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In this paper, the trajectory tracking problem is investigated for a nonholonomicwheeledmobile robotwith parameter uncertainties
and external disturbances. In this strategy, combining the kinematic model with the dynamic model, the actuator voltage is
employed as the control input, and the uncertainties are approximated by a fuzzy logic system. An auxiliary velocity controller
is integrated with an adaptive fuzzy integral terminal sliding mode controller, and a robust controller is employed to compensate
for the lumped errors. It is proved that all the signals in the closed system are bounded and the auxiliary velocity tracking errors can
converge to a small neighborhood of the origin in finite time. As a result, the tracking position errors converge asymptotically to
zeros with faster response than other existing controllers. Simulation results demonstrate the effectiveness of the proposed strategy.

1. Introduction

A wheeled mobile robot (WMR) is an uncertain nonlinear
MIMO dynamic system. When the WMR constrains the
wheel’s “pure rolling without slipping,” it is also a typical
kind of nonholonomic systems characterized by kinematic
constraints. Such constraints are not integrable and can
not be eliminated from the model equations. Given so
many characteristics that are hard to handle, there has been
tremendous research on the nonholonomic WMR (NWMR)
in the past few decades.

The trajectory tracking problem is one of the most
popular problems on the WMR. With an assumption of
“perfect velocity tracking,” the initial kinematic controller
for the NWMR was designed in [1, 2]. However, such an
assumption is difficult to hold in practice for the dynamic
model of theNWMR is neglected. Considering the kinematic
model and the dynamic model of the NWMR together, based
on backstepping technique, Fierro and Lewis [3] presented
a dynamical extension that combines a kinematic controller
with a torque controller. In this method, it is assumed that
the dynamic structure of the NWMR and the parameters

are completely known. However, in practical WMRs, there
exist parameter uncertainties and external disturbances. In
addition, wheel skidding and slipping may happen. To over-
come these difficulties, the torus shaped rear wheels were
used for three WMRs in [4, 5]. The modeling and analysis
were investigated to design the controller for the WMR in
[6]. Meanwhile, a variety of nonlinear control techniques
have been used bymany researchers, such as adaptive control
[7–11], robust adaptive control [12–14], adaptive fuzzy logic
control [15–18], adaptive neural network control [19, 20],
and sliding mode control [21–23], and several kinds of the
aforementioned methodologies are integrated to solve this
problem [24, 25].

One idea of some proposed literatures related to the
trajectory tracking problem of theNWMR is that an auxiliary
velocity controller is designed for the kinematic model
of the NWMR to make the tracking position errors con-
verge asymptotically to zeros, and a dynamic controller is
designed for the dynamic model of the NWMR to make
the auxiliary velocity tracking errors as small as possible.
Meanwhile, a robust controller is employed to compensate
the total uncertainties. For instance, by virtue of the universal
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approximation property of the fuzzy logic system (FLS) [26–
31], a control structure combining a kinematic controller
with a dynamic controller plus a fuzzy compensator was
proposed in [15]. A complete control lawbased on a kinematic
controller and an adaptive fuzzy sliding mode controller
was developed for a NWMR in the presence of dynamic
uncertainties as well in [25]. These dynamic controllers
share a common idea of choosing the wheel torque as
the control input. However, as stated in [17], the wheel
is driven by the actuator in reality. Hence, the resulting
electrically driven mobile robot (the robot kinematics, robot
dynamics, and wheel actuator dynamics) is represented as
a third-order system. So most of existing torque controllers
designed with respect to the second-order, that is, the wheel
actuator dynamics, have been neglected and might degrade
the performance of the tracking control. Therefore, it is more
reasonable to use the actuator voltage as the control input.
For realizing the trajectory tracking of the NWMR with high
performance, the wheel actuator dynamics are combining
with the dynamics of the NWMR and the actuator voltage is
employed as the control input in [8, 16–18]. All these dynamic
controllers can guarantee that the auxiliary velocity tracking
errors converge to an adjustable neighborhood of the origin
as time goes to infinity. However, the finite time convergence
of the auxiliary velocity tracking errors cannot be guaranteed.

The terminal sliding mode control (TSMC), which was
first proposed in [32, 33], is an effective scheme to guarantee
the finite time convergence of the auxiliary velocity tracking
errors. However, the initial TSMC may cause the singularity
problem around the equilibrium [34], which would result in
an unbounded control signal. In order to avoid this problem,
a nonsingular terminal sliding mode control (NTSMC) was
developed in [35–38]. The continuous nonsingular terminal
sliding mode [36] has been extended into a class of MIMO
nonlinear systems [39]. Furthermore, using integral oper-
ation, an integral terminal sliding mode control (ITSMC)
was presented in [40, 41] for a class of first-order systems.
Apart from finite time convergence and nonsingularity, in
the ITSMC design, the system can also start on the integral
terminal sliding mode surface from the initial time instant.
Therefore, the reaching time to the sliding mode surface is
eliminated.

Based on the previous results, this paper addresses the
trajectory tracking problem for the NWMR with param-
eter uncertainties and external disturbances. Combining
the kinematic model with the dynamic model, a control
strategy is proposed which integrates an auxiliary velocity
controller with an adaptive fuzzy integral terminal sliding
mode controller. In this control strategy, using the universal
approximation property of the FLS, the uncertainties are
approximated by a fuzzy logic system and a robust controller
is employed to compensate for the lumped errors. Mean-
while, instead of the wheel torque, the actuator voltage is
employed as the control input. The main originality of the
proposed control strategy is that the adaptive fuzzy integral
terminal slidingmode controller can guarantee the finite time
convergence of the auxiliary velocity tracking errors. It is
proved that all the signals in the closed system are bounded
and the auxiliary velocity tracking errors converge to a small
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Figure 1: A wheeled mobile robot.

neighborhood of the origin in finite time. Therefore, the
tracking position errors converge asymptotically to zeroswith
faster response than other existing controllers. Simulation
results demonstrate the effectiveness of the proposed strategy.

The remainder of this paper is organized as follows.
Section 2 reviews some basics of the model of the NWMR,
the ITSMC, and the FLS. By use of the ITSMC and the
FLS, a control strategy is proposed which integrates an
auxiliary velocity controller with an adaptive fuzzy integral
terminal sliding mode controller in Section 3. Section 4 gives
simulation results to illustrate our results. Conclusions are
given in Section 5.

2. Preliminaries

In this section, we will review some basics of the model of the
NWMR, the ITSMC, and the FLS briefly.

2.1. Model of the Nonholonomic Wheeled Mobile Robot. We
consider a typical example of theWMR, which is called Type
(2,0) WMR in [6]. Such aWMR is composed of two deriving
wheels and one passive wheel. The two deriving wheels are
controlled independently by two actuators to achieve the
motion and orientation, and the passive wheel prevents the
robot from tipping over as it moves on a plane. Figure 1
describes the posture of the WMR in Cartesian coordinates.
Both driving wheels with the same radius 𝑟 are mounted on
the same axis and separated by 2𝑅. The center of mass of the
WMR is located at 𝐶, and 𝑃 is located in the midpoint of the
two driving wheels of theWMR.The distance between 𝑃 and𝐶 is 𝑑. When the electrical part of the actuator is taken into
account, the kinematic equation and the dynamic equation of
the NWMR can be written as follows from [16, 19]:

̇𝑞 = 𝑠 (𝑞) 𝜗, (1)

𝑀(𝑞) ̇𝜗 + 𝑉 (𝑞, ̇𝑞) 𝜗 + 𝐹 (𝜗) + 𝜏𝑑
= 𝑁𝐾𝑇𝑅𝑎 𝐵𝑢 − 𝑁2𝐾𝑇𝐾𝑏𝑅𝑎 𝐵𝑋𝜗, (2)
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where

𝑆 (𝑞) = [[
[
cos 𝜃 −𝑑 sin 𝜃
sin 𝜃 𝑑 cos 𝜃
0 1

]]
]

,

𝑀 (𝑞) = [𝑚 0
0 𝐼 − 𝑚𝑑2] ,

𝑉 (𝑞, ̇𝑞) = [0 0
0 0] ,

𝐵 = 1𝑟 [1 1
𝑅 −𝑅] ,

𝑋 = 𝐵𝑇.

