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ABSTRACT

In real world monitoring applications, moving object detection remains to be a chal-

lenging task due to factors such as background clutter and motion, illumination variations,

weather conditions, noise, and occlusions. As a fundamental first step in many computer

vision applications such as object tracking, behavior understanding, object or event recog-

nition, and automated video surveillance, various motion detection algorithms have been

developed ranging from simple approaches to more sophisticated ones. In this thesis, we

present two moving object detection frameworks. The first framework is designed for ro-

bust detection of moving and static objects in videos acquired from stationary cameras.

This method exploits the benefits of fusing a motion computation method based on spatio-

temporal tensor formulation, a novel foreground and background modeling scheme, and a

multi-cue appearance comparison. This hybrid system can handle challenges such as shad-

ows, illumination changes, dynamic background, stopped and removed objects. Extensive

testing performed on the CVPR 2014 Change Detection benchmark dataset shows that

FTSG outperforms most state-of-the-art methods among 16 algorithms. The second frame-

work adapts moving object detection to full motion videos acquired from moving airborne

platforms. The video is stabilized with respect to a set of base-frames in the sequence.

The stabilization is done by estimating four-point homographies using prominent feature

(PF) block matching, motion filtering and RANSAC for robust matching. Once the frame

to base frame homographies are available the flux tensor motion detection module using

local second derivative information is applied to detect moving salient features. Spurious

responses from the frame boundaries are removed and other post- processing operations

are applied to reduce the false alarms and produce accurate moving blob regions that will

xiv



be useful for tracking.
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Chapter 1

Introduction

In real world monitoring applications, moving object detection remains to be a challenging

task due to factors such as background complexity, illumination variations, noise and oc-

clusions. As a fundamental first step in object tracking, behavior understanding, object or

event recognition, automated video surveillance, etc. various motion detection algorithms

have been developed ranging from simple approaches to more sophisticated ones.

Moving object detection approaches can be categorized into three broad classes as

background subtraction, temporal differencing and optical flow methods. Optical flow

methods,[cite] first compute optical flow vectors then group the flow vectors that belong

to the same motion to identify moving objects. They can thus be used even with non-

stationary cameras. However reliable motion field computation under real-world condi-

tions is challenging and computationally expensive and these methods can not deal with

stopped objects. Temporal differencing based methods rely on pixel-wise differences be-

tween consecutive frames. They do not maintain a background model, are simple and fast,

and can quickly adapt to different changes thus are suitable for dynamic backgrounds, il-
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lumination changes, uncovered background by removed objects etc. However, without an

explicit background model, temporal differencing cannot detect slow moving or stopped

objects and often result in foreground aperture problem and fail to detect parts of objects

(particularly large objects with homogeneous interiors result in holes). Background sub-

traction based methods maintain and use an explicit background model thus can handle

slow moving or stopped objects and do not suffer from foreground aperture problem. How-

ever they are sensitive to dynamic scene changes due to illumination changes, uncovered

background by removed objects etc. Even with adaptive multi-modal background model-

ing mechanisms [3], adaptation capability of background subtraction based methods is still

worse than temporal difference based methods.

The main contributions of this paper are: (i) A motion computation method based on

flux-tensor our spatio-temporal tensor formulation. (ii) A novel Split-Gaussian method to

separately model foreground and background. (iii) A robust multi-cue appearance compar-

ison module to remove false detections due to illumination changes, shadows etc. and to

differentiate stopped objects from revealed background by removed objects.

Regarding the performance, our method can handle shadow, illumination changes,

ghosts, stopped or removed objects, some dynamic background and camera jitter while

still maintaining a fast boot-strapping. Our method outperforms most well known tech-

niques on moving object detection. As of submission date of this paper, our results outrank

submissions to CVPR 2012 change detection [2] at the six category-wide overall rankings.
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1.1 Related Work

Moving object detection approaches can be categorized into three broad classes as opti-

cal flow methods, temporal differencing and background subtraction. Optical flow meth-

ods [] first compute optical flow vectors, then group the flow vectors that belong to the

same motion to identify moving objects. They can thus be used even with non-stationary

cameras. However reliable motion field computation under real-world conditions is a chal-

lenging and computationally expensive task and these methods can not deal with stopped

objects. Temporal differencing based methods rely on pixel-wise differences between con-

secutive frames. Since they do not maintain a background model, they are simple and

fast. Temporal differencing methods can quickly adapt to dynamic environments such as

illumination changes, revealed background by removed objects etc. However, without an

explicit background model, temporal differencing cannot detect slow moving or stopped

objects and often results in foreground aperture problem (particularly large objects with

homogeneous interiors result in holes). Background subtraction based methods maintain

and use an explicit background model thus can handle slow moving or stopped objects and

do not suffer from foreground aperture problem. However they are sensitive to dynamic

scene changes due to illumination changes, revealed background by removed objects etc.

Even with adaptive multi-modal background modeling mechanisms (e.g. [3]), adaptation

capability of background subtraction based methods tends to be not as good as temporal

difference based methods. The focus of this paper are the two latter categories. A compre-

hensive survey of these approaches can be found in [4]. A more contemporary evaluation

of particularly background subtraction methods can be found in [5, 6].

Simple temporal differencing methods as surveyed in [4] rely on pixel-wise differenc-

ing and global thresholds. These methods are sensitive to noise and illumination changes,

3



and often produce incomplete object masks. Various extensions have been proposed to

improve performance of temporal differencing methods. Hsu et al [7] incorporate spatial

information by fitting a polynomial function to each pixel block. Change detection is then

performed by thresholding the variance of the residuals from the polynomial fit to corre-

sponding blocks in two images. Mahadevan et al. [8] motivated by biological vision pro-

pose use of discriminant center-surround spatiotemporal saliency. For each pixel, center,

surround, and temporal windows are created. A saliency map is generated using center-

surround classification based on previously obtained distributions. Locations with large

saliency are classified as foreground. Despite the high computational cost, this method is

robust to dynamic scenes.

While moving object detection using temporal differencing is efficient and adaptive,

real world foreground detection tasks usually involves not only moving objects but also

slow moving and stopped objects (sleeping person in [9]), that are hard or impossible to

detect by temporal differencing. Background subtraction methods handle these cases by

explicitly maintaining a model of the background. Many background subtraction methods

operate at pixel level and model each pixel independently. Gaussian models are widely

adopted by these methods. In the simplest case, pixel history is modeled using a single

Gaussian [10]. Dominant values in the pixel history are assumed to belong to background

pixels. Pixel values that are different from the mean by some multiple of the standard devi-

ation are classified as foreground. Adaptive version of this approach updates model param-

eters making this simple Gaussian method adaptive to gradual illumination changes. Be-

cause foreground pixels are identified not through motion or change in consecutive frames,

but rather by difference from a background model, these models can handle slow moving

and stopped objects. By extending single Gaussian model to mixture of Gaussians (MoG),

4



more complex scenes such as dynamic backgrounds can be handled [3, 11]. In [3] Stauffer

and Grimsom present the popular adaptive background mixture models method where the

history of a pixel is modeled by a mixture of K Gaussians. An online K-means clustering

is used to update the parameters of the K Gaussians for each pixel. Number of Gaussian

distributions K is an important parameter and if not selected properly can lead to under- or

over-fitting problems. In [1] Haines & Xiang propose a new background subtraction ap-

proach with Dirichlet processes, and use a non-parametric Bayesian method to estimate the

number of Gaussian distributions required to model the background pixels. Besides widely

used intensity and color features, use of gradient and texture information helps in noise and

illumination handling. [12–14] incorporate spatial consistency to background subtraction

by using LBP (local binary pattern) to produce a feature vector for each pixel. LBP in

background subtraction is first used in [12]. In [13], a spatiotemporal local binary pattern

feature is used to model dynamic backgrounds. [14] further extends [12] to a shadow in-

variant local binary pattern descriptor called scale invariant local ternary pattern. All these

methods are using a simple adaptive filter to constantly update their LBP based background

models.

Beside parametric background modeling approaches, there are also many nonparamet-

ric background modeling methods. Elgammal et al. [15] propose a nonparametric back-

ground modeling approach where kernel density estimation is used to model N samples

in recent pixel history. This can be seen as a generalized Gaussian mixture model where

each sample set is considered as a Gaussian model. Selection of window size is crucial

since it can lead the model to adapt too quickly or too slowly. The paper uses double mod-

els to handle quick background changes while still preserving a relative static background

model. A simple intersection operation is used on the detection results to combine the
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models. In [16] Nonaka et al.incorporate spatial consistency to nonparametric background

model. The approach combines nonparametric pixel level model which is a Parzen density

model, together with a region level model, which is built by using Radial Reach Correla-

tion. In [17] Li et al. incorporate spectral, spatial, and temporal features using principle

feature representation and uses Bayes classification to identify background and foreground.

An online K-mean clustering similar to [3] is used to update the prior and posterior prob-

abilities of the principle features. In [18] Tsai et al. propose an Independent Component

Analysis based method where a demixing matrix obtained from a training set is used for

foreground vs. background classification. This method does not have an update mecha-

nism, thus it is more suitable for indoor applications where continuous background change

is limited. But lack of update mechanism help detection of stopped foreground objects

since they do not get integrated into the background model. Instead of computing a prob-

ability density function or model ViBe [19] directly stores a collection of N background

samples as its background model. Two main differences between Vibe and conventional

background subtraction methods are, first, that an incoming pixel only needs to be similar

to some of the samples in the background model rather than the majority of all values, and

second, it is not necessary to discard an old background value. Based on these two ideas,

a pixel is classified as background if it is similar to some of the background samples and

the background model is updated by replacing a randomly selected sample from the back-

ground samples with the current pixel value. The paper also points out that the traditional

Mixture of Gaussians (MoG) methods cannot handle stopped objects because they use a

blind update strategy where all pixels are blindly updated into the background model. So

they use a conservative update strategy where the background model is only updated when

a pixel is classified as background. Conservative update suffers from deadlock problem
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where temporary detection errors become permanent ghosts. Based on the assumption that

neighboring pixels share the same temporal distributions, at the model update stage, Vibe

not only updates a randomly selected background sample, but also updates a randomly se-

lected neighbor pixel. So ghosts resulting from removed objects dissolve in time starting

from their boundaries. Random neighbor update reduces stopped and removed object prob-

lems, but temporary ghosts for removed object still occur and stopped objects still blend

into the background due to random noise. The selection of number of background sam-

ples, learning rate for background updating and threshold for foreground classification is

critical. In [20] Hofmann et al. propose up an adaptive thresholding method to adaptively

select learning rate and decision threshold based on how dynamic the background is.

