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Abstract: In this paper, a novel robust controller is proposed for servo mechanisms with nonlinear friction and external distur-
bance. First, a continuously differentiable friction model is used to represent the nonlinear friction, and neural network (NN) is
employed to approximate the nonlinear friction and external disturabance. Then, a novel robust controller is designed by using
robust integral of the sign of the error (RISE) term. In order to reduce the measure noise, a desired compensation method is
utilized in controller design, in which the model compensation term depends on the reference signal only. The stability of closed-
loop is proved based on Lyapunov stability theory, and all signal are proved to be bounded simultaneously. Finally, comparative
simulations based on a turnable servo system are implemented to validate the efficacy of the proposed method.
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1 Introduction

Permanent-magnet synchronous motors (PMSM) have
been widely used due to their compact structure, high power
density, high torque to inertia ratio and efficiency in many
industry applications [1–3]. The linear control method, i.e.,
proportional-integral-derivative (PID) control methods have
been designed for PMSM [4]. Nevertheless, these linear
methods can not ensure the dynamic performance of the con-
trol system, because the control system exists a lot of model
uncertainties and nonlinearities.

The nonlinear control techniques become a natural solu-
tion to control the PMSM. With the development of mod-
ern control theory techniques, many researchers have pro-
posed some control schemes to control servo system, such
as backstepping method [5], robust control [6], adaptive
control [7, 8], input-output linearization control [9], sliding-
mode control (SMC) [10], and feedback linearization tech-
nique. Moreover, the artificial intelligent techniques have al-
so been used for PMSM, e.g., neural network (NN) [11, 12],
fuzzy logic system (FLs) [13]. Recently, a new robust con-
trol method named integral of the sign of the error (RISE)
control scheme has proposed in [14, 15]. The key idea of
the RISE is that a unique integral signum feedback term
is introduced to against bounded disturbances. This nov-
el control technique has been successfully applied to many
filed. In [14], the RISE control technique is used to com-
pensate for uncertainty in class of nonlinear system. In [15],
the RISE is employed to handle the continuously differen-
tiable friction model with uncertain nonlinear parameteriz-
able terms. In [16], the RISE is utilized to control an au-
tonomous underwater vehicle, where the RISE is used to
compensate for system uncertainties and sufficiently smooth
bounded exogenous disturbances. Moreover, the NN tech-
nique combined RISE control method have also been used
in [17, 18]. Travis [17] introduces NN with a robust integral
of the sign of the error feedback and incorporated into back-
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stepping control design to compensate approximate the dy-
namics of the follower. In [18], NN is used as a feedforward
controller that is augmented with a continuous robust feed-
back term to yield an asymptotic result. Yang [19] proposes
a robust integral of neural network and error sign control for
MIMO nonlinear system, where NN residual reconstruction
error and bounded disturbance are overcome by the integral
error signal.

The adaptive robust control method can handle the distur-
bance and model uncertainties and has been applied to lin-
ear motion systems. However, the friction compensation is
not considered. In order to compensate the nonlinear fric-
tion, it is important to adopt appropriate model model. In
the past years, many friction models are used to describe the
friction dynamics, such as classical model [20], Armstrong
model [21], Dahl model [22], and LuGre model [23]. A-
mong these friction models, the LuGre model is capable of
modeling both static and dynamic friction behaviors. It cap-
tures most of the friction behaviors, such as Stribeck effect,
Hysteresis, Springlike characteristics. Although the LuGre
model has been used to compensate friction, there are still
some practical issues when using LuGre model, because the
LuGre model is not continuously differentiable model. To
overcome the shortcoming of the LuGre model, a new con-
tinuously differentiable friction model is proposed in [24],
the friction model can captures a number of essential aspect-
s of friction without involving discontinuous or piecewise
continuous functions. This new friction model has been suc-
cessfully applied to servo system [25].