(3)

𝑞 = [𝑥, 𝑦, 𝜃]𝑇, 𝐶(𝑥, 𝑦) is the coordinate of 𝐶 in the global
coordinate frame 𝑋𝑂𝑌, and 𝜃 is the orientation of the local
coordinate frame 𝑋𝐶𝐶𝑌𝐶 attached on the WMR platform
measured from 𝑋 axis and is also called the heading angle
of the WMR. 𝜗 = [], 𝜔]𝑇, where ] and 𝜔 are the linear
velocity of the point 𝑃 along the robot axis and angle
velocity, respectively. 𝑀(𝑞) is the inertia matrix, 𝑉(𝑞, ̇𝑞) is
the centripetal and Coriolis matrix, 𝐹(𝜗) ∈ 𝑅2×1 is the
surface friction, and 𝜏𝑑 ∈ 𝑅2×1 denotes bounded unknown
disturbances including unstructured unmodeled dynamics.𝑁 is the gear ration,𝐾𝑇 is themotor torque constant,𝐾𝑏 is the
counter electromotive force coefficient, and 𝑅𝑎 is the electric
resistance. 𝑢 = [𝑢1, 𝑢2]𝑇 is the actuator voltage input vector.

Several properties of the NWMR are given as follows [19].

Property 1. The matrix 𝑀(𝑞) is symmetric and positive
definite.

Property 2. The matrix 𝑀(𝑞) is bounded; that is, there
exist positive constants 𝑚1 and 𝑚2 satisfying 𝑚1‖𝑥‖2 ≤𝑥𝑇𝑀(𝑞)𝑥 ≤ 𝑚2‖𝑥‖2, for all 𝑥 ∈ 𝑅2.
Property 3. The matrix 𝑀(𝑞) − 2𝑉(𝑞, ̇𝑞) is skew symmet-
ric resulting in the following characteristic: 𝑥𝑇(𝑀(𝑞) −2𝑉(𝑞, ̇𝑞))𝑥 = 0 for all 𝑥 ∈ 𝑅2.

In view of the dynamicmodel of the NWMR, (2) is a first-
order system; the ITSM can be utilized so that the finite time
convergence of the auxiliary velocity tracking errors of the
NWMR is obtained.

2.2. Integral Terminal Sliding Mode. Now, a new form of the
integral terminal sliding mode is defined as

𝑠 = 𝑥 (𝑡) − 𝑥 (0) + 𝛽∫𝑡
0
|𝑥 (𝜏)|𝛾 sign (𝑥 (𝜏)) 𝑑𝜏, (4)

where 𝑥 ∈ 𝑅 is the system state variable, 𝛽 > 0, and 0 < 𝛾 < 1,
which generalizes the integral terminal sliding mode [41]

𝑠 = 𝑥 (𝑡) + 𝛽∫𝑡
0
𝑥𝑞/𝑝 (𝜏) 𝑑𝜏, (5)

where 𝛽 > 0 and 𝑝 and 𝑞 are odd integers satisfying 𝑝 > 𝑞 >0.
Remark 1. It is worthwhile to notice that the range of the
power 𝛾 is larger than that of the power 𝑞/𝑝. Meanwhile,
by means of the basic theorem of differential and integral
calculus [42], the integral terminal sliding mode (4) is con-
tinuous and differentiable although the absolute and signum
operators are involved. Besides these properties, from (4),
it is obvious that 𝑠(0) = 0 without the prior knowledge of
the parameter 𝛽. This implies that the system starts on the
integral terminal sliding mode surface (4) from the initial
time instant much easily.

Furthermore, on the sliding surface, 𝑠 = 0, which results
in

𝑥̇ (𝑡) + 𝛽 |𝑥 (𝑡)|𝛾 sign (𝑥 (𝑡)) = 0. (6)

The finite time 𝑡𝑠 that is taken from 𝑥(0) ̸= 0 to 𝑥(𝑡𝑠) = 0 is
given by

𝑡𝑠 = 1𝛽 (1 − 𝛾) |𝑥 (0)|1−𝛾 . (7)

As we stated previously, there exist parameter uncertain-
ties and unknown disturbances in practical WMR. Taking
these factors into account, an unknown nonlinear function
is contained in the model of the NWMR.We will use the FLS
to approximate this function.

2.3. Fuzzy Logic Systems. In this section, the FLS is discussed
briefly. The basic configuration of an FLS consists of four
components: fuzzifier, fuzzy rule base, fuzzy inference engine,
and defuzzifier.The fuzzy rule base is a collection of IF-THEN
rules and the 𝑙th fuzzy rule is written as

𝑅𝑙: IF 𝑥1 is 𝐹𝑙1 and. . .and 𝑥𝑛 is 𝐹𝑙𝑛, THEN 𝑦 is 𝐺𝑙,
where 𝐹𝑙𝑖 and 𝐺𝑙 are fuzzy sets, associating with fuzzy
membership functions 𝜇𝐹𝑙𝑖 (𝑥𝑖) and 𝜇𝐺𝑙(𝑦), respectively, 𝑖 =1, . . . , 𝑛, 𝑙 = 1, . . . , 𝑚, 𝑚 is the number of rules.

Based on these fuzzy IF-THEN rules, the FLS performs
a mapping from an input vector 𝑥 = [𝑥1, . . . , 𝑥𝑛]𝑇 ∈ 𝑅𝑛 to
an output variable 𝑦 ∈ 𝑅. If we use the strategy of singleton
fuzzifier, product inference, and center-average defuzzifier,
the output of the FLS can be defined as follows:

𝑦 (𝑥) = ∑𝑚𝑙=1 𝑦𝑙 (∏𝑛𝑖=1𝜇𝐹𝑙𝑖 (𝑥𝑖))∑𝑚𝑙=1∏𝑛𝑖=1𝜇𝐹𝑙𝑖 (𝑥𝑖) , (8)

where 𝑦𝑙 is the point in 𝐺𝑙 at which 𝜇𝐺𝑙(𝑦) obtains its
maximum value 1.