By using multiple models and adaptive filters, some motion detection problems such as

dynamic backgrounds and illumination changes can be solved. However, to handle more

complex problems such as stopped objects or revealed background by removed objects,

simple statistic models are not sufficient. Therefore some background subtraction methods

use higher-level analysis to classify these cases. [21] combines temporal differencing and

background subtraction to first identify stationary and transient pixels, then a region level

analysis classify regions into moving or stopped. However, this system cannot differentiate

stopped objects from revealed background from removed objects. [22] also uses a combi-

nation of temporal differencing and background subtraction at pixel level. At background

model update stage region based analysis is performed. Pixels with same intensity values

are grouped together and update is performed group by group. In this way, revealed back-

ground will be recovered quickly. In [23] Evangelio et al. use finite state machine and

edge-based analysis to identify stopped objects and revealed background. Two Mixture of

Gaussians models are used one with high learning rate called short-term background model
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as a moving object detector and one with low learning rate called long-term background

model to reconstruct the static background. A finite state machine is used on the results of

these two models to further classify foreground pixels as stationary foreground or moving

foreground. Then a group of stationary foreground pixels is classified as a new static object

or as revealed background by using edge-based analysis.
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Chapter 2

Motion Detection Using a Flux Tensor

2.1 Flux Tensor Framework

Motion blob detection is performed using our novel flux tensor method which is an ex-

tension to 3D grayscale structure tensor [24]. Both the grayscale structure tensor and the

proposed flux tensor use spatio-temporal consistency more efficiently, thus produce less

noisy and more spatially coherent motion segmentation results compared to classical opti-

cal flow methods [25]. The flux tensor is more efficient in comparison to the 3D grayscale

structure tensor since motion information is more directly incorporated in the flux calcu-

lation which is less expensive than computing eigenvalue decompositions as with the 3D

grayscale structure tensor.
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2.1.1 3D Structure Tensors

Structure tensors are a matrix representation of partial derivative information. As they

allow both orientation estimation and image structure analysis they have many applications

in image processing and computer vision. 2D structure tensors have been widely used in

edge/corner detection and texture analysis, 3D structure tensors have been used in low-level

motion estimation and segmentation [25, 26].

Under the constant illumination model, the optic-flow (OF) equation of a spatiotempo-

ral image volume I(x) centered at location x = [x, y, t] is given by Eq. 2.1 [27] where,

v(x) = [vx, vy, vt] is the optic-flow vector at x, I doing like this.

dI(x)

dt
=

∂I(x)

∂x
vx +

∂I(x)

∂y
vy +

∂I(x)

∂t
vt

= ∇IT (x) v(x) = 0 (2.1)

and v(x) is estimated by minimizing Eq. 2.1 over a local 3D image patch Ω(x,y), centered

at x. Note that vt is not 1 since spatio-temporal orientation vectors will be computed. Using

Lagrange multipliers, a corresponding error functional els(x) to minimize Eq. 2.1 using a

least-squares error measure can be written as Eq. 2.2 whereW (x,y) is a spatially invariant

weighting function (e.g., Gaussian) that emphasizes the image gradients near the central

pixel [26].

els(x) =

∫
Ω(x,y)

(
∇IT (y) v(x)

)2
W (x,y) dy

+λ
(

1− v(x)Tv(x)
)

(2.2)

Assuming a constant v(x) within the neighborhood Ω(x,y) and differentiating els(x) to

10



find the minimum, leads to the standard eigenvalue problem (Eq. 2.3) for solving v̂(x) the

best estimate of v(x),

J(x,W) v̂(x) = λ v̂(x) (2.3)

The 3D structure tensor matrix J(x,W) for the spatiotemporal volume centered at x can

be written in expanded matrix form, without the spatial filter W (x,y) and the positional

terms shown for clarity, as Eq. 2.4.

J =



∫
Ω

∂I
∂x

∂I
∂x
dy

∫
Ω

∂I
∂x

∂I
∂y
dy

∫
Ω

∂I
∂x

∂I
∂t
dy

∫
Ω

∂I
∂y

∂I
∂x
dy

∫
Ω

∂I
∂y

∂I
∂y
dy

∫
Ω

∂I
∂y

∂I
∂t
dy

∫
Ω

∂I
∂t

∂I
∂x
dy

∫
Ω

∂I
∂t

∂I
∂y
dy

∫
Ω

∂I
∂t

∂I
∂t
dy


(2.4)

A typical approach in motion detection is to threshold trace(J) (Eq. 2.5); but this results

in ambiguities in distinguishing responses arising from stationary versus moving features

(e.g., edges and junctions with and without motion), since trace(J) incorporates total

gradient change information but fails to capture the nature of these gradient changes (i.e.

spatial only versus temporal).

trace(J) =

∫
Ω

||∇I||2dy (2.5)

To resolve this ambiguity and to classify the video regions experiencing motion, the eigen-

values and the associated eigenvectors of J are usually analyzed [28, 29]. However eigen-

value decompositions at every pixel is computationally expensive especially if real time

performance is required.
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2.1.2 Flux Tensors

In order to reliably detect only the moving structures without performing expensive eigen-

value decompositions, the concept of the flux tensor is proposed. Flux tensor is the tempo-

ral variations of the optical flow field within the local 3D spatiotemporal volume. Com-

puting the second derivative of Eq. 2.1 with respect to t, Eq. 2.6 is obtained where,

a(x) = [ax, ay, at] is the acceleration of the image brightness located at x.

∂

∂t

(
dI(x)

dt

)
=
∂2I(x)

∂x∂t
vx +

∂2I(x)

∂y∂t
vy +

∂2I(x)

∂t2
vt

+
∂I(x)

∂x
ax +

∂I(x)

∂y
ay +

∂I(x)

∂t
at (2.6)

which can be written in vector notation as,

∂

∂t
(∇IT (x)v(x)) =

∂∇IT (x)

∂t
v(x) +∇IT (x) a(x) (2.7)

Using the same approach for deriving the classic 3D structure, minimizing Eq. 2.6 assum-

ing a constant velocity model and subject to the normalization constraint ||v(x)|| = 1 leads

to Eq. 2.8,

eFls(x) =

∫
Ω(x,y)

(
∂(∇IT (y)

∂t
v(x)

)2

W (x,y) dy

+λ
(

1− v(x)Tv(x)
)

(2.8)

Assuming a constant velocity model in the neighborhood Ω(x,y), results in the accelera-

tion experienced by the brightness pattern in the neighborhood Ω(x,y) to be zero at every

pixel. As with its 3D structure tensor counterpart J in Eq. 2.4, the 3D flux tensor JF using

12



Eq. 2.8 can be written as

JF(x,W) =

∫
Ω

W (x,y)
∂

∂t
∇I(x) · ∂

∂t
∇IT(x)dy (2.9)

and in expanded matrix form as Eq. 2.10.

JF =



∫
Ω

{
∂2I
∂x∂t

}2
dy

∫
Ω

∂2I
∂x∂t

∂2I
∂y∂tdy

∫
Ω

∂2I
∂x∂t

∂2I
∂t2
dy

∫
Ω

∂2I
∂y∂t

∂2I
∂x∂t dy

∫
Ω

{
∂2I
∂y∂t

}2
dy

∫
Ω

∂2I
∂y∂t

∂2I
∂t2
dy

∫
Ω

∂2I
∂t2

∂2I
∂x∂tdy

∫
Ω

∂2I
∂t2

∂2I
∂y∂tdy

∫
Ω

{
∂2I
∂t2

}2
dy


(2.10)

As seen from Eq. 2.10, the elements of the flux tensor incorporate information about tempo-

ral gradient changes which leads to efficient discrimination between stationary and moving

image features. Thus the trace of the flux tensor matrix which can be compactly written

and computed as,

trace(JF) =

∫
Ω

|| ∂
∂t
∇I||2dy (2.11)

and can be directly used to classify moving and non-moving regions without the need for

expensive eigenvalue decompositions. If motion vectors are needed then Eq. 2.8 can be

minimized to get v̂(x) using

JF(x,W) v̂(x) = λ v̂(x) (2.12)

In this approach the eigenvectors need to be calculated at just moving feature points.
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2.1.3 Flux Tensor Implementation

To detect motion blobs, only the trace of flux tensor trace(JF) =
∫

Ω(y)
|| ∂
∂t
∇I||2dy needs

to be computed. That requires computation of Ixt, Iyt and Itt and the integration of squares

of Ixt, Iyt, Itt over the area Ω(y). The following notation is adopted for simplicity:

Ixt =
∂2I

∂x∂t
, Iyt =

∂2I

∂y∂t
, Itt =

∂2I

∂2t
(2.13)

The calculation of the derivatives is implemented as convolutions with a filter kernel.

By using separable filters, the convolutions are decomposed into a cascade of 1D convo-

lutions. For numerical stability as well as noise reduction, a smoothing filter is applied to

the dimensions that are not convolved with a derivative filter e.g. calculation of Ixt requires

smoothing in y-direction, and calculation of Iyt requires smoothing in x-direction. Itt is

the second derivative in temporal direction; the smoothing is applied in both spatial direc-

tions. As smoothing and derivative filters, optimized filter sets presented by Scharr et. al.

in [30, 31] are used.

The integration is also implemented as an averaging filter decomposed into three 1D

filters. As a result, calculation of trace at each pixel location requires three 1D convolutions

for derivatives and three 1D convolutions for averages in the corresponding spatio-temporal

cubes.

A brute-force implementation where spatial and temporal filters are applied for each

pixel separately within a spatio-temporal neighborhood would be computationally very

expensive since it would have to recalculate the convolutions for neighboring pixels. For an

efficient implementation, the spatial (x and y) convolutions are separated from the temporal

convolutions, and the 1D convolutions are applied to the whole frames one at a time. This
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minimizes the redundancy of computations and allows reuse of intermediate results. Steady

state operation (i.e. after FIFO is full) of this process is summarized in the following

paragraph.

