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Abstract In this paper, a self-organizing Takagi—
Sugeno—Kang (TSK) type fuzzy neural network
(STENN) is proposed. The self-organizing approach
demonstrates the property of automatically generat-
ing and pruning the fuzzy rules of STFNN without
the preliminary knowledge. The learning algorithms
not only extract the fuzzy rule of STFNN but also
adjust the parameters of STFNN. Then, an adaptive
self-organizing TSK-type fuzzy network controller
(ASTEFNC) system which is composed of a neural con-
troller and a robust compensator is proposed. The neu-
ral controller uses an STFNN to approximate an ideal
controller, and the robust compensator is designed to
eliminate the approximation error in the Lyapunov sta-
bility sense without occurring chattering phenomena.
Moreover, a proportional-integral (PI) type parameter
tuning mechanism is derived to speed up the conver-
gence rates of the tracking error. Finally, the proposed
ASTEFNC system is applied to a DC motor driver on
a field-programmable gate array chip for low-cost and
high-performance industrial applications. The experi-
mental results verify the system stabilization and fa-
vorable tracking performance, and no chattering phe-
nomena can be achieved by the proposed ASTFNC
scheme.
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Department of Electrical Engineering, Chung Hua
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1 Introduction

Fuzzy system consists of a group of fuzzy IF-THEN
rules. To design a fuzzy system automatically, sev-
eral approaches have been proposed to generate the
fuzzy IF-THEN rules from numerical data. This is an
active research topic in the area of fuzzy neural net-
works (FNNs) [1, 2]. The FNN possesses advantages
of both fuzzy systems and neural networks. It com-
bines the capability of fuzzy reasoning in handling
uncertain information and the capability of artificial
neural networks in learning from process. Since the
FNNs are universal approximators, the adaptive FNN
control schemes have grown rapidly in many previ-
ous published papers [3-5]. The most important fea-
ture of these adaptive FNN control schemes is the
self-learning ability that FNNs are used to approxi-
mate arbitrary linear or nonlinear mappings through
online learning algorithms without requiring prelim-
inary offline tuning. Convergence analysis of most of
the learning algorithms were derived based on the Lya-
punov stability theorem or the gradient decent method.
So the stability, convergence, and robustness of the
closed-loop control system can be improved.

Though a favorable control performance can be
achieved by these adaptive FNN controllers in [3—
5], the learning process is only parameter learning in
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which the parameters of the membership functions and
fuzzy rules are adjusted but the structure of FNN is
fixed in advance. It is difficult to consider the balance
between the number of fuzzy rules and the desired per-
formance. If the number of fuzzy rules is chosen too
large, the computation loading is heavy, so they are
unsuitable for practical applications. If the number of
fuzzy rules is chosen too small, the learning perfor-
mance may be not good enough to achieve a desired
control performance due to the inevitable approxima-
tion error. To attack the problem of structure determi-
nation in the FNN approaches, many published papers
focused on the self-organizing fuzzy neural network
(SFNN) approach [6-8]. The self-organizing approach
demonstrates the property of automatic generating and
pruning fuzzy rules of FNN without the preliminary
knowledge. The learning algorithms not only can ex-
tract the fuzzy rule but also can adjust the parameters
of FNN. Recently, there has been considerable interest
in exploring the applications of SFNN to deal with the
unknown nonlinear control systems [9—13]. However,
some are too complex, some cannot avoid the structure
growing unboundedly, and some lack online adapta-
tion ability.