For simplicity, 𝑦(𝑥) can be written in the following
compact form:

𝑦 (𝑥) = 𝜃𝑇𝜉 (𝑥) fl 𝑓 (𝑥 | 𝜃) , (9)

where 𝜃 = [𝑦1, . . . , 𝑦𝑚]𝑇 is called the unknown parameter
vector which is to be updated and 𝜉(𝑥) = [𝜉1(𝑥), . . . ,𝜉𝑚(𝑥)]𝑇 is called the fuzzy basis function vector, 𝜉𝑙(𝑥) =∏𝑛𝑖=1𝜇𝐹𝑙𝑖 (𝑥𝑖)/∑𝑚𝑙=1∏𝑛𝑖=1𝜇𝐹𝑙𝑖 (𝑥𝑖), 𝑙 = 1, 2, . . . , 𝑚.
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Lemma2 (see [31]). Let𝑓(𝑥) be a continuous function defined
on a compact setΩ. Then, for any constant 𝜀 > 0, there exists a
fuzzy system (9) such that sup𝑥∈Ω|𝑓(𝑥) − 𝑓(𝑥 | 𝜃)| ≤ 𝜀.
3. Controller Design

It is easy to see that the posture of the NWMR 𝑞(𝑡) = [𝑥(𝑡),𝑦(𝑡), 𝜃(𝑡)]𝑇 satisfies the following equations from (1):

𝑥̇ = ] cos 𝜃 − 𝜔𝑑 sin 𝜃,
̇𝑦 = ] sin 𝜃 + 𝜔𝑑 cos 𝜃,
̇𝜃 = 𝜔.

(10)

It is assumed that the reference trajectory 𝑞𝑟(𝑡) = [𝑥𝑟(𝑡),𝑦𝑟(𝑡), 𝜃𝑟(𝑡)]𝑇 is generated by a reference NWMR with the
kinematic equation as (10):

𝑥̇𝑟 = ]𝑟 cos 𝜃𝑟 − 𝜔𝑟𝑑 sin 𝜃𝑟,
̇𝑦𝑟 = ]𝑟 sin 𝜃𝑟 + 𝜔𝑟𝑑 cos 𝜃𝑟,
̇𝜃𝑟 = 𝜔𝑟.

(11)

The objective of the trajectory tracking control is to
design a strategy such that 𝑞(𝑡) converges asymptotically to𝑞𝑟(𝑡), while all signals in the derived closed-loop system
remain bounded. In this study, an auxiliary velocity controller𝜗𝑐 is designed for the kinematic model (1) to meet the
control objective. Then, the actuator voltage control input 𝑢
is designed for the dynamic model (2) such that 𝜗 converges
to 𝜗𝑐 which is designed at the first step in finite time.

Remark 3. As pointed out in [18], the classical auxiliary
velocity controller [1] adopted in [3, 16, 18, 19, 25] can only
guarantee that 𝑞(𝑡) converges asymptotically to 𝑞𝑟(𝑡) when𝑑 equals zero. However, 𝑑 does not equal zero in general.
Therefore, the reference point of the practical NWMR is
not in accordance with the desired point of the reference
NWMR, which results in incomplete tracking of the posture.
In this paper, wemodify the kinematicmodel of the reference
NWMRas (11) and adopt another auxiliary velocity controller
[43].

3.1. An Auxiliary Velocity Controller Design. We define the
tracking position errors as the difference between the center
ofmass𝐶of theNWMRand the desired point of the reference
NWMR as follows [16, 19]:

𝑒𝑝 = [[[
[

𝑒1
𝑒2
𝑒3
]]]
]

= [[[
[

cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1
]]]
]

[[[
[

𝑥𝑟 − 𝑥
𝑦𝑟 − 𝑦
𝜃𝑟 − 𝜃

]]]
]

. (12)

The first derivative of the error yields

[[
[

̇𝑒1̇𝑒2̇𝑒3
]]
]

= [[
[
−1 𝑒20 −𝑒1 − 𝑑
0 −1

]]
]

[]𝜔]

+ [[
[
]𝑟 cos 𝑒3 − 𝜔𝑟𝑑 sin 𝑒3
]𝑟 sin 𝑒3 + 𝜔𝑟𝑑 cos 𝑒3𝜔𝑟

]]
]
.

(13)

Therefore, the objective of this study becomes the design
of an auxiliary velocity controller to make the tracking
position errors asymptotically converge to zeros. In this study,
according to [43], the auxiliary velocity controller is designed
as

𝜗𝑐 = []𝑐𝜔𝑐] = [ ]𝑟 cos 𝑒3 + 𝑘1 (𝑒1 + 𝑑 − 𝑑 cos 𝑒3)𝜔𝑟 + 𝑘3]𝑟 (𝑒2 − 𝑑 sin 𝑒3) + 𝑘2 sin 𝑒3] , (14)

where 𝑘1, 𝑘2, 𝑘3 > 0 are design parameters.
Substituting (14) into (13), the closed-loop kinematic

equation can be written as

[[
[

̇𝑒1̇𝑒2̇𝑒3
]]
]

= [[
[
−1 𝑒20 −𝑒1 − 𝑑
0 −1

]]
]

[ ]𝑟 cos 𝑒3 + 𝑘1 (𝑒1 + 𝑑 − 𝑑 cos 𝑒3)𝜔𝑟 + 𝑘3]𝑟 (𝑒2 − 𝑑 sin 𝑒3) + 𝑘2 sin 𝑒3]

+ [[
[
]𝑟 cos 𝑒3 − 𝜔𝑟𝑑 sin 𝑒3
]𝑟 sin 𝑒3 + 𝜔𝑟𝑑 cos 𝑒3𝜔𝑟

]]
]
.

(15)

Assumption 4 (see [8]). The reference velocities 𝜗𝑟 = []𝑟, 𝜔𝑟]𝑇
and ]̇𝑟 are bounded.

Lemma 5. For the kinematic model (1) of the NWMR satis-
fying Assumption 4, the auxiliary velocity controller (14) will
ensure that the tracking position errors converge asymptotically
to zeros.

Proof. Consider the following Lyapunov function candidate

𝑉1 = 12 (𝑒1 + 𝑑 − 𝑑 cos 𝑒3)2 + 12 (𝑒2 − 𝑑 sin 𝑒3)2
+ 1 − cos 𝑒3𝑘3 . (16)

Differentiating 𝑉1 with respect to time, we have

𝑉̇1 = (𝑒1 + 𝑑 − 𝑑 cos 𝑒3) ( ̇𝑒1 + 𝑑 ̇𝑒3 sin 𝑒3)
+ (𝑒2 − 𝑑 sin 𝑒3) ( ̇𝑒2 − 𝑑 ̇𝑒3 cos 𝑒3) + 1𝑘3 ̇𝑒3 sin 𝑒3. (17)
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Replacing (15) into (17) and after some manipulations,
one obtains

𝑉̇1 = −𝑘1 (𝑒1 + 𝑑 − 𝑑 cos 𝑒3)2 − 𝑘2𝑘3 sin2𝑒3 ≤ 0. (18)

Therefore, the tracking position error 𝑒𝑃 = [𝑒1, 𝑒2, 𝑒3]𝑇 is
bounded. With Assumption 4, 𝜗𝑐 and ̇𝑒𝑃 = [ ̇𝑒1, ̇𝑒2, ̇𝑒3]𝑇 are
bounded. So 𝑉̈1 is bounded and 𝑉̇1 is uniformly continuous
accordingly. By Barbalat’s lemma [44], 𝑉̇1 → 0 as 𝑡 → ∞,
which implies that 𝑒1 → 0 and 𝑒3 → 0 as 𝑡 → ∞.

From (15), one obtains

̇𝑒3 = −𝑘3]𝑟 (𝑒2 − 𝑑 sin 𝑒3) − 𝑘2 sin 𝑒3. (19)

Using Barbalat’s lemma again, ̇𝑒3 → 0 as 𝑡 → ∞, which
implies that 𝑒2 → 0 as 𝑡 → ∞.

Hence, 𝑒𝑃 → 0 as 𝑡 → ∞; that is, the tracking position
errors converge asymptotically to zeros.

Now, it remains to design the actuator voltage control
input so that the desired velocities 𝜗𝑐 can be obtained in finite
time.

