85,968 research outputs found

    Video-based motion detection for stationary and moving cameras

    Get PDF
    In real world monitoring applications, moving object detection remains to be a challenging task due to factors such as background clutter and motion, illumination variations, weather conditions, noise, and occlusions. As a fundamental first step in many computer vision applications such as object tracking, behavior understanding, object or event recognition, and automated video surveillance, various motion detection algorithms have been developed ranging from simple approaches to more sophisticated ones. In this thesis, we present two moving object detection frameworks. The first framework is designed for robust detection of moving and static objects in videos acquired from stationary cameras. This method exploits the benefits of fusing a motion computation method based on spatio-temporal tensor formulation, a novel foreground and background modeling scheme, and a multi-cue appearance comparison. This hybrid system can handle challenges such as shadows, illumination changes, dynamic background, stopped and removed objects. Extensive testing performed on the CVPR 2014 Change Detection benchmark dataset shows that FTSG outperforms most state-of-the-art methods. The second framework adapts moving object detection to full motion videos acquired from moving airborne platforms. This framework has two main modules. The first module stabilizes the video with respect to a set of base-frames in the sequence. The stabilization is done by estimating four-point homographies using prominent feature (PF) block matching, motion filtering and RANSAC for robust matching. Once the frame to base frame homographies are available the flux tensor motion detection module using local second derivative information is applied to detect moving salient features. Spurious responses from the frame boundaries and other post- processing operations are applied to reduce the false alarms and produce accurate moving blob regions that will be useful for tracking

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    Improvement of Text Dependent Speaker Identification System Using Neuro-Genetic Hybrid Algorithm in Office Environmental Conditions

    Get PDF
    In this paper, an improved strategy for automated text dependent speaker identification system has been proposed in noisy environment. The identification process incorporates the Neuro-Genetic hybrid algorithm with cepstral based features. To remove the background noise from the source utterance, wiener filter has been used. Different speech pre-processing techniques such as start-end point detection algorithm, pre-emphasis filtering, frame blocking and windowing have been used to process the speech utterances. RCC, MFCC, ?MFCC, ??MFCC, LPC and LPCC have been used to extract the features. After feature extraction of the speech, Neuro-Genetic hybrid algorithm has been used in the learning and identification purposes. Features are extracted by using different techniques to optimize the performance of the identification. According to the VALID speech database, the highest speaker identification rate of 100.000% for studio environment and 82.33% for office environmental conditions have been achieved in the close set text dependent speaker identification system

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability
    corecore