Motivated by the above observations, this paper adopt a
novel continuously differentiable friction model to represent
the friction dynamics, and conjunction with the RISE ap-
proach to handle the model uncertainties and external dis-
turbance. The new friction model can capture various fric-
tion dynamics, i.e., Coulomb friction, Viscous friction, and
Stribeck effects. Then, the friction model and other nonlin-
ear dynamics (model uncertainties, disturbance ) are lumped
nonlinear, which can be approximated by NN. Moreover, the
robust integral of the sign of the error controller is designed



Fig. 1: Schematic diagram of position control for PMSM.
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Fig. 2: Friction dynamics of friction model.

by using the reference trajectory. Furthermore, the proposed
RISE controller guarantee the an asymptotic output tracking
performance even in the presence of friction and external
disturbance. Comparative simulations based on a turnable
servo system are implemented to validate the efficacy of the
proposed method.

The brief is organized as follows: dynamic model and
problem formulation is provided in Section 2. Section 3 pro-
poses controller design. Section 4 proves analysis the stabil-
ity of the control system. Simulations are given in Section 5.
Some conclusions are drawn in Section 6.

2 Problem Formulation

2.1 Servo system
In this paper, we consider the a kind of nonlinear turntable

servo mechanisms driven by a permanent magnet motor,
which model can be written as :

Jq̈ + f(q, q̇) + Tf + Tl + Td = Tm

KE q̇ + La
dIa
dt

+RaIa = u

Tm = KT Ia

(1)

where q, q̇ are the angular position (rad) and velocity (rad/s),
J is the inertia, Td, Tf , Tl and Tm are the unknown dis-
turbance, load, friction and the driving torque, respectively.
f(q, q̇) denotes the nonlinear, u is the input voltage, Ia, Ra

and La are the armature current, resistance and inductance.
KT is the electrical-mechanical conversion constant and KE

is the back electromotive force coefficient.
In practice, if the electrical constant La/Ra is small, then

the electrical transients LadIa/dt is close to zero.Choose the
state vector x = [x1, x2]

T = [q, q̇]T , then, the equation (1)

can be simplified as


ẋ1 = x2

ẋ2 =
1

J

(
K1u−K2x2 − Td − Tl − Tf

)
y = x1

(2)

where K1 = KT /R, K2 = KTKE/R are positive con-
stants.

2.2 Friction model
Conventional friction models are discontinuous or piece-

wise continuous, which may be problematic for deriving s-
mooth control actions. Hence, the off-line identification of
friction model parameters is not a trivial task. In this paper, a
new continuously friction model is adapted to represent the
nonlinear friction.

Tf = α1(tanh(β1x2)− tanh(β2x2))

+ α2 tanh(β3x2) + α3x2

(3)
where α1, α2, α3, β1, β2, and β3 are the positive constants.

Unlike other friction models, equation (3) has a contin-
uously differentiable form to allow more flexible and suit-
able adaptive control. In (3), (tanh(β1q̇) − tanh(β2q̇)) de-
notes the Stribeck effect, α2 tanh(β3q̇) represents Coulomb
friction, and α3q̇ is viscous dissipation. For further details
regarding the friction model, see [26]. The subsequent de-
velopment is based on the assumption that x1 and x2 are
measurable. Fig. 2 provides the profile of friction (3) with
parameters α1 = 0.25, α2 = 0.5, α3 = 0.08, β1 = 100,
β2 = 1, and β3 = 1000.

Remark 1: Compared to other friction models, (3) has d-
ifferentiable and smooth operators and thus it can allow for
more flexible and suitable adaptive control design and imple-
mentation. Thus, in the following section, the differentiable
friction model are approximated by using NN, whcih is in-
cluded inside controller design.

2.3 NN Approximation
To approximate unknown nonlinearities, the RBFNN is

employed to approximate the continuous function Q(Z) :
Rq → R and can be expressed as follows:

Q(Z) = WTΦ(Z) + ε (4)

where Z = [z1, z2, ..., zq] ∈ Rq is the input vector of the
NN, WT ∈ Rq is a weight vector of the NN. Φ(Z) =
[Φ1(Z),Φ2(Z), ...,ΦN (Z)]T is the basis function vector
and ε is the approximation error of the NN, i.e., ∥W ∗∥ ≤
WN , ∥ε∥ ≤ εN with WN and εN being positive constants.
In this paper, a high-order NN (HONN)with basis functions
Φk(Z) = Πj∈Jk

[σ(Zj)]
dk(j), k = 1, ..., L are used with Jk

being collections of L− nonordered subsets of {0, 1, ..., n},
and dk(j) being nonnegative integers. σ() is a sigmoid func-
tion σ(x) = a/(1+e−bx)+c, ∀a, b ∈ R+, C ∈ R, where the
positive parameters a, b, and real number c are the bounded,
slope, and bias of sigmoidal curvature, respectively.



