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IMAGE-BASED LOCALIZATION FOR AN INDOOR VR/AR 
CONSTRUCTION TRAINING SYSTEM 

Ludovico Carozza, Frédéric Bosché, Mohamed Abdel-Wahab 

School of the Built Environment, Heriot-Watt University, Edinburgh, UK 

ABSTRACT: Virtual /Augmented Reality (VR/AR) technologies have been increasingly used in recent years to 

support different areas of the construction industry. Their simulation capabilities can enable different construction 

stakeholders to evaluate the impact of their choices not only on the built environment, but also with regard to the 

correct execution of operational procedures. Training providers, such as Further Education (FE) colleges, can 

also enhance their trainee’s experience through the simulation of realistic construction contexts whilst eliminating 

health and safety risks. Current approaches for the simulation of learning environments in Construction, such as 

Virtual Learning Environment (VLEs), provide limited degree of interactivity during the execution of real working 

tasks. Whilst immersive approaches (e.g. CAVE-based) can provide enhanced visualization of simulated 

environments, they require complex and expensive set-up with limited practical interaction in real construction 

projects context.  

This paper outlines a localization approach employed in the development of an Immersive Environment (IE) for 

Construction training, cheaper than CAVE-based approaches and which has the potential to be rolled-out to the 

FE sector for maximizing the benefit to the construction industry. Pose estimation of the trainee is achieved by 

processing images acquired by a monocular camera integral with his head while performing tasks in a virtual 

construction environment. Realistic perception of the working environment and its potentially hazardous 

conditions can thus be consistently delivered to the trainee through immersive display devices (e.g. goggles).   

Preliminary performance of the localization approach is reported in the context of working at heights (which has a 

wide applicability to a range of construction trades, such as scaffolders and roofers), whilst highlighting the 

potential benefits for trainees. Current limitations of the localization approach are also discussed suggesting 

directions for future development. 
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1. INTRODUCTION 

Applications of Virtual/Augmented Reality (VR/AR) to the Architecture, Engineering and Construction (AEC) 

sector have been gaining considerable attention from the industrial and academic community for their inherent 

simulation capabilities in different contexts, such as: enhanced project visualization and design review 

(particularly with BIM) (Bosché et al. 2012, Bassanino 2010, Woodward et al. 2010), on-site information retrieval 

(Yeh et al. 2012), and plant operatives training (Wang et al. 2004). However, construction trades (such as 

scaffolders, roofers, painter and decorators, etc.) have not yet benefited from training in simulated work 

environments by using VR/AR technology. The key benefit of using VR/AR for construction trades training is 

that it can create a realistic learning environment for training, e.g. working at height, without exposing trainees 

or instructors to any health and safety risks (Abdel-Wahab, 2012). It can provide immediate interaction with 

realistic environments, through real-time feedback to ensure that trainees consistently perform to the required 

standards. 

VR systems currently considered in construction education and training are essentially based on Virtual Learning 

Environments (VLEs), like Moodle and Blackboard (Abdel-Wahab, 2012), or CAVE-type 3D immersive 

environments. Simulated environments are developed for VLEs that are essentially educational video games with 

totally simulated environment that the trainee interacts (and learns) with. This type of virtual training results in a 

limited degree of interactivity and immersion, two aspects deemed of great importance in the construction sector 

context (Abdel-Wahab 2012, Dalgarno et al. 2010).  

On the contrary, immersive learning environments can provide potential learning benefits such as: immersive 

spatial representation, by providing enhanced visualization of the virtual environment through 3D immersive 

displays; and immediate interaction with realistic environments, through a direct and immediate feedback 

reflecting consistently the actions performed by the trainee (e.g. trainee’s movements). These enhanced 

functionalities can find application in realistic training in operational procedures, e.g. construction equipment 

operation (Wang et al. 2004), and safe simulation of hazardous conditions, e.g. working at heights. 



 

 

3D immersive environments currently investigated and used for construction training are mainly CAVE-type 

environments (CruzNeira et al. 1992; Lau et al. 2007). These require the set-up of dedicated facilities with 

significant impact on complexity and costs. These facilities include, among others, the installation of entire plant 

simulators with dedicated hardware for interaction, or the set-up of huge video screens and dedicated projectors, 

with impact on installation costs and energy consumption. ACT-UK (ACT 2009) is an example of CAVE-type 

environment that was developed for construction management training (deVries et al. 2004). 

