z̄‖) , 1

2
max(1, m̄(·),Γ−1,Γ−1

s ). After differentiat-

ing (4.44) along (4.42) and (4.43), one can obtain the following upperbound for V̇0 (t, z̄)

V̇0 (t, z̄) ≤ −
∑n−1

i=1
eTi ei − rTKr ≤ −λ3 ‖z‖2 (4.46)

where λ3 , min {1, λmin(K)} with λmin(K) denotes the minimum eigenvalue of K and we

have taken advantage of the fact that the projection operator ensures that θ̃
T
(
Y T r − Γ−1 ˙̂

θ
)
≤
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0 and that θ̃
T

s

(
µ− Γ−1

s
˙̂
θs

)
≤ 0. From (4.44) and (4.46), it can be seen that r (t) , ei (t)

∈ L∞ ∩ L2, ∀ i = 1, ..., n − 1 while θ̃s (t) , θ̃ (t) ∈ L∞. From (4.8), en (t) ∈ L∞ ∩ L2. Given

x
(i)
d (t) ∈ L∞, ∀ i = 0, 1, ..., n, it can now be seen that x(i) (t) ∈ L∞, ∀ i = 0...n − 1. From

the aforementioned boundedness claims, one can start from i = m and prove that ui (t)

∈ L∞, ∀ i = 1, ...,m by taking advantage of the fact that each uk (t) only depends upon

uj (t) , ∀ j = k+1, ...,m. Using (4.42)-(4.43), it can be seen that
.

θ̂ (t) ,
˙̂
θs (t), and ṙ (t) ∈ L∞.

From the previous boundedness assertions and the definitions in (4.8), it can be seen that

ėi (t) ∈ L∞, ∀ i = 1, ..., n. Since ∀ i = 1, ..., n, r (t) , ei (t) ∈ L∞ ∩ L2 and ṙ (t) , ėi (t) ∈ L∞,

one can utilize Barbalat’s Lemma [40] to prove global asymptotic stability in the sense that

lim
t→∞

r (t) , ei (t) = 0, ∀ i = 1, ..., n.

To facilitate the stability analysis under OFB control, we are motivated to demonstrate

the uniform boundedness of the closed-loop solution under FSFB control. It is easy to see

that the upperbound on V̇0 obtained in (4.46) can be manipulated as follows

V̇0 (t, z̄) 6 −
n−1∑
i=1

eTi ei − rTKr − θ̃
T
θ̃ − θ̃Ts θ̃s + δ0 (4.47)

where δ0 , maxθ̃∈Ω̃θ
θ̃
T
θ̃ + maxθ̃s∈Ω̃θs

θ̃
T

s θ̃s. Then, (4.47) can be further upperbounded to

obtain the following inequality

V̇0 (t, z̄) 6 −λ3 ‖z‖2 + δ0 (4.48)

where λ3 has been defined previously in (4.46). From (4.48), it is easy to see that the

upperbound on V̇0 (t, z̄) can be compactly represented as follows

V̇0 (t, z̄) 6 −γ (‖z‖) ,
{
z ∈ Rmn × Ω̃θ × Ω̃θs|λ−1

3 δ0 < ||z (t)||2 <∞
}

(4.49)

26



where γ (·) : R+ −→ R+ denotes a function that assumes positive values. Given the bound

in (4.45) and (4.49), uniform boundedness of the closed loop solution can be obtained in the

sense of Theorem 2.15 in [38].

Assuming x(t) as the only measurable state, the measurable error signal e1(t) can be

obtained through the high-gain observer defined in (4.34) in order to obtain an estimate

ẑ (t) ,

[
êT1 · · · êTn−1 r̂T

]T
∈ Rmn. To make for facile analysis in the singularly per-

turbed form, we further define scaled observer errors η(t) ,

[
ηT1 ηT2 · · · ηTn

]T
∈ Rmn

as follows

ηi(t) =
1

εn−i
(ei − êi) ∀i = 1, 2, · · ·, n− 1;

ηn(t) = r − r̂
(4.50)

where ẑ = z − Dηη while Dη , diag

{
εn−1Im εn−2Im · · · εIm Im

}
∈ Rmn×mn is a

diagonal gain matrix. After taking advantage of the design of (4.34) and differentiating

(4.50), one can compactly write the dynamics for the observer error system as follows

εη̇(t) = A0η(t) + εg (·) (4.51)
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where A0 ∈ Rmn×mn and g (·) ∈ Rmn are given as

A0 ,



−α1Im Im 0m · · · 0m

−α2Im 0m Im · · · 0m

...
...

...
. . .

...

−αn−1Im 0m 0m · · · Im

−αnIm 0m 0m · · · 0m


g , −

[
ηT1 εηT1 + ηT2 · · · εηTn−2 + 2ηTn−1 −ṙT

]T

(4.52)

where the constants αi ∀ i = 1, 2, · · ·, n are chosen such that A0 is Hurwitz. The boundary-

layer system
dη(τ)

dτ
= A0η(τ) (obtained by applying a change of variable τ = t/ε and then

setting ε = 0) induces a Lyapunov function W (η) = ηTP0η that satisfies the following

properties 
λmin(P0) ‖η‖2 6 W (η) 6 λmax(P0) ‖η‖2 ,

Ẇ = ∂W
∂η
η̇ 6 −‖η‖2 ,

∥∥∥∂W∂η ∥∥∥ 6 2 ‖P0‖ ‖η‖ .
(4.53)

where ‖P0‖ , λmax(P0). In the above equation, λmax(P0) denotes the maximum eigenvalue

of P0 ∈ Rmn×mn which is a p.d. matrix that satisfies P0A0 + AT0 P0 = −Imn. From (4.53),

it is clear that η(t) = 0 is a globally exponentially stable equilibrium of the boundary-layer

system.

From (4.51), the existence of
1

ε
e−ωt/ε in the solution of η(t) for some ω > 0 may cause so

called peaking phenomenon that can drive an OFB controller out of its region of attraction,

thereby finally causing instability. To reduce this destabilizing effects, we adapt the approach
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mentioned in [39] by modifying (4.41) to an output feedback saturated control law as

u(t) = D−1

[(
ŷsθ̂s

)−1 [
Ŷ θ̂ +Ksat {r̂}

]]
(4.54)

where sat{·} denotes a saturation function. ŷs (·) and Ŷ (·) are the same partial measurable

regression vector and matrix defined in (4.11) with respect to sat{ẑ (t)} instead of z (t). Here,

the saturation is applied in the variable ẑ (t) outside a compact set Dc , {z̄ ∈ Rmn × Ω̃θ

×Ω̃θs| V0(t, z̄) 6 c} where z̄, Ω̃θ, and Ω̃θs have been previously defined. Motivated by the

ensuing stability analysis, c is chosen to be a bounded positive constant such that c > 2δ0/λ4

where

δ0 , max
θ̃∈Ω̃θ

θ̃
T
θ̃ + max

θ̃s∈Ω̃θs

θ̃
T

s θ̃s, λ4 ,
λ3 min (1,m,Γ−1,Γ−1

s )

max (1, m̄ (·) ,Γ−1,Γ−1
s )

(4.55)

where m, m̄, and λ3 have been defined previously in (4.5) and (4.46). In (4.54), θ̂ (t) and

θ̂s (t) are generated by the same projection algorithms as defined in (4.42) but with respect

to Ŷ (t) and sat{r̂ (t)}

˙̂
θ = Proj1

{
ΓŶ T sat{r̂}, θ̂

}
,

˙̂
θs = Proj2 {Γsµ̂} (4.56)

where µ̂ = −ŷTs
(
Ŷ θ̂ +Ksat{r̂}

)T (
ŷsθ̂s

)−1

sat{r̂}. Furthermore, θ̂ (t) ∈ Ωθ, θ̂s (t) ∈ Ωθs and

ŷsθ̂s > δs > 0 ∀t > 0 if θ̂ (0) ∈ Ωθ and θ̂s (0) ∈ Ωθs . After substituting (4.54) into (4.43), one

can obtain

ṙ , φ (z,Dηη, t)

= M−1

[
−1

2
Ṁr + Y θ − ysθs

ŷsθ̂s

(
Ŷ θ̂ +Ksat {r̂}

)
− en−1

]
.

(4.57)
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After combining (4.39), (4.51), and (4.57), the closed-loop error dynamics for (4.1) are given

by the adaptation dynamics in (4.56) as well as the following set of equations
ż(t) = fr(z̄(t), Dηη(t), t) , Az +Bφ (z̄, Dηη, t)

εη̇(t) = A0η(t) + εg(z̄(t), Dηη(t))

(4.58)

where the matrices A,B,A0, g (·), and φ (·) have been defined previously. By taking advan-

tage of the boundedness of the state variables inside the compact set Dc as well as the satura-

tion of the estimates, it is clear to see from (4.56), (4.57), and (4.58) that ||fr(z(t), η(t))|| 6

k1,
∥∥∥ ˙̂
θ
∥∥∥ 6 k2, and

∥∥∥ ˙̂
θs

∥∥∥ 6 k3. Here, k1, k2, k3 are positive constants independent of ε.

Since the proof of stability of (4.56) and (4.58) is non-trivial owing to the augmented set

of dynamics as well as saturation introduced in the OFB design, proof is split into multiple

steps (as similarly done in [39]) to reduce the complexity at each step. In the first step, we

prove the existence of a positively invariant set Σ , Dc ×Dε for the solutions of (4.56) and

(4.58) — here, Dc has been previously defined, Dε , {η(t) ∈ Rmn | W (η (t)) 6 %ε2} is a

compact set for η(t) where W (t) was defined in (4.53), % is a positive constant that is yet

to be selected, while ε is the HGO constant. In the second step (Theorem 2), we regain the

boundedness of solutions of (4.58) provided the trajectory (z̄ (t) , ẑ (t)) starts inside Z ×H

— here, Z is defined to be any compact set such that Z ⊂ Dc while H is defined to be

any compact set in the interior of Rmn. Then, it can be shown that the HGO constant

ε can be chosen small enough to ensure that any trajectory of (z̄ (t) , ẑ (t)) starting in the

aforementioned compact subset results in η (t) entering the invariant set Σ before z̄ (t) can
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escape. In this step, we also provide an explicit upperbound on ε. In the final step, we prove

the ultimate boundedness of solutions of (4.58).

Theorem 1 (Invariant Set Theorem) Given Σ , Dc ×Dε, there exists an ε̄1 > 0 such

that ∀ ε ∈ (0, ε̄1], Σ is a positively invariant set for the trajectory (z̄(t), η(t)).