Moreover, since the number of the fuzzy rules
in FNN and SFNN is finite for the real-time prac-
tical applications, the approximation errors cannot
be evitable. To ensure system’s stability, a switching
compensator was used to dispel the approximation er-
ror; however, the switching compensator required the
bound of the approximation error, and it will cause
chattering phenomena [14]. To reduce the chattering
phenomenon, a sign function in the switching com-
pensator can be replaced by a saturation function [14].
However, a trade-off problem between chattering and
control accuracy arises. To attack this problem re-
ducing the chattering phenomenon, several compen-
sators were studied [15—-18]. Wu et al. [15] presented a
smooth compensator to guarantee system stable; how-
ever, the tracking error can exponentially converge to
a small neighborhood of the trajectory command. Hsu
etal. [16] proposed a fuzzy compensator to completely
remove the chattering phenomena; however, the adap-
tive law will make it go to infinity. Some researchers
combined the robust control approach to remove the
influence of the external disturbance and approxima-
tion error in [17, 18]. However, the control effort may
lead to a large control signal as a specified attenu-
ation level is chosen small. In this paper, a robust
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compensator, which is a combination of the propor-
tional controller and the sliding-mode controller using
a continuous modulation function, is designed to elim-
inate the approximation error. This approach integrates
their merits of proportional control and sliding-mode
control so that the chattering phenomenon can be re-
moved.

According to the network output form, FNNs can
be divided into two types, are Mamdani-type FNN and
Takagi—Sugeno—Kang (TSK) type FNN [1, 19, 20].
The output weights are equipped with singleton-type
form in the Mamdani-type FNN and with functional-
type form in the TSK-type FNN. The TSK-type FNN
provides a more powerful representation than the
Mamdani-type FNN. Recently, the adaptive TSK-type
FNN control schemes have grown rapidly in many pre-
vious published papers [21-23]. These adaptive TSK-
type FNN controllers proposed in [21-23] can achieve
a favorable control performance; however, the learn-
ing process is only parameter learning, but the struc-
ture of FNN is fixed. Based on this observation, design
of a self-organizing TSK-type fuzzy neural network
(STFNN) should be a better choice. This paper pro-
poses an STFNN which not only has a functional-type
form output to provide high learning performance and
good generalization capability but also has the prop-
erty of automatic generating and pruning fuzzy rules
without a preliminary knowledge.

An adaptive self-organizing TSK-type fuzzy net-
work control (ASTFNC) system is developed in this
paper. The proposed ASTFNC system is composed
of a neural controller and a robust compensator. The
neural controller uses an STFNN to approximate an
ideal controller, and the robust compensator is uti-
lized to eliminate the approximation error between the
neural controller and ideal controller without occur-
ring chattering phenomena. Further, to speed up the
convergence of the tracking errors, this paper derives
the adaptation tuning algorithms in a proportional-
integral (PI) type form in the sense of Lyapunov sta-
bility. Finally, the proposed ASTFNC system is ap-
plied to a DC motor driver, and it is implemented on
a field-programmable gate array (FPGA) chip for low-
cost and high-performance industrial applications. In
the experimental study, it is shown that a high track-
ing performance and no chattering phenomena can be
achieved by the proposed ASTFNC system. Moreover,
the proposed self-organizing method demonstrates the
properties of generating and pruning the fuzzy rules
automatically with a simple computation.
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2 DC motor driver and ideal controller
2.1 DC motor driver

The motion equation of a DC motor driver can be sim-
plified as [24, 25]

JO(t) + BO(t) = T, (1) (1

where J is the moment of inertia, B is the damping
coefficient, 8(¢) is the rotor position and 7, () denotes
the electric torque. The electric torque is defined as

Te(t) = Kiia (1) @

where K; is the torque constant, and i, (¢) is the torque
current. The electric equation of a DC motor driver can
be simplified as [24, 25]

Va(t) = Raia(t) + Kpb (1) + u% 3)
where R, is the motor resistance, K, is the back elec-
tromotive force coefficient, L, is the motor induc-
tance, and v, (¢) is the DC motor voltage. By consid-
ering the motor inductance approximated to zero, the
DC motor driver system can be represented in the fol-
lowing form:

6(t) = f(t) + gu(t) )

where f(t) = —(g + If,’,g”)é(t),g = JI;’“ is a con-

stant, and u(¢) = v, (¢) is the control input.
2.2 Ideal controller design

Rewriting (4), the nominal model of the DC motor
driver can be represented as

6(t) = fu(t) + gnu(t) S

where f;, () and g, are the mappings representing the
nominal behavior of f(z) and g, respectively. If un-
certainties occur, i.e., the system parameters deviate
from their nominal values or an external disturbance
is added into the system, the system dynamic can be
modified as