The work presented here is conducted in the context of the Immersive Controlled Environment (ICE) project, 

which aims at simulating a real construction workplace for real construction activities conducted by the trainee 

without any risk of injury (immersive experience), as well as assessing the trainee’s performance (controlled 

experience). As part of this project, an alternative 3D immersive environment is presented that leverages 

significant advancements recently made in localization and visualization technologies, in particular: portable 

immersive display, and image-based localization systems. 

Novel portable immersive display systems, such as (Vuzix), offer the immersive functionality of CAVE-type 

systems for a fraction of the cost. Our system is based on the use of such display systems. However, the 

disadvantage of such systems is that they require robust approaches for tracking the movement of the head of the 

user. This localization functionality plays a key role in providing the trainee with a consistent and realistic spatial 

perception of the simulated virtual scenario. 

Several techniques can be considered to resolve this localization problem, and we propose to use an image-based 

approach applied on a video sequence acquired from a monocular camera integral with the trainee’s head (i.e. with 

the display goggles). The acquired images are registered with respect to a three-dimensional visual model of the 

training room, acquired in advance once and for all. The trainee’s head pose is then employed to deliver any virtual 

construction environment in a consistent manner through the display goggles. Compared to other localization 

approaches, image-based approaches offer significant advantages in terms of set-up complexity and cost. As a 

result, the overall system that we propose has the potential to deliver highly immersive, consistent and realistic 

VR/AR experiences at a fraction of the cost of CAVE-type systems.  

This paper focuses on the head localization functional component. The proposed approach is described and its 

performance assessed in terms of accuracy, robustness and processing time. This assessment ultimately determines 

what the future of the proposed approach can be with regard to VR/AR systems. 

This paper is structured as follows. In Sect. 2, current technologies proposed for localization are briefly reviewed, 

highlighting advantages and drawbacks of different approaches. In Sect.3, we describe our localization approach 

in the context of the ICE project, emphasizing the strategies devised to cope with the most important localization 

issues. The experimental assessment of the performance of our approach is presented and discussed in Sect. 4. 

Benefits and limitations of our approach are discussed in Sect.5, along with directions for future improvements. 

2. BACKGROUND 

Accurate and robust localization (i.e. estimation of position and orientation) of the viewpoint within the 

environment is crucial to provide consistent interaction with the user.  Mainly two general approaches are 

applied to localize and track objects (head of the user, reference points of a tool, etc.) within its environment: 

inside-out (ego-motion or direct) and outside-in (indirect) approaches. According to these approaches, 

information provided by different sensors mounted internally or externally, respectively, to the entity to be 

tracked is processed. Global and local position systems (GPS, WIFI), environment sensors (RFID), as well as 

Inertial Measurement Systems and vision-based systems, constitute the main state-of-the-art technologies 

employed to this purpose (Feng Zhou et al. 2008). Integration of different technologies (acoustic, magnetic, 

inertial, optical, etc.) within hybrid approaches has also been proposed to cope with the drawbacks of single 

approaches by exploiting complementary performances (Feng Zhou et al. 2008, Ligorio and Sabatini 2013). 

Desirable features of 6-DOF localization methods include, among others, coverage and range limitation, 

robustness to environment interferences (magnetic, visual occlusions, etc.), robustness to fast motion dynamics, 

and absence of drift for long range paths.  

In the context of CAVE training approaches, hybrid systems are usually employed. Inertial-ultrasonic hybrid 

tracking (Intersense 2002), as well as multi-camera tracking of optical fiducial markers tracking, based on LED 

(Welch. et al. 2001) or reflective beacons (Pintaric and Kauffmann 2007) are currently among the solutions 

employed. These systems require on-purpose set-up and calibration to achieve accurate localization – at the 



 

expense of several thousand dollars. 