3.2. Adaptive Integral Terminal Sliding Mode Controller
Design. In this study, the auxiliary velocity tracking error is
defined as

𝑒𝜗 = [𝑒𝜗1, 𝑒𝜗2]𝑇 = 𝜗𝑐 − 𝜗. (20)

Consequently, the dynamic equation (2) of the NWMR
can be rewritten as

𝑀(𝑞) ̇𝑒𝜗 = −𝑉 (𝑞, ̇𝑞) 𝑒𝜗 + 𝑁2𝐾𝑇𝐾𝑏𝑅𝑎 𝐵𝑋𝜗 + 𝑀(𝑞) ̇𝜗𝑐
+ 𝑉 (𝑞, ̇𝑞) 𝜗𝑐 + 𝐹 (𝜗) + 𝜏𝑑 − 𝑁𝐾𝑇𝑅𝑎 𝐵𝑢.

(21)

A continuous nonsingular integral terminal slidingmode
is defined as in the form (4):

𝑆 = [𝑠1𝑠2]

= [[[
[
𝑒𝜗1 − 𝑒𝜗1 (0) + 𝛽1 ∫𝑡

0

󵄨󵄨󵄨󵄨𝑒𝜗1󵄨󵄨󵄨󵄨𝛾1 sign (𝑒𝜗1) 𝑑𝜏
𝑒𝜗2 − 𝑒𝜗2 (0) + 𝛽2 ∫𝑡

0

󵄨󵄨󵄨󵄨𝑒𝜗2󵄨󵄨󵄨󵄨𝛾2 sign (𝑒𝜗2) 𝑑𝜏
]]]
]

,
(22)

where 𝛽𝑖 > 0, 0 < 𝛾𝑖 < 1, 𝑖 = 1, 2.
Denote

Λ = diag (𝛽1, 𝛽2) ,
sig (𝑒𝜗)𝛾 = [󵄨󵄨󵄨󵄨𝑒𝜗1󵄨󵄨󵄨󵄨𝛾1 sign (𝑒𝜗1) , 󵄨󵄨󵄨󵄨𝑒𝜗2󵄨󵄨󵄨󵄨𝛾2 sign (𝑒𝜗2)]𝑇 . (23)

𝑆 can be rewritten as follows:

𝑆 = 𝑒𝜗 − 𝑒𝜗 (0) + Λ∫𝑡
0
sig (𝑒𝜗)𝛾 𝑑𝜏. (24)

Utilizing 𝑆 and its derivative with respect to time, (21) can
be arranged as follows:

𝑀(𝑞) ̇𝑆 = −𝑉 (𝑞, ̇𝑞) 𝑆 + 𝑁2𝐾𝑇𝐾𝑏𝑅𝑎 𝐵𝑋𝜗 + 𝑓 (𝑥)
− 𝑁𝐾𝑇𝑅a

𝐵𝑢,
(25)

where

𝑓 (𝑥) = [𝑓1 (𝑥) , 𝑓2 (𝑥)]𝑇
= 𝑀(𝑞) ̇𝜗𝑐 + 𝑀(𝑞)Λ sig (𝑒𝜗)𝛾 + 𝑉 (𝑞, ̇𝑞) 𝜗𝑐

− 𝑉 (𝑞, ̇𝑞) 𝑒𝜗 (0) + 𝑉 (𝑞, ̇𝑞) Λ∫𝑡
0
sig (𝑒𝜗)𝛾 𝑑𝜏

+ 𝐹 (𝜗) + 𝜏𝑑

(26)

and 𝑥 = [𝜗𝑇𝑐 , ̇𝜗𝑇𝑐 , 𝜗𝑇]𝑇.
If 𝑓(𝑥) is known, let the actuator voltage control input

𝑢 = 𝑅𝑎𝑁𝐾𝑇𝐵
−1 (𝑁2𝐾𝑇𝐾𝑏𝑅𝑎 𝐵𝑋𝜗 + 𝑓 (𝑥) + 𝐾1𝑆

+ 𝐾2sig (𝑆)𝜌) ,
(27)

where 𝐾1 = diag(𝑘11, 𝑘12), 𝐾2 = diag(𝑘21, 𝑘22), 𝑘1𝑖 > 0, 𝑘2𝑖 >0, 𝑖 = 1, 2, and 0 < 𝜌 < 1.
Substituting (27) into (25), the closed-loop dynamic

equation can be written as

𝑀(𝑞) ̇𝑆 = −𝑉 (𝑞, ̇𝑞) 𝑆 − 𝐾1𝑆 − 𝐾2sig (𝑆)𝜌 . (28)

Multiplying 𝑆𝑇 by (28) yields
𝑆𝑇𝑀(𝑞) ̇𝑆 = −𝑆𝑇𝑉 (𝑞, ̇𝑞) 𝑆 − 𝑆𝑇𝐾1𝑆 − 𝑆𝑇𝐾2sig (𝑆)𝜌 . (29)

Theorem 6. For the dynamic model (2) of the NWMR with
a known function 𝑓(𝑥) (26), if the integral terminal sliding
mode is chosen as (22) and the actuator voltage control input is
designed as (27), then the integral terminal sliding mode 𝑆 and
the auxiliary velocity tracking error 𝑒𝜗 will converge to zeros in
finite time.

To proveTheorem 6, we introduce two lemmas.

Lemma 7 (see [36]). Suppose 𝑎1, 𝑎2, . . . , 𝑎𝑛 and 0 < 𝑝 < 2 are
all positive numbers, then the following inequality holds:

(𝑎21 + 𝑎22 + ⋅ ⋅ ⋅ + 𝑎2𝑛)𝑝 ≤ (𝑎𝑝1 + 𝑎𝑝2 + ⋅ ⋅ ⋅ + 𝑎𝑝𝑛 )2 . (30)

Lemma 8 (see [36]). An extended Lyapunov description of
finite time stability can be given with the form of fast terminal
sliding mode as

𝑉̇ (𝑥) + 𝛼𝑉 (𝑥) + 𝛽𝑉𝛾 (𝑥) ≤ 0, 𝛼, 𝛽 > 0, 0 < 𝛾 < 1, (31)

and the settling time can be given by

𝑡𝑟 ≤ 1𝛼 (1 − 𝛾) ln𝛼𝑉1−𝛾 (𝑥 (0)) + 𝛽𝛽 . (32)
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Proof of Theorem 6. Consider the following Lyapunov func-
tion candidate:

𝑉2 = 12𝑆𝑇𝑀(𝑞) 𝑆. (33)

Differentiating 𝑉2 with respect to time and using (29)
yields

𝑉̇2 = 𝑆𝑇𝑀(𝑞) ̇𝑆 + 12𝑆𝑇𝑀̇ (𝑞) 𝑆
= 12𝑆𝑇 (𝑀̇ (𝑞) − 2𝑉 (𝑞, ̇𝑞)) 𝑆 − 𝑆𝑇𝐾1𝑆

− 𝑆𝑇𝐾2sig (𝑆)𝜌 .
(34)

From Property 3, which makes the first term zero, 𝑉̇2
becomes

𝑉̇2 = −𝑆𝑇𝐾1𝑆 − 𝑆𝑇𝐾2sig (𝑆)𝜌 . (35)

Denote 𝜆𝑖 = min{𝑘𝑖1, 𝑘𝑖2}, 𝑖 = 1, 2; the following
inequality holds:

𝑉̇2 ≤ −𝜆1 2∑
𝑖=1

𝑠2𝑖 − 𝜆2 2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨𝜌+1 . (36)