6(t) = [fu(t) + AL D] + (80 + AQu(t) +d (1)
= fu(®) + gau(t) + w(t) (6)

where Af(¢) and Ag denote the system uncertainties,
d(t) is the external disturbance, and w(t) is called
the lumped uncertainty defined as w(r) = Af(t) +
Agu(t) + d(t). The control objective is to find a con-
trol law so that the rotor position 6(¢) can track a rotor
command 6.(¢). To achieve the control objective, the
tracking error is defined as

e(t) =0.(1) —0(1) (N

and the sliding surface is defined as

t
s(it)=e(t)+kie() + kz/ e(t)dr. ®)
0

If the system uncertainties in (6) are well known, there
exists an ideal controller as [26]

u*(t) = g, = fu () —w(®) + 6:(t) + ki é(r)
+ kae(r) + Ks(1)] ©))

where k1, ky, and K are nonzero positive constants.
Substituting (9) into (6) yields

E(t) +kié(t) + kae(t) = —K s(t) = § (). (10)

Consider the Lyapunov function candidate in the fol-
lowing form:

1o
Vi(t) = 75°(1). D

Differentiating (11) with respect to time and using
(10), we obtain

Vi(t) = s(1)i(t) = —Ks2(t) <O0. (12)

In summary, the ideal controller can guarantee the sta-
bility in the Lyapunov sense [26, 27]. Though a favor-
able control performance can be achieved by the ideal
control system, it needs the dynamic characteristic of
the control plant to design the control law. Since the
dynamics is usually nonlinear and a precise model is
difficult to be obtained, the ideal control system is dif-
ficult to be implemented.

3 Design of the ASTFNC system
To efficiently and precisely control the DC motor

driver, an adaptive self-organizing TSK-type fuzzy
network control (ASTFNC) system is studied. The

@ Springer



590

C.-F. Hsu

adaptive self-organizing TSK type fuzzy network control

modulation o gain
function estimation law|
45) (53)

robust
"1 compensator
(44

re

! self-organizing
i —> approach

(18)~(23)
m

- sliding | ¢ neural -~ 4]y

surface controller

®) (26)

T aalﬁanl’ﬁcaﬁca

Y

adaptive
—> law

(37)~(40)

e DC motor

driver
(f+ 4)

c

Fig. 1 The block diagram of the ASTFENC system for a DC
motor driver

proposed ASTENC system is composed of a neu-
ral controller and a robust compensator as shown in
Fig. 1, where the controller output is defined as

Uac (1) = lnc(t) + urc(t). (13)

The neural controller i, () using an STFNN is de-
signed to approximate the ideal controller, and the ro-
bust compensator u(¢) is designed to compensate for
the difference introduced by the neural controller with-
out occurring chattering phenomena.

3.1 Description of STFNN

The developed STFNN is shown in Fig. 2, and each
rule in a TSK-type form is given as [1]
Rulei: IFsis A;, THEN up. = @jo + @it s 14)

where s and uy are the input and output variables of
STFNN, respectively; in the ith fuzzy rule, A; is the
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Fig. 2 Self-organizing TSK-type fuzzy neural network

fuzzy set, and «;o and «; are the adjustable parame-
ters. For the ith fuzzy set A;, the Gaussian fuzzy set
with membership function is used as