Vision-based approaches are nowadays standing out due to low cost and widespread availability of digital 

cameras. Broadly speaking, issues in terms of robustness to motion patterns (abrupt scale and view-point 

changes, lighting conditions, blurring, etc.) and time responsiveness (i.e. latency) still have a significant impact, 

so that requirements in computational resources and scalability to large environments are in general of crucial 

importance (Dong et al. 2009). Moreover, important issues concern relocalization after tracking failures and 

error drift, especially for closed loop sequences. State of the art vision-based methods are based on global 

localization approaches (Skrypnyk and Lowe 2004) that conceptually overcome these issues, but often at the 

expense of a greater computational burden. The works in (Lim et al. 2012, Dong et al. 2009) rely on the a-priori 

visual knowledge of a three-dimensional model to establish 2D-3D correspondences between the image domain 

and a three-dimensional reference frame. For each processed frame, camera/space resectioning algorithms 

(Hartley and Zisserman 2003) are employed to determine from these correspondences the absolute 6-DOF pose 

of the camera in the three-dimensional reference frame. Generally, for computational reasons, matching of sparse 

visual descriptors, rather than recognition of geometric structure (e.g. lines/shapes) is employed concurrently 

with other strategies, like space partitioning (Tingdahl et al. 2012, Carozza et al. 2012) and keyframe selection 

(Dong et al. 2009) to prune the search space and speed up the process. 

3. OVERVIEW OF THE PROPOSED SYSTEM 

We propose a vision-based head localization approach that is motivated by the works of Carozza et al. (2012), 

and Lim et al. (2012), employing the a-priori visual knowledge of a three-dimensional model to establish 2D-3D 

correspondences between the image domain and a three-dimensional reference frame. The training immersive 

environment we devised consists of a training room, conveniently covered with textured images, for example 

with posters (Fig. 1). 

 

Fig. 1: Panoramic image of the training room whose walls have been conveniently covered with textured pictures. 

In an off-line process, pictures of the room are acquired and processed in a 3D reconstruction pipeline, resulting 

in a 3D map of visual features (that are mainly extracted from the textured images). It is important to note that 

our approach does not require the on-purpose setup of fiducial markers with specific configuration (e.g., known 

spatial distribution, visual pattern, markers’ optical reflectivity, etc.), which can be complex and time-consuming, 

nor does it require the calibration of multiple cameras. Instead, the physical boundary of the immersive room 

simply needs to be covered with randomly positioned textured images that just need to be at an appreciable scale 

with respect to the camera field of view and the room size.  

During on-line operations, the trainee is equipped with a monocular camera, integral with his head, i.e. with the 

immersive display goggles. In our system, the camera points towards the rear or side to reduce occlusion issues, 

and captures images of the room boundaries in real-time. For each image, visual features are extracted and 

matched against those contained in the map of 3D features created offline. The resulting matches enable the 

calculation of the position of the camera, and subsequently of the trainee’s head. The estimated head pose is 

employed to render in the VR goggles carried by the trainee the corresponding view of the construction virtual 

environment experienced. 

The off-line process for reconstructing the three-dimensional map of visual features of the room is described in 

Section 3.1. Then, the on-line process for localizing the head of the trainee/user within the room is described in 

Section 3.2. 



 

 

3.1 Off-Line Reconstruction Stage 

This stage aims at creating a 3D model of the visual features of the training room, whose boundary has been 

covered with pictures (see Fig. 1). For this, a set of overlapping pictures of the training room is acquired from 

different viewpoints. We call this set of pictures the reconstruction set. We then perform the 3D reconstruction of 

the SIFT (Lowe 2004) features, extracted from the reconstruction set of pictures, through sparse bundle adjustment 

– we use the Structure-from-Motion Bundler framework (Bundler 2006) described in (Snavely et al. 2007). As a 

result, 3D coordinates of SIFT features, as well as estimations of the camera intrinsic (focal length and distortion 

coefficients for a pin-hole camera model) and extrinsic (i.e., position and orientation) parameters are achieved (for 

more details, see Bundler 2006). The resulting 3D point cloud is filtered using a thresholding minimum number of 

cameras contributing to the reconstruction of each point, num_count, in order to select only the “best reconstructed” 

reference points. 

SIFT are currently considered as the best visual descriptors in terms of robustness (Gauglitz et al. 2011), but at the 

expense of a considerable computational effort for matching pairs of features. This seriously limits image 

processing speeds, and subsequently in our case VR quality performance during on-line operations. Following an 

approach similar to the one adopted by Lim et al. (2012), we exploit the achieved SIFT reconstruction, which has 

already reconstructed robust salient features, to compute more efficient descriptors for the corresponding 3D cloud. 

The following process is used: For each reconstruction image, SURF keypoints (Bay et al. 2008) are extracted. 