The spatial convolutions required to calculate Ixt, Iyt and Itt are Ixs , Isy and Iss where

s represents the smoothing filter. Each frame of the input sequence is first convolved with

two 1D filters, either a derivative filter in one direction and a smoothing filter in the other

direction, or a smoothing filter in both directions. These intermediate results are stored

as frames to be used in temporal convolutions, and pointers to these frames are stored

in a First In First Out (FIFO) buffer of size nFIFO = nDt + nAt − 1 where nDt is the

length of the temporal derivative filter and nAt is the length of the temporal averaging

filter. For each input frame, three frames Ixs , Isy and Iss are calculated and stored. Once

nDt frames are processed and stored, FIFO has enough frames for the calculation of the

temporal derivatives Ixt , Iyt and Itt. Since averaging is distributive over addition, I2
xt +

I2
yt + I2

tt is computed first and spatial averaging is applied to this result and stored in the

FIFO structure to be used in the temporal part of averaging. Once flux tensor trace of

nAt frames are computed, temporal averaging is applied. Motion mask FGM is obtained

by thresholding and post-processing averaged flux tensor trace. Post-processing include

morphological operations to join fragmented objects and to fill holes.
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Chapter 3

Static and Moving Object Detection
Using Flux Tensor with Split Gaussian
Models

3.1 System overview

The task for motion detection is to detect and segment foreground regions from a sequence

of images. Most change detection algorithms treat this as a binary classification problem

based on either frame differencing or pre-established background model. However, for real

monitoring tasks, we usually need to deal with more complex situations such as stopped or

slow moving foreground objects, which cannot be classified based on temporal differencing

or illumination changes and revealed background regions by removed objects, which may

be misclassified as foreground by background subtraction . In this paper, we introduce a

novel hybrid system named Flux Tensor with Split Gaussian Model (FTSG) that combines

our motion computation method based on a spatio-temporal tensor formulation and a novel
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Figure 3.1: Flux with Split Gaussian models system flow. The system is categorized into three modules.
Module 1 is pixel level motion detection that two complementary change detectors run separately on input
image and ouput foreground detection results. Module 2 fuse the detection results from module 1, which gets
rid of noise, illumination changes and halo effects. Module 3 is a high level classification that distinguish
removed objects from stopped objects. Edges of the static objects in foreground detection mask are compared
to the edges of the corresponding object in current image and background model using chamfer matcing.

foreground/background modeling scheme.

These two complementary methods are combined to form a robust moving object de-

tector , FTSG, that can correctly classify static background, background with illumination

changes, revealed background by removed objects, moving foreground objects and stopped

foreground objects. Figure3.1 shows the system flow of our proposed FTSG method .
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There are three main modules in FTSG which are pixel level detection, decision fusion,

object level classification.

a) Two binary masks of foreground/background classification results are obtained using

TD and BS methods separately in pixel level motion detection.

b) In Flux Tensor and Spit Gaussian modeling methods fusion module, pixels classified

as foreground by both methods are kept as real moving foreground. Pixels classified

as foreground by Split Gaussian modeling only are considered to be potential static

foreground regions and are compared to foreground reference model. Matched pix-

els are kept as foreground, whereas unmatched pixels are illumination changes on

background region or noise.

c) In stopped and removed objects classification, static objects are extract from previously

fused mask. An edge based classification method is used to distinguish stopped ob-

jects from removed objects.

Detailed descriptions of each component are in the following sections.

3.1.1 Split Gaussian Models

Barnich et al. [19] pointed out that three fundamental considerations of a background sub-

traction algorithm are: 1) What is the model and how does it behave? 2) how to initialize

the model? and 3) how to maintain the model? Ideally, a successful background subtraction

method should be able to initialize in a few frames and without any prior knowledge of the

clean background. Besides, its update mechanism should allow it to adept to environment

changing and does not blend foreground information into the background model. More
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importantly, background and foreground should be separated perfectly by using the model.

Most background subtraction methods such as [3, 15, 17, 32] needs a sequence of training

images but there are some methods such as [19, 23] that have the one-frame initializa-

tion capability. And except only a few background subtraction methods such as ICA [18]

that do not update overtime, most background subtraction methods adaptively update their

background model. However, perfectly classify background and foreground regions using

pre-established background model is almost impossible because no matter how good the

background model is, changes in background such as sudden illumination changes, cloud

moving and random noises that could not find a match in background model will be classi-

fied as foreground. On the other hand, if the background model is adjustd to decrease these

false positives then background model will likely start to model foreground too resulting

in increased false negatives (missing foreground). As we mentioned previously, this is

because background subtraction method treat such classification problem as a binary clas-

sification problem, whereas the problem incorperates many sub-classes such as static vs.

dynamic background, static vs moving foreground, illumination changes, noise etc. Some

of these challenges are handled by our later modules, fusion and classification. Therefore,

in order to obtain better classification result, our background subtraction model is designed

to capture complementary information of Flux Tensor. In this section, we introduce a

background subtraction method named Split Gaussian models that has fast boost-trapping,

adaptive updating and complex background environment modeling capabilities.

Pixel model and Classification

Gaussian models have been widely used in background subtraction methods. Mixture of

Gaussians can efficiently represent multimodal signals, which makes them suitable for
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background modeling and subtraction. We adopt mixture of Gaussians as our background

model. However, unlike MoG in [3] where background and foreground are blended to-

gether into a single model with fixed number of Gaussians, we model foreground and back-

ground separately, and use adaptively changing number of Gaussians for the background

model. This simplifies the background/foreground classification step, prevents background

model from being corrupted by foreground pixels, and also provides better adaptation for

different background types (static vs. dynamic backgrounds). This approach has fast boot-

strapping, adaptive updating and complex background environment modeling capabilities.

Background model: We use a mixture of K Gaussians to model the background where K

is a spatially and temporally adaptive variable. Every new pixel value, It(x, y), is checked

against the existing K Gaussian distributions. A match to a Gaussian is defined as pixel

values within Tb standard deviations of the mean :

Dmin(x, y) = min
i∈K

max
j∈C

((It(x, y)− µi,j)
2 − Tb · σ2) (3.1)

A pixel is labeled as foreground if it does not match any of the Gaussians in the background

model:

FB(x, y) =

1, if Dmin(x, y) > 0

0, otherwise
(3.2)

Tb is a fixed threshold and stands for number of standard deviations, and σ =
∑k

i ωiσi. For

each pixel, there will be K × C Gaussian models where C is the number of channels, e.g.

3 for RGB. For simplicity, all the channels share the same variance σ and weight ω.

Foreground appearance model: We use a single Gaussian to model the foreground. Fore-

ground appearance model (shown in Figure 3.1, module 1) is used to distinguish static
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foreground (stopped object and revealed background) from spurious detections due to il-

lumination changes and noise within ambiguous regions, Famb(x, y) where FF = 0 and

FB = 1 (detected as background by flux but as foreground by background subtraction

shown as ambiguous foreground in Figure 3.1 module 2). Static foreground regions FS are

identified within ambiguous detections Famb using foreground model:

FS(x, y) =


1, if Famb(x, y) = 1 and

It(x, y)− µf (x, y) < Tf

0, otherwise

(3.3)

Model initialization:

Many background subtraction methods need a sequence of frames to initialize their

models such as [3], [17]. However, using a sequence of images to train a background

model is not appropriate if the image sequence itself is already very short. It is also very

difficult to restart the program when there is a drastic background change. On the contrary,

temporal difference based methods does not have such problems because they don’t need to

maintain a model of empty background scene. If we already have a well-defined temporal

difference based method that does not have initialization problem, can we take advantage

of it and make the background subtraction method can also be initialized in a few frames?

The answer is yes. Our split Gaussian models have the capability to be initialized in a few

frames and the length depends on the temporal window size of Flux Tensor.

Since, flux tensor provides motion information, and the fusion and classification mod-

ules greatly reduce false positives. Therefore, the background model can be directly ini-

tialized using the first few frames and the foreground appearance model can be initialized

to be empty.
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Figure 3.2: Fusion of flux tensor and split Gaussian models. Images on the right hand side are corresponding
to those elements in the flowchart on the left hand side. FF , FB stand for flux tensor motion segmentation
mask and split Gaussian background subtraction mask respectively.

3.2 Fusion of Flux Tensor and Split Gaussian Models

The goal of this decision fusion module is to exploit complementary information from two

inherently different approaches to boost overall detection accuracy. Flux tensor based mo-

tion segmentation produces spatially coherent results due to spatio-temporal integration.

These results are also robust to illumination changes and soft shadows due to use of gra-

dient based information. But since the method relies on motion, it fails to detect stopped

foreground objects and tends to produce masks larger than the objects. Background sub-

traction on the other hand can detect stopped objects, but is sensitive to noise, illumination

changes and shadows. Here we extend flux tensor based motion segmentation with split
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Figure 3.3: Fusion of flux tensor and split Gaussian models. Images on the right hand side are corresponding
to those elements in the flowchart on the left hand side. FF , FB stand for flux tensor motion segmentation
mask and split Gaussian background subtraction mask respectively.
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Gaussian foreground and background models to generate a more complete and accurate

foreground object detection method.

(a) Input image (b) BGSG foreground detection result

(c) Foreground model (d) Flux Tensor foreground detection result

(e) Fusing result of Flux Tensor and BGSG

Figure 3.4: Light reflectance from the moving train causes suddent illumination changes in the scene as shown
in (a). (b) shows that BGSG detects massive illumination changes as foreground. (d) shows that Flux Tensor
is robust to illumination changes but detection result has holes inside object. By referencing foreground model
(b), fused foreground detection result (e) eliminated illumination and fills hole inside foreground object.

Figure 3.3 shows fusion flow chart and some examples of flux tensor and split Gaussian

model fusion results. Pixels that are detected as foreground by both flux tensor and split
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Gaussian background subtraction are classified as moving foreground objects. Pixels that

are detected as foreground by background subtraction only and have a match in foreground

model correspond to static foreground objects and those do not find a match in foreground

model correspond to illumination changes. Figure 3.4 shows an example of fusion of flux

tensor and split Gaussian models that handles illumination changes.

3.3 Stopped and Removed Object Classification

(a) Stopped object

(b) Revealed background by removed object

Figure 3.5: Classification of stopped objects vs. background revealed by removed objects. Images on the
first row from left to right are current image, background model and foreground mask. Images on the second
row are edge maps corresponding to the regions of interest marked by red rectangle in the images of the first
row.

Fusion procedure classifies both stopped objects (true positives) and revealed back-

ground by removed objects (false positives) as static foreground. Distinguishing these two

types of static foreground can effectively reduce the false positive rate and tackle dead-

25



lock problem. The method used for removed and stopped objects classification is based

on [23], which basically has three steps: 1. Identify pixels corresponding to static regions;

2. Perform edge detection on static regions in current image, background generated by

background subtraction and foreground detection mask; 3. Perform classification based on

edge matching.

Static regions can easily be extracted by measuring the average weight of each con-

nected component of foreground detection result in foreground model. The weight value

in foreground model implies how recently a pixel is updated. For static foreground region,

weight values will accumulate quickly so static foreground can be obtained by thresholding

the average weight value of each connected component in foreground detection result. In

addition, it is not necessary to classify those static regions that have already been correctly

classified again, so static regions that have average weights larger then a pre-determined

threshold will be classified as stopped foreground object directly.

We use canny edge detector to obtain edge maps in input image Ein, background scene

subtract from BG-SG EMoG. Edges of foreground detection mask are the boundaries of

each connected components Emask.