Applying Lemma 7 into (36), one obtains

𝑉̇2 ≤ −𝜆1 2𝑚2
2∑
𝑖=1

𝑚22 𝑠2𝑖

− 𝜆2 ( 2𝑚2)
(𝜌+1)/2 [ 2∑

𝑖=1

𝑚2𝑠2𝑖2 ]
(𝜌+1)/2

.
(37)

Utilizing Property 2, we have

𝑉̇2 ≤ −𝜆1 2𝑚2𝑉2 − 𝜆2 ( 2𝑚2)
(𝜌+1)/2 𝑉(𝜌+1)/22 , (38)

or

𝑉̇2 + 𝜆1 2𝑚2𝑉2 + 𝜆2 ( 2𝑚2)
(𝜌+1)/2 𝑉(𝜌+1)/22 ≤ 0. (39)

From Lemma 8, it follows that 𝑆 will converge to zero in
finite time

𝑡𝑟 ≤ 1𝜆1 (2/𝑚2) (1 − (𝜌 + 1) /2)
⋅ ln 𝜆1 (2/𝑚2) 𝑉1−(𝜌+1)/22 (0) + 𝜆2 (2/𝑚2)(𝜌+1)/2

𝜆2 (2/𝑚2)(𝜌+1)/2 .
(40)

Moreover, on the sliding mode surface, according to (7),

𝑡𝑠𝑖 = 1𝛽𝑖 (1 − 𝛾𝑖)
󵄨󵄨󵄨󵄨𝑒𝜗𝑖 (0)󵄨󵄨󵄨󵄨1−𝛾𝑖 , 𝑖 = 1, 2. (41)

Therefore, the auxiliary velocity tracking error 𝑒𝜗 will
converge to zero in finite time 𝑡 = 𝑡𝑟 +max{𝑡𝑠1, 𝑡𝑠2}.

Due to the fact that 𝑓(𝑥) contains all the mobile robot
parameters (such as mass, moment of inertia, and friction
coefficients) and external disturbances, in the following, we
assume that 𝑓𝑖(𝑥), 𝑖 = 1, 2, can be approximated by the
following FLS:

𝑓𝑖 (𝑥 | 𝜃𝑓𝑖) = 𝜃𝑇𝑓𝑖𝜉𝑓𝑖 (𝑥) , (42)

where 𝜉𝑓𝑖(𝑥) is the fuzzy basis function vector and 𝜃𝑓𝑖 is the
parameter vector of each fuzzy system designed later.

Define the optimal approximation parameters 𝜃∗𝑓𝑖 as
follows:

𝜃∗𝑓𝑖 = argmin
𝜃𝑓𝑖∈Ω𝑓𝑖

[sup
𝑥∈𝑈

󵄨󵄨󵄨󵄨󵄨𝑓𝑖 (𝑥) − 𝑓𝑖 (𝑥 | 𝜃𝑓𝑖)󵄨󵄨󵄨󵄨󵄨] , (43)

where Ω𝑓𝑖 is the compact set of allowable controller param-
eters. Moreover, the parameter error and the minimum
approximation error are defined as 𝜃𝑓𝑖 = 𝜃∗𝑓𝑖−𝜃𝑓𝑖 and𝜔𝑓𝑖(𝑥) =𝑓𝑖(𝑥) − 𝑓𝑖(𝑥 | 𝜃∗𝑓𝑖), respectively.
Assumption 9. For 𝑖 = 1, 2, 𝜔𝑓𝑖 is bounded. That is, there
exists an unknown constant 𝜔𝑓𝑖 such that |𝜔𝑓𝑖(𝑥)| < 𝜔𝑓𝑖.

Denote

𝑓 (𝑥 | 𝜃𝑓) = [𝑓1 (𝑥 | 𝜃𝑓1) , 𝑓2 (𝑥 | 𝜃𝑓2)]𝑇 ,
𝑓 (𝑥 | 𝜃∗𝑓) = [𝑓1 (𝑥 | 𝜃∗𝑓1) , 𝑓2 (𝑥 | 𝜃∗𝑓2)]𝑇 .

(44)

By using the fuzzy approximation 𝑓(𝑥 | 𝜃𝑓) instead of𝑓(𝑥), the following control law from (27) is obtained:

𝑢 = 𝑅𝑎𝑁𝐾𝑇𝐵
−1 (𝑁2𝐾𝑇𝐾𝑏𝑅𝑎 𝐵𝑋𝜗 + 𝑓 (𝑥 | 𝜃𝑓) + 𝐾1𝑠

+ 𝐾2sig (𝑠)𝜌 + 𝑢𝑟) ,
(45)

where𝑢𝑟 = [𝑢𝑟1, 𝑢𝑟2]𝑇 is a robust controller, which is designed
as

𝑢𝑟 = {{{{{
(𝜀𝑓 + 𝜎) 𝑠

‖𝑠‖ , 𝑠 ̸= 0,
0, 𝑠 = 0, (46)

𝜀𝑓 is the estimate of ∑2𝑖=1 𝜔𝑓𝑖, 𝜀𝑓 = 𝜀𝑓 − ∑2𝑖=1 𝜔𝑓𝑖, and 𝜎 is a
positive constant.

Remark 10. It is noticed that the robust controller 𝑢𝑟 (46) is
similar to that in [37]. However, in [37], 𝜎 is required no less
than the estimation error of the unknown function.Whereas,
in practice, it is difficult to determine such an estimation
error. In this paper, 𝜎 is relaxed to be an arbitrary positive
number.

Substituting (45) into (25), the closed-loop dynamic
equation can be rewritten as

𝑀(𝑞) ̇𝑆 = −𝑉 (𝑞, ̇𝑞) 𝑆 − 𝑓 (𝑥 | 𝜃) − 𝐾1𝑆 − 𝐾2sig (𝑆)𝜌
− 𝑢𝑟 + 𝑓 (𝑥) . (47)
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Multiplying 𝑆𝑇 to (47) and after some manipulations, we
can get

𝑆𝑇𝑀(𝑞) ̇𝑆 = −𝑆𝑇𝑉 (𝑞, ̇𝑞) 𝑆 − 𝑆𝑇𝐾1𝑆 − 𝑆𝑇𝐾2sig (𝑆)𝜌
− 𝑆𝑇𝑢𝑟 + 2∑

𝑖=1

𝑠𝑖𝜔𝑓𝑖 (𝑥) + 2∑
𝑖=1

𝑠𝑖𝜃𝑇𝑓𝑖𝜉𝑓𝑖 (𝑥) . (48)

We use the following adaptation laws to adjust the
unknown parameters 𝜃𝑓𝑖 and 𝜀𝑓:

̇̂𝜃𝑓𝑖 = −𝜇𝑓𝑖𝑠𝑖𝜉𝑓𝑖 (𝑥) ,
̇̂𝜀𝑓 = 𝜂 ‖𝑠‖ , (49)

where 𝜇𝑓𝑖 > 0, 𝑖 = 1, 2, and 𝜂 > 0.
The properties of the proposed adaptive fuzzy ITSMC law

is summarized by the following theorem.