Then, the reconstructed camera pose is exploited to compute the 2D re-projections of the 3D points on the 

reconstruction image. Finally, for each SURF keypoint, the 3D point with the closest re-projection (within a search 

radius distance_threshold) is associated to the corresponding SURF descriptor, thus obtaining a database of 3D 

referenced SURF descriptors, hereinafter called map. This database is filtered again according to a minimum 

number of reconstructing cameras (this threshold being set to num_count/3), so that features with low repeatability 

are discarded. We note that all SURF descriptors matched to a given 3D point should be close in the descriptors’ 

vector space, that is with distances (Euclidean, in the case of SURF) having a low-mean and low-variance 

distribution. This aspect has been investigated at a preliminary level, with our experiments showing mean distance 

values in the range of [0.18; 1.12] and distance variances in the range [0.01; 0.93]. Therefore, we propose to keep 

for a 3D point a unique descriptor with associated global feature strength as repeatability score, calculated by 

averaging the corresponding descriptors and their strengths respectively. This strategy aims at reduce the size of 

the database while preserving repeatable and distinctive features for better on-line performance.  

3.2 On-Line Localization Stage 

During on-line operations, i.e. in our context during a construction training session, the system processes the image 

sequence acquired live and in real-time from a camera mounted integral to the trainee’s head (i.e. to the display 

goggles). We call this new set of camera images the target sequence. Different strategies are employed to estimate 

the pose of the camera from correspondences between the visual features extracted from each target image and the 

map created off-line. These are described below.  

3.2.1 Initialization 

When the first frame is processed, or the pose is completely lost, there is no clue about the camera pose, which 

hence needs to be initialized. SURF features are extracted from the processed target image and their descriptors 

matched with the N strongest SURF descriptors of the map (N=500, in our tests), organized in a k-d tree indexing 

structure (Skrypnyk and Lowe 2004) to improve efficiency. For this, efficient approximate nearest neighbor 

interrogation of the map is employed, followed by a ratio test (α=0.65) to prune false matching. This process 

ultimately retrieves, for each 2D keypoint extracted from the target image, the 3D coordinates of the “best” 

matching point in the map, leading to a set S(x2d, X3d) of one-to-one matching coordinates. The pose of the camera, 

that is the rotation matrix R and the camera centre position C, is then robustly determined employing RANSAC 

filtering followed by Levenberg-Marquardt optimization over the resulting set of inliers (Hartley and Zissermann 

2003). To this purpose, the re-projection error is employed as cost function (see Snavely et al. 2007 Appendix 1 for 

more details), with the camera intrinsic parameters known from the off-line stage or other camera calibration 

methods (Bouguet 2004). 

If less than min_num_inliers inliers are found, the pose is rejected, the corresponding frame skipped and the system 

remains in Initialization mode for processing the following target image. On the other hand, if the pose estimation 

is successful, the system switches to Tracking mode. 

 



 

3.2.2 Tracking 

Once the pose has been initialized successfully, for the subsequent frames the pose is estimated from 2D-3D 

correspondences achieved by performing feature tracking between consecutive frames. More in detail, given the 

set x2d(t-1) of image locations of the matched SURF features for the last successfully computed frame at time (t-1), 

the Lucas-Kanade-Tomasi tracker (LKT, Lucas et al. 1994) is employed to estimate their locations for the current 

image at time t, x2d(t). In general, tracking approaches permit to significantly speed up the 2D-3D matching stage 

by exploiting spatio-temporal continuity, so that local motion fields, sufficiently small for consecutive frame, can 

be quickly estimated from local image analysis. On the other hand, in the presence of large camera displacements 

due to abrupt motions, Relocalization is required to recover from lost poses. To identify such situation and perform 

relocalization, the same strategy as above could be applied: if less than min_num_inliers inliers are found, the 

Tracking is considered unsuccessful and the method re-enters the Initialization (i.e. relocalization) stage, so that 

the tracker can be reinitialized with new features to track for the subsequent frames. 

However, Initialization is a time-expensive matching process that should be employed as little as possible. 

Therefore, a more robust tracking strategy has been put in place that reduces potential frequency of Initialization. 