Proof. Given a composite Lyapunov candidate function Vc (t, z̄) as

Vc (t, z̄, η) = V0 (t, z̄) +W (η) (4.59)

where V0 and W have been previously defined in (4.44) and (4.53). Inside the set Σ = Dc×Dε,

saturation does not apply. After differentiating V0 (t, z̄) along the dynamics of (4.57), we have

V̇0 (t, z̄) = −
n−1∑
i=1

eTi ei + eTn−1en − rT en−1 + rT
{
Y θ − ysθs

ŷsθ̂s

[
Ŷ θ̂ +Ksat {r̂}

]}
−θ̃TΓ−1 ˙̂

θ − θ̃Ts Γ−1
s

˙̂
θs.

(4.60)

By using the result in (4.8) and applying the parameter update laws defined in (4.56), (4.60)

can be further upperbounded as follows

V̇0 (t, z̄) 6 −
n−1∑
i=1

eTi ei − rTKr + rT
[
Ỹ θ − ỹsθs

ŷsθ̂s

(
Ŷ θ̂ +Kr̂

)]
+ηTn

(
Kr + Ŷ θ̃ +

ŷsθ̃s

ŷsθ̂s

(
Ŷ θ̂ +Kr̂

))
.

(4.61)

In above inequality, the first two terms and last two terms in the right hand side can further

simplified as follows

V̇0 (t, z̄) ≤ −λ3 ‖z‖2 + δ3 ‖η‖ (4.62)

where λ3 , min {1, λmin(K)} while δ3 is a constant of analysis. In order to simplify the last

two terms of (4.61), we have taken advantage of the following facts: (i) Y (·) θ and ys (·) θs
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are locally Lipschitz in their arguments, (ii) the states are bounded inside the compact set

Dc, (iii) the state estimates are bounded via the sat{·} function; (iv) the parameter estimates

are upperbounded via the update schemes given in (4.56), and (v) ŷsθ̂s is lowerbounded via

projection as can be seen in (4.56). After adding the non-negative term −θ̃T θ̃− θ̃Ts θ̃s+δ0 (see

(4.47) and (4.55)) to the right-hand side of (4.62), and utilizing the uniform boundedness

analysis given in (4.48), one can obtain

V̇0 (t, z̄) 6 −λ3 ‖z̄‖2 + δ0 + δ3 ‖η‖ . (4.63)

From W (η (t)) 6 %ε2 and results in (4.53), we know that ‖η(t)‖ 6 ε
√
%/λmin{P0} ∀η (t) ∈ Dε.

Thus, (4.63) can be upperbounded as follows

V̇0 (t, z̄) 6 −λ4V0 + δ0 + δ3ε
√
%/λmin{P0} (4.64)

where λ4 has been defined previously in (4.55). At the boundary of the invariant set Dc, two

cases need to be considered: Case 1: When V0 (t, z̄) = c > 2δ0/λ4, one can rewrite (4.64)

as

V̇0 (t, z̄) 6 −λ4

2
V0 + δ3ε

√
%/λmin{P0}. (4.65)

Define ε1 ,
λ4c

2δ3

√
λmin{P0}/%, then ∀ε ∈ (0, ε1] and η (t) ∈ Dε, the following result holds on

the boundary of Dc

V̇0 (t, z̄) |∂Dc,V0=c ≤ 0. (4.66)

Case 2: When V0 (t, z̄) < c and parameter errors θ̃ and/or θ̃s reach the boundary of the

invariant set Dc as θ ∈ ∂Ω̃θ and/or θs ∈ ∂Ω̃θs , the projection laws will guarantee θ (t) and/or

θs (t) remaining inside the compact set Dc. In the meantime, the variables not restricted by
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projection will evolve freely until V0 (t, z̄) = c at which time Case 1 is applicable; thus, one

can easily prove the invariance of the set Dc using (4.66). The derivative of W (η) along the

trajectory of (4.58) can be obtained as follows

Ẇ (η) =
∂W (η)

∂η
(A0η(t)/ε+ g(z(t), Dηη(t), t)) . (4.67)

By utilizing (4.53) as well as the fact that P0A0 +AT0 P0 = −Imn, Ẇ (η) can be upperbounded

as

Ẇ (η) 6 −1

ε
‖η‖2 + 2 ‖P0‖ ‖η‖ ‖g‖ (4.68)

Based on (4.52), the aforementioned boundedness of the states and the parameter esti-

mates, as well as the fact that ε is strictly less than 1, ‖g‖ can be upperbounded as

‖g‖ 6 κ1 ‖η‖ + κ2, ∀ z̄ (t) ∈ Dc and ∀ η (t) ∈ Rmn; here, κ1, κ2 > 0 are constants inde-

pendent of ε. Utilization of this upperbound on ‖g‖ in (4.68) allows us to formulate the

following upperbound on Ẇ (η)

Ẇ (η) 6 − 1
3ε
‖η‖2 − ‖η‖2 ( 1

3ε
− 2κ1 ‖P0‖

)
−‖η‖

(
1
3ε
‖η‖ − 2κ2 ‖P0‖

)
.

(4.69)

Based on (4.53), ‖η‖ > ε
√
%/ ‖P0‖ for η (t) ∈ ∂Dε. If one chooses ε2 < (6 ‖P0‖κ1)−1 , then

∀ ε ∈ (0, ε2], a choice of % = 36κ2
2 ‖P0‖3 ensures that

Ẇ (η)|∂Dε 6 −
1

3ε
‖η‖2 6 0. (4.70)

Thus, if one defines ε̄1 = min{1, ε1, ε2}, then (4.66) and (4.70) imply that Σ = Dc×Dε is an

invariant set ∀ε ∈ (0, ε̄1].
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Theorem 2 (Boundedness Theorem) There exists an ε̄2 6 ε̄1 such that ∀ε ∈ (0, ε̄2], any

trajectory (z̄(t), ẑ(t)) that starts inside Z ×H is bounded for all time.

Proof. Given the boundedness of z̄ (0) and ẑ (0), the definition of (4.50) implies that

‖η (0)‖ 6 κ6ε
1−n where κ6 is a positive constant of analysis while n is the order of the

system of (3.1). From the aforementioned boundedness assertions on ||fr(z(t), η(t))||,
∥∥∥ ˙̂
θ
∥∥∥,

and
∥∥∥ ˙̂
θs

∥∥∥, it is easy to see that z̄ (t) satisfies the following linear time growth upperbound in

the compact set Dc

‖z̄ (t)− z̄(0)‖ 6 ‖z(t)− z(0)‖+
∥∥∥θ̃ (t)− θ̃ (0)

∥∥∥
+
∥∥∥θ̃s (t)− θ̃s (0)

∥∥∥
6 κ3t

(4.71)

where κ3 is a positive constant. Thus, there is a time Tc independent of ε such that z̄(t) ∈

Dc, ∀ t ∈ [0, Tc]. Our aim now is to show that one can pick an ε such that if η (t) starts

outside the invariant set Σ, it can be made to enter the invariant set before z̄ (t) can exit

Dc – the key idea to be exploited here is the growth bound established in (4.71). Proving

this previous assertion would imply that the solution (z̄ (t) , η (t)) is in the invariant set Σ

at some time Tε which means that it will stay there ∀ t ∈ [Tε,∞). Outside the invariant

set, W (η) > %ε2 = 36κ2
2 ‖P0‖3 ε2 which implies that ‖η‖ > 6εκ2 ‖P0‖. From (4.53) and

(4.70), one can upperbound Ẇ (η) as follows: Ẇ (η) 6 − 1
3ε‖P0‖W (η). After solving the

above inequality, an upperbound for W (η) can be obtained as W (η) 6 W (0) exp(−σ1t/ε),

where σ1 , (3 ‖P0‖)−1. Based on (4.53) and ‖η (0)‖ 6 κ6ε
1−n, the upperbound on W (η) can
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be rewritten as follows

W (η) 6
σ2

ε2(n−1)
exp(−σ1t/ε) (4.72)

where σ2 , κ2
6 ‖P0‖. Based on (4.72), we can find an 0 < ε̄2 6 ε̄1 small enough so that

W (η) enters Dε at a time Tε , ε
σ1

ln
(

σ2

%ε2n

)
6 Tc/2, ∀ ε ∈ (0, ε̄2] where ε̄2 <

2n
√
%−1σ2/e –

this upperbound on ε̄2 is derived from the fact that Tε is a monotonically increasing function

only on ε ∈ (0, 2n
√
%−1σ2/e]. Since η (t) enters the invariant set Dε in less than half the time

it takes for z̄ (t) to exit Dc, this implies that (z̄ (t) , η (t)) enters Σ during [0, Tε] and hence

z̄ (t) , η (t) ∈ L∞ for all times t > Tε. Thus, ∀ t ∈ [0, Tε], the trajectory (z̄(t), η(t)) is bounded

by virtue of (4.71) and (4.72). Thus, we have proved that (z̄(t), ẑ(t)) starting in Z ×H are

bounded for all time.

Theorem 3 (Ultimate Boundedness Theorem) Given any solution (z̄(t), ẑ(t)) that

starts in Z ×H and given any small δ >
√

2 (λ1λ4)−1 δ0, there exists an 0 < ε̄3(δ) 6 ε̄2

and a T (δ) > 0 such that ‖z̄(t)‖ 6 δ and ‖ẑ (t)‖ 6 2δ, ∀ t > T (δ) and ∀ ε ∈ (0, ε̄3 (δ)].