Theorem 11. For the dynamic model (2) of the NWMR with
an unknown function 𝑓(𝑥) (26), if the integral terminal sliding
mode is chosen as (22), the actuator voltage control input with
dynamic robust controller 𝑢𝑟 (46) is designed as (45), and the
adaptation laws are (49); then

(1) all the signals in the closed system are bounded;
(2) the sliding variable 𝑆 will converge to the neighborhood

of the integral terminal slidingmode 𝑆 = 0 as ‖𝑆‖ ≤ 𝛿 =
min{𝛿1, 𝛿2} in finite time, where

𝛿1 =
󵄩󵄩󵄩󵄩󵄩𝑓 (𝑥 | 𝜃∗𝑓) − 𝑓 (𝑥 | 𝜃𝑓)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝜀𝑓󵄩󵄩󵄩󵄩󵄩𝜆1 ,

𝛿2 = [
[
󵄩󵄩󵄩󵄩󵄩𝑓 (𝑥 | 𝜃∗𝑓) − 𝑓 (𝑥 | 𝜃𝑓)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝜀𝑓󵄩󵄩󵄩󵄩󵄩𝜆2 ]

]
1/𝜌

.
(50)

Moreover, the auxiliary velocity tracking error 𝑒]𝑖 will converge
to the region |𝑒]𝑖| ≤ 2𝛿 + |𝑒]𝑖(0)|, 𝑖 = 1, 2 in finite time.

Proof. Consider the following Lyapunov function candidate:

𝑉3 = 𝑉31 + 𝑉32, (51)

where

𝑉31 = 12𝑆𝑇𝑀(𝑞) 𝑆,
𝑉32 = 12 ( 2∑

𝑖=1

1𝜇𝑓𝑖 𝜃𝑇𝑓𝑖𝜃𝑓𝑖 +
1𝜂𝜀2𝑓) .

(52)

(1)Differentiating𝑉31 with respect to time, using (48) and
Property 3, we have

𝑉̇31 = −𝑆𝑇𝐾1𝑆 − 𝑆𝑇𝐾2sig (𝑆)𝜌 − 𝑆𝑇𝑢𝑟 + 2∑
𝑖=1

𝑠𝑖𝜔𝑓𝑖 (𝑥)

+ 2∑
𝑖=1

𝑠𝑖𝜃𝑇𝑓𝑖𝜉𝑓𝑖 (𝑥) .
(53)

Note that

2∑
𝑖=1

𝑠𝑖𝜔𝑓𝑖 (𝑥) ≤ ‖𝑆‖ 2∑
𝑖=1

𝜔𝑖. (54)

Substituting (46) and (54) into (53), the following
inequality holds:

𝑉̇31 ≤ −𝑆𝑇𝐾1𝑆 − 𝑆𝑇𝐾2sig (𝑆)𝜌 − ‖𝑆‖ (𝜀𝑓 + 𝜎)
+ ‖𝑆‖ 2∑

𝑖=1

𝜔𝑖 + 2∑
𝑖=1

𝑠𝑖𝜃𝑇𝑓𝑖𝜉𝑓𝑖 (𝑥)
= −𝑆𝑇𝐾1𝑆 − 𝑆𝑇𝐾2sig (𝑆)𝜌 − ‖𝑆‖ 𝜎 − ‖𝑆‖ 𝜀𝑓

+ 2∑
𝑖=1

𝑠𝑖𝜃𝑇𝑓𝑖𝜉𝑓𝑖 (𝑥) .

(55)

There results

𝑉̇31 ≤ −𝑆𝑇𝐾1𝑆 − 𝑆𝑇𝐾2sig (𝑆)𝜌 − ‖𝑆‖ 𝜀𝑓
+ 2∑
𝑖=1

𝑠𝑖𝜃𝑇𝑓𝑖𝜉𝑓𝑖 (𝑥) . (56)

Differentiating 𝑉32 with respect to time yields

𝑉̇32 = 2∑
𝑖=1

1𝜇𝑓𝑖 𝜃𝑇𝑓𝑖
̇̃𝜃𝑓𝑖 + 1𝜂𝜀𝑓 ̇̃𝜀𝑓. (57)

Combining (56) with (57), we can get

𝑉̇31 + 𝑉̇32 ≤ −𝑆𝑇𝐾1𝑆 − 𝑆𝑇𝐾2sig (S)𝜌
+ 2∑
𝑖=1

𝜃𝑇𝑓𝑖 (𝑠𝑖𝜉𝑓𝑖 (𝑥) + 1𝜇𝑓𝑖
̇̃𝜃𝑓𝑖)

+ 𝜀𝑓 (1𝜂 ̇̃𝜀𝑓 − ‖𝑆‖) .
(58)

That is,

𝑉̇31 + 𝑉̇32 ≤ −𝑆𝑇𝐾1𝑆 − 𝑆𝑇𝐾2sig (𝑆)𝜌
+ 2∑
𝑖=1

𝜃𝑇𝑓𝑖 (𝑠𝑖𝜉𝑓𝑖 (𝑥) − 1𝜇𝑓𝑖
̇̂𝜃𝑓𝑖)

+ 𝜀𝑓 (1𝜂 ̇̂𝜀𝑓 − ‖𝑆‖) .
(59)

Applying the adaptation laws (49) into (59), one has

𝑉̇31 + 𝑉̇32 ≤ −𝑆𝑇𝐾1𝑆 − 𝑆𝑇𝐾2sig (𝑆)𝜌 . (60)

Clearly, 𝑉̇3 = 𝑉̇31 + 𝑉̇32 ≤ 0, it is concluded that all the
signals 𝑠𝑖, 𝑒]𝑖, 𝜃𝑓𝑖, and 𝜀𝑓 are bounded.
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(2) According to (56), one gets
𝑉̇31 ≤ −𝑆𝑇𝐾1𝑆 − 𝑆𝑇𝐾2sig (𝑆)𝜌 − ‖𝑆‖ 𝜀𝑓

+ 𝑆𝑇 [𝑓 (𝑥 | 𝜃∗𝑓) − 𝑓 (𝑥 | 𝜃𝑓)]
= −𝑆𝑇𝐾1𝑆 − 𝑆𝑇𝐾2sig (𝑆)𝜌

+ 𝑆𝑇 [𝑓 (𝑥 | 𝜃∗𝑓) − 𝑓 (𝑥 | 𝜃𝑓) − 𝜀𝑓‖𝑆‖𝑆] ,
(61)

which can be further changed into the following two forms:

𝑉̇31 < −𝑆𝑇 {𝐾1 − diag [𝑓 (𝑥 | 𝜃∗𝑓) − 𝑓 (𝑥 | 𝜃𝑓)
− 𝜀𝑓‖𝑆‖𝑆] diag−1 (𝑆)} 𝑆 − 𝑆𝑇𝐾2sig (𝑆)𝜌 ,

(62)

𝑉̇31 < −𝑆𝑇𝐾1𝑆 − 𝑆𝑇{𝐾2 − diag [𝑓 (𝑥 | 𝜃∗𝑓)
− 𝑓 (𝑥 | 𝜃𝑓) − 𝜀𝑓‖𝑆‖𝑆] diag−1 [sig (𝑆)𝜌]}
⋅ sig (𝑆)𝜌 .