The classification of removed and stopped object is based on the intuition that the edge

of stopped object in Emask will be similar to Ein in the same location as shown in Figure

3.5 (a). Similarly, the edge of removed object in Emask will be similar to EMoG in the

same area as shown in Figure 3.5 (b). In [2] chamfer matching is used directly to compare

Emask with Ein and EMoG. However, since Emask is only a closed boundary and the other

two edge maps may contain complex interior edges or vague boundary edges around target

object due to camouflage, it is very likely that chamfer matching will match Emask to some

interior edges in either Ein or EMoG instead of the real object boundary. So instead of
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getting edge map of a whole region, we only extract edges that around the boundary of the

detect region. This is done by using dilate and erode operation on the static region mask to

get a ring shape region, as shown in figure. Then the edges only correspond to the ring like

region in the input frame and background model are obtained. Therefore, matching Emask

to some interior complex edges is avoided and camouflage is also tolerated to some extend.

Figure 3.5 a, b show classification examples for stopped object (an abandoned bag) and

revealed background by removed object (ghost effect due to background model initializa-

tion) respectively. Stopped object has higher edge similarity between current image and

foreground mask, while revealed background by removed object has higher edge similarity

between background model and foreground mask.

3.4 Model Update and Parameter Tuning

As we mentioned previously, an ideal update method should allow the background model

to adapt to environment changes and at the same time not include foreground informa-

tion into background model. Common update scheme can be divide into blind update and

conservative update. Blind update, such as in GMM, includes all sample values into the

background model, which will blend foreground information into background. So we use

conservative update policy, pixels classified as foreground will never be updated into back-

ground model, in our update scheme. However, conservative update suffers from deadlock

problem that wrongly classified background pixels will leave permanent ghost in detection

results and prevent background model from updating. Some algorithm such as Vibe use

spatial consistency, pixels classified as background will also update its randomly selected

neighbor pixel models, to handle such deadlock problem. SACON [33] insert groups of
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pixels into background model if they are classified as foreground for sufficient long time.

These methods all handled deadlock problem but will produce some false positive and false

negative detections. We solved such deadlock problem by directly increase the detection

accuracy, which is obviously a more desirable way.

Type Flux
Tensor

(Temporal
differenc-

ing)

SG-
modeling

(Back-
ground
subtrac-

tion)

Similarity
to

foreground
model

Edge based
classifica-

tion

Detection
result

Moving
object

√ √
NA NA FG

Stopped
object

X
√ √ √

FG

Revealed
backgroud

X
√ √

X BG

Illumination
and noise

X
√

X NA BG

Halo effect
√

X NA NA BG
Static
Back-
ground

X X NA NA BG

Dynamic
BG-A

X X NA NA BG

Dynamic
BG-B

X
√

X/
√

NA BG/FG

Dynamic
BG-C

√
X NA NA BG

Dynamic
BG-D

√ √
NA NA FG

Table 3.1: Pixel type is determined by the combination of different modules.

In our FTSG framework, pixels are categorized into six different types. Pixels are

firstly classified as foreground and background after pixel level classification by flux tensor

chapter 2 and split Gaussian models section 3.1.1. In section 3.2, foreground pixels are
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further classified into moving foreground pixels, static foreground pixels and illumination

changes. Then in section 3.3, small blobs are classified as dynamic background pixels,

which reduces noise effect and integrates dynamic background pixels. Afterwards, static

foreground pixels are categorized into stopped foreground object and revealed background.

Table 3.1 is a summary of all types of pixels.

These six types of pixels are represented as following:

Type(x, y) ∈ {FGmoving, FGstatic, BGstatic, BGillum, BGrevealed, BGdynamic} (3.4)

Due to dynamic nature of both the foreground objects of interest and background unpre-

dictability, automatic parameter adaptation and model update are necessary. In our model

update and parameter tuning scheme, except a few parameters that are set fixed, which

are some well known parameters also used by many other methods such as background

learning rate and foreground, background ratio threshold, other parameters are all adaptive

changing. We represent those adaptively changing parameters and background model as

following:

Param(t) = {TFlux, TBlobSize} (3.5)

Model(t) = {µBG(x, y), σBG(x, y), ωBG(x, y)} (3.6)

Parameters and background models are updated with our model update and parameter

tuning scheme shown in figure 3.6.

Thresholding is always a difficult problem in temporal differencing methods and most

of them just used a fixed global threshold to classify foreground and background. In FTSG,
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Figure 3.6: Model update and parameter tuning

instead of using a fixed global threshold, we adaptively change flux threshold TFlux accord-

ing to the number of background Gaussian models.

TBlobSize determines dynamic background blob size. It is also related to the number of

background Gaussian models. For static background, TBlobSize is small so less blobs will be

added to background model that the background model is more sensitive to changes. On the

contrary, TBlobSize is larger in dynamic background so that more false positive detections

due to dynamic background will be added to background model.

Details of background model update and parameter tuning are shown in figure 3.7.

Static background and illumination changes are updated into background model as:

µt = (1− α)Mµt−1 + αMIt (3.7)

σ2
t = (1− α)Mσ2

t−1 +Mα(It − µ)Tα(It − µ) (3.8)

ωi,t = (1− α)ωi,t−1 + αM (3.9)

M = (1− FB) ∪ (Famb − FS) (3.10)

where α is a fixed learning rate set to 0.004 and M stands for update mask. Background re-

vealed by removed objects and dynamic background are incorporated to background model

as new Gaussian distributions. A new Gaussian is initialized with a high variance and low
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Figure 3.7: Model update and parameter tuning system flow

weight, and its mean is set to the current pixel value.

If there is a large persistent change, a new model will be added to each pixel (i.e. in

PTZ scenario [2], camera field of view change triggers large persistent change). Existing

Gaussian models with weights less then a threshold Tl are discarded.

Foreground model update: As in the case of the background model, a conservative update

strategy is used for the foreground model. Foreground model is only updated with the
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foreground regions indicated by the inverse of the background model update mask. In

order to accommodate fast changing foreground, a high learning rate is used for foreground

update.

3.5 Results and Analysis

Figure 3.8: Selected foreground detection results from four state-of-the-art change detection algorithms and
our FTSG method on CVPR2012 Changedetection dataset. See Table II for further quantitative details.

In this section, the proposed flux tensor with split Gaussian models system is evaluated

using the dataset and evaluation metrics in ChangeDetection benchmark dataset for CVPR

2014 workshop [2]. The ChangeDetection dataset contains majority of the change detec-

tion difficulties including dynamic background, long-term static objects, removed objects,
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KNN [34]

GMM1 [3]

KDE [15]

MahaD [35]

GMM2 [11]

EucD [35]

FTSG

Figure 3.9: Selected foreground detection results from six state-of-the-art change detection algorithms and
our FTSG method on CVPR 2014 Change Detection dataset [2]. See Table 3.3 for quantitative results.

sudden/gradual illumination changes, shadows, camouflage and unstable camera. There are

eleven video categories and each of them contains four to six video sequences. ChangeDe-

tection provides standard evaluation metrics so by using the same evaluation metrics, our

FTSG system is compared to the state-of-the-art motion detection algorithms.
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Recall Spec FPR FNR PWC F Prec
Bad Weather 0.7457 0.9991 0.0009 0.2543 0.5109 0.8228 0.9231

Low Framerate 0.7517 0.9963 0.0037 0.2483 1.1823 0.6259 0.6550
Night Videos 0.6107 0.9759 0.0241 0.3893 4.0052 0.5130 0.4904

PTZ 0.6730 0.9770 0.0230 0.3270 2.5519 0.3241 0.2861
Turbulence 0.6109 0.9998 0.0002 0.3891 0.1987 0.7127 0.9035

Baseline 0.9513 0.9975 0.0025 0.0487 0.4766 0.9330 0.9170
Dynamic Background 0.8691 0.9993 0.0007 0.1309 0.1887 0.8792 0.9129

Camera Jitter 0.7717 0.9866 0.0134 0.2283 2.0787 0.7513 0.7645
Intermittent Object 0.7813 0.9950 0.0050 0.2187 1.6329 0.7891 0.8512

Shadow 0.9214 0.9918 0.0082 0.0786 1.1305 0.8832 0.8535
Thermal 0.7357 0.9960 0.0040 0.2643 1.1823 0.7768 0.9088
Overall 0.7657 0.9922 0.0078 0.2343 1.3763 0.7283 0.7696

Table 3.2: Comparison of the proposed FTSG system on all eleven scenarios using all seven measures.

Recall Spec FPR FNR PWC F Prec
KNN [34] 0.6650 0.9802 0.0198 0.3350 3.3200 0.5937 0.6788

GMM1 [3] 0.6846 0.9750 0.0250 0.3154 3.7667 0.5707 0.6025
KDE [15] 0.7375 0.9519 0.0481 0.2625 5.6262 0.5688 0.5811

MahaD [35] 0.1644 0.9931 0.0069 0.8356 3.4750 0.2267 0.7403
GMM2 [11] 0.6604 0.9725 0.0275 0.3396 3.9953 0.5566 0.5973

EucD [35] 0.6803 0.9449 0.0551 0.3197 6.5423 0.5161 0.5480
FTSG 0.7657 0.9922 0.0078 0.2343 1.3763 0.7283 0.7696

Table 3.3: Quantitative comparison of the proposed FTSG system to several state-of-the-art methods.

3.5.1 Terms and Definitions

Following is the formal definition of the terms and equations used for evaluation.
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Evaluation metrics
Recall TP

TP+FN
Precision TP

TP+FP
Specificity TN

TN+FP
False Positive Rate(FPR) FP

FP+TN
False Negative Rate(FNR) FN

TP+FN
Percentage of Wrong Classification(PWC) 100*(FN+FP)

TP+FP+TN+FN
F-Measure 2*Precision*Recall

Precision+Recall

Table 3.4: Evaluation metrics used for CVPR2012 Change Detection benchmark dataset where TP, FP, TN,
FN stand for true positive, false positive, true negative and false negative respectively.

Among all, the PWC (Percentage of Wrong Classification) and F-measure use all four

basic properties and thus give more comprehensive evaluation results on how well a change

detection algorithm perform. In order to know the superiority of a change detection method,

the average rank score with respect to the seven evaluation metrics in Table 3.4 is computed

as

ranking= (rank:Recall+rank:Spec+rank:FPR+rank:FNR+

rank:PWC+rank:FMeasure+rank:Precision)/7

(3.11)

Then the superiority of a method is obtained by ranking the average rank score of all

methods.