Proof. Inside the set Σ, (4.66) can be used to rewrite the upperbound on V̇0 (t, z̄) as

V̇0 (t, z̄) 6 −λ4
2
V0

−λ4
2

[
V0 − 2

λ4

(
δ0 + δ3ε

√
%/λmin{P0}

)] (4.73)

Defining a compact setDµ ,
{
z̄ ∈ Rmn × Ω̃θ ×Ω̃θs | V0 6 cµ (ε) = 2λ−1

4

(
δ0 + δ3ε

√
%/λmin{P0}

)}
,

then ‖z̄(t)‖ /∈ Dµ implies that V̇0 (t, z̄) can be upperbounded as

V̇0 (t, z̄) 6 −λ4

2
V0 < 0 (4.74)
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which shows that V0 (t, z̄) is decreasing outside Dµ. Since it’s always possible to find an

ε3 ∈ (0, ε̄2] such that 2δ0/λ4 < cµ (ε3) < c, ∀c > 2δ0/λ4, one can make Dµ lie inside

Dc by choosing ε small enough. From these assertions and the upperbound of (4.74), it

is obvious that the set Σub , Dµ ×Dε is positively invariant and Dµ ⊂ Dc. According

to the left inequality of (4.45), V0 6 cµ (ε) implies that λ1 ‖z‖2 6 cµ (ε) which leads to

‖z‖ 6
√
λ−1

1 cµ (ε). Thus, given any δ =
√
λ−1

1 c >
√

2 (λ1λ4)−1 δ0, one can pick an ε3 =

ε3(δ) 6 ε̄2 such that Dµ ⊂ Dδ ,
{
z̄ ∈ Rmn × Ω̃θ × Ω̃θs | ‖z̄(t)‖ 6 δ

}
. Moreover, any

trajectory in Σ will enter Σub in a finite time Tε4 = Tε4(δ) ∀ε ∈ (0, ε3]. Furthermore, from

(4.72), lim
ε→0

W (η) = 0, ∀ ε ∈ (0, ε̄2]; hence, given any δ >
√

2 (λ1λ4)−1 δ0, we can find

ε4 = ε4 (δ) 6 ε̄2 such that ∀ ε ∈ (0, ε4], we have ‖η (t)‖ 6 δ, ∀ t > Tε4 , Tε4(δ). By defining

ε̄3 (δ) , min{ε3 (δ) , ε4 (δ)} and T (δ) , max{Tε3 (δ) , Tε4 (δ)}, we can obtain the following

upperbound

‖ẑ(t)‖ 6 ‖z̄(t)‖+ ‖η(t)‖ 6 2δ

∀ε ∈ (0, ε̄3 (δ)] and ∀t > T (δ) .

Thus, one can conclude that (z̄ (t) , ẑ (t)) starting in Z ×H are ultimately bounded. It is

also easy to see from above that the size of the ultimate bound for z̄(t) is determined by

observer gain ε. As ε approaches zero, this ultimate bound δ will approach its lower bound√
2 (λ1λ4)−1 δ0 which is related to the amount of uncertainty in the parameters denoted by

δ0.

In the simulation, the model given in (4.37) has been considered with the same parame-

ters and initial conditions. The control gain K in (4.54) have been chosen as diag {7.5, 4.5}
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Figure 4.7: Tracking Error and Control Input Comparison between FSFB and OFB.

through trial and error method. In (4.56), the gains for the adaptation law (4.56) are cho-

sen as Γ = 30I9 and Γlaos = 75I3. The parameters estimates were initialized as θ̂ (0) =

[4.32, 1.07, 1.14, 0.54, 4.18, 0.65, 0.88, 1.18, 0.40], θ̂s (0) =

[
2.88 0.80 1.35

]
. The projec-

tion boundaries for above parameters are set as ±10. The parameters for HGO defined in

(4.34) are selected as a1 = 0.91, a2 = 0.15, and ε = 0.0005 by trial and error. The saturation

bound for ẑ (t) is set at ±100. Fig. 4.7 shows the tracking errors under FSFB and OFB and

the corresponding control inputs while Fig. 4.8 shows the parameter estimation results.
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Figure 4.8: Sample of Parameter Estimation Comparison between FSFB and OFB.

4.3 Model-Free MIMO Nonlinear Control Design for an Aeroelastic System

A 2-DOF pitch-plunge wing section with both LECS and TECS is shown in Fig. 4.9 where

both leading and trailing edge control surfaces are used as control inputs. The aeroelastic

governing equation subject to external disturbance is developed from previous models: mT mwxαb

mwxαb Iα


 ḧ

α̈

+

 ch 0

0 cα


 ḣ

α̇

+

 kh 0

0 kα(α)


 h

α

 =

 −L− Lg
M +Mg

 .
(4.75)

The definition of symbols used in above equation can be found in [30]. In (4.75), the
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Figure 4.9: Two DOF aeroelastic system with both leading- and trailing-edge control sur-

faces.
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quasi-steady lift L(ḣ, α̇, h, α, β, γ) and aerodynamic moment M(ḣ, α̇, h, α, β, γ) are given as

L = ρU2
∞bsClα(α + ḣ

U∞
+ (1

2
− a)b α̇

U∞
) + ρU2

∞bsClββ + ρU2
∞bsClγγ,

M = ρU2
∞b

2sCmα−eff (α + ḣ
U∞

+ (1
2
− a)b α̇

U∞
) + ρU2

∞b
2sCmβ−effβ + ρU2

∞b
2sCmγ−effγ

(4.76)

where Cmα−eff , Cmβ−eff , and Cmγ−eff are defined as follows

Cmα−eff = (1
2

+ a)Clα + 2Cmα,

Cmβ−eff = (1
2

+ a)Clβ + 2Cmβ,

Cmγ−eff = (1
2

+ a)Clγ + 2Cmγ.

(4.77)

The aerodynamic loads due to the bounded external disturbance can be given as [43]

Lg = ρU2
∞bsClαwG (τ) /U∞ = ρU∞bsClαwG (τ) ,

Mg =
(

1
2
− a
)
bLg

(4.78)

where wG (τ) denotes the disturbance velocity while τ is a dimensionless time variable defined

as τ = U∞t/b. Motivated by [20], the governing equations (4.75) can be transformed using

(4.76) into the following input-output representation that is amenable to model-free output

feedback design

ẍ = h (x, ẋ) +whd + Gsu (4.79)

where x
∆
= [h, α]T ∈ <2 is a vector of system output, u = [u1, u2]T

∆
= [β, γ]T ∈ <2 denotes

the control input vector, h (x, ẋ) contains uncertain nonlinearities due to the existence of

kα(α), while whd represents bounded unknown external disturbance terms. Here, Gs
∆
= g11 g12

g21 g22

 ∈ <2×2 is a constant non-singular gain matrix for which the constant matrix

40



entries gij are explicitly defined as follows

g11 = −U2
∞∆−1ρbs (IαClβ +mwxαb

2Cmβ−eff ) ,

g12 = −U2
∞∆−1ρbs (IαClγ +mwxαb

2Cmγ−eff ) ,

g21 = U2
∞∆−1ρbs (mwxαbClβ +mT bCmβ−eff ) ,

g22 = U2
∞∆−1ρbs (mwxαbClγ +mT bCmγ−eff ) ,

(4.80)

where ∆
∆
= det(Gs) = mT Iα −m2

wx
2
αb

2 6= 0. Based on the matrix decomposition introduced

in [1] and the facts that both the leading principal minors g11 and ∆ are non-zero, Gs can be

decomposed as Gs = SDU where S is a symmetric, positive-definite matrix, D is a diagonal

matrix with diagonal entries +1 or −1, and U is an unknown unity upper triangular matrix.

This SDU decomposition is a key factor in the proposed algebraic-loop free controller design.

According to the SDU decomposition result previously obtained in [44], S, D, and U can

be explicitly written as

S =

 |g11| sign(g11)g21

sign(g11)g21 sign(g11)sign(∆)[g22 − g−1
11 g21(g12 − g21sign(∆))]

 ,

D =

 sign(g11) 0

0 sign(g11)sign(∆)

 , U =

 1
|g−1

11 |(g12 − g21sign(∆))

sign(g11)

0 1


(4.81)

where the notation sign(·) denotes the standard signum function. For purposes of control

design, we assume that the signs of the leading principal minors of the high-frequency gain

matrix Gs are known, i.e., the diagonal matrix D is assumed to be known. After applying the

matrix decomposition property and multiplying both sides of (4.79) with T
∆
= S−1 ∈ <2×2,
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(4.79) can be rewritten as

Tẍ = f (x, ẋ) +wd + DUu (4.82)

where T is a symmetric, positive definite matrix, f (x, ẋ)
∆
= S−1h (x, ẋ) ∈ <2 contains

unmodeled nonlinearities, while wd
∆
= S−1whd ∈ <2 represents a bounded unknown external

disturbance term.

The tracking error e1(t) ∈ <2 for the aeroelastic system can be defined as e1
∆
= xd − x.

Here, xd ∈ <2 is the desired output vector that is designed to be C2 smooth in deference

to the requirements of the subsequent control design. Since the control objective is to

suppress the aeroelastic vibrations, one can simply choose xd to be zero all the time or

use another desirable smooth trajectory xd along which the actual pitching and plunging

variables encoded by x can be driven toward the origin (by virtue of the subsequent control

design). Next, to simplify the subsequent control design, the auxiliary error signals e2 (t) ∈

<2 and filtered tracking error r (t) ∈ <2 are introduced as follows

e2 = ė1 + e1, r = e2 + e1. (4.83)

Then, based on above definitions, a composite error signal can be defined as follows

z ,
[
eT1 , eT2 , rT

]T
.

By taking the time derivative of r and substituting from the derivative of e2, one can easily

obtain the following relation

ṙ = ë2 + 2ė1. (4.84)
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After premultiplying both sides of (4.84) by T and applying the definitions given in (4.82)

and (4.83), (4.84) can be rewritten as

Tṙ = T (ẍd + 2ė1)− f (x, ẋ)−wd −DUu. (4.85)

Furthermore, given a strictly upper triangular matrix Ū = DU−D, the open-loop dynamics

of (4.85) can be rewritten as follows

Tṙ = T (ẍd + 2ė1)− f (x, ẋ)−wd − Ūu−Du. (4.86)

Assumed that both the output vector x and their first order time derivative ẋ can be mea-

sured directly. As previously stated, f (x, ẋ) denotes unmodeled system nonlinearities while

wd represents a bounded unknown external disturbance term. Furthermore, T and Ū are

assumed to be unknown while the diagonal matrix D comprising the signs of the leading

principal minors of Gs is assumed to be known. Given these assumptions, the following

full-state feedback control law is proposed

u = D−1
[
Kr + N̂− v

]
(4.87)

where K = Kv +Kd+Kλ with Kv = kvI2×2, Kd = kdI2×2, Kλ = diag {kΛ1 , 0} while N̂ and

v represent the feedforward compensator and robustifying term, respectively, to be designed

later. After substituting (4.87) into the open-loop dynamics of (4.86) and rearranging some

terms, one can obtain the following closed-loop dynamics

Tṙ = −Kde2 + T (ẍd + 2ė1)− f (x, ẋ) + Kde2

−wd − Ūu− (Kv + Kd + Kλ) r− N̂ + v

(4.88)
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where Kde2 has been added and subtracted in the above equation. In the above open-loop

dynamics, T (ẍd + 2ė1), f (x, ẋ), Ūu, and wd represent unknown system model and external

disturbance as previously stated. These terms will be dealt with by utilizing nonlinear

damping and feedforward compensation. To facilitate further development, one can define

the auxiliary signals Λ and Φ as follows

Λ = d−1
2 Ū12K22r2 = ρΛr2,

Φ = d−1
2 Ū12

(
N̂2 − v2

) (4.89)

where di denotes the ith diagonal element of D−1, Kij and Ūij represent the ijth element of

the matrices K and Ū, respectively, while ρΛ , d−1
2 Ū12K22 is an unknown constant scalar

since Ū is unknown. Based on the control input defined in (4.87) and the definitions given

in (4.89), the vector Ūu in (4.88) can be written as follows

Ūu =
[
Ū12u2, 0

]T
= [Λ + Φ, 0]T (4.90)

where ui denotes the ith element of the control input vector u. By employing (4.90) and

rearranging some terms, the closed-loop dynamics of (4.88) can be rewritten as follows

Tṙ = −Kde2 − (Kd + Kλ) r− [Λ, 0]T −Kvr + T (ẍd + 2ė1)

−f (x, ẋ) + Kde2 −
[

Φ, 0

]T
− N̂−wd + v.