3 Controller design

To address the control of (2), define a set of switching
functions as quantities, i.e.,

s2 = ṡ1 + k1s1

r = ṡ2 + k2s2
(5)

where s1 = x1 − xd is the output tracking error, and k1 and
k2 are the positive design parameters. In (5), an auxiliary
signal error r is defined to get an extra design freedom. It is
worth to note that the filtered tracking error r is not measur-
able since it depends on the acceleration information and is
just introduced to assist the following controller design.

The tracking error system can be developed by utilizing
the expression (5), we can obtain the following equation

r =
K1

J
u− K2

J
x2 −

α1

J
(tanh(β1x2)− tanh(β2x2))

− α2

J
tanh(β3x2)−

α3

J
x2 − (k1s1 + k2s2 − ẍd)− d

(6)
where d = (Tl + Td).

In practice, the measure noise may be existed in closed-
loop system, since the speed signal is obtained via backward
difference of position signal and thus is quite noisy. In the
following, we adopted a robust integral of the sign of the
error (RISE) control strategy to cancel the noise and mod-
el uncertainties by using the desired trajectory information
only.

In order to develop the RISE control method, some mod-
ifications of r in (6) are written as the following form, with
desired trajectories. Thus,

r =
K1

J
u− K2

J
ẋd −

α1

J
(tanh(β1ẋd)− tanh(β2ẋd))

− α2

J
tanh(β3ẋd)−

α3

J
ẋd − (k1s1 + k2s2 − ẍd)− d

(7)
Assumption 1: The uncertainties d is bounded and smooth

enough such that |ḋ| ≤ δ1 and |d̈| ≤ δ2, where δ1 and δ2 are
positive constants.

To facilitate analysis, auxiliary variable fd(xd, ẋd, ẍd) is
defined as in (7) depends on xd, ẋd are replaced with x1, x2.
Define function the following function as

fd(xd, ẋd, ẍd) =
α1

J
(tanh(β1ẋd)− tanh(β2ẋd)

+
α2

J
tanh(β3ẋd) +

α3

J
ẋd + ẍd −K2ẋd

(8)
and the auxiliary function S(x1, x2, xd, ẋd, ẍd) is defined as

S =(k1s1 + k2s2) + ẍd −
α1

J
(tanh(β1x2)− tanh(β2x2))

− α2

J
tanh(β3x2)−

α3

J
x2 −

α1

J
(tanh(β1ẋd)

− tanh(β2ẋd))−
α2

J
tanh(β3ẋd)−

α3

J
ẋd

(9)
The function fd(xd, ẋd, ẍd) can be approximated by

HONN as

fd(xd, ẋd, ẍd) = WTΦ(Z) + ε ∀Z = [xd, ẋd, ẍd]

˙̂
W = Γ(Φ(Z)s2 − σŴ )

(10)

Assumption 2: The function reconstruction error ε and its
first two time derivatives ε̇ and ε̈ are bounded.

Equation (7) is written as

r =
K1

J
u+ fd − S − d (11)

Then, the adaptive controller is design as follows:

u =
J

K1
(f̂d + µ) (12)

where f̂d is the NN estimation of fd, and µ(t) is the RISE
feedback term, which can be designed as :

µ(t) = (ks + 1)s1(t)− (ks + 1)s1(0)

+

∫ t

0

[(ks + 1)k2s2(τ) + βsgn(s2(τ))]dτ
(13)

where ks and β are the design parameters, and sgn() rep-
resents the signum function. The time derivative of (13) is
given as:

µ̇(t) = (ks + 1)r + βsgn(s2) (14)