3.5.2 Parameter Selection

Besides those dynamic parameters that are mentioned in section 3.4, there are few other

parameters in Flux Tensor Split Gaussian that are set to fixed values empirically.
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Flux tensor

The parameters for flux tensor are spatial(Wx) and temporal(Wt) window sizes. In ChangeDe-

tection datasets, Wt and Wx are both set to 7 frames for all sequences. Wt can be set ac-

cording to video frame rate and speed of foreground objects. Smaller Wt for sequences

with low frame rate and fast moving foreground objects, whereas larger Wt is suitable for

sequences with high frame rate and slow moving foreground objects. Wx can be set ac-

cording to average foreground object size. Larger Wx can fill larger holes of unit color

interior regions of moving foreground objects, however, more halo effects will be created.

Smaller Wx is preferable for small foreground objects.

Figure 3.10: Selected foreground detection results on star dataset. Row 1 original images, Row 2 manual
Ground Truth, Row 3 detection result from proposed FTSG method.

method cam ft ws mr lb sc ap br ss mean
Li 2 [29] 0.1596 0.0999 0.0667 0.1841 0.1554 0.5209 0.1135 0.3079 0.1294 0.1930

Stauffer [3] 0.0757 0.6854 0.7948 0.7580 0.6519 0.5363 0.3335 0.3838 0.1388 0.4842
Culibrk 0.5256 0.4636 0.7540 0.7368 0.6276 0.5696 0.3923 0.4779 0.4928 0.5600

Maddalena 0.6960 0.6554 0.8247 0.8178 0.6489 0.6677 0.5943 0.6019 0.5770 0.6760
DP-GMM 0.7624 0.7265 0.9134 0.8371 0.6665 0.6721 0.5663 0.6273 0.5269 0.6998

FTSG 0.7564 0.7496 0.8889 0.8834 0.6910 0.6475 0.6346 0.6015 0.5343 0.7097

Table 3.5: Quantitative evaluation of the proposed FTSG and five other methods on the star dataset. Results
of other foreground detection methods are from [1].
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Split Gaussian models

There are two sets of learning rate for BGSG ( Split Gaussian Background subtraction), the

learning rate for initialization stage is 0.09 and after that it is set to 0.004. The background

model matching threshold Tb is set to 3. These parameters are fixed for all the sequences

in ChangeDetection dataset. For foreground model FGSG the matching threshold is set to

Tf = 20 and its learning rate is αfg = 0.5. The learning rate of Background Split Gaussian

model(BG-SG) needs to be adjusted according to different frame rate. We set the learn-

ing rate alpha to 0.004 for all sequences in ChangeDetection datasets. The background

model matching threshold Tb is set depending on image contrast, image dimension and

background type. For images with low contrast, single channel and relatively static back-

ground, a small Tb is adopted. Larger Tb is used for sequences with dynamic background,

higher image contrast and multiple channels. We use Tb = 3 for all image category except

thermal, in which Tb = 2 is adopted, in ChangeDetection dataset.

3.5.3 Comparison Results

Table 3.2 shows results of the proposed approach on all eleven scenarios based on evalua-

tion metrics described in Table 3.4. In the last row of table 3.2, the average scores of recall,

specificity, FPR, FNR , PWC, F-Measure and Precision are obtained and the average rank-

ing score is calculated based on them. On seven out of eleven scenarios and on the overall

evaluation FTSG outperforms not only the listed state-of-the-art methods but also the new

change detection challenge submissions in terms of average ranking.

Table 3.3 shows the comparison result of FTSG with state-of-the-art change detec-

tion methods. Evaluation scores of those methods are obtained from http://www.
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changedetection.net. Best result of each metric is highlighted and in all the mea-

sures listed in Table 3.3. It can be seen that FTSG outperforms all the listed methods in

five out of seven measures and has the second best score in the remaining two measures,

specificity and FPR.

Figure 3.8 shows moving object detection results for various algorithms including pro-

posed flux tensor with split Gaussian models (FTSG) on ChangeDetection 2012 dataset

with some typical frames from each category. Flux tensor is robust to illumination changes,

noises and shadow because it is based on spatial and temporal derivatives and it also has

a local averaging step. Therefore the detection results of FTSG in office(Column 1) and

copyMachine (Column 3) does not have any false positive detections corresponding to il-

lumination or shadow effects, whereas all other methods have some false positive due to

illumination or shadow problems. While temporal differencing based methods such as Flux

tensor cannot detect slow moving or stopped objects. The proposed FTSG method can de-

tect all static foreground objects including the box in abandonedBox (Column 2), the wait-

ing person in copyMachine (Column 3) and the standing person in dinningRoom (Column

5) because FTSG incorporates Split Gaussian FG/BG modeling. In the abandonedBox and

the copyMachine sequences (Col 2, 3) as we can see the classical MoG method absorbs

the box and the waiting person into the background. Both Flux tensor and Split Gaussian

models methods can handle dynamic background to some extend and the combination of

these two methods (proposed FTSG) handles dynamic background even better. Fall (Col-

umn 4) is a visual result of dynamic background sequence and FTSG gives perfectly clean

foreground detection result. In conclusion, the combination of two complementary change

detection approaches, temporal differencing based Flux tensor and background subtraction

based Split Gaussian models, produces a better change detection algorithm.
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Figure 3.9 shows another set of moving object detection results for various algorithms

including proposed Flux Tensor with Split Gaussian models (FTSG) on CVPR 2014 Change

Detection dataset [2] with some typical frames selected from the 11 categories. The pro-

posed FTSG is robust to illumination changes (col 1), it can detect long term static objects

(col 3), and it also handles dynamic background (col 2). Image in col 4 demonstrates that

FTSG can correctly identify revealed background by removed object, and image in col 5

shows that FTSG can adapt to scene changes quickly (sudden change of camera focus).

In order to show the generalization of FTSG and its capability of handling sudden

illumination changes. Another dataset, star [17], is used to evaluate our FTSG method. This

dataset contains difficulties including dynamic background, sudden illumination changes,

shadow, crowded environment, systematic noise and camouflage. A different evaluation

metric is proposed in [17] that for each sequence a similarity score, which is computed as

similarity = TP/(TP+FN+FP), is used to evaluate the detection result. Table 3.5 shows the

comparison results of FTSG with some state-of-the-art methods on star dataset. Evaluation

scores of other methods in Table 3.5 are obtained from [1].With one frame initialization

capability, FTSG detects sudden illumination changes and adapts to the new background

scene quickly in sequence lb. However, due to low frame rate, flux tensor produces many

false positive detections even with small time step window size, which causes FTSG get

poor performance in br and sc sequences (Figure 3.10 f, h). Overall, FTSG still gets the 1st

rank in four out of the nine sequences, which shows its superiority.

A prototype of the proposed system implemented in Matlab runs at 10 fps for a 320 ×

240 video. Matlab implementation of Flux tensor only detection runs at 50 fps. Flux tensor

computation can be easily parallelized for different architectures as in [?] because of the

fine grain parallelism of the filter operations.
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Chapter 4

Robust Motion Detection Using PF
Video Stabilization Combined with Flux
Tensor Spatiotemporal Analysis

4.1 System Overview

Foreground object detection is almost impossible using either temporal difference or back-

ground subtraction methods in moving platform. However, by transforming all images into

a same coordinate system makes such problem solvable using these methods. Image reg-

istration can be broadly categorized into feature based and area based registration[cite].

Feature-based registration methods tends to find correspondence between image features

such as points, lines, and contours. These types of methods are more preferable when the

local structural information is more significant than the information carried by the image in-

tensities. Area based registration methods can register images without feature extraction or

saliency detection. Image patches with fixed size or even entire images can be used for the
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correspondence estimation during the registration step of area based methods. In this chap-

ter we describe several modules for robustly detecting moving objects in full motion video

acquired from a moving airborne platform. The first module stabilizes the video with re-

spect a base frame in the video sequence over a short time period of about 200 frames. This

registration step is necessary to distinguish between the moving background due to camera

motion and the foreground target motion that is of interest to be tracked. Stabilizing the

video over short time periods requires frame-to-frame registration that is accomplished by

firstly identifying prominent Beltrami color metric tensor features and Shi-Tomasi features

that are matched between frames using a block matching approach. Secondly, featureless

regions will be grouped into larger overlapping blocks. This combination of using feature

extraction with local multi-scale region/block matching we term hybrid prominent feature-

block matching. Once the features are available a RANSAC approach is used to find the

best homography to remap one frame into the coordinate system of a base video frame

within the chunk of 100 frames. The homography model assumes that a single plane is

sufficient to model the 3D scene which may not be valid for complex video sequences.

Once the frame homographies are available the video stabilization module is followed by

the flux tensor motion detection module which uses local second derivative information

efficiently to detect moving salient features. The flux tensor is able to filter out noisy re-

sponses efficiently and performs better than the mixture of Gaussians approach for motion

detection. Spurious responses from the frame boundaries and other post-processing opera-

tions are applied to reduce the false alarms and produce accurate moving blob regions and

blob statistics that will be useful for tracking.
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4.1.1 Prominent Feature Block-based Region Selection

4.1.2 Hybrid Prominent Feature Block Detection

Feature based methods are usually more robust in terms of matching if significant structure

information can be found. Therefore, the first step is to detect salient or prominent feature

such as lines and corners. The image is divided into non-overlapping blocks as shown in

figure 4.1. Prominent feature blocks are blocks that contain obvious line or corner features.

Figure 4.1: Divide image into non-overlapping blocks (blue grids). Use larger overlapping blocks at feature-
less regions (red, green, black and yellow blocks)
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Many first and second derivative feature detectors and descriptors are available in the

literature [36]. We use the 2D color structure tensor defined in terms of the outer product

of spatial gradients in each channel is given in Eq.4.1 with Ci representing image channels

(i = 3 for RGB color), and further described in [37,38]. The 2D grayscale structure tensor

matrix is also referred to as the second moment or autocorrelation matrix [36].

Local descriptors based on the two eigenvalues of the structure tensor provide informa-

tion about the signal in orthogonal directions. Small eigenvalues are indicative of noise so

the trace of JC can filter these locations.

JC =



∑
i=C1,C2,...

∫
Ω

(
∂Ii
∂x

)2

dy
∑

i=C1,C2,...

∫
Ω

∂Ii
∂x

∂Ii
∂y

dy

∑
i=C1,C2,...

∫
Ω

∂Ii
∂x

∂Ii
∂y

dy
∑

i=C1,C2,...