(s — )2
A L
o

i

s)

where ¢; and o; denote the center and width of the
fuzzy set A;, respectively. Assuming that there are m
rules in STFNN, the output according to the simple
weighted sum method would be obtained as

tne =y _ ] si(s) (16)

i=1

where o; = [wjo, @i1]7 is the parameter vector, and
s = [1,s]7 is the input vector. Then, the output of
STFNN can represented in a vector form as

une =’ O(s, ¢, ) (17)

h _ T _ T
Werec—[cl,CL---vcm] 70_[015627"'70m] ’
o= [oclT,ocg,...,oc,a]T, and O = [¢1sT,¢2sT,...,

dms’ 17

It is well known that the amount of the fuzzy rules
is difficult to select. A trade-off problem between
the computation loading and the learning performance
arises. A structure learning algorithm including how
to generate and prune the fuzzy rules of STFNN is in-
troduced in this paper. The first process of the struc-
ture learning is to determine whether to generate a new
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fuzzy rule. If a new input data falls within the bound-
ary of clusters, STFNN will not generate a new fuzzy
rule but update the parameters of existing fuzzy rules.
Consider a distance of mean as [28]

di=|S—Ci| fork:l,Z,...,m. (18)

Find the minimum distance as

dmin = min d;. (19)
1<i<m

If the minimum distance is large, this means that the
input data falls outside of the existing fuzzy rules. It
implies that if dpiy, > dyy, is satisfied, where dyy, a pre-
given threshold, then a new fuzzy rule should be gen-
erated. For the new fuzzy rule, the parameters will be
defined as

™Y =0 (20)
"V =g 21
oY = 5 (22)

where & is a prespecified value. If the desired perfor-
mance is the important issue, a small dy, should be
chosen, so that more fuzzy rules can be generated.

To avoid overload computation loading, consider
whether to delete the existing fuzzy rule but is inap-
propriate. When the kth firing strength ®; is smaller
than an elimination threshold ®y,, this means that the
relationship becomes weak between the input data and
the kth firing strength. This fuzzy rule may be less or
never used. Then, it will reduce the value of the kth
significance index. Based on this observation, a sig-
nificance index of the kth fuzzy rule is determined as
follows [11]:

Ir(t)exp(—1) if O < On

1(0) it Oy = Oy 23)

L(t+1)= {
where I is the significance index of the kth fuzzy rule
whose initial value is 1, and t is the elimination speed
constant. If I} < Iy, is satisfied, where Iy, a pregiven
threshold, then the kth layer will be deleted. For real-
time implementation, if the computation load is the
important issue, a large Iy, should be chosen, so that
more fuzzy rules can be pruned.

The main property of STFNN regarding feedback
control purpose is the universal function approxima-
tion property. It implies that there exists an expansion

of (17) such it can uniformly approximate an ideal
controller u*(¢) as [11]

W) =aTOG, 0+ A=aTO + A (24)

where A is the approximation error, «* and @* are the
optimal parameter vectors of a and O, respectively,
and ¢* and o* are the optimal parameter vectors of ¢
and o, respectively. Let the number of optimal fuzzy
rules be m* and divide it into two parts. The first part
contains m neurons that are the parameter vector of
the activated part, and the second part contains m* —m
neurons that are the parameter vector of the inactivated
parts. Hence, the optimal weights a*, ®*, ¢*, and o*
are classified in two parts such as [11]

* *
=) e-let]
1 L
* *
¢ = [ci:|, and o*= [ai:|
¢/ o]

where o), ©®F, ¢, and o are activated parts, and
of,®F, ¢, and o} are inactivated parts. Since these
optimal parameter vectors of the activated parts are

unobtainable to best approximation, an estimated
STFNN is defined as

(25)

linc(1) = &L O(s,84,64) =& O, (26)

where &, @u, ¢4, and 6, are the estimated parameter
vectors of af, @}, ¢, and o, respectively. To speed
up the convergence, the optimal parameter vector of
the activated parts e} is decomposed into two parts

as [29]
@ ZUP“ZP +U1“ZI (27)

where a , and o, are the proportional and integral
terms of o, respectively, np and 5 are positive co-
efficients, and o), = fé o, dt. Similarly, the estima-
tion parameter vector &, of the activated parts is de-
composed into two parts as

