44 research outputs found

    Classification improvement of spoken arabic language based on radial basis function

    Get PDF
    The important task in the computer interaction is the languages recognition and classification. In the Arab world, there is a persistent need for the Arabic spoken language recognition To help those who have lost the upper parties in doing what they want through speech computer interaction. While, the Arabic automatic speech recognition (AASR) did not receive the desired attention from the researchers. In this paper, the Radial Basis Function(RBF) is used for the improvement of the Arabic spoken language letter. The recognition and classification process are based on three steps; these are; preprocessing, feature extraction and classification (Recognition). The Arabic  Language Letters  (ALL) recognition is done by using the combination between the statistical features and the Temporal Radial Basis Function for different letter situation and noisy condition. The recognition percent are from 90% - 99.375% has been gained with independent speaker, where these results are over-perform the earlier works by nearly 2.045%. The simulati.on has been made by using Matlab 2015b

    A Compact CNN-Based Speech Enhancement With Adaptive Filter Design Using Gabor Function And Region-Aware Convolution

    Get PDF
    Speech enhancement (SE) is used in many applications, such as hearing devices, to improve speech intelligibility and quality. Convolutional neural network-based (CNN-based) SE algorithms in literature often employ generic convolutional filters that are not optimized for SE applications. This paper presents a CNN-based SE algorithm with an adaptive filter design (named ‘CNN-AFD’) using Gabor function and region-aware convolution. The proposed algorithm incorporates fixed Gabor functions into convolutional filters to model human auditory processing for improved denoising performance. The feature maps obtained from the Gabor-incorporated convolutional layers serve as learnable guided masks (tuned at backpropagation) for generating adaptive custom region-aware filters. The custom filters extract features from speech regions (i.e., ‘region-aware’) while maintaining translation-invariance. To reduce the high cost of inference of the CNN, skip convolution and activation analysis-wise pruning are explored. Employing skip convolution allowed the training time per epoch to be reduced by close to 40%. Pruning of neurons with high numbers of zero activations complements skip convolution and significantly reduces model parameters by more than 30%. The proposed CNN-AFD outperformed all four CNN-based SE baseline algorithms (i.e., a CNN-based SE employing generic filters, a CNN-based SE without region-aware convolution, a CNN-based SE trained with complex spectrograms and a CNN-based SE processing in the time-domain) with an average of 0.95, 1.82 and 0.82 in short-time objective intelligibility (STOI), perceptual evaluation of speech quality (PESQ) and logarithmic spectral distance (LSD) scores, respectively, when tasked to denoise speech contaminated with NOISEX-92 noises at −5, 0 and 5 dB signal-to-noise ratios (SNRs)

    Sound Object Recognition

    Get PDF
    Humans are constantly exposed to a variety of acoustic stimuli ranging from music and speech to more complex acoustic scenes like a noisy marketplace. The human auditory perception mechanism is able to analyze these different kinds of sounds and extract meaningful information suggesting that the same processing mechanism is capable of representing different sound classes. In this thesis, we test this hypothesis by proposing a high dimensional sound object representation framework, that captures the various modulations of sound by performing a multi-resolution mapping. We then show that this model is able to capture a wide variety of sound classes (speech, music, soundscapes) by applying it to the tasks of speech recognition, speaker verification, musical instrument recognition and acoustic soundscape recognition. We propose a multi-resolution analysis approach that captures the detailed variations in the spectral characterists as a basis for recognizing sound objects. We then show how such a system can be fine tuned to capture both the message information (speech content) and the messenger information (speaker identity). This system is shown to outperform state-of-art system for noise robustness at both automatic speech recognition and speaker verification tasks. The proposed analysis scheme with the included ability to analyze temporal modulations was used to capture musical sound objects. We showed that using a model of cortical processing, we were able to accurately replicate the human perceptual similarity judgments and also were able to get a good classification performance on a large set of musical instruments. We also show that neither just the spectral feature or the marginals of the proposed model are sufficient to capture human perception. Moreover, we were able to extend this model to continuous musical recordings by proposing a new method to extract notes from the recordings. Complex acoustic scenes like a sports stadium have multiple sources producing sounds at the same time. We show that the proposed representation scheme can not only capture these complex acoustic scenes, but provides a flexible mechanism to adapt to target sources of interest. The human auditory perception system is known to be a complex system where there are both bottom-up analysis pathways and top-down feedback mechanisms. The top-down feedback enhances the output of the bottom-up system to better realize the target sounds. In this thesis we propose an implementation of top-down attention module which is complimentary to the high dimensional acoustic feature extraction mechanism. This attention module is a distributed system operating at multiple stages of representation, effectively acting as a retuning mechanism, that adapts the same system to different tasks. We showed that such an adaptation mechanism is able to tremendously improve the performance of the system at detecting the target source in the presence of various distracting background sources