In order to track a sufficient number of features, otherwise often lost after few frames, and also to prevent potential 

ambiguity in estimating pose due to uneven distribution of the tracked features, a measure of skewness for the 

spatial distribution within the image plane is evaluated at each frame. A lattice of T=16 cells is built on the current 

image and an occupancy map is computed with each cell assigned a score calculated as the number of keypoints 

located within it over a maximum number of features to track, F (we use F=160). As a measure of skewness of the 

scores’ distribution, the Cyhelský's skewness coefficient is considered: 

� = (�_� − �_�)/� 

where C_L and C_R are the number of scores below and above the expected score (for a uniform distribution) 1/T. 

If S exceeds the threshold S_TH (set to 0.65, in our tests), tracker resetting (Reset mode) is triggered for the 

subsequent frame, that is new features are added to the feature tracker by re-projecting on the 2D image plane the 

3D features contained in the frustum of the previous successfully computed pose. In addition, local non-maxima 

suppression of the re-projected keypoints is performed in order to retain widespread strong features. In this way, a 

higher number of features with a more widespread spatial distribution can be tracked, with benefits in terms of less 

frequent relocalizations (Initialization or Reset mode) and robustness of the estimated pose. In fact, this tracking 

strategy can be even more robust with respect to the matching strategy, for example in presence of global 

illumination changes or blurring artifacts in less textured areas (presenting few weaker features to match). 

Tracking strategies are inherently prone to drift, and this strategy has also the aim of curbing this effect by 

performing periodic adjustment triggered by “poor quality” (i.e. poor feature distribution) of pose estimation. 

In addition, in order to smooth the resulting camera trajectories, the computed poses are filtered using Extended 

Kalman filtering. The filter is initialized in the Initialization state and the pose is tracked accordingly while the 

system is in Tracking mode. The dynamic model adopted in this work is similar to the one described in (Davison et 

al 2007, Tingdahl et al. 2012), due to its trade-off between simplicity (only linear and angular velocities are 

modeled) and smoothing performance. To improve the numerical stability of the resulting dynamic system, 

preconditioning with a scaling factor λ=10 is applied to the 3D coordinates of the matched points of the map (i.e. 

the measures vector of the EKF), so to avoid that small values could lead to filter divergence (Perea et al. 2007). 

EKF results are rejected as unreliable if the changes in orientation are too severe or the residuals increase, 

indicating possible divergence, in which case Initialization is conducted. 

4. EXPERIMENTAL RESULTS 

In this section we present the results of several experiments. In particular, we focus on the performance of the 

localization approach for on-line sequences acquired for two different training rooms, for which both the room 

set-up as well as the motion patterns are different. The walls of the two rectangular rooms (ROOM1, and ROOM2, 

hereinafter) have been previously covered with textured posters with different pattern and size (see Fig. 1 for 

ROOM2), with different spatial arrangement for the two rooms, so to cover almost all the room perimeter and 

guarantee visual distinctiveness in the different parts of the room. 

Both off-line reconstruction and on-line localization stages have been performed using sequences of images from 

videos of the rooms acquired by a hand-held digital camera (Panasonic CCD DMC-TZ6, 640 x 480, 30 fps 



 

 

MJPEG). The intrinsic camera parameters estimated by the Bundler framework during the off-line reconstruction 

stage are also used in the on-line experiments, which simulates the trainee’s movements according to different 

motion patterns. 

Moreover, a virtual model (a scaffold new a brick wall, in our example) was aligned manually with the room maps 

after the reconstruction stage, so that it can be rendered during the on-line stage according to the estimated camera 

pose for each of the processed video frames. 

Tests were performed off-line on the video sequences on a Dell Aurora Alienware PC (Intel i7-3280 @ 3.6GHz, 

8GB RAM). Videos with results are available at http://www.ice.hw.ac.uk/. To assess the performance of our 

approach, visual evaluation of the rendered views under the motion patterns has been performed initially to assess 

qualitatively the robustness of our approach. Furthermore, the reprojection error has been used as measure of 

accuracy. Time performance of the localization process has also been considered in view of addressing future 

latency issues that can potentially affect user experience. 

4.1.1 Experiments in ROOM1 

For the off-line reconstruction stages 265 video frames of the room acquired from different viewpoints have been 

used, yielding a map of 1348 SURF features. For the on-line stage, a video sequence of 1149 frames (duration 38 s) 

has been acquired moving around the room following a smooth motion pattern, still presenting compression 

artifacts and changes in scales. In Fig. 2 the mean reprojection error and the processing time for each frame are 

reported. 

 

 

Fig. 2: Mean reprojection error (top) and processing time (bottom) for the localization stage for test in ROOM1. 