∫
Ω

(
∂Ii
∂y

)2

dy


(4.1)

The eigenvalues of JC are correlated with the local image properties of edgeness and

cornerness, defined as λ1 >> 0, λ2 ≈ 0 and λ1 ≈ λ2 >> 0 respectively. For a 2D

multi-spectral image, the Beltrami operator defines a metric on a two-dimensional manifold

{x, y, C1(x, y),C2(x, y), C3(x, y)} in the five-dimensional spatial-color space {x, y, C1, C2, C3}:

Beltrami(IRGB) = det(I + JC)

= 1 + trace(JC) + det(JC)

= 1 + (λ1 + λ2) + λ1λ2

(4.2)

After filtering, prominent features can be easily located. However, such features are

usually clustered together instead of spread out the whole image. In this case, the corre-

spondence established between frames may be biased. In addition, using fixed block size

can only detect features in a small range of scale. However, multi-scale feature selection is

computational expensive. Therefore, we use larger overlapping blocks to cover featureless
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regions as shown in figure , so that the features are guaranteed to be uniformly distributed

all over the image and the two level block size simulates the multi-scale feature detection

while it is less computational expensive. By using large blocks with NCC based matching,

this is similar to intensity-based registration. We name such combination of prominent fea-

ture blocks and larger overlapping blocks hybrid prominent feature block and it has several

advantages. It guarantees uniformly distributed features, it increase the feature scale range

and it is more efficient than either multi-scale feature based registration or intensity-based

registration. Figure 4.2 shows an example of hybrid prominent feature blocks. As we can

see, the feature points are uniformly distributed over the image.

Figure 4.2: Hybrid prominent feature blocks. Points are the center of feature blocks. Green points are
prominent feature blocks, blue points are larger overlapping blocks.
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4.1.3 Hybrid PF Block Region-Correspondences

Once the hybrid prominent feature blocks are selected based on the strategy described in

last section in both reference and input images, then the next step is to find the corre-

spondence matching between these feature blocks. The matching process is using a hybrid

prominent block(HPF) in the source image to searches for the best matching or most similar

overlapping block contained within a search zone/window in the target image;

We use intensity based similarity measurements for both non-overlapping prominent

feature blocks and overlapping larger featureless blocks. Normalized cross correlation

(NCC) and sum of absolute difference (SAD) are the two of the most popular similarity

measurements, which are adopted in our registration scheme. NCC is invariant to inten-

sity changes between source and target images such as illumination changes while SAD is

more computational efficient. These two methods can be used interchangeably for different

purpose.

The minimum of the SAD measure can be defined as,

∆Xopt = arg min
∆X

∑
X∈Ω

|I(X + ∆X, t− k)− I(X, t)| (4.3)

The NCC between target (or reference) image I(X, t − k) and source (or template) image

I(X, t) is defined as,

γ =

∑
X∈Ω[I(X + ∆X, t− k)− µt−k][I(X, t)− µt]√∑

X∈Ω[I(X + ∆X, t− k)− µt−k]2
∑

X∈Ω[I(X, t)− µt]2
(4.4)

where µt−k = 〈I(X + ∆X, t − k)〉 and µt = 〈I(X, t)〉 are the local intensity means

(averages) in the target and template image regions respectively and the denominator is the

product of the local variances. The NCC for vector images (RGB color) can be appropri-

ately extended.
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We want to find the translation or displacement ∆X that maximizes the NCC measure,

∆Xopt = arg max
∆X
|γ(∆X)| (4.5)

The NCC can also be interpreted as the cosine of the angle between the two mean corrected

region blocks. If we represent the mean subtracted pixels in the target and source windows

as the vectors
−→
WT ,
−→
WS , respectively then,NCC ≡ γ(∆X) = (

−→
WT •

−→
WS)/(‖

−→
WT‖‖

−→
WS‖).

Figure 4.3 shows an example of the region-correspondences between two frames from

a video sequence.

Figure 4.3: Region correspondences based on NCC matching.

4.1.4 Projective Transformation Estimation

Once region-based block correspondences are established, we need to compute the homog-

raphy relating the the two coordinate systems. This enables image I(X, t) to be mapped

into the coordinate system of the base frame for a given video segment I(X, t − k). Note

that we are interested in finding a good solution for the homography, and not on finding

the unique solution for the true 3D camera motion, as our goal is mainly to compensate for

and remove the effects of the background or (dominant) ground plane motion. Since UAV

imagery can have significant perspective effects an projective mapping is more accurate

than a single global affine transformation. Other approaches include multiple local affine
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projections [39] and non-rigid transformations [40]. The projective mapping function or

homography uses the coordinates of the corresponding PF block centroids (control points)

to find a weighted least squares solution for the transformation matrix coefficients. The ho-

mography is used to warp the image at time t into the coordinate system of the base frame

at time (t− k). The two images, I(x, y, t) and I(x, y, t− k) can be related by a projective

transformation (or homography) when the scene points are approximately planar. Let the

image coordinates of the same scene point lying on the plane π be P (x, y) and P ′(x′, y′),

in the view at time t and (t−k) respectively. The two views can be related by the following

homogeneous relationships:

x′ =
ax+ by + c

gx+ hy + w
(4.6)

y′ =
dx+ ey + f

gx+ hy + w
(4.7)

The homography can be written in matrix notation as:


x′

y′

w′

 =


a b c

d e f

g h w



x

y

1

 (4.8)

P ′ = A(t−k,t)P (4.9)

This transforms position P observed at time t, to position P ′ in the coordinate system at

time (t− k) via the projective transformation matrix (a backward transformation from time

t to time (t− k)). Usually we assume w = 1 in matrix A.

Suppose we are given three images, I(x, y, t − 2), I(x, y, t − 1), I(x, y, t) with corre-

sponding planar points, P ′′, P ′, P and homography transformation matrices A(t−1,t) and

A(t−2,t−1) that projectively maps t to (t−1) (i.e. Frame 2 to Frame 1) and (t−1) to (t−2)
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(i.e. Frame 1 to Frame 0), respectively. Without loss of generality we assume for simplicity

of notation that the images are sequentially sampled at one unit time intervals, t, (t − 1),

and (t− 2). We can then write the two respective projective transformations as,

P ′ = A(t−1,t)P and P ′′ = A(t−2,t−1)P
′ (4.10)

and the composite or cumulative projective transformation relating pixels in frame t to

pixels in frame (t − 2) (i.e. pixels in Frame 2 to pixels in Frame 0), as the product of two

homographies or projective maps/transformations:

P ′′ = A(t−2,t−1)A(t−1,t)P (4.11)

In the general case, mapping pixel positions from frame t to corresponding pixel positions

in the coordinate system of frame (t− k), we have

P (t− k, t) = A(t−k,t)P (t, t) (4.12)

A(t−k,t) = A(t−k,t−k+1)A(t−k+1,t−k+2)....A(t−2,t−1)A(t−1,t) (4.13)

We also need to specify the coordinate system in which we reference or measure a pixel’s

position. Since the prime notation is limited, P (t − k, t) denotes pixel position/geometry

from image I(x, y, t) mapped to the coordinate system of image frame I(x, y, t − k) and

P (t, t) is the pixel position measured in its original coordinate system I(x, y, t). The ele-

ments of matrix A in Eq. 4.8 and 4.9 can be solved using weighted least squares, robust

statistics such as LMedS or combinatorial methods such as RANSAC. Each pair of cor-

responding points provides three linear constraints that can be written in a matrix form
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Bia = 0 as shown below,

Bia =


0T −w′ixT

i −y′ixT
i

w′ix
T
i 0T −x′ixT

i

y′ix
T
i x′ix

T
i 0T




a1

a2

a3

 = 0 (4.14)

where aT
i is the ith row of A in Eq. 4.8, [41]. This above equation, Bia = 0, is an equation

linear in the unknown vector a [Hartley2003]. The matrix Bi is a 3× 9 matrix, and a is a

9× 1-vector made up of the entries of the matrix A,

a =


a1

a2

a3

 , ai =


A(i, 1)

A(i, 2)

A(i, 3)

 (4.15)

Notice that there are three equations in (4.14), however just two of them are linearly inde-

pendent since the thrid row is obtained up to scale. Therefore each point correspondence

provides two equations in the entries of A. Based on this, (4.14) can be written as

Bia =

 0T −w′ixT
i −y′ixT

i

w′ix
T
i 0T −x′ixT

i




a1

a2

a3

 = 0 (4.16)

where now Bi is the 2× 9 matrix of (4.16). (4.16) can be solved for mathbfa (9 unknown

elements) using the normalized Direct Linear Transformation (DLT) approach (Alg. 2).

DLT provides for improved numerical stability and accuracy when solving for A.

Notice that for improving the accuracy of the results in the DLT algorithm, a normal-

ization process (Alg. 1) has to be applied beforehand. This step is very important for less
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Algorithm 1 Calculating similarity transformation to be used for normalization. It Com-
putes a similarity transformation T , consisting of a translation and scaling, that takes point
xi to a new set of x̃i such that the centroid of the points x̃i is the coordinate origin, and
their mean distance from the origin is

√
2

Input : A set of n 2D points xi
Output : Similarity transformation S

1: Calculate the centroid of the points: x̄← 1
n

∑
i
xi

2: Calculate scale factor: s←
√

2
1
n

∑
i

√
(xi − x̄)>(xi − x̄)

3: Calculate the similarity transformation: S ←

 s 0 −sx̄
0 s
0 0 1


Algorithm 2 The nomalized DLT for homography estimation
Input : A set of n 2D point correspondences (xi,x

′
i), where n >= 4

Output : Homography matrix A such that x′i = Axi

1: Calculate similarity transformation S for x using Alg. 1
2: Normalization of x: x̃i ← S xi
3: Calculate similarity transformation S′ for x′ using Alg. 1
4: Normalization of x′: x̃′i ← S′ x′i
5: Assemble the n 2× 9 matrices Bi (using normalized points x̃i and x̃′i) into a single 2n× 9 matrix B
6: Calculate the SVD of B. The unit singular vector corresponding to the smallest singular value is the

solution for a

7: The matrix Ã is determined as Ã←

 a>1
a>2
a>3


8: Denormalization: A← (S′)−1Ã S

well conditioned problems such as DLT. Apart from improved accuracy of results, normal-

izing data has one more advantage, namely that an algorithm which incorporates an initial

data normalization step will be invariant with respect to arbitrary choices of the scale and

coordinate origin. As mentioned in [41], this is because the normalization step cancels

out the effect of reference frame changes, by effectively choosing a canonical coordinate

system for the measurement data. Therefore, algebraic minimization is carried out in a

fixed canonical frame, and the DLT algorithm practically becomes invariant to similarity

transformations. In order to give an idea of the importance of the normalization step in
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homography estimation using DLT, we performed a simulation using perturbed synthetic

feature points. Figure 4.4 shows a set of 100 points x that were randomly generated rep-

resenting some feature points in the first image image (I1). Then a homography matrix

A,

A =


1.4219 0.3067 5.2096

0.3153 1.2816 1.1919

0.0007 0.0007 1.0000

 (4.17)

is randomly generated which maps x in I1 to x′ = Ax in the second image I2. The image

size is considered to be standard definition size of 640 × 480 pixels. Some noise (white

Gaussian noise with zero mean and standard deviation one) are added to the feature points

in I2. Then the homography transformation between the points in I1 and points (noise

added) in I2 has been estimated using the DLT algorithm, once using normalized points

and the other without normalization. The geometric errors using the estimated homography

for both cases are computed. For this experiment, we got 14.33 average pixel error for the

non-normalized one and 4.48 for the normalized one. The estimated homography matrices

in two cases of directly applying DLT or using a normalization method before DLT are as

following, respectively:

Adirect =


1.3032 0.2211 29.4906

0.2714 1.1579 17.3624

0.0006 0.0005 1.0000

 (4.18)

Anormalized =


1.4245 0.2972 5.6929

0.3189 1.2733 0.5711

0.0007 0.0007 1.0000

 (4.19)
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As can be seen, the estimated homography after applying a normalization step (matrix of

Eq.(4.19)) numerically is very close to the original used homography (matrix of Eq.(4.17))

and moreover gives a better result.