&y =1nplap +N18ar (28)

where &,p and é&,; are the proportional and integral
A . A t A

terms of &, respectively, and &, = fo o, pdrt. Thus,

&, = o) — &, can be expressed as

&y =118q —Np8ap + NP, p (29)
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where a,; = ozZ I a,;. Define the estimated error
u(t) as
i(t) = u™(t) — iinc(t)
=aTO+a’O —al0,+ A
=al®,+al0,+al0, +aTO +A
= (N16ar — NP@ap + npeip)' O,
+al0,+ale,+ai7er +A
=018, 0, — 1pél pOy +npeh O,
+&l0,+al0,+aTOr+A (30)
where &, = & — &, and 0, = o — ©,. The Tay-
lor expansion linearization technique is employed to

transform the nonlinear function into a partially linear
form [14], i.e.,

0,=AT¢, +B76,+h (31)

where ¢, = ¢} — ¢,,6, =0 — d4,h is a vector of
high-order terms,

A 001 00, 00,
- dc, 0c¢y ¢,

cu=¢C4

and

B_[a@)l a@)zma@m}

00, 00, 00, e

Substitution of (31) into (30) yields

i) =n1&l, 04— npélp@, +npail @,

+al(ATe, +BT6,+h)+al O,

+a’Or +A

= 7715651(:11 - nP&Z;Pé)a + E‘{A&a

+6Ba, +¢ (32)

STATE _ T AG STRTe  — TR
where @, A" ¢, =¢,Aa, and a,B' 6, =0 ,Ba, are
used since they are scalars, and ¢ = &Zh +al®, +
a?TG;‘ + T]P(!Z;,(:)a + A denotes the lump of ap-

proximation error which is assumed to be bounded by
0 < |e| < E with E is a positive constant.
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3.2 ASTFNC system design without a robust
compensator

Substituting (13) into (6) and using (9) yields

€@t) + kié(r) + kae(r)
= gn[u* (1) — dinc(t) — urc(t)] — Ks(1)
=5(1). (33)

Using the approximation property (32), (33) can be

rewritten as

§(1) = gu[n16g Oa — 1PlypOu + T Ady + 64 By
+&—urc(t)] — Ks(t). (34)

To prove the stability of the ASTFNC system with-

out a robust compensator, define a Lyapunov function
candidate in the following form:

1 N .7 -~ |
Vo) = 257(0) + gn(gaimaz + 2—ch &
1 .
+ Raa o, (35)

where 7. and 7, are the positive learning rates. Differ-
entiating (35) with respect to time and using (34), we
obtain

. . ~T ~ 8n ~T2 8n ~T2
Va(t) = s(0)$(1) +nrgn@l aar + n—"c;ca +6Tq,

c No
= gus(O[n@}; 04 — npé ) pO, + L Ad
+6 B, +¢] - Ks*(1)
8n -7 2

~T 2 8n ~T2
+ nlgnagjaal + —nCaTCa +—0,0,4
Ne No

= nlgn&gj [S(t)(:)a + &al]

3 . ¢
+ gnc? |:s (A&, + —“]

Ne

. .G
+8nGy [s(t)Baa + —“}
No
+ gns(O[-np&lpOu+e] — Ks*(1). (36)
Choose the adaptive laws as

&ap =5(1)0O, (37)

&a = —&ta; =5(1)O, (38)
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bq =—C4 =nes(DA&, (39)
Ga=—6a=10s(t)Bg (40)
so that (36) can be rewritten as

Va(t) = gues(t) — Ks>(1) — npgn@.l pap
< gnlel|s®] — Ks*(t)

< gE|s()] - Ks(1)

E 2 g’%Ez
. 41
ZK) Tk “h

= —K<|s(t)

Define the set

E 2 2E2
<& 1 4
2K 4K

If s(r) ¢ Q(E), Vz(t) is still negative, and the track-
ing error converges to the set Q (E). But, if s(¢) €
Qs (E), it is possible Vz(t) > 0, which implies that
&up, %41, ¢4, and 6, may drift to infinity over time.