(4.91)

Given the expression of (4.91), a nonlinear target function N ∈ <2, which contains the

unknown system vectors T (·) and f (·), can be defined as follows

N (x̄t) = T (ẍd + 2ė1)− f (x, ẋ) + Kde2 −
[

Φ, 0

]T
. (4.92)
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Here, the input vector x̄t ∈ <11 for the nonlinear target function can be defined as follows

x̄t=
[
xT , ẋT, xTd , ẋTd , ẍTd ,

∥∥∥Ẑ∥∥∥
F

]T
(4.93)

where ‖·‖F denotes the Frobenius norm and Ẑ is a composite weight matrix estimate which

will be subsequently designed. A feedforward compensator N̂ will be designed to compensate

this nonlinear target function N which contains the unknown system model. In order to

facilitate the stability analysis, Π and Ψ can be defined by using the definitions in (4.89)

and (4.92) as follows

Π =− [Λ, 0]T , Ψ = −Kvr + N− N̂−wd + v. (4.94)

After employing (4.92) and (4.94), one can finally rewrite the closed-loop dynamics of (4.91)

as

Tṙ = −Kde2 − (Kd + Kλ) r + Π + Ψ. (4.95)

It will be subsequently shown how the unknown term Π can be nonlinearly damped out by the

feedback control term (Kd + Kλ) r and how the feedforward compensator N̂ and robustifying

term v can be designed in order to compensate for the unknown terms T (ẍd + 2ė1), f (x, ẋ),

and

[
Φ, 0

]T
.

Since the model of the wing section and external disturbance are assumed to be unknown

in the control design, adaptive control designs cannot be applied. In lieu of adaptation, a

neural network feedforward compensator N̂ along with robustifying term v are proposed to

compensate for this target function N and the disturbance signal wd – thus, model-free con-
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trol design is facilitated by exploiting the twin neural properties of universal approximation

and online (i.e., real-time) learning.

The nonlinear target function N defined in (4.92) can be approximated as a three-layer

neural network target function of the form [45]

N (x̄) = WTσ
(
VT x̄

)
+ ε (x̄) (4.96)

where x̄ =

[
1, x̄Tt

]T
∈ <p1+1 denotes the augmented input vector while σ (·) ∈ <p2+1

denotes the activation function - in this approach, a sigmoid function is chosen as the ac-

tivation function. ε (x̄) ∈ <p3 is the functional reconstruction error vector, V ∈ <(p1+1)×p2

is the ideal first layer interconnection weight matrix between input layer and hidden layer,

W ∈ <(p2+1)×p3 denotes the ideal second layer interconnection weight matrix between hidden

layer and output layer, while p1 + 1, p2 + 1, and p3 are the number of nodes in the input

layer, hidden layer, and output layer, respectively. Note that the input vector x̄ and σ (·)

are augmented vectors because of placement of ‘1’ as their first element since thresholds are

included as the first columns of the weight matrices W and V. For the problem at hand, it

will be assumed that the ideal weight matrices W and V are constant and bounded such that

‖W‖F ≤WB and ‖V‖F ≤ VB, where WB and VB are positive constants and ‖·‖F denotes

the Frobenius norm. The approximation error is assumed to be bounded in a compact set

by ‖ε (x̄)‖ < εN where εN is an unknown positive constant related to the number of nodes

in the hidden layer. Based on (4.96), the typical three-level neural network compensator for
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target function N (x̄) is given in the following form

N̂ (x̄) = ŴTσ
(
V̂T x̄

)
(4.97)

where Ŵ and V̂ are estimated weight matrices. Here Ŵ and V̂ can be set to zero at first

or randomly initialized within certain region, which implies that there is no requirement for

preliminary off-line learning phase for the neural network. Motivated by [45] and the ensuing

stability analysis, the estimated weight matrices can be updated or learned through on-line

weight tuning algorithms of the form

˙̂W =
(
Fσ̂ − Fσ̂′V̂T x̄

)
rT − κF ‖r‖Ŵ,

˙̂V = Gx̄
(
σ̂′TŴr

T
)T
− κG ‖r‖ V̂

(4.98)

where F ∈ <(p2+1)×(p2+1) and G ∈ <(p1+1)×(p1+1) are positive-definite, diagonal gain matrices,

κ > 0 is a scalar design parameter, σ̂ = σ
(
V̂T x̄

)
and σ̂′ ≡ dσ

(
V̂T x̄

)
/d
(
V̂T x̄

)
. After

substituting (4.96) and (4.97) into (4.94) and applying a Taylor series expansion, Ψ defined

in (4.94) can be given as

Ψ = −Kvr + W̃T
[
σ̂ − σ̂′V̂T x̄

]
+ ŴT σ̂′ṼT x̄ + w + v (4.99)

where W̃ = W − Ŵ and Ṽ = V − V̂ denote weight matrices estimation errors while w can

be written as

w = W̃T σ̂′VT x̄ + W̃TO
(
ṼT x̄

)2

+ ε (x̄)−wd. (4.100)

To facilitate the subsequent analysis, one can also obtain a compact form representation for

‖w‖ as follows

‖w‖ = C0 + C1

∥∥∥Z̃∥∥∥
F

+ C2

∥∥∥Z̃∥∥∥
F
‖r‖ (4.101)
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where C0, C1, and C2 are all positive constants while the ideal composite weight matrix

Z, estimated composite weight matrix Ẑ, and the composite weight mismatch matrix Z̃ are

defined as follows

Z =

 W 0

0 V

 , Ẑ ≡

Ŵ 0

0 V̂

 , Z̃ ≡

W̃ 0

0 Ṽ

 (4.102)

where Z̃ = Z− Ẑ. According to the boundedness property for ‖W‖F and ‖V‖F , it’s assumed

that there exists a constant ZB such that ZB > ‖Z‖F . Based on the definition of ZB, the

robustifying term v in (4.87) can be defined as

v = −Kz

(∥∥∥Ẑ∥∥∥
F

+ ZB

)
r (4.103)

where Kz is a positive constant. Finally, it is noted that the unknown external disturbance

wd and functional reconstruction error ε (x̄) are assumed to be bounded.

The stability analysis for the proposed model-free controller is provided in the following

theorem. In order to facilitate ease of expression, the stability analysis is split into two parts

which comprise components of the derivative of the Lyapunov function. While the first part

shows the usefulness of the nonlinear damping technique, the second part shows the utility of

the feedforward compensator and the robustifying injection term in proving system stability.

A Uniformly Ultimately Bounded (UUB) result is obtained for both the norm of the filtered

tracking error r and the norm of the neural network weight estimation error Z̃. Note a signal

is uniformly ultimately bounded [36] if there exist positive constants b and c, independent

of t0 ≥ 0, and for every a ∈ (0, c), there is T = T (a, b) ≥ 0, independent of t0, such that

‖x (t0)‖ ≤ a⇒ ‖x (t)‖ ≤ b, ∀t ≥ t0 + T.
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Theorem 4 Provided the control gain matrix K defined in (4.87) is chosen to be appro-

priately large, the error signals (r and Z̃) for the closed-loop system defined in (4.95) are

Uniformly Ultimately Bounded (UUB).

Proof. Firstly, a non-negative Lyapunov function candidate V0 is defined as

V0 =
1

2
eT1 Kde1 +

1

2
rTTr +

1

2
tr
{

W̃TF−1W̃
}

+
1

2
tr
{

ṼTG−1Ṽ
}
. (4.104)

After differentiating (4.104) and using the results obtained in (4.95) and (4.99), the following

expressions are obtained

V̇0 = V̇1 + V̇2 (4.105)

where

V̇1 = eT1 Kdė1 − rTKde2 + rT [− (Kd + Kλ) r + Π] ,

V̇2 = rTΨ + tr
{

W̃TF−1 ˙̃W
}

+ tr
{

ṼTG−1 ˙̃V
}
.

(4.106)

After utilizing the error definitions of (4.83), one can obtain the following expression for V̇1

V̇1 = −eT1 Kde1 − eT2 Kde2 − rTKdr− rTKλr + rTΠ (4.107)

which can be upperbounded by employing the definitions of z, Π, Λ, kΛ1 , and kd as follows

V̇1 ≤ −kd ‖z‖2 +
[
‖ρΛ‖ ‖z‖ ‖r1‖ − kΛ1 ‖r1‖2] (4.108)

where (4.89) has been utilized to obtain the fact that ‖Λ‖ < ‖ρΛ‖ ‖z‖. After completing the

squares on the bracketed term in (4.108), the following upperbound is obtained

V̇1 ≤ −

(
kd −

‖ρΛ‖
2

4kΛ1

)
‖z‖2 . (4.109)
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By choosing kd and kΛ1 large enough such that bracketed term in (4.109) is positive, one can

easily see that V̇1 in (4.105) can be upper bounded as follows

V̇1 ≤ −γ
(
‖z‖2) (4.110)

where γ
(
‖z‖2) is a class K∞ function. Next, by substituting the expression for Ψ given in

(4.99), V̇2 can be obtained as follows

V̇2 = rT
[
−Kvr + W̃

T
[
σ̂ − σ̂′V̂T x̄

]
+ ŴT σ̂′ṼT x̄ + w + v

]
+tr

{
W̃TF−1 ˙̃W

}
+ tr

{
ṼTG−1 ˙̃V

}
.