(63)

Denote

𝑓 (𝑥 | 𝜃∗𝑓) − 𝑓 (𝑥 | 𝜃𝑓) − 𝜀𝑓‖𝑆‖𝑆 = [𝑓1, 𝑓2]𝑇 . (64)

For (62), if 𝜆1 > |𝑓𝑖|/|𝑠𝑖|, 𝑖 = 1, 2, which means the
matrix𝐾1 − diag[𝑓(𝑥 | 𝜃∗𝑓) − 𝑓(𝑥 | 𝜃𝑓) − (𝜀𝑓/‖𝑆‖)𝑆]diag−1(𝑆)
is positive definite, the similar structure as (35) is kept.
Hence, finite time stability is guaranteed. Otherwise, |𝑠𝑖| ≤|𝑓𝑖|/|𝜆1|, 𝑖 = 1, 2. We can conclude that

‖𝑆‖2 = 𝑠21 + 𝑠22 ≤ 𝑓21 + 𝑓22𝜆21
=

󵄩󵄩󵄩󵄩󵄩𝑓 (𝑥 | 𝜃∗𝑓) − 𝑓 (𝑥 | 𝜃𝑓) − (𝜀𝑓/ ‖𝑆‖) 𝑆󵄩󵄩󵄩󵄩󵄩2𝜆21
≤ (󵄩󵄩󵄩󵄩󵄩𝑓 (𝑥 | 𝜃∗𝑓) − 𝑓 (𝑥 | 𝜃𝑓)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝜀𝑓󵄩󵄩󵄩󵄩󵄩)2𝜆21 ;

(65)

that is,

‖𝑆‖ ≤
󵄩󵄩󵄩󵄩󵄩𝑓 (𝑥 | 𝜃∗𝑓) − 𝑓 (𝑥 | 𝜃𝑓)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝜀𝑓󵄩󵄩󵄩󵄩󵄩𝜆1 = 𝛿1. (66)

Therefore, the region ‖𝑆‖ ≤ 𝛿1 can be reached in finite time.
For (63), if 𝜆2 > |𝑓𝑖|/|𝑠𝑖|𝜌, 𝑖 = 1, 2, which means the

matrix𝐾2−diag[𝑓(𝑥 | 𝜃∗𝑓)−𝑓(𝑥 | 𝜃𝑓)− (𝜀𝑓/‖𝑆‖)𝑆]diag−1(𝑆𝜌)
is positive definite, the similar structure as (35) is kept.

Hence, finite time stability is guaranteed. Otherwise, |𝑠𝑖|𝜌 ≤|𝑓𝑖|/|𝜆2|, 𝑖 = 1, 2. We can conclude from Lemma 7 that

‖𝑆‖4𝜌 = (s21 + 𝑠22)2𝜌 ≤ (𝑠2𝜌1 + 𝑠2𝜌2 )2 ≤ (𝑓21 + 𝑓22𝜆22 )2

=
󵄩󵄩󵄩󵄩󵄩𝑓 (𝑥 | 𝜃∗𝑓) − 𝑓 (𝑥 | 𝜃𝑓) − (𝜀𝑓/ ‖𝑆‖) 𝑆󵄩󵄩󵄩󵄩󵄩4𝜆42

≤ (󵄩󵄩󵄩󵄩󵄩𝑓 (𝑥 | 𝜃∗𝑓) − 𝑓 (𝑥 | 𝜃𝑓)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝜀𝑓󵄩󵄩󵄩󵄩󵄩)4𝜆42 ;

(67)

that is,

‖𝑆‖ ≤ [
[
󵄩󵄩󵄩󵄩󵄩𝑓 (𝑥 | 𝜃∗𝑓) − 𝑓 (𝑥 | 𝜃𝑓)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝜀𝑓󵄩󵄩󵄩󵄩󵄩𝜆2 ]

]
1/𝜌

= 𝛿2. (68)

Therefore, the region ‖𝑆‖ ≤ 𝛿2 can be reached in finite time.
By virtue of (66) and (68), the region ‖𝑆‖ ≤ 𝛿 =

min{𝛿1, 𝛿2} can be reached in finite time.
When ‖𝑆‖ ≤ 𝛿, for 𝑖 = 1, 2, |𝑠𝑖| ≤ 𝛿. The integral terminal

sliding mode (22) can be changed into the following form:

𝑠𝑖 = 𝑒]𝑖 − 𝑒]𝑖 (0) + 𝛽𝑖 ∫𝑡
0

󵄨󵄨󵄨󵄨𝑒]𝑖󵄨󵄨󵄨󵄨𝛾𝑖 sign (𝑒]𝑖) 𝑑𝜏 = 𝜙𝑖,
󵄨󵄨󵄨󵄨𝜙𝑖󵄨󵄨󵄨󵄨 ≤ 𝛿,

(69)

or the equivalent form

𝑒]𝑖 − 𝑒]𝑖 (0)
+ [
[
𝛽𝑖 − 𝜙𝑖∫𝑡

0

󵄨󵄨󵄨󵄨𝑒]𝑖󵄨󵄨󵄨󵄨𝛾𝑖 sign (𝑒]𝑖) 𝑑𝜏
]
]

∫𝑡
0

󵄨󵄨󵄨󵄨𝑒]𝑖󵄨󵄨󵄨󵄨𝛾𝑖 sign (𝑒]𝑖) 𝑑𝜏
= 0.

(70)

If 𝛽𝑖 > |𝜙𝑖|/| ∫𝑡0 |𝑒]𝑖|𝛾𝑖sign(𝑒]𝑖)𝑑𝜏|, (70) is kept in the form
of the integral terminal sliding mode. Hence, finite time con-
vergence is guaranteed. Otherwise, | ∫𝑡

0
|𝑒]𝑖|𝛾𝑖sign(𝑒]𝑖)𝑑𝜏| ≤|𝜙𝑖|/𝛽𝑖 ≤ 𝛿/𝛽𝑖; the region

󵄨󵄨󵄨󵄨𝑒]𝑖󵄨󵄨󵄨󵄨 ≤ 𝛽𝑖 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0

󵄨󵄨󵄨󵄨𝑒]𝑖󵄨󵄨󵄨󵄨𝛾𝑖 sign (𝑒]𝑖) 𝑑𝜏󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 𝛿 + 󵄨󵄨󵄨󵄨𝑒]𝑖 (0)󵄨󵄨󵄨󵄨
≤ 2𝛿 + 󵄨󵄨󵄨󵄨𝑒]𝑖 (0)󵄨󵄨󵄨󵄨 ,

(71)

can be reached in finite time.

Remark 12. Both the control law (27) and the adaptive fuzzy
control law (45) contain a nonlinear term 𝐾1𝑆 + 𝐾2sig(𝑆)𝜌
with the formof fast terminal slidingmode, which assures the
boundedness of the signals in the closed system and the finite
time convergence of the auxiliary velocity tracking error.

Remark 13. According to (66) and (68), the parameters 𝜆1
and 𝜆2 can be chosen large enough to make the boundary𝛿 small. However, increasing the parameters 𝜆1 and 𝜆2 will
increase the level of control input and will cause implemen-
tation problem.
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Remark 14. The relationship between the auxiliary velocity
tracking error 𝑒]𝑖 and the width of the boundary layer 𝛿
surrounding the integral terminal sliding mode surface 𝑆 = 0
is given by (69) and (71).

4. Simulation Results

In this section, a simulation will be provided to show the
effectiveness of the proposed control strategy.

Referring to [18], the parameters of the NWMR and its
actuators are chosen as 𝑚 = 10 kg, 𝐼 = 5 kg⋅m2, 𝑅 = 0.12m,𝑟 = 0.067m, 𝑑 = 0.3m, 𝑁 = 50, 𝐾𝑏 = 0.026, 𝐾𝑇 =0.026Nm/A, and 𝑅𝑎 = 3.5Ω. The surface friction and the
external disturbance are generated by 𝐹(𝜗) + 𝜏𝑑 = [5 sin(2𝑡),5 sin(2𝑡)]𝑇. In this simulation, the initial posture and velocity
of the practical NWMR are taken as 𝑞(0) = [0.1, 0.2, 0]𝑇 and𝜗 = [], 𝜔]𝑇 = [0, 0]𝑇, respectively.