Q(E) = {s(t) K<|s(t)

3.3 ASTENC system design with a robust
compensator

There are three different regions of s(¢) divided by
Qs(E) and Q (E, ®) as shown in Fig. 3. The set
Q(E, ®) is defined as

Q(E, @)

Vg
{s(t) K< ZK) <8P +c1>} 43)

where @ is a small positive constant representing the
width of the transition region Q24 (E, ®). The proposed
robust compensator is designed as

tre = 8K ps(1) + (1 — 8) Esgn[s(1)] (44)
Region Region Region
i 1 i 2 ' 3
XN M
oEe

Fig. 3 The three different regions divided by Q(E) and
Q(E, @)

where K p 18 a positive coefficient designed by the de-
signer, and the modulation function § € [0, 1] is cho-
sen as

1 ifs(r) € Q(E)

K(\s(r)|—g"5)2 gt

4K

§=11-
if5(1) ¢ Q5 (E) and s(1) € 24 (E, ®)

0 ifs(t) ¢ Q(E, ).

(45)

To prove the stability of the ASTFNC system with a
robust compensator, consider the Lyapunov function
candidate in the following form:

1

1 N7 - T~
Vs(t) = 5520 + gn<7a£1aa1 + 5 G
1 .
+E0'a0'a . (46)

Differentiating (46) with respect to time and using (34)
and (44), we obtain

Bnglta+ 20674,
n

c o

V3(t) = s(1)§ (1) + 01 8nll tar 48

= gus() (11810, — npalp O, + &l Ad,

+ 6 Ba, +e —uw) — Ks*(t)
&n 8n B
+ N1gnd ]“al+_ca a+_0T(7a
Ne No
= Ulgn&aT] [S(t)(:)a + &al]
~T ~ éa
+ gn€, |:s (HAa, + —]
Ne
+ gn0 [S(I)B“a + _j|
No
+ 85 (1) (—np8pOu + & — ure) — Ks*(1)

< gns(t)[s — SIeps(t) - - 8)Esgn(s(t))]
— Ks%(r)
< gnE|s(0)] — 8g.K ps(t) — (1 — 8)gn E|s(0)]

— Ks*(1)
= 8gnE|s(1)| — 8¢, K ps* (1) — Ks*(1)
=g (K, |s()| — E)[s(®)] — Ks*(). (47
If the inequality
. E
o (48)
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holds, then V3 () <0 can be satisfied. Owing to the
unknown approximation error bound E, the value K »
cannot be exactly obtained in advance for practical ap-
plications. According to (48), there exists the follow-
ing ideal value K ;:

K*— E+r
P sl
where r is a positive constant. Thus, a simple adaptive

algorithm is utilized to estimate the ideal value of K%,
and its estimated error is defined as

(49)

Kp=K;—K,. (50)

Then, consider the Lyapunov function candidate in the
following form:

1 - 1
Vu(t) = Esz(t) +gn< ) T]'xal + 5 2 gca
1 . 1 )
+—6r6,+—K (5D
2no ¢ 2ng

where 7y is the positive learning rate. Differentiating
(51) with respect to time and using (34), (37)—(40),
(44), and (49), we obtain

Va(r) = s(0)$(t) + nrgnal aar + —f:Téa

Ne

+ 8675, + 5k K,

No Nk
~T A ~T A - N
= gnS(t)(nlotL@a —npo,p@y +CZ;AOLa
+ 6TB&a +e— urc) —Ks*() + ﬂl&aT]&al

+8eTe 4+ 8576, + B2 R K,
Nc No Nk

= 7718:@51 [s(t)éa + &al]

3 . ¢
+ gn€l [s(t)Aaa + —a}

Ne

+ 810, |:s(t)Boca+ ]
No

+ gns(t)(_’?P&Z;Péa +e— ”rc)

—Ksz(t)+ K K

< gns(0)[e — (SKps(t) — (1= 8)Esgn(s(1))]

— Ks*(1) + K K
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Fig. 4 The FPGA-based experimental setup

< 8guEls(t)| - agnlé s*(1)