(4.111)

After applying the update laws designed in (4.98), canceling out the matched terms, and

utilizing the definitions of (4.102), (4.111) can be upperbounded as follows

V̇2 ≤ −rTKvr + κ ‖r‖ tr
{

Z̃T
(
Z− Z̃

)}
+ ‖r‖ ‖w‖+ rTv. (4.112)

By substituting (4.101) and (4.103) into (4.112), it is possible to further upperbound V̇2 as

V̇2 ≤ −‖r‖
[
Kvmin

‖r‖ − κ
∥∥∥Z̃∥∥∥

F

(
ZB −

∥∥∥Z̃∥∥∥
F

)
− C0 − C1

∥∥∥Z̃∥∥∥
F

−C2

∥∥∥Z̃∥∥∥
F
‖r‖+Kz

(∥∥∥Ẑ∥∥∥
F

+ ZB

)
‖r‖
] (4.113)

where the following relation has been used to derive (4.113)

tr
{

Z̃T
(
Z− Z̃

)}
=
〈
Z̃, Z

〉
−
∥∥∥Z̃∥∥∥2

F
≤
∥∥∥Z̃∥∥∥

F
‖Z‖F −

∥∥∥Z̃∥∥∥2

F

≤
∥∥∥Z̃∥∥∥

F
ZB −

∥∥∥Z̃∥∥∥2

F
.

(4.114)

Based on the fact that
∥∥∥Ẑ∥∥∥

F
+ ZB >

∥∥∥Z̃∥∥∥
F

, one can choose Kz > C2 such that (4.113) can

be rewritten as

V̇2 ≤ −‖r‖
[
Kvmin

‖r‖ − κ
∥∥∥Z̃∥∥∥

F

(
ZB −

∥∥∥Z̃∥∥∥
F

)
− C0 − C1

∥∥∥Z̃∥∥∥
F

]
. (4.115)
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By defining C3 = ZB + C1/κ, (4.115) can be rewritten as follows

V̇2 ≤ −‖r‖
[
Kvmin

‖r‖+ κ
(∥∥∥Z̃∥∥∥

F
− C3/2

)2

− C0 − κC2
3/4

]
(4.116)

where Kvmin
denotes the minimum singular value of Kv. Combining with (4.110), (4.116)

can be upperbounded as follows

V̇0 ≤ −γ
(
‖z‖2)− ‖r‖ [Kvmin

‖r‖+ κ
(∥∥∥Z̃∥∥∥

F
− C3/2

)2

− C0 − κC2
3/4

]
. (4.117)

It is straightforward to see that (4.117) is guaranteed negative as long as either

‖r‖ > C0 + κC2
3/4

Kvmin

≡ br or
∥∥∥Z̃∥∥∥

F
> C3/2 +

√
C0 + κC2

3/4 ≡ bZ (4.118)

Thus, V̇0 is negative outside the compact set
{
‖r‖ ≤ br,

∥∥∥Z̃∥∥∥
F
≤ bZ

}
. Now, LaSalle ex-

tension in [46] can be used to prove the UUB results for both ‖r‖ and
∥∥∥Z̃∥∥∥

F
. It is easy

to see from (4.118) that the size of the ultimate bound br for ‖r‖ can be made smaller by

increasing the size of the control gain. We note here that the gain matrix K needs to be

chosen appropriately large in the sense that the selections for kd and kΛ1 are made to ensure

that the parenthesized term in (4.109) is positive.

We assume that the only measurements available are the pitching and plunging displace-

ments; thus, the remaining states are estimated through the use of a high gain observer

(HGO). When x(t) is the output of the system and the only measurable state vector, the

sole measurable error signal is e1(t), given the knowledge of x (t) and xd (t). Motivated by

the result in [37], an estimate ẑ (t) =
[
êT1 , êT2 , r̂T

]T ∈ <6 for the auxiliary error signal z (t)

can be obtained via the following HGO

·
ê1= r̂− 2ê1+

α1

ε̄
(e1−ê1) and

·
r̂ =

α2

ε̄2
(e1−ê1) (4.119)
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where αi ∈ <m×m ∀ i = 1, 2 are gain constants and ε̄ is a small positive constant. Note that

ê2 = r̂− ê1. In order to suppress the peaking phenomenon due to using HGO, we modify

the full-state control design of (4.87) to an output feedback saturated control as follows

u = sat
[
D−1

(
Kr̂ + N̂− v

)]
(4.120)

where sat (·) denotes the standard saturation function and saturation is applied outside an

appropriately defined compact set for the control input u. Here, N̂ and v have been defined

in the same manner as in (4.87). For details of the stability analysis of the output feedback

control design, the reader is referred to [37].

Simulation results were presented for a nonlinear 2-DOF aeroelastic system controlled by

leading- and trailing- edge flaps and subjected to external disturbances. The nonlinear wing

section model was simulated using the dynamics of (4.75) and (4.76). The model parameters

utilized in the simulation were the same as used in [47] and listed in Table 4.1. In particular,

the pitching spring stiffness kα (α) was modeled as a polynomial nonlinearity as shown in

Table I. Note that all these parameters were used to simulate the wing model but were

considered unknown for the purpose of control design.

Similar to [44] and [47], the desired trajectory variables xd, ẋd, and ẍd were simply

selected as zero. The initial conditions for pitch angle α(t) and plunge displacement h(t)

were chosen as α(0) = 5.729 [deg] and h(0) = 0 [m] while all other variables ḣ(t), α̇(t), ḧ(t),

and α̈(t) were initially set to zero. Both the leading edge β(t) and trailing edge γ(t) flaps

were constrained to vary between ±15 [deg]. For the numerical example, the signs of the
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Table 4.1: Wing Section Parameters

Parameter Value Parameter Value

a = −0.6719 b = 0.1905 [ m ]

s = 0.5945 [ m ] ρ = 1.225 [ kg ·m3 ]

rcg = −b(.0998 + a) [ m ] xa = rcg/b

ch = 27.43 [ kg /s] cα = 0.0360 [ N · s ]

kh = 2844 [ N /m ] mwing = 4.340 [ kg ]

mw = 5.23 [ kg ] mT = 15.57 [ kg ]

Icgw = 0.04342 [ kg ·m2 ] Icam = 0.04697 [ kg ·m2 ]

Clα = 6.757 [ rad−1 ] Cmα = 0 [ rad−1 ]

Clβ = 3.774 [ rad−1 ] Cmβ = −0.6719 [ rad−1 ]

Clγ = −0.1566 [ rad−1 ] Cmγ = −0.1005 [ rad−1 ]

kα (α) = 12.77 + 53.47α + 1003α2 [N ·m]

Iα = Icam + Icgw +mwingr
2
cg [ kg ·m2 ]
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leading principal minors of the high-frequency gain matrix Gs are encoded in the diagonal

matrix D which can be explicitly given as

D =

−1 0

0 −1

 . (4.121)

We remark that the model-free controller designed here depends only on the knowledge of

D but not on the knowledge of S and U.

Before introducing the external disturbance tested, a simple static exploration of the wing

section model reveals the relation between magnitude of sustained external disturbance and

the amplitude-limited control signals. First, we assume that wing section model is able to

reach the desired equilibrium point (e.g., h, α, ḣ, α̇, ḧ, and α̈ are all equal to zero ) under

certain types of external disturbances. In this case, the left hand side of (4.75) is zero, and

all terms associated with h, α, ḣ, and α̇ on the right hand side of (4.75) are also zero. Thus,

it is straightforward to see that
ρU2
∞bsClββ + ρU2

∞bsClγγ + ρU∞bsClαwG (τ) = 0,

ρU2
∞b

2sCmβ−effβ + ρU2
∞b

2sCmγ−effγ +
(

1
2
− a
)
bLg = 0.

(4.122)

Based on the gust model, (4.122) can be simplified as Clβ Clγ

Cmβ−eff Cmγ−eff


β
γ

 =

 −ClαwG (τ) /U∞

−
(

1
2
− a
)
ClαwG (τ) /U∞

 . (4.123)

Assuming the 2× 2 matrix in above equation is non-singular, we haveβ
γ

 = −wG (τ)

U∞

 Clβ Clγ

Cmβ−eff Cmγ−eff


−1  Clα(

1
2
− a
)
Clα

 . (4.124)
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Now, it’s easy to see that given bounded control signals β and γ, one can obtain an upper

bound for the magnitude of wG (τ) depending on the flow speed U∞. If wG (τ) is too large

with respect to the constrained control signals, (4.122) will not hold and the wing section

model variables α and h are unable to reach the origin regardless of the type of control

design. Given the parameters listed in Table I, the maximum magnitude of the external

signals cannot be larger than 0.047 [m / s] and 0.077 [m / s], corresponding to 0.58% of the

velocities selected, for the two values of velocities selected in simulations, U∞ = 8 [m / s]

and U∞ = 13.28 [m / s], respectively, in order to drive the plunge and pitch displacement

to zero. As will be seen in the results, larger disturbance size results in alternate equilibria

away from the origin.

In this simulation, three kinds of external disturbances are considered according to [43].

The first type of external disturbance is modeled as a triangular gust, whose velocity distri-

bution wG (τ) can be given as

wG (τ) = 2w0
τ

τG

(
H (τ)−H

(
τ − τG

2

))
− 2w0

(
τ

τG
− 1

)(
H (τ − τG)−H

(
τ − τG

2

))
(4.125)

where H (·) denotes a unit step function, τG = U∞tG/b and tG = 0.25 [s], and w0 = 0.7

[m / s]. This triangular gust lasts 0.5 seconds from t = 0 [s] to t = 0.5 [s]. The second

type of external disturbance – one that is sustained beyond the transient response time

of the closed-loop aeroelastic system – is given in the form of graded gust, whose velocity

distribution wG (τ) can be expressed as follows

wG (τ) = H (τ)w0

(
1− e−0.75τ

)
(4.126)
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where w0 is chosen according to the simulation setting. The third disturbance is given in

the form of sinusoidal gust with the following velocity distribution function wG (τ)

wG (τ) = H (τ)w0 sinωτ (4.127)

where ω = 0.5 [rad / s] while w0 is selected based on different simulation settings. Thus,

these three disturbances profiles test the system response to ephemeral disturbance, steady

sustained disturbance, and time-varying sustained disturbance. Also note that the triangular

gust tested is very similar to the traditional 1-cosine gust-type function - both of which can be

classified as ephemeral disturbances. Furthermore, a more challenging continuous sinusoidal

disturbance is also tested in the following simulation.