Figure 4.4: Simulated results to demonstrate the importance of using normalization step in DLT homography
estimation algorithm. The blue-cross and black-cross marks in the right figure indicate the transformed points
from I1 to I2 using non-normalized and normalized cases, respectively. The actual feature points in I2 are
drawn in red-circles. For this experiment, we measured 14.33 average pixel error for the non-normalized one
and 4.48 for the normalized one. The assumption is that there is no matching error and the noise is equal
additive Gaussian added to both I1 and I2

Robust Homography Estimation Using Normalized DLT RANSAC

The DLT method, described in Algorithm 2, is used to solve Eq. 14. The DLT method

is robust only if the dominant source of the noise is in the location measurement of corre-

sponding feature points. The DLT method is not appropriate when there are mismatches,

that is the two putative feature point correspondences do not correspond to the same real

world object at all. For this purpose we use a method, based on RANSAC (Random Sample

Consensus), to robustify the estimate with respect to false matches. The RANSAC-based
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homography estimation incorporating normalized DLT is described in Algorithm 3.

The performance of RANSAC-based homography estimation using Algorithm 3 de-

pends on the proportion of inliers and the number of iterations. The probability that after

N iterations of RANSAC we have not picked a set of inliers is given by (1 − g4)N , with

g = m/n being the proportion of the inliers; the behavior of this curve is shown in Fig. 4.5

for three values of N (N = 10, 100, 1000). For the RANSAC iteration the initial value of

N in Algorithm 3 is initialized with a large value that is then adaptively updated on each

iteration using the Equation in Step 15 as shown in Figure 4.6.

Figure 4.5: Evaluation of the robustness of the proposed RANSAC-based homography estimation in Alg. 3.
The horizontal axis indicates the proportion of inliers (g = m/n) and the vertical axis shows the probability
that afterN RANSAC iterations we have not picked a sufficient set of inliers based on the function (1−g4)N

for three values of N.

An alternative to RANSAC is Least Median of Squares (LMedS) estimation, in which

the model is selected using the median of the distances of all points in the dataset (whereas

in RANSAC a minimum size subset of samples are randomly selected). As indicated in

[41], LMS has the advantage of not requiring anyt thresholds; however it fails if more than
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Figure 4.6: Plot of N = log(1−p)
log(1−(1−g)4) , which gives an update for the number of iterations in Algorithm 3. N

is adaptively determined in Step 15 of Algorithm 3. The horizontal axis indicates the inlier percentage. Plots
for different values of p (see Step 4) that is related to the quality of the estimate is shown in different colors.
For higher values of p more iterations are needed.

50% of the data are outliers. There are other variations of RANSAC such as Adaptive-

Scale Kernel Consensus (ASKC) which can be used as alternative robust estimators [42].

Alternatively some other methods which consider the hohomraphy estimated by Alg. 3 as

an initilization and then iteratively try to minimize the error using Levenberg-Marquardt

method in order to optimize the initial estimation [41].

4.1.5 UAV Video Registration Algorithm

A segment of video whose length is adaptively determined based on the amount of scene

change as well as parallax effects, and is typically one to a few seconds in length or about

30 to 100 frames, is registered using Algorithm 4 given below. Once a video segment

has been registered then it can flow into a processing chain for object detection, tracking
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Algorithm 3 RANSAC-based homography estimation
Input : A set of n 2D point correspondences (xi,x

′
i), where n >= 4

Output : Homography matrix A such that x′i = Axi

1: N ← 1000 {a temporary number of iterations}
2: maxIterations← 1000 {maximum number of iterations}
3: dε ← 0.005 {distance threshold between data point and the model}
4: p← 0.99 {probability of choosing at least one sample free from outliers}
5: trialcount← 0 {trial counter}
6: inlier best← 0 {max of inliers so far}
7: while (N > trialcount) and (trialcount < maxTrials) do
8: Randomly choose four correspondences {(xi,x′i)|i = 1..4} from the list of putative matches
9: Check whether these points are co-linear, if so, redo Step 8

10: Compute the homography A by using normalized DLT (Alg. 2) from the four correspondences
11: Compute m as number of inliers where ‖x′i −Axi‖+ ‖xi −A−1x′i‖ < dε
12: if m > inlier best then
13: inlier best← m
14: ε← 1−m/n
15: N ← log(1−p)

log(1−(1−ε)4)
16: end if
17: trialcount← trialcount+ 1
18: end while
19: Least squares estimate of A from all correspondences classified as inliers using normalized DLT (Alg.

2)

and verification [43]. Chunks of video segments can be analyzed in a similar fashion,

interconnected and summarized.

4.2 Implementation Details

4.2.1 Minimizing Accumulation of Transformation Errors

In the straightforward Method 1 illustrated in the figure 4.7 (based on 4.9) adjacent trans-

formation matrices are multiplied to determine the cumulative transformation from Frame t

to Frame t-k. The problem with Method 1 is that error accumulation is very rapid even with

multiplying as few as 10 adjacent frame transformations. We have observed several pixel
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Algorithm 4 UAV video registration algorithm.
1: Compute image spatial gradients Ix, Iy and trace of the color structure tensor matrix

JC at every pixel (Eq.4.1)
2: Threshold on trace(JC(X)) > th to remove noise pixels, low confidence pixels and

homogeneous regions.
3: For each remaining (non-zero) feature pixel, compute the Beltrami color metric tensor

(i.e. determinant term) at each potential feature point Xi using Eq. 4.2.
4: Establish highly confident PF regions for registration or tracking. Divide the image

into 16× 16 non-overlapping macroblocks, Bk, and classify prominent feature blocks
based on a high PF value, which measures the percent cornerness that can be used as a
block confidence measure for weighted least squares.

5: For each prominent feature block in current frame, t, find the best match in the previous
frame, (t− 1), by maximizing NCC or minimizing SAD search (in intensity).

6: optional: Compute the direction histogram of the motion vectors obtained in Step 5,
and apply motion filtering.

7: Estimate the homography between adjacent frames t and (t− 1), A(t−1,t) by using the
RANSAC (Alg. 3), DLT (Alg. 2) and normalization (Alg. 1) algorithms.

8: Compute the homography to warp from frame t to frame (t−k), A(t−k,t), and associate
it with frame t.

9: Warp current image I(x, y, t) into the coordinate system of the active video segment
base (or reference) frame I(x, y, t− k) using the homography from Step 8.

errors over less than 10 frames using double precision matrix multiplication with manually

selected highly precise feature point matching between pairwise adjacent frames.

Figure 4.7: Method 1: Transformation across adjacent set of frames

To prevent rapid accumulation of errors we recommend using a transformation frame

groups. As shown in the Figure 4.8, with say N = 10 there are at most bk/Nc + 1 matrix

multiplies instead of k matrix multiplies which significantly reduces the numerical error
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accumulation. In method 2, within a group first a transformation is obtained with respect

Figure 4.8: Method 2: Transformation across groups of frames

to the adjacent frame, then to the baseframe followed by successive transformations with

respect to the baseframe of the previous groups.

From the idea of method 2, we further developed an adaptively changing reference

frame scheme. Using a transformation frame group can prevent transformation error from

being accumulated too quickly, however, the selection of reference frame (the first frame

in a transformation group) and a proper interval between transformation groups become

crucial. A bad reference frame, eg. highly blurred, will result in bad registration result

in all successive frames. With fixed reference frame interval, its hard to find a balance

between accuracy and how much camera motion is allowed. Small frame interval can deal

with large camera motion but needs more matrix multiplication and large frame interval

cannot handle big camera motion.

We solved such difficulties by dynamically selecting reference frame based on camera

motion and current frame quality. In section 4.1.3, the displacement of each feature block

with respect to reference feature block can be measured using either NCC or SAD. There-

fore, the average displacement can be a measurement of camera motion. When the average

displacement is larger than a threshold, then we change the reference frame. Therefore, for

those images with smaller camera motion, the reference frame interval will be large, which
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can reduce the number of matrix multiplication, and for images with large camera motion,

smaller frame interval will allow the registration program to keep working well. In section

4.1.4, we use RANSAC algorithm to filter out outliers so the ratio of inliers/outliers can

be easily obtained. The selection of reference frame will also based on this inliers/outliers

ratio. Low ratio means the matching between current frame and the reference frame is not

trustworthy and we should not select current image as new reference frame. In this case,

we will look at the next frame and the previous frame, either of the frame that has a higher

inlier/outlier ratio larger than a threshold will be selected as new reference frame and this

step continues until a new reference frame is found.

4.2.2 Single Global Coordinate System vs Multiple Sliding Coordinate
Systems

A single global system as shown in the Figure 4.9 is best for tracking especially if it is

georectified to a basemap. The dashed lines shown the location of image frames within the

single global coordinate system and the solid line marks the ground projected trajectory of

a single moving target within this coordinate system. But transforming imagery from an

arbitrary camera pose on a moving platform to a georectifed coordinate system with ade-

quate accuracy is difficult to do, especially if the motion is large, field of view is changing

rapidly, or if registration cannot be done for some subset of frames due to sensor noise,

dropped frames or other imaging distortions. In such cases a sliding or translating coordi-

nate system is preferred and is easier to maintain in realtime. In this current work we use

a moving coordinate system and maintain the homographies to move between the local or

raw coordinate system and any other camera pose. This can be used in the future to move

to a single georectified or georeferenced global coordinate system.
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An important requirement for the flux algorithm is that there should be overlapping

frames equal to the temporal filter size between two adjacent stacks as shown in the figure

below. This implies that the registration module has to output the overlapping frames in the

coordinate systems of both the previous and the new stack. The temporal filter size will be

given as input to the registration module so that it knows how many overlapping frames to

use between adjacent stacks for motion estimation.