Substituting (12) into (10), the closed-loop tracking error
system is given as

r = f̃d − S − d− µ (15)

where f̃d = fd − f̂d. To facilitate the closed-loop stability
analysis, the derivative of (14) is

ṙ =
˙̃
fd − Ṡ − ḋ− µ̇ (16)

Substituting (9) and (14) into (16), one has

ṙ = ˙̃WΦ(Z) + W̃ Φ̇(Z)− Ṡ − ḋ+ (ks + 1)r

+ βsgn(s2) + ε̇+N(t)− s2
(17)

where N(xd, ẋd, t) represents the following unmeasurable
auxiliary term:

N(xd, ẋd, t) =
˙̃WΦ(Z) + W̃ Φ̇(Z)− Ṡ − ḋ+ ε̇+ s2 (18)

To facilitate the subsequent analysis, another unmeasur-
able auxiliary term Nd is defined as following form:

Nd = ˙̃WΦ(Z) + W̃ Φ̇(Z) (19)

From (17) and (19), the closed-loop error system is given
as follows:

ṙ = (ks + 1)r + βsgn(s2) + Ñ(t) +Nd(t) (20)

where Ñd(t) is defined as

Ñ(t) = N(t)−Nd(t) (21)

In a similar manner as in [14], the Mean Value Theorem
can be used to develop the following upper bound:

∥Ñ∥ ≤ ρ(∥z∥)∥z∥ (22)

where z(t) is defined as

z(t) = [sT1 , s
T
2 , r

T ]T (23)



and the bounding function ρ∥z∥ is a positive globally invert-
ible nondecreasing function. Then, we have the following
inequalities

∥Nd∥ ≤ ζ1, ∥Ṅd∥ ≤ ζ2 (24)

where ζ1 and ζ2 are positive constants.
Remark 2: The RISE controller 13 depends on measur-

able system state x, and the auxiliary error signal r(t) is not
used in controller. Moreover, the continuously differentiable
friction model is used in controller u, and sign function in
µ(t) via an integral action. Thus, the control input u is con-
tinuous, it is better than discontinuous controllers.

4 Stability Analysis

In this section, the stability of the closed-loop system will
be analyzed.

Theorem 1: Consider the servo system (2) with NN and
RISE controller ensures that all system signals are bounded,
and the tracking error converges to zero asymptotically, i.e.,
∥s1(t)∥ → 0 as t → ∞.

Proof: An auxiliary function P (t) is defined as

P (t) = β|s2(0)| − s2(0)
TNd(0)−

∫ t

0

L(τ)dτ (25)

where β is positive constant.
In (25), the function L(t) is defined as

L(t) = r[Nd − βsgn(s2)] (26)

The time derivative of P (t) is expressed as

Ṗ (t) = −L(t) = −r[Nd − βsgn(s2)] (27)

Thus, the following inequality can be obtained:∫ t

0

L(τ)dτ ≤ β|s2(0)| − s2(0)Nd(0) (28)

Define a continuously differentiable positive function V
as

V =
1

2
s21 +

1

2
s22 +

1

2
r2 + P +Q (29)

In (29), Q is defined as

Q =
1

2Γ
W̃T W̃ (30)

where W̃ = Ŵ −W .
Now, it is important to observe that V exists the following

inequalities
U1(y) ≤ V ≤ U2(y) (31)

where y = [s1, s2, r,
√
P (t),

√
Q(t)], and U1(y), U2(y) are

defined as

U1(y) = λ1∥y∥2, U2(y) = λ2∥y∥2 (32)

where λ1 and λ2 are positive constants.
Then, differentiating (29), V̇ can be expressed as

V̇ = s1ṡ1 + s2ṡ2 + rṙ + Ṗ (t) + Q̇

= s1(s2 − k1s1) + s2(r − k2s2)

+ r
(
− (ks + 1)r − βsgn(s2) + Ñ(t) +Nd(t)− s2

)
− r[Nd − βsgn(s2)] + W̃Φ(Z)s2 − σW̃Ŵ

(33)

V̇ can be simplified as follows

V̇ =rÑ(t)− (ks + 1)∥r∥2 − k2∥s2∥2 − k1∥s1∥2

+ s1s2 − σW̃Ŵ
(34)