Both the leading edge β(t) and trailing edge γ(t) flaps are constrained to vary between

±15 [deg], assuming that saturation will occur outside these limits. Since the control design

contains a learning component that involves integration of the error system (see (4.98) where

Ŵ and V̂ rely upon integration of the filtered error signal r̂), control input saturation is

known to lead to windup problem. Motivated by back-calculation algorithm introduced in

[48], we propose the following method to limit the error signal r̂ according to the magnitude

of original control input ui in (4.98) as

rb,i =


gir̂i

ub
|ui|

, |ui| > ub, ∀i = 1, 2

r̂i , |ui| ≤ ub, ∀i = 1, 2

(4.128)

where rb denotes the limited filtered error which is used in the neural network weight matrices

update law, u designed in (4.120) denotes the actual control signal for the actuator with
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saturation bound ub = 15 [deg], while gi, i = 1, 2 denote a set of auxiliary saturation gains.

After limiting the error signal r̂ according to (4.128), the weight matrices update law for the

neural networks compensator and robustifying term are modified as follows

˙̂W =
(
Fσ̂ − Fσ̂′V̂T x̄

)
rTb − κF ‖rb‖Ŵ,

˙̂V = Gx
(
σ̂′TŴr

T

b

)T
− κG ‖rb‖ V̂,

v = −Kz

(∥∥∥Ẑ∥∥∥
F

+ ZB

)
rb.

(4.129)

The output feedback control is implemented via the high gain observer defined in (4.34)

and control law in (4.120). The parameters for the controller and observer in these simula-

tions are listed in Table 4.2.

Also note that an explicit expression for D has been given in (4.121). According to

the definition of x̄t given in (4.93), a choice of p1 = 11 needs to be made in general. For

the numerical example, however, since xd, ẋd, and ẍd were all bounded signals and cho-

sen to be zero for all time, they can be removed from the input set x̄t in order to sim-

plify the computational complexity. The simplified input set for the numerical example is

x̄t=
[
xT , ẋT ,

∥∥∥Ẑ∥∥∥
F

]T
∈ <5 based upon which x̄ = [1, x̄t]

T ∈ <6. Then, in the feedforward

compensator used in the following simulation, p1, p2, and p3 are given as p1 = 5, p2 = 10,

p3 = 2. The above selection of p1, p2, and p3 implies that Ŵ ∈ <11×2 and V̂ ∈ <6×10. The

number of hidden layer nodes is chosen through a trial and error method in order to obtain

best performance. A choice of p2 = 10 is used since the controller performance is seen to be

satisfactory for this choice. Although the approximation error is expected to reduce when

the number of hidden layer nodes increases, one still needs to consider the computational
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Table 4.2: Control Gains

Parameter Triangular Graded Sinusoidal

U∞ 8 [m / s] 13.28 [m / s] 13.28 [m / s] 13.28 [m / s]

K 3I2×2 0.5I2×2 0.5I2×2 0.5I2×2

F 10I11×11 5I11×11 5I11×11 5I11×11

G 200I6×6 50I6×6 50I6×6 50I6×6

κ 0.4 0.6 0.6 0.01

Kz 0.1 0.1 0.1 10

ZB 0.1 0.1 0.1 10

g1 0.5 1 1 1

g2 1 0.2 0.2 0.2

α1 1 1 1 1

α2 0.5 0.5 0.5 0.5

ε̄ 0.001 0.005 0.005 0.0002
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efficiency, especially considering the constraints of real-time control implementation. It is

well known that arbitrary choices for the initial weight matrices Ŵ and V̂ may result in

unacceptable transient response. By performing extensive simulations, the initial weight ma-

trix Ŵ is chosen to be zero while the initial weights for elements of V̂ are randomly chosen

between −1 and 1. Simulation results show that such a selection guarantees an acceptable

transient response. The weight update laws for the neural networks compensator and the

robustifying term have been defined in (4.129) after applying the anti-windup mechanism.

Three sets of simulations were run based on three types of external disturbances described

above in (4.125), (4.126), and (4.127). The triangular gust disturbance defined in (4.125)

was the first type of external disturbance considered in the simulation. Fig. 4.10(a) and Fig.

4.10(b) compare the closed-loop response of the system under the triangular gust between

the control given in [44] and the proposed controller under a slightly stronger disturbance,

namely, w0 = 0.7 [m / s]. As one can see from Fig. 4.10(a), both plunge and pitch displace-

ments keep oscillating and show no sign of convergence by using the method in [44]. However,

Fig 4.10(b) shows that the proposed control drives the plunge and pitch displacement to zero

in less than 3 [s]. The oscillatory behavior seen in Fig. 4.10(a) stems from the lack of an

anti-windup mechanism in [44]. In this set of simulations, we first choose a small graded gust

w0 = 0.07 [m / s] such that both plunge and pitch displacements are able to converge to zero

within the actuator limitations. From Fig. 4.11, one can easily observe the convergence of

the error to the origin under the adaptive method of [44] and the proposed method. Also in

this case, the proposed method shows faster settling times. Under a sinusoid-like gust with
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Figure 4.10: Closed loop response under triangular gust w0 = 0.7[m/s] at pre-flutter speed

U∞ = 8[m/s] (a): using the method in [39]; (b): using the proposed method.

w0 = 0.07 [m / s] at post flutter speed U∞ = 13.28 [m / s]> UF = 11.4 [m / s], Fig. 4.12(a)

shows that the method in [44] needs more than 5 [s] to stabilize the system. However, the

proposed method successfully stabilizes the system in less than 1.5 [s].

Here we note that since the simulation results under the triangular gust and a more chal-

lenging continuous sinusoidal gust are satisfactory, one can expect satisfactory simulation re-

sults under other similar disturbances, such as the 1-cosine gust-type disturbance. Generally

speaking, the proposed model free output feedback controller designed shows substantially

greater robustness with respect to modeling uncertainty and various external disturbances

as compared with the adaptive backstepping results obtained in [44].
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Figure 4.11: Closed loop response under graded gust w0 = 0.07[m/s] at post-flutter speed

U∞ = 13.28[m/s] (a): using the method in [39]; (b): using the proposed method.
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Figure 4.12: Closed loop response under sinusoidal gust w0 = 0.07[m/s] at post-flutter speed

U∞ = 13.28[m/s] (a): using the method in [39]; (b): using the proposed method.
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4.4 Continuous Robust Control Design for 2-DOF MIMO Nonlinear System

Here, the following subclass of MIMO nonlinear systems with two DOFs is considered

x(n) = h
(
x, x(n−1)

)
+G (x, θ)u (4.130)

where x(i) (t) ∈ R2, i = 0, 1, ..., n − 1 denote the system states while x ,

[
xT ẋT . . .(

x(n−2)
)T]T ∈ R2n−4, x(t) ∈ R2 is the system output and u (t) ∈ R2 is defined to be

the control input. The drift vector h
(
x,x(n−1)

)
∈ R2 is assumed to be a C2 nonlinear

function with unstructured uncertainty. The high frequency gain matrix G (x,θ) ∈ R2×2 is

also a C2 nonlinear function and affine in the unknown constant parameter vector θ ∈ Rp.

For the purpose of robust control design, we assume that G (x,θ) is a real matrix with

nonzero leading principal minors whose signs are assumed to be known. In order to facilitate

the continuous robust control design, we begin by differentiating (4.130) which yields the

following expression

x(n+1) = f
(
x,x(n−1), x(n)

)
+G (x,θ) u̇ (4.131)

where f
(
x,x(n−1), x(n)

)
is defined as

f (·) = ḣ
(
x,x(n−1)

)
+ Ġ (x,θ)G−1 (x,θ)

(
x(n) − h

(
x,x(n−1)

))
. (4.132)

By applying the matrix decomposition approach introduced in Lemma 1, HFG matrix

G (x,θ) can be factorized as G (x,θ) = S (x,θ)U (x,θ) given the assumption that G (x,θ)

is a real matrix with nonzero leading principal minors. After taking SDU decomposition

result into (4.131) and premultiplying M (x,θ) on both sides of the equation, one can get
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the following result

M (x,θ)x(n+1) = ϕ
(
x,x(n−1), x(n),θ

)
+DU (x,θ) u̇ (4.133)

where S, U, and D have been previously defined, M (x,θ) , S−1 (x,θ) ∈ R2×2 is a symmetric

and positive definite matrix while ϕ
(
x,x(n−1), x(n),θ

)
, M (x,θ) · f

(
x,x(n−1), x(n)

)
∈ R2 is

an unknown auxiliary vector with unstructured uncertainty.

The tracking error e1 ∈ R2 can be defined as (4.6). Furthermore, the following auxiliary

error signals ei ∈ R2 ∀ i = 2, ...n are utilized

e2 = ė1 + e1,

e3 = ė2 + e2 + e1,

...

en = ėn−1 + en−1 + en−2.

(4.134)

The result in [34] shows that ei can be expressed as

ei (t) =
i−1∑
j=0

cije
(j)
1 (t) ∀ i = 2, 3, ..., n (4.135)

where the known constant coefficients cij are generated via a Fibonacci number series [34].

Based on above definitions, the filtered error signal r (t) ∈ R2 and z (t) ∈ R2n+2 can be

defined as follows

r = ėn + αen, z , [ eT1 eT2 ... eTn rT ]T (4.136)

where α is a positive gain constant. After taking the time derivative of r in (4.136) and

utilizing (4.133), (4.6), (4.134), and (4.135), one can obtain the open-loop dynamics as
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follows

Mṙ = M

(
x

(n+1)
d +

n−2∑
j=0

cije
(j+2)
1 + αėn

)
−ϕ

(
x,x(n−1), x(n),θ

)
+ en + Π−Du̇− en

(4.137)

where Ū (x,θ) ∈ R2×2 is a strictly upper triangular matrix while Π ∈ R2 is an auxiliary

vector with the following definitions

Ū (x,θ) , D −DU (x,θ) ,

Π , Ū (x,θ) u̇=

[
Ū12 (x,θ) u̇2 0

]T
.