Moving to a new coordinate system is controlled by two factors: (1) the current frame

when transformed into the common coordinate system is too close to the edge of this im-

age mosaic common/reference system, or (2) the maximum number of frames per video

segment is reached.

4.2.3 Reducing False Alarms by Removing Border Effects in Flux Ten-
sor Detection Results

Registered images under same coordinate system are shifting in the local coordinate sys-

tem. Therefore, there will be significant changes near image borders, which causes border

effects(false positive detections) in flux tensor detection results, as shown in Figure 4.10(b)

and Figure 4.11(b). In order to reduce such border effects, only overlapping regions inside

Figure 4.9: Registering or mosaicing to a single global coordinate system.
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each flux tensor time step window are used for moving object detection. In addition, since

foreground objects in aerial images are usually small, connected component analysis is also

used to remove large false positive detection blobs, which further improves the detection

accuracy, as shown in Figures 4.10 and 4.11.

4.2.4 Transform Flux Tensor Foreground Detection Result Back to
Original Coordinate System

Foreground detection using flux tensor is performed using registered images. So fore-

ground detection results are in transformed coordinate system. In order to obtain fore-

ground detection results of original images, inverse transformations are performed on flux

detection results to transfer them back to the original coordinates systems. As mentioned

previously, we are using transformation frame groups with 10 frames per group to reduce

the number of matrix multiplications. In addition, in order to prevent the accumulation

of numerical errors, we also change the base frame every 30 frames. Therefore, to trans-

form flux detection result back to origin, there will be at most 5 matrix multiplications

and 1 inverse transform. At the begining, the papped images from image registration are

directly used for motion detection and inverse transformation to obtain motion detection

result in original coordinate system. However, the homography are calculated from origi-

nal images. Therefore applying the homography on padded images produces wrong inverse

transformation result that the inverse transform errors keeps on accumulating as shown in

Figures 11(d), 12(d) and 16. After realizing that, in order to transform flux tensor fore-

ground detection results back to the correct original coordinate systems, the four corners

and their coordinates of the registered images are recorded instead of the four corners of

the padded image. The results after correction are shown in Figures 11(e), 12(e) and 17.
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4.3 Experimental Results

The proposed HPF-based image registration and flux tensor motion detection algorithm is

tested using sequences from VIRAT dataset. Figure 4.10 (a) and 4.11 (a) show visual results

of registered image. By applying inverse transform, we transform the moving objects detec-

tion results from registered image coordinate system back to the original image coordinate

system so that they can be overlapped with original images. Results are shown in Figures

4.12 and 4.13 where the red blobs are corresponding to foreground detection results.As

we can see, the detection blobs are shifted after applying inverse transform, which is due

to accumulated numerical errors from sequential homography multiplications described in

Sections 4.1.4 and 4.2.1. We also show a sequence of foreground motion detection results

on a VIRAT ground-based stationary camera video dataset in Figure 4.15.

In order to measure the residual differences between the original image I and the inverse

transformed registered frame Iinv, RMSE(root mean square error) is used as

RMSE =

√
1

#pixels

∑
x,y∈I

[I(x, y)− Iinv(x, y)]2 (4.20)

Another measurement showing how the accumulation of numerical errors affects the

foreground object detection results is done by measuring the Euclidean distance between

the centroid of detected object and the corresponding true object location(from groundtruth).

The centroid-to-centroid Euclidean distance (CCED) is calculated in both registered image

coordinate systems and original coordinate systems. The CCED errors of all objects to

their true locations in each frame are shown in Figure 4.17. When flux tensor fails to detect

moving object, the CCED error will raise to some large number, eg. larger than 60 pixels.

As we mentioned in section 4.2.1 the registration accumulation error can be minimized

by using dynamic changing reference frame instead of using fixed reference frame interval.
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To show the superiority of dynamic changing reference frame, we measured the CCED

error between registered frame and base frame using both dynamic changing reference

frame and fixed reference frame interval techniques. Figure 4.18 shows the comparison

result.

To further reduce the accumulation error, the registration is restart after around 100

frames or when the registered image is out of the canvas. Figure 4.19 shows that by chang-

ing base frame, we can avoid the accumulation of registration error effectively.
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(a) Registered frames (b) Flux trace (c) Thresholded flux

Figure 4.10: (a) Sample registered images from VIRAT Sequence 1 corresponding to frame numbers (from
top to bottom): 96,100,104,108,112. (b) Corresponding frame motion energy based on flux trace response.
(c) Corresponding frame motion-based foreground detection result after thresholding.
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]
(a) Registered frames (b) Flux trace (c) Thresholded flux

Figure 4.11: (a) Sample registered images from VIRAT Sequence 3 corresponding to frame numbers (from
top to bottom): 186,190,194,198, 202. (b) Corresponding frame motion energy based on flux trace response.
(c) Corresponding frame motion-based foreground detection result after thresholding.
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(a) Original frame (b) Registered frame (c) Inverse transform of registered
frame

Figure 4.12: (a) Sequence of images from VIRAT Sequence 1 for frame numbers (from top to bottom):
139, 143,147, 151, 155. (b) Registered images in the base frame (global) coordinate system. (c) Inverse
transformation back to raw original (local) coordinate system.
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(d) Incorrect inverse transform of
flux

(e) Corrected inverse transform of
flux

Figure 4.12: (d) Flux detection results superimposed on original frames for VIRAT Sequence 1 (frames 139,
143,147, 151, 155) with an incorrect offset in the inverse transformation. (e) Flux detection results after
applying correct offset inverse transformation. The corrected inverse transform has a higher SNR and so a
higher threshold was used which produces cleaner flux response and tighter more compact blobs. Note that
both incorrect and correct offset transformation flux results have missed detections in second and fourth rows
respectively. For missed detections the centroid-to-centroid error is based on the closest blob.
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(a) Original frame (b) Registered frame (c) Inverse transform of registered
frame

Figure 4.13: (a) Sequence of images from VIRAT Sequence 3 for frame numbers (from top to bottom):
184, 191,198, 205, 212. (b) Registered images in the base frame (global) coordinate system. (c) Inverse
transformation back to raw original (local) coordinate system.
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(d) Incorrect inverse transform of
flux result

(e) Correct inverse transform of flux
result

Figure 4.13: (d) Flux detection results superimposed on original frames for VIRAT Sequence 3 (frames 184,
191,198, 205, 212) with an incorrect offset in the inverse transformation. (e) Flux detection results after
applying correct offset inverse transformation. The corrected inverse transform has a higher SNR and so a
higher threshold was used which produces cleaner flux response and tighter more compact blobs. Note that
in this example with two walking dismounts there are extra false detections but no missed detections.
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(a) Original frame (b) Registered frame

Figure 4.14: Zoom in of inverse transformed foreground detection result overlay with original image before
and after correct inverse transformation.
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(a) Original frames (b) Unthresholded flux results (c) Motion detection results

Figure 4.15: Moving object detection in DARPA VIRAT ground-based stationary camera video sequence
VIRAT S 050000 05 000696 000732 showing sample frames (top to bottom): 136,166, 196, 226, 256.
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(a) Frame 1-10 (b) Frame 1-50 (c) Frame 1-100

(d) Estimated homography (e) Manually computed homography

Figure 4.16: (a) Reference points in base frame shown as red crosses and registered points transformed back
to the base frame shown as blue stars using estimated homographies from the RANSAC algorithm. (b) RMSE
in pixels between reference points and registered points using estimated homographies. Blue curve is when
the reference base frame is updated every 10 frames, the green curve is when the reference base frame is
updated every 5 frames and red curve is when the reference base frame is updated every 2 frames. (c) RMSE
in pixels between reference points and registered points using ground-truth homographies. Blue curve is
when the reference base frame is updated every 10 frames, the green curve is when the reference base frame
is updated every 5 frames and red curve is when the reference base frame is updated every 2 frames. Fewer
homography matrix multiplications or larger interval between base frames leads to better accuracy.
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(a) Before offset correction

(b) After offset correction

Figure 4.17
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(c) After offset correction

Figure 4.17: Centroid to centroid Euclidean distance error over 180 frames for VIRAT Seq 1. Green curve
is for the stabilized (or registered) frames in the base frame coordinate system; the base frame coordinate
system changes every 30 frames and the homography multiplication reference frames is updated every 10
frames. The green curve corresponds to the middle row in Figure 21. The five to ten pixel error is due to
the imprecision in the flux tensor blob centroid localization shifting/variability and not the homography. The
blue curve is measured in the original coord system after inverse transformation from the registered to the
original frame. The large errors in the first few frames is due to the object blobs being removed from the post
processing so that there is a missed fg object detection. The deviation of the blue curve which is in the original
coordinate system (inverse transformed) from the green curve is due to the incorrect offset transformation.
After the offset transformation was corrected the errors are essentially eliminated as shown in the graph in the
second row. The red curve is corresponding to correctly inverse transformed sequence. The green curve is
the same curve in the first row. The third row shows the CCED based on the motion detection sequence using
correct inverse transformaiont. The yellow curve is for the stablized frames same as the green curve in (a) but
in different detection results. Larger errors in red curve are because of numerical errors when doing inverse
transformation, which is smaller than using incorrect inverse transformation shown in (a). The average error
of the blue curve in (a) is 13.38, the average error of the green curve in (a) and (b) is 11.28, the average error
of the red curve in (b) and (c) is 10.46 and the average error of the yellow curve in (c) is 9.05.
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Figure 4.18: Dynamic changing reference frame vs. fixed reference frame interval

Figure 4.19: Reduce registration accumulation error by changing base frame.
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Chapter 5

Summary and Concluding Remarks

We described a moving object detection system that combines spatio-temporal tensor-based

motion estimation with a novel background modeling scheme. Use of tensor-based mo-

tion segmentation results in coherent detections robust to noise and illumination artifacts,

while the proposed background subtraction process handles detection of static objects. The

final multi-cue object level classification distinguishes stopped objects from background

revealed by removed objects and thus reduces false positives. We experimentally show that

the proposed system outperforms most state-of-the-art methods on the CVPR2014 chal-

lenge dataset [2].

In addition, we also developed a moving object detection framework for aerial images,

which get significant results. However, there are still a lot of limitations for our system.

The accumulation of numerical errors produced by sequential homography multiplication

makes the registered images not fully stable, which causes false positive detections in flux

tensor results. The foreground objects sizes in aerial images are usually very small, which

makes them very hard to be detected. In addition, the motion of the camera results in
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blurred or interlaced images, which causing problems in both image registration and motion

detection. In order to obtain better knowledge of how numerical errors accumulates, we will

produce synthetic dataset with known camera motion to help quantify the errors. Multi-

scale flux tensor will be implemented to handle foreground objects with different sizes in

future work.
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