By the following inequalities, one has

2s1s2 ≤ s21 + s22 (35)

and the following inequality holds

|rÑ | ≤ ρ(∥z∥)∥z∥|r| (36)

Then, (32) can be written as

V̇ ≤
[
ρ(∥z∥)∥z∥|r| − (ks + 1)∥r∥2

]
− (2k1 − 1)∥s1∥2

− (k2 − 1)∥s2∥2 − σ

(
∥W̃∥ − ∥W∥

2

)2

+
∥W∥2

4

≤
[
ρ(∥z∥)∥z∥|r| − (ks + 1)∥r∥2

]
− (2k1 − 1)∥s1∥2

− (k2 − 1)∥s2∥2 − σ

(
∥W̃∥ − ∥W∥

2

)2

≤ −U(y)
(37)

where U(y) = c∥z∥2 is a positive semidfinition function and
c is a positive constant.

According Barbalat’s lemma [27], we can conclude that

r(t) → 0 as t → ∞ (38)

Furthermore, based on the definition of r(t), one has

s1(t) → 0 as t → ∞ (39)

The proof is completed.
Remark 3: Results of Theorem indicate the proposed ro-

bust controller can handle the model uncertainties, which has
the following advantages, one is the RISE controller is only
depended on the reference trajectory. Another is the measur-
able noise is reduced.

Remark 4: In Theorem, it is notice that the RISE con-
troller must satisfy the following prerequisites. 1) The mod-
el uncertainties and external disturbance are smooth enough,
Assumption 1 and Assumption 2 are satisfied. 2) The con-
troller gains k1, k2 and ks are chosen large enough.

Remark 5: The NN output is incorporated into integral
term (13). Thus, the reconstruction error is compensated by
robust term.

5 Simulation Results

In this section, the extensive simulations are used to illus-
trate the the effectiveness of the proposed control scheme.
The parameters of the servo system (1) are given as J =
0.1kg/m2, KE = 0.2V/(rad/s), KT = 5N · m/A,
R = 5Ω, Tl = 0.1N · m, and thus K1 = KT /R = 1,
K2 = KEKT /R = 0.2, β1 = 700, β2 = 15, β3 = 1.5,
α1 = 0.02, α2 = 0.01, α3 = 0.2.

In order to illustrate the effective of the proposed control
method, the following two controllers are compared in sim-
ulation.

1) RISE controller: This is the proposed RISE control
method with friction model. The friction model is given as
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Fig. 3: Simulation results for motor position and speed of
RISE.

(3). The controller parameters are chosen as k1 = 10, k2 =
1, ks = 0.5, β = 0.001.

2) PID controller: This is the proportional-integral-
derivative controller with position feedback. The controller
is u = kp(x1 − xd) + ki

∫ t

0
(x1 − xd) + kdd(x1 − xd)/dt.

The controller gains kp = 10, ki = 1, kd = 5 are tuned
for a given position reference xd = 0.1sin(4πt), to make a
tradeoff between the steady-state performance and transient
performance.

The simulation results are depicted in Figs. 3-4. Fig. 3
shows the position and speed tracking of proposed control
scheme, and Fig. 4 describes the effective of the PID control
method. From the Figs. 3-4, one can see that the track-
ing effect of the RISE is better than the PID. This is due to
the RISE controller contains robust term, which against the
model uncertainties and external disturbance.

6 Conclusion

In this paper,we proposed a robust controller with NN
and integral of the sign of the error term for servo mecha-
nisms with friction dynamics. A continuously differentiable
friction model is used to represent the friction dynamics
(i.e., Coulomb friction, Viscous friction and Stribeck effec-
t), which is compensated by using NN. Then, a novel robust
controller is designed by using robust integral of the sign
of the error. In order to reduce the measure noise, a de-
sired compensation method is utilized in controller design,
in which the model compensation term depends on the ref-
erence signal only. The stability of closed-loop system is
proved by Lyapunov stability theory. Comparative simula-
tions based on a turnable servo system are implemented to
validate the efficacy of the proposed method.
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