(4.138)

In order to facilitate the full state control design for above open-loop dynamics, (4.139) can

be rewritten in a compact form as

Mṙ = −1

2
Ṁr +N + Π−Du̇− en (4.139)

where N (·) ∈ R2 in (4.139) is defined as

N= M

(
x

(n+1)
d +

n−2∑
j=0

cije
(j+2)
1 + αėn

)
− ϕ

(
x,x(n−1), x(n),θ

)
+ en + 1

2
Ṁr

= Nd + Ñ0

(4.140)

where Nd = N
(
xd, x

(n)
d , x

(n+1)
d

)
∈ R2 and Ñ0 = N −Nd ∈ R2. Then, it can be easily verified

that ‖Nd‖,
∥∥∥Ṅd

∥∥∥ ∈ L∞ given the smoothness of the desired trajectory as given by (3.2) and

the fact that ϕ
(
x,x(n−1), x(n),θ

)
is a C1 function. Furthermore, by using the fact that N is

continuously differentiable,
∥∥∥Ñ0

∥∥∥ can be upperbounded as

∥∥∥Ñ0

∥∥∥≤ρ0 (‖z‖) ‖z‖ (4.141)

where ρ0 (·) is a global invertible nondecreasing function and will be used in the ensuing

stability analysis.
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By assuming that all the state variables x are measurable, we can design a continuous

robust feedback control law as follows

u (t) = D−1 {(K + I2) en (t)− (K + I2) en (0)

+
∫ t

0

[
Φ̂ + (K + I2)αen (τ) + Γsign (en (τ))

]
dτ
} (4.142)

where K = Kp + diag {Kd,1, 0} ∈ R2×2 and Γ ∈ R2×2 are both diagonal gain matrices,

I2 ∈ R2×2 is an identity matrix, Φ̂ (t) ,

[
Y θ̂ 0

]T
∈ R2, while Y (·) and θ̂ (t) will be

defined later. In view of (4.142), the time derivative of u (t) yields

u̇1 = D−1
1,1

[
Y θ̂ + (K1,1 + 1) r1 + Γ1,1sign (en,1)

]
,

u̇2 = D−1
2,2 [(K2,2 + 1) r2 + Γ2,2sign (en,2)]

(4.143)

where u̇i (t) denotes the ith element in u̇ (t), Di,i, Ki,i, and Γi,i denote the ith diagonal element

in the matrices D, K, and Γ, respectively, while en,i (t) and ri (t) represent the ith element

in auxiliary error signal en (t) and filtered error signal r (t), respectively. Note that u2 (t)

is readily implementable since en,2 (t) is measurable. Y θ̂ in u1 (t) is designed to tackle the

coupling-related disturbance terms Ū12 (x,θ) u̇2, which we write explicitly as follows

Π =

Ū12 (x,θ)D−1
2,2 [(K2,2 + 1) r2 + Γ2,2sign (en,2)]

0


= Λ + Φ

(4.144)

where we have obtained the expression in (4.144) by substituting for u̇2 (t) from (4.143) into

(4.138). Furthermore, Φ ∈ R2 is a discontinuous auxiliary vector defined as follows

Φ =

[
Y θ 0

]T
(4.145)
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while Λ ∈ R2 is an auxiliary vector defined as follows

Λ =

[
Λ1 0

]T
(4.146)

where Y , D−1
2,2Γ2,2sign(en,2)Y12 ∈ R1×p is a regression vector, while θ is an unknown

parameter vector and we have utilized the fact that Ū12 (x,θ) can be parameterized as

Ū12 (x,θ) = Y12 (x) θ. We note here that the portion of the disturbance represented by

(4.145) cannot be handled via a robustifying term because of its discontinuous nature; how-

ever, since Φ is affine in the uncertainty, it can be handled via adaptation as will be shown

subsequently. Also note that Λ1 , ∆ (x) r2 ∈ R where ∆ (x) , D−1
2,2Ū1,2 (x,θ) (K2,2 + 1).

After adding and subtracting the term ∆d , ∆ (xd) ∈ R to ∆, one can obtain

∆ = ∆̃ + ∆d (4.147)

where ∆̃ = ∆ (x)−∆d (xd) ∈ R and ‖∆d‖ ∈ L∞ based on the boundedness of xd. By using

the fact that U (x,θ) is continuously differentiable,
∥∥∥∆̃
∥∥∥ can be further bounded as

∥∥∥∆̃
∥∥∥≤ρ∆ (‖z‖) ‖z‖ (4.148)

where ρ∆ (·) is a global invertible nondecreasing function. Thus, Λ1 =
[
∆̃ + ∆d (xd)

]
r2 can

be upperbounded as

‖Λ1‖ ≤
∥∥∥∆̃ + ∆d (xd)

∥∥∥ ‖r2‖

≤ [ρ∆ (‖z‖) ‖z‖+ ‖∆d‖] ‖z‖

≤ρ1 (‖z‖) ‖z‖

(4.149)

where ρ1 (·) is a global invertible nondecreasing function which depends on the gain K2,2 –

this fact would be utilized in the ensuing stability analysis. We note that the coupling-related
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disturbance term Ū12 (x,θ) u̇2 has been separated into two parts Φ and Λ. While the latter

term (which is continuously differentiable) will be compensated by nonlinear damping and

the sign function based robustifying term, the former term (which is discontinuous) needs to

be dealt with adaptively. Thus, one can define the parameter dynamic estimate as θ̂ ∈ Rp

and the corresponding mismatch as θ̃ = θ − θ̂ ∈ Rp. Motivated by structure of Y and the

following stability analysis, the adaptation law for θ̂ can be designed as follows

θ̂ (t) =
∫ t
t0

ΓY Y r1dτ

=
∫ t
t0

ΓY Y ėn,1dτ +
∫ t
t0

ΓY Y αen,1dτ

(4.150)

where ΓY , γY I and I ∈ Rp×p is a identity matrix while γY is a positive constant. It is

important to note that r1 is unmeasurable since it depends on ėn,1 which in turn depends

on x(n) which is not a state variable for the original system model given by (4.130) and is

therefore considered unmeasurable. Therefore, the adaptation law cannot be implemented

directly in the form shown in (4.150). Based on the known value of sign(en,2) and using

additivity of integration on intervals, the integral term associated with unknown value ėn,1

in (4.150) can be rewritten as

∫ t

t0

ΓY Y ėn,1dτ = k

n∑
j=1

∫ t+j,f

t+j,0

Y12ėn,1dτ − k
m∑
k=1

∫ t−k,f

t−k,0

Y12ėn,1dτ (4.151)

where k = ΓYD
−1
2,2Γ2,2 and

sign (en,2) =


1, ∀ t ∈

(
t+j,0, t+j,f

)
, j = 1, ..., n

−1, ∀ t ∈
(
t−k,0, t−k,f

)
, k = 1, ...,m

0, otherwise.

(4.152)
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Also note that (0, t] = T+ ∪ T− where T+ =
n⋃
j=1

(
t+j,0, t+j,f

]
and T− =

m⋃
k=1

(
t−k,0, t−k,f

]
. Then,

integration by parts can be utilized in each interval in T+ and T− as

θ̂ (t) = k
n∑
j=1

[
Y12en,1|

t+j,f

t+j,0
−
∫ t+j,f
t+j,0

Ẏ12en,1 (τ) dτ

]
−k

m∑
k=1

[
Y12en,1|

t−k,f

t−k,0
−
∫ t−k,f
t−k,0

Ẏ12en,1 (τ) dτ

]
+
∫ t

0
ΓY Y αen,1dτ .

(4.153)

Since en,1, Y12 (x) , Ẏ12

(
x,x(n−1)

)
are measurable, thus θ̂ (t) is implementable in the form

shown above. Finally, after substituting (4.143) into (4.139), one can obtain the following

closed loop error dynamics

Mṙ = −1

2
Ṁr +Nd + Ñ0 + Λ + Φ̃− (K + I) r − Γsign (en)− en (4.154)

where Nd and Ñ0 have been defined previously and Φ̃ ,

[
Y θ̃ 0

]T
.

Before we proceed to analyze the stability of the closed-loop system under the control

design proposed previously, we state the following two lemmas

Lemma 2 For the following auxiliary function L (t) ∈ R

L = rT (Nd − Γsign (en)) , (4.155)

if the control gain matrix Γ is chosen as

Γi,i > ‖Nd,i‖L∞ +
1

α

∥∥∥Ṅd,i

∥∥∥
L∞

∀ i = 1, 2 (4.156)

where Nd,i is the ith element in the vector Nd, then we can obtain∫ t

0

L (τ) dτ ≤ ςL (4.157)

where ςL =
2∑
i=1

Γi,i |en,i (0)| − en,i (0)Nd,i (0).
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Proof. The proof for this lemma can be adapted readily from [34].

Lemma 3 Consider a system η̇ = h (η, t) where h : Rm×R≥0 → Rm and the solution exists.

Defining the region D ⊂ Rm and D := {η ∈ Rm| ‖η‖ < ε} where ε is some positive constant,

if there exists a continuously differentiable function V : D × R≥0 → R≥0 such that

W1 (η) ≤ V (η, t) ≤ W2 (η) and V̇ (η, t) ≤ −W (η) (4.158)

where W1 (·) and W2 (·) are continuous positive-definite functions while W (·) is a uniformly

continuous positive semidefinite function, and if η (0) ∈ S where the region of attraction is

defined as

S :=

{
η ∈ D|W2 (η) < min

‖η‖=ε
W1 (η)

}
,

then, it can be shown that

W (η)→ 0 as t→∞. (4.159)

Proof. The proof for this lemma can be found in Theorem 8.4 of [37].

Theorem 5 Provided the control gain matrix K defined in (4.142) is chosen to be large

enough, α > 1/2, and Γ is selected according to (4.156), the proposed robust control design

ensures that all the error signals e
(i)
1 → 0 as t→∞ ∀ i = 1, ..., n.

Proof. First, a non-negative Lyapunov function candidate V0 is defined as

V0 (y, t) =
1

2

n∑
i=1

eTi ei +
1

2
rTMr +

1

2
θ̃
T

Γ−1
Y θ̃ + P (4.160)
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where the non-negative auxiliary function P can be defined as follows

P = ςL −
∫ t

0

L (τ) dτ (4.161)

and y=

[
z θ̃

√
P

]T
∈ R2n+4. Based on the fact that M (x,θ) is positive definite, one

can prove that M ≤ M (x,θ) ≤ M̄ (‖y‖) where M is a positive constant and M̄ (·) is a

nondecreasing function. Thus, V0 in (4.160) can be bounded as follows

λ1 ‖y‖2 ≤ V0 (y, t) ≤ λ2 (‖y‖) ‖y‖2

W1 (y) = λ1 ‖y‖2 and W2 (y) = λ2 (‖y‖) ‖y‖2

where λ1 = 1
2

min
{

1, M, Γ−1
Y

}
, and λ2 = 1

2
max

{
2, M̄ (‖y‖) , Γ−1

Y

}
. Upon taking the time

derivative of (4.160) and utilizing (4.161), we obtain

V̇0 =
n∑
i=1

eTi ėi + rTMṙ +
1

2
rTṀr + θ̃

T
Γ−1
Y

.

