2,043 research outputs found

    Kalman Filter Algorithm for Mitigation of Power System Harmonics

    Get PDF
    The maiden application of a variant of Kalman Filter (KF) algorithms known as Local Ensemble Transform Kalman Filter (LET-KF) are used for mitigation and estimation power system harmonics are proposed in this paper. The proposed algorithm is applied for estimating the harmonic parameters of power signal containing harmonics, sub-harmonics and inter-harmonics in presence of random noise. The KF group of algorithms are tested and applied for both stationary as well as dynamic signal containing harmonics. The proposed LET-KF algorithm is compared with conventional KF based algorithms like KF, Ensemble Kalman Filter (En-KF) algorithms for harmonic estimation with the random noise values 0.001, 0.05 and 0.1. Among these three noises, 0.01 random noise results will give better than other two noises. Because the phase deviation and amplitude deviation less in 0.01 random noise. The proposed algorithm gives the better results to improve the efficiency and accuracy in terms of simplicity and computational features. Hence there are less multiplicative operations, which reduce the rounding errors. It is also less expensive as it reduces the requirement of storing large matrices, such as the Kalman gain matrix used in other KF based methods

    False data injection attack detection in smart grid

    Get PDF
    Smart grid is a distributed and autonomous energy delivery infrastructure that constantly monitors the operational state of its overall network using smart techniques and state estimation. State estimation is a powerful technique that is used to determine the overall operational state of the system based on a limited set of measurements collected through metering systems. Cyber-attacks pose serious risks to a smart grid state estimation that can cause disruptions and power outages resulting in huge economical losses and are therefore a big concern to a reliable national grid operation. False data injection attacks (FDIAs), engineered on the basis of the knowledge of the network configuration, are difficult to detect using the traditional data detection mechanisms. These detection schemes have been found vulnerable and failed to detect these FDIAs. FDIAs specifically target the state data and can manipulate the state measurements in such a way that these false measurements appear real to the main control systems. This research work explores the possibility of FDIA detection using state estimation in a distributed and partitioned smart grid. In order to detect FDIAs we use measurements for residual-based testing which creates an objective function; and the probability of erroneous data is determined from this residual test. In this test, a preset threshold is determined based on the prior history of the state data. FDIA cases are simulated within a smart grid considering that the Chi-square detection state estimator fails in identifying such attacks. We compute the objective function using the standard weighted least problem and then test the objective function against the value in the Chi-square table. The gain matrix and the Jacobian matrix are computed. The state variables are computed in the form of a voltage magnitude. The state variables are computed after the inception of an attack to assess these state magnitude results. Different sizes of partitioning are used to improve the overall sensitivity of the Chi-square results. Our additional estimator is based on a Kalman estimation that consists of the state prediction and state correction steps. In the first step, it obtains the state and matrix covariance prediction, and in the second step, it calculates the Kalman gain and the state and matrix covariance update steps. The set of points is created for the state vector x at a time instant t. The initial vector and covariance matrix are based on a priori knowledge of the historical estimates. A set of sigma points is estimated by the state update function. Sigma points refer to the minimal set of sampling points that are selected and transformed using nonlinear function, and the new mean and the covariance are formed out of these transformed points. The idea behind this is that it is easier to compute a Gaussian distribution than an arbitrary nonlinear function. The filter gain, the mean and the covariance are used to estimate the next state. Our simulation results show that the combination of Kalman estimation and distributed state estimation improves the overall stability index and vulnerability assessment score of the smart grid. We built a stability index table for a smart grid based on the state estimates value after the inception of an FDIA. The vulnerability assessment score of the smart grid is based on common vulnerability scoring system (CVSS) and state estimates under the influence of an FDIA. The simulations are conducted in the MATPOWER program and different electrical bus systems such as IEEE 14, 30, 39, 118 and 300 are tested. All the contributions have been published in reputable journals and conferences.Doctor of Philosoph

    The estimate of amplitude and phase of harmonics in power system using the extended kalman filter

    Get PDF
    Nowadays, the amplitude of the harmonics in the power grid has increased unwittingly due to the increasing use of the nonlinear elements and power electronics. It has led to a significant reduction in power quality indicators. As a first step, the estimate of the amplitude, and the phase of the harmonics in the power grid are essential to resolve this problem. We use the Kalman filter to estimate the phase, and we use the minimal squared linear estimator to assess the amplitude. To test the aforementioned method, we use terminal test signals of the industrial charge consisting of the power converters and ignition coils. The results show that this algorithm has a high accuracy and estimation speed, and they confirm the proper performance in instantaneous tracking of the parameters

    Advances and Technologies in High Voltage Power Systems Operation, Control, Protection and Security

    Get PDF
    The electrical demands in several countries around the world are increasing due to the huge energy requirements of prosperous economies and the human activities of modern life. In order to economically transfer electrical powers from the generation side to the demand side, these powers need to be transferred at high-voltage levels through suitable transmission systems and power substations. To this end, high-voltage transmission systems and power substations are in demand. Actually, they are at the heart of interconnected power systems, in which any faults might lead to unsuitable consequences, abnormal operation situations, security issues, and even power cuts and blackouts. In order to cope with the ever-increasing operation and control complexity and security in interconnected high-voltage power systems, new architectures, concepts, algorithms, and procedures are essential. This book aims to encourage researchers to address the technical issues and research gaps in high-voltage transmission systems and power substations in modern energy systems

    A critical review of online battery remaining useful lifetime prediction methods.

    Get PDF
    Lithium-ion batteries play an important role in our daily lives. The prediction of the remaining service life of lithium-ion batteries has become an important issue. This article reviews the methods for predicting the remaining service life of lithium-ion batteries from three aspects: machine learning, adaptive filtering, and random processes. The purpose of this study is to review, classify and compare different methods proposed in the literature to predict the remaining service life of lithium-ion batteries. This article first summarizes and classifies various methods for predicting the remaining service life of lithium-ion batteries that have been proposed in recent years. On this basis, by selecting specific criteria to evaluate and compare the accuracy of different models, find the most suitable method. Finally, summarize the development of various methods. According to the research in this article, the average accuracy of machine learning is 32.02% higher than the average of the other two methods, and the prediction cycle is 9.87% shorter than the average of the other two methods

    Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications

    Get PDF
    The second-generation hybrid and Electric Vehicles are currently leading the paradigm shift in the automobile industry, replacing conventional diesel and gasoline-powered vehicles. The Battery Management System is crucial in these electric vehicles and also essential for renewable energy storage systems. This review paper focuses on batteries and addresses concerns, difficulties, and solutions associated with them. It explores key technologies of Battery Management System, including battery modeling, state estimation, and battery charging. A thorough analysis of numerous battery models, including electric, thermal, and electro-thermal models, is provided in the article. Additionally, it surveys battery state estimations for a charge and health. Furthermore, the different battery charging approaches and optimization methods are discussed. The Battery Management System performs a wide range of tasks, including as monitoring voltage and current, estimating charge and discharge, equalizing and protecting the battery, managing temperature conditions, and managing battery data. It also looks at various cell balancing circuit types, current and voltage stressors, control reliability, power loss, efficiency, as well as their advantages and disadvantages. The paper also discusses research gaps in battery management systems.publishedVersio

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe
    • …
    corecore