— K20+ SR, K, (52)
Nk

Choosing the gain estimation law as
N ~ 2
Kp=—Kp=mnd|s®| (53)
(52) becomes
Va(t) < 8gnEls(t)| — 88, Kps? (1) = Ks*(1)

= —8gurls| — Ks>(1)

< —Ks*(t) <0. (54)

Since Vi (1) is negative semidefinite, that is, V4(r) <
V4(0), it follows that s(¢), &4y, €4, 04, and 1%,, are
bounded. Let the function ¥ (1) = Ks2(t) < —Va (),
and integrate v (¢) with respect to time. Then we ob-
tain

/0 V(v)dr = V4(0) — Va(0). (55)

Because V4(0) is bounded and V4(¢) is nonincreasing
and bounded, we obtains that

t
lim / Y(t)dt < o0. (56)
—00 0

By Barbalat’s lemma [26], lim;— » ¥ (¢) = 0. That is,
s(t) = 0 as t — oo. As a result, the stability of the
ASTFENC system with a robust compensator can be
guaranteed.
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4 Experimental results

FPGA is a fast prototyping integrated circuit (IC) com-
ponent. This kind of IC incorporates the design of a
gate array and the programmability of a programmable
logic device. It consists of thousands of logic gates,
some of which are combined together to form a config-
urable logic block, thereby simplifying high-level cir-
cuit design [30, 31]. The advantage of a controller im-

Fig. 5 Experimental
results of the adaptive FNN
control [3]

rotor

position

rotor

plemented on an FPGA chip includes shorter develop-
ment cycles, lower cost, small size, fast system execute
speed, and high flexibility. The FPGA-based experi-
mental setup is shown in Fig. 4. This study uses the Al-
tera Cyclone III series FPGA chip and the circuits, and
algorithms are developed in the VHSIC hardware de-
scription language (VHDL). To investigate the effec-
tiveness of the proposed ASTFNC system, the adap-
tive FNN control with a switching compensator [3]

?trackinfg resp(;nse

-— ‘
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Fig. 6 Experimental trackmresonse
results of the robust grotor § : : : ki : i
adaptive FNN control [30]

Fig. 7 Experimental . g Tt T
results of the ASTFNC 3 3 . rotor
system using integral-type ' ' ¥ position . . . .
learning algorithm ;
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Fig. 8 Experimental
results of the ASTFNC
system using PI-type
learning algorithm

‘rotor -
-command

. rotor -

. position :

5 Izmd 5

frackilig respdnse

" 1sec
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and the robust adaptive FNN control with a supervi-
sor compensator [32] are considered for comparison.
First, the adaptive FNN controller with a switch-
ing compensator [3] is applied to the DC motor driver.
The switching compensator required the bound of the
approximation error. The experimental results of the
adaptive FNN control with a switching compensator
are shown in Fig. 5. When the bound of approxima-
tion error is chosen small, the tracking response is
shown in Fig. 5(a), and the associated control effort
is shown in Fig. 5(b). When the bound of approxi-
mation error is chosen large, the tracking response is
shown in Fig. 5(c), and the associated control effort is
shown in Fig. 5(d). The experimental results show that
a favorable control performance can be achieved after
the controller parameters become well learned. Unfor-
tunately, to guarantee the system stability, a switch-
ing compensator should be used, but the undesirable
chattering phenomenon occurs as shown in Fig. 5(d).

A trade-off problem between chattering phenomenon
and control accuracy arises.

Then, the robust adaptive FNN controller with a su-
pervisor compensator [32] is applied to the DC motor
driver again. The supervisory compensator combined
the sliding-mode control and the adaptive control by
using a modulation function such that it could take the
advantage of the robust and adaptive properties to deal
with the approximation error. The experimental results
of the robust adaptive FNN controller with a super-
visor compensator are shown in Fig. 6. The tracking
response is shown in Fig. 6(a), and the associated con-
trol effort is shown in Fig. 6(b). The experimental re-
sults show that the favorable control performance can
be achieved and the chattering phenomena of control
efforts can be removed. However, the convergence of
the tracking error is slow since the parameter adapta-
tion law was designed in an integral type form.