The reference linear velocity and angular velocity are
defined as ]𝑟(𝑡) = 1 and 𝜔𝑟(𝑡) = 1. The trajectory of the
reference NWMR is defined as

𝑥̇𝑟 = ]𝑟 cos 𝜃𝑟 − 𝜔𝑟𝑑 sin 𝜃𝑟,
̇𝑦𝑟 = ]𝑟 sin 𝜃𝑟 + 𝜔𝑟𝑑 cos 𝜃𝑟,
̇𝜃𝑟 = 𝜔𝑟.

(72)

The initial posture of the referenceNWMR is taken as 𝑞𝑟(0) =[0, 0, 0]𝑇.
Theobjective of the trajectory tracking control is to design

a strategy such that 𝑞(𝑡) converges asymptotically to 𝑞𝑟(𝑡),
while all signals in the derived closed-loop system are able
to remain bounded. In the proposed control strategy, an
auxiliary velocity controller 𝜗𝑐 is designed for the kinematic
model to meet the control objective. Then, the actuator
voltage control input 𝑢 is designed for the dynamic model
such that 𝜗 converges to 𝜗𝑐 which is designed at the first step
in finite time.

In the actuator voltage control input 𝑢, the nonlinear
function

𝑓 (𝑥) = [𝑓1 (𝑥) , 𝑓2 (𝑥)]𝑇
= 𝑀(𝑞) ̇𝜗𝑐 + 𝑀(𝑞)Λ sig (𝑒𝜗)𝛾 + 𝑉 (𝑞, ̇𝑞) 𝜗𝑐

− 𝑉 (𝑞, ̇𝑞) 𝑒𝜗 (0) + 𝑉 (𝑞, ̇𝑞) Λ∫𝑡
0
sig (𝑒𝜗)𝛾 𝑑𝜏

+ 𝐹 (𝜗) + 𝜏𝑑

(73)

is contained, where 𝑥 = [𝜗𝑇𝑐 , ̇𝜗𝑇𝑐 , 𝜗𝑇]𝑇.
We suppose that there is no prior information of the

robot parameters such as mass, moment of inertial, friction
coefficients, and the external disturbance; that is, the non-
linear function 𝑓𝑖(𝑥), 𝑖 = 1, 2, is assumed to be completely
unknown. Two fuzzy systems in the form of (9) are used to
approximate𝑓1(𝑥) and𝑓2(𝑥).The fuzzy systems have 𝑥1 = ]𝑐,𝑥2 = 𝜔𝑐, 𝑥3 = ]̇𝑐, 𝑥4 = 𝜔̇𝑐, 𝑥5 = ], and 𝑥6 = 𝜔 as inputs;
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Figure 2: Reference trajectory (-) and actual trajectory (⋅ ⋅ ⋅ ).
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Figure 3: Actuator voltages 𝑢1 (-) and 𝑢2 (- -).
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Figure 4: Auxiliary velocity tracking errors 𝑒𝜗1 (-) and 𝑒𝜗2 (- -).

the fuzzy membership functions for each variable 𝑥𝑖, 𝑖 =1, 2, . . . , 6, are chosen as

𝜇𝐹1𝑖 (𝑥𝑖) = exp [−12 (𝑥𝑖 + 1.250.6 )2] ,
𝜇𝐹2𝑖 (𝑥𝑖) = exp [−12 ( 𝑥𝑖0.6)

2] ,
𝜇𝐹3𝑖 (𝑥𝑖) = exp [−12 (𝑥𝑖 − 1.250.6 )2] .

(74)

The initial values of the estimated parameters 𝜃𝑓𝑖(0), 𝑖 = 1, 2,
and 𝜀𝑓(0) are all set to 0.01.

Referring to [1, 31, 36], the parameters of the control law
are chosen as 𝑘1 = 1, 𝑘2 = 20, 𝑘3 = 10, 𝛽1 = 𝛽2 = 1, 𝛾1 =𝛾2 = 0.5, 𝑘11 = 𝑘12 = 𝑘21 = 𝑘22 = 20, 𝜌 = 0.3, 𝜇𝑓1 = 𝜇𝑓2 =0.5, 𝜂 = 0.001, and 𝜎 = 0.1.

Using our control strategy to control the NWMR, the
simulation results are shown in Figures 2–5. Figure 2 is the
trajectory tracking process in 𝑋-𝑌 plane of the NWMR,
Figure 3 is the actuator voltage control input, Figure 4 is
the auxiliary velocity tracking errors, and Figure 5 is the
tracking position errors, respectively. From Figure 4, it can
be observed that the auxiliary velocity tracking error 𝑒𝜗1
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Figure 5: Tracking position errors 𝑒1 (-), 𝑒2 (- -), and 𝑒3(⋅ ⋅ ⋅ ).
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Figure 6: Reference trajectory (-) and actual trajectory (- -).
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Figure 7: Actuator voltages 𝑢1 (-) and 𝑢2 (- -).

converges to |𝑒𝜗1| ≤ 5 × 10−3 in finite time 𝑡 = 1.389 s and
the auxiliary velocity tracking error 𝑒𝜗2 converges to |𝑒𝜗2| ≤7 × 10−3 in finite time 𝑡 = 3.052 s, respectively.

In order to compare the proposed integral terminal
sliding mode with the integral sliding mode adopted in
[25], we use integral sliding mode instead of the integral
terminal sliding mode in our control strategy while other
design parameters are the same as the corresponding design
parameters used in the above simulation. The corresponding
simulation results are shown in Figures 6–9. From Figure 8, it
can be observed that the auxiliary velocity tracking error 𝑒𝜗1
converges to |𝑒𝜗1| ≤ 3 × 10−2 in finite time 𝑡 = 13.47 s and
the auxiliary velocity tracking error 𝑒𝜗2 converges to |𝑒𝜗2| ≤4 × 10−2 in finite time 𝑡 = 14.05 s, respectively.

It is observed that the actual velocity can track the auxil-
iary velocity in less time using the control strategy proposed
in this paper from Figures 4 and 8. As a result, the practical
NWMR can track the reference NWMR asymptotically with
faster response from Figures 2 and 6. Meanwhile, this favor-
able performance was obtained with no prior information
of the robot parameters such as mass, moment of inertial,
friction coefficients, and the external disturbance.
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Figure 8: Auxiliary velocity tracking errors 𝑒𝜗1 (-) and 𝑒𝜗2 (- -).
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Figure 9: Tracking position errors 𝑒1 (-), 𝑒2 (- -), and 𝑒3(⋅ ⋅ ⋅ ).

5. Conclusions

In this paper, a control strategy has been proposed for the
trajectory tracking problem of the NWMR with parameter
uncertainties and external disturbances. In this study, we
take the wheel actuator dynamics into system dynamics
and choose the actuator voltage as the control input. The
FLS is adopted to estimate the unknown function coming
from parameter uncertainties and external disturbances. An
adaptive fuzzy integral terminal sliding mode controller is
integrated with an auxiliary velocity controller. It has been
shown that all the signals in the closed system are bounded
and the auxiliary velocity tracking errors converge to a small
neighborhood of the origin in finite time. Hence, the tracking
position errors converge asymptotically to zeros with faster
response than other existing controllers. Simulation results
have been provided to show the feasibility of the proposed
control strategy. However, wheel skidding and slipping are
unavoidable due to tire deformation and other reasons in real
environments. In the future, we will extend our results to the
trajectory tracking control of the WMR with wheel skidding
and slipping.
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