As it can be noticed, tracking introduces some drift effect, adjusted periodically by the tracker reinitialization 

(Reset mode). The magnitude of the tracking errors (about 2 pixels on the average) is comparable with the ones 

obtained by other vision-based Virtual Reality applications (Klein and Drummond 2003). Visual estimation shows 

consistent views of the virtual environment for all the frames, with near real-time performance (25-30 fps) and 

some latency introduced by the occurrences of the more time-expensive Reset mode. It must be noticed that this is 



 

mainly due to a current inefficient implementation of this stage, that can be improved by taking advantage of space 

partitioning techniques (see Sect. 5). 

4.1.2 Experiments in ROOM2 

A map of 2266 features has been achieved from 153 video frames of ROOM2 through the off-line reconstruction 

stage. Results related with a video of 2415 frames (1.20 min) are shown in Fig. 3. 

 

 

 

Fig. 3: Mean reprojection error (top) and processing time for the localization stage (bottom) for test in ROOM2. 

Performance is comparable with the one obtained for the test in ROOM1 for almost all the video sequence. We 

note though that frames 1500 to 1718 rely on a low textured area (the room’s ceiling) for which poor reconstruction 

was obtained (due to very few posters installed). In this case, the tracking strategy presents a drift that is then 

followed by the Initialization at frame 1988. A more efficient room set-up as well as space partitioning strategy can 

limit the impact of this drawback, as discussed in Sect. 5. 

To illustrate the application of the our localization approach to the devised virtual training system in construction, 

the rendered views corresponding to four estimated camera poses from the estimated trajectory in ROOM2 are 

shown in Fig. 4. 

5. CONCLUSIONS 

Immersive spatial representation, using AR/VR, can enhance the learning experience of construction trainees by 

providing a simulated construction site environment whilst eliminating H&S risks, such as working from heights. 

The benefit accrued from this approach is that trainees can focus on mastering the task at hand in a safe 

environment and potentially enhance their performance. In this context, a vision-based localization approach, to be 

employed as a key component of a 3D Immersive Controlled Environment (ICE) for training in Construction, has 

been presented in this work. Due to recent developments of vision-based technologies, a significant advantage of 



 

 

the proposed approach is that it has the potential of delivering immersive experience of a training environment at a 

fraction of the cost of CAVE-type systems. 

 

 

 

Fig. 4: Top: top view of the estimated camera trajectory for ROOM2. Magenta circles correspond to a trait of the camera path 

covering poor textured areas (room’s ceiling). Bottom: rendered views corresponding to four estimated camera poses (cyan 

squares on the trajectory). 

The approach consists of two stages. The first off-line reconstruction stage performs the reconstruction of a 3D 

visual map of the training room, covered with textured pictures (posters), from a sequence of images. The second 

stage aims at estimating the trainee’s position and orientation within the training room during the operational stage, 

by registering images, acquired by a camera integral to the trainee’s head, with respect to the 3D visual map. 

Several strategies have been devised to preserve robustness at an acceptable frame rate, including a feature 

tracking strategy. The performance of our method has been assessed on real video sequences of a training room, 

showing promising results in terms of robustness and time performance. Moreover, their analysis has shown the 

main current limitations, suggesting feasible strategies to overcome them. In particular, our analysis has yielded 



 

the following conclusions: 

- The current setup of the training room includes poorly textured areas that have led to failed camera 

localization. To reduce the risk of such situation, the training room should be sufficiently covered, with 

textured pictures in almost all its parts. The spatial analysis of the visual map obtained from the 

reconstruction stage and the use of an octree, to select spatially distributed visual features during the 

on-line phase (as proposed in (Tingdahl et.al 2012, Carozza et al. 2012)), could also be employed to 

improve robustness. 

- The current implementation of our approach can be directly optimized in order to speed up significantly 

the process toward real-time performance. The use of an octree can speed up the retrieval of strongest 

features distributed in the camera frustum during the matching and tracking phases, eliminating for 

example the need of the slow non-maxima suppression stage employed at the moment. Furthermore, GPU 

processing could further accelerate many of the on-line processes, especially matching and pose 

computation.   

- The current vision-based approach could benefit from integration with INS systems (Ligorio and Sabatini 

2013). The INS could be used to provide initial estimates of the head pose at a high frame rate, which 

would be beneficial, especially in the case of fast motions.   
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