@ Springer
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Fig. 9 Experlm.ental ‘rotor :

results of the trained .
:command

ASTENC system using
PI-type learning algorithm

_ rotor -
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tracking respdnse .
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Finally, the proposed ASTFNC system is applied to
the DC motor driver again. The control parameters are
selected as k1 =2, ko =1, n =1, np =nc. =0 =
m=01,K=1,E=1,®=1,dy=0.3, I, =0.1,
On = 0.2, Tt =0.01, and ¢ = 1.0. These parameters
are selected through some trails. By choosing the val-
ues of ki and k» properly, the desired system dynam-
ics such as settling time can be easily designed by the
second-order system. The parameters np, 1y, 1., and
ns are the leaning rates of the neural control, and the
parameter 1y is the leaning rate of the robust compen-
sator. If the leaning rates are chosen small, the param-
eter convergence will be easily achieved; however, this
will result in slow learning speed. On the other hand,
if the leaning rates are chosen large, the learning speed
will be fast; however, the system may become unsta-
ble.

To compare the tracking efficiency, the ASTFNC
system with using integral-type learning algorithm is

@ Springer

i 1sec
®
‘number of fuzzy rules
L
-
| 1sec
(©

applied first. This is a special case of the developed
ASTENC scheme for np = 0. The experimental re-
sults of the ASTFNC system with using integral-type
learning algorithm are shown in Fig. 7. The tracking
response is shown in Fig. 7(a), the associated con-
trol effort is shown in Fig. 7(b), and the number of
fuzzy rule is shown in Fig. 7(c). From the experimen-
tal results, not only the perfect tracking responses can
be achieved without any chattering phenomena occur-
ring, but also a concise network structure can be ob-
tained by the proposed self-organizing method. How-
ever, the convergence of the tracking error is slow.

To speed up the convergence, the experimental re-
sults of the ASTFNC system with using PI-type learn-
ing algorithm are shown in Fig. 8. The tracking re-
sponse is shown in Fig. 8(a), the associated control ef-
fort is shown in Fig. 8(b), and the number of fuzzy
rule is shown in Fig. 8(c). It is shown that not only
the perfect tracking responses can be achieved with-
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out any chattering phenomena occurring, but also the
convergent speed of the tracking error can speed up
because the proposed PI-type adaptation learning al-
gorithm is applied. Further, the trained ASTFNC sys-
tem with using PI-type learning algorithm is applied to
the DC motor driver again. The experimental results
of the trained ASTFNC system using PI-type learn-
ing algorithm are shown in Fig. 9. The tracking re-
sponse is shown in Fig. 9(a), the associated control ef-
fort is shown in Fig. 9(b), and the number of fuzzy rule
is shown in Fig. 9(c). The experimental results show
that the system stabilization, favorable tracking perfor-
mance, and no chattering phenomena can be achieved
using the proposed ASTFNC system with using PI-
type learning algorithm.

5 Conclusions

This paper develops a novel self-organizing TSK-
type fuzzy neural network (STFNN). The STFNN
demonstrates the properties of generating and pruning
the fuzzy rules automatically. Then, an adaptive self-
organizing Takagi—Sugeno—Kang (TSK) type fuzzy
network control (ASTFNC) system is proposed for a
DC motor driver. To speed up the convergence of the
tracking error, a proportional-integral (PI) type adap-
tation tuning mechanism is derived in the Lyapunov
stability sense. Finally, this paper has successfully im-
plemented the proposed ASTFNC system in the VH-
SIC hardware description language on a field pro-
grammable gate array chip. To investigate the effec-
tiveness of the proposed ASTFNC system, a compari-
son among the adaptive FNN control with a switching
compensator, the robust adaptive FNN control with a
supervisor compensator, and the proposed ASTFNC
is made. It is verified by the experimental study that
the developed model-free ASTFNC system with using
PI-type learning algorithm is more suitable for a DC
motor driver.
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