θ̃
T

− L. (4.162)

By substituting from (4.6), (4.134), (4.136), (4.150), (4.154), (4.155), and utilizing the fact

that ab ≤ 1
2
aTa+ 1

2
bT b, an upper bound for (4.162) can be obtained as

V̇0 ≤ −
n−2∑
i=1

eTi ei − 1
2
eTn−1en−1 −

(
α− 1

2

)
eTnen − ‖r‖

2

+ ‖r‖
∥∥∥Ñ0

∥∥∥+ ‖r‖ ‖Λ‖ − λK ‖r‖2 −Kd,1r
2
1

(4.163)

where α > 1/2 and λK is the maximum eigenvalue for the gain matrix Kp. Thus, V̇0 can be

further upperbounded as

V̇0 ≤ −λ3 ‖z‖2 + ρ0 (‖z‖) ‖r‖ ‖z‖ − λK ‖r‖2 −Kd,1r
2
1 + r1ρ1 (‖z‖) ‖z‖ (4.164)

where λ1 = min {1/2, (α− 1/2)}. Then, by adding and subtracting term
ρ2

0 (‖z‖)
4λK

‖z‖2 and

ρ2
1 (‖z‖)
4Kd,1

‖z‖2 to the right hand side of the above inequality and utilizing a nonlinear damping
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argument, one can further upperbound V̇0 as follows

V̇0 ≤ −λ4 ‖z‖2 −
(
λ3 − λ4

2
− ρ2

0 (‖z‖)
4λK

)
‖z‖2 −

(
λ3 − λ4

2
− ρ2

1 (‖z‖)
4Kd,1

)
‖z‖2 . (4.165)

Given a positive constant λ4 < λ3, one can first choose Kp such that λK >
ρ2

0 (||z||)
2 (λ3 − λ4)

or

equivalently z (t)∈D1 where

D1 ,
{
z | ‖z‖ < ρ−1

0

(√
2λK (λ3 − λ4)

)}
.

This ensures that the first parenthesized term in (4.165) is non-negative. Since K
∆
= Kp +

diag {Kd,1, 0}, it is clear to see that K2,2 is determined only by Kp and is independent of

Kd,1. Then, based on the fact that ρ1 depends on K2,2, one can select Kd,1 large enough such

that Kd,1 >
ρ2

1 (‖z‖)
2 (λ3 − λ4)

or z (t)∈D2 where

D2 ,

{
z | ‖z‖ < ρ−1

1

(√
2Kd,1 (λ3 − λ4)

)}
,

and D1 ∩ D2 is non-empty. Motivated by Lemma 3 and the definition of y, D1, and D2, a

region D can be defined as

D ,
{
y | ‖y‖ < ρ−1

0

(√
2λK (λ3 − λ4)

)}
∩
{
y | ‖y‖ < ρ−1

1

(√
2Kd,1 (λ3 − λ4)

)}
.

Thus, it is straightforward to prove that

V̇0 ≤ −λ4 ‖z‖2 = −W (y) , ∀ y∈D. (4.166)

From (4.160) and (4.166), it is known that V0 ∈ L∞, and it is also straightforward to see

that ei, r, θ̃, θ̂ ∈ L∞ ∀ i = 1, ..., n. Then, by using (4.135), one can easily see that e
(i)
1 ∈ L∞

∀ i = 1, ..., n − 1. Then, by using (4.134) and (4.136), one can easily see that ėi ∈ L∞
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∀ i = 1, ..., n which further implies that e
(n)
1 ∈ L∞ Next, given the fact that xd is Cn+2

smooth and e
(i)
1 ∈ L∞ ∀ i = 1, ..., n, it is possible to show that x(i) ∈ L∞ ∀ i = 1, ..., n and

f
(
x,x(n−1), x(n)

)
, G (x,θ) ∈ L∞ by using the definition in (4.6). Now, by utilizing (4.130),

one can show that u ∈ L∞. Based on the fact that r ∈ L∞, we can see that u̇2 ∈ L∞

according to (4.143). Y ∈ L∞ based on the boundedness on xd and ei. Then, according to

previous boundedness result on θ̂, one can also prove that u̇1 ∈ L∞ given the definition in

(4.143), which further implies ṙ ∈ L∞ by using the definition in (4.139). Thus, given the facts

that ei, ėi, r, ṙ ∈ L∞ ∀ i = 1, ..., n, one can draw the conclusion that Ẇ = −λ4z
T ż ∈ L∞

which implies that W (y) is uniformly continuous. Based on the definition of D, one can also

define a region S as

S ,

{
y∈D |W2 (y) < λ1

(
ρ−1

0

(√
2λK (λ3 − λ4)

))2
}

∩
{
y∈D |W2 (y) < λ1

(
ρ−1

1

(√
2Kd,1 (λ3 − λ4)

))2
}
.

Now, one can use Lemma 3 to prove ‖z‖ → 0 as t→∞ ∀ y (0) ∈ S. From (4.136), one can

see that ei (t), r (t)→ 0 as t→∞ ∀ i = 1, ..., n. By using (4.135), one can recursively prove

that that e
(i)
1 → 0 ∀ i = 1, ..., n, as t → ∞. Also note that region of attraction S in this

problem can be made arbitrarily large to include any initial condition by choosing a large

enough control gain. The above facts imply that our stability result is semi-global.
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Figure 4.13: Robot link position tracking error under proposed robust control design.

4.4.1 Application to Robot Model

The proposed robust control design has been verified using numerical simulation through the

same two DOF robot model defined in (4.37). The initial conditions of the robot manipulator

have been set to q1 (0) = q2 (0) = 0.05 [rad] and q̇1 (0) = q̇2 (0) = 0 [rad · s−1]. The parameter

estimate is initialized as θ̂ (0) = 0. The control gain K and Γ in (4.142), and the adaptation

gain ΓY in (4.150) have been chosen as

K = diag {5, 1} , Γ = 8I2, ΓY = 0.4.

The simulation result under full state feedback robust control law is demonstrated in Fig.

4.13. It is straightforward to see that the tracking error converges to zero in 5 [s] under the
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Figure 4.14: Control input signal.
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Figure 4.15: Parameter estimation result.
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Table 4.3: Control Gains

Freestream velocity K11 K22 Γ11 Γ22 κ

8 [m / s] 10 10 3 3 10

13.28 [m / s] 1 1 5 5 10

proposed control algorithm. The control signal is presented in Fig. 4.14 while the parameter

estimation result is given in Fig. 4.15.

4.4.2 Application to Aeroelastic Model

Simulation results for a 2-D wing section model introduced in (4.75) and (4.76) under the

proposed control also demonstrates the performance of the proposed controller. Note that

in this simulation, the parameters in (4.75) and (4.76) are given in Table I. The parameters

for the controller in pre- and post-flutter conditions are listed in Table 4.3.

while the adaptation gain are selected as ΓY = 0.01. When no external disturbance is

considered, Fig. 4.16 shows the open-loop and closed-loop responses of wing section model

at pre-flutter speed U∞ = 8 [m / s]< UF = 11.4 [m / s]. In Fig. 4.16(b), one can easily see

that the proposed control law successfully drives the plunge and pitch displacements to zero

within 2 [s]. Fig. 4.17(a) and Fig. 4.17(b) compare the open-loop and closed-loop responses

of the system at post-flutter speed U∞ = 13.28 [m / s]> UF = 11.4 [m / s]; in the absence of

any control input, LCOs are experienced due to the nonlinearities in the system model. The
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control is turned on at t = 5 [s]. As one can see from Fig. 4.17(b), the pitching displacement

converges to zero in less than 2 [s] while it takes a little longer time to suppress the plunging

displacement oscillations.

Under a small sinusoid-like gust, with w0 = 0.047 [m / s] at both pre-flutter speed and

w0 = 0.07 [m / s] at post-flutter speed, the closed-loop responses of the system are represented

in Fig. 4.18. Compared with Fig. 4.16(b) and Fig 4.17(b), one can see that it takes nearly

the same time (2 [s]) for the controller to suppress the pitching and plunging displacements

even in the presence of a sustained external disturbance. One can also clearly see that the

control signal is able to compensate for the sinusoidal disturbance injected into the wing

section model.

The closed-loop responses of the system under a large triangular gust (w0 = 0.7 [m / s])

are represented in Fig. 4.19 at both pre- and post-flutter speed. Note that this triangular

gust is not C2 smooth and it can not be compensated all the time under current wing section

model by a limited control signal. From Fig. 4.19(a), one can see that the proposed controller

can suppress the pitching and plunging displacements in 4 [s] at pre-flutter speed. It’s also

clearly to see that it takes less than 3 [s] at post-flutter speed for the pitching and plunging

displacements to converge to zero.
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Figure 4.16: System response at pre-flutter speed U∞ = 8[m/s] (a): open-loop; (b):

closed-loop.
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Figure 4.17: System response at post-flutter speed U∞ = 13.28[m/s] (a): open-loop; (b):

closed-loop.
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Figure 4.18: System response under sinusoidal gust (a): at pre-flutter speed U∞ = 8[m/s];

(b): at post-flutter speed U∞ = 13.28[m/s].
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Figure 4.19: System response under triangular gust (a): at pre-flutter speed U∞ = 8[m/s];

(b): at post-flutter speed U∞ = 13.28[m/s].
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CHAPTER 5

CONCLUSIONS

In this dissertation, we have documented the progress in Lyapunov-based design and engi-

neering applications for a class of nonlinear MIMO systems. Four kinds of controllers, i.e.,

robust adaptive controller, adaptive output controller, model-free controller, and continu-

ous robust controller have been proposed and verified through a 2-DOF robot manipulator

model and 2- DOF aeroelastic model. Simulation results have demonstrated efficacy of the

proposed control laws.
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Design, John Wiley & Sons, 1995.

[10] G. Campion and G. Bastin, “Indirect Adaptive State Feedback Control of Linearly Pa-
rameterized Nonlinear Systems,” Int. Journal of Adaptive Cont. and Signal Processing,
vol. 4, pp. 345-358, 1990.
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