    Influence of binary mask estimation errors on robust speaker identification

    Get PDF
    Missing-data strategies have been developed to improve the noise-robustness of automatic speech recognition systems in adverse acoustic conditions. This is achieved by classifying time-frequency (T-F) units into reliable and unreliable components, as indicated by a so-called binary mask. Different approaches have been proposed to handle unreliable feature components, each with distinct advantages. The direct masking (DM) approach attenuates unreliable T-F units in the spectral domain, which allows the extraction of conventionally used mel-frequency cepstral coefficients (MFCCs). Instead of attenuating unreliable components in the feature extraction front-end, full marginalization (FM) discards unreliable feature components in the classification back-end. Finally, bounded marginalization (BM) can be used to combine the evidence from both reliable and unreliable feature components during classification. Since each of these approaches utilizes the knowledge about reliable and unreliable feature components in a different way, they will respond differently to estimation errors in the binary mask. The goal of this study was to identify the most effective strategy to exploit knowledge about reliable and unreliable feature components in the context of automatic speaker identification (SID). A systematic evaluation under ideal and non-ideal conditions demonstrated that the robustness to errors in the binary mask varied substantially across the different missing-data strategies. Moreover, full and bounded marginalization showed complementary performances in stationary and non-stationary background noises and were subsequently combined using a simple score fusion. This approach consistently outperformed individual SID systems in all considered experimental conditions

    Robust speech recognition with spectrogram factorisation

    Get PDF
    Communication by speech is intrinsic for humans. Since the breakthrough of mobile devices and wireless communication, digital transmission of speech has become ubiquitous. Similarly distribution and storage of audio and video data has increased rapidly. However, despite being technically capable to record and process audio signals, only a fraction of digital systems and services are actually able to work with spoken input, that is, to operate on the lexical content of speech. One persistent obstacle for practical deployment of automatic speech recognition systems is inadequate robustness against noise and other interferences, which regularly corrupt signals recorded in real-world environments. Speech and diverse noises are both complex signals, which are not trivially separable. Despite decades of research and a multitude of different approaches, the problem has not been solved to a sufficient extent. Especially the mathematically ill-posed problem of separating multiple sources from a single-channel input requires advanced models and algorithms to be solvable. One promising path is using a composite model of long-context atoms to represent a mixture of non-stationary sources based on their spectro-temporal behaviour. Algorithms derived from the family of non-negative matrix factorisations have been applied to such problems to separate and recognise individual sources like speech. This thesis describes a set of tools developed for non-negative modelling of audio spectrograms, especially involving speech and real-world noise sources. An overview is provided to the complete framework starting from model and feature definitions, advancing to factorisation algorithms, and finally describing different routes for separation, enhancement, and recognition tasks. Current issues and their potential solutions are discussed both theoretically and from a practical point of view. The included publications describe factorisation-based recognition systems, which have been evaluated on publicly available speech corpora in order to determine the efficiency of various separation and recognition algorithms. Several variants and system combinations that have been proposed in literature are also discussed. The work covers a broad span of factorisation-based system components, which together aim at providing a practically viable solution to robust processing and recognition of speech in everyday situations

    Vocal Repertoire, Social Structure and Feeding Preferences of Australian and Antarctic Killer Whales (Orcinus orca)

    Get PDF
    This thesis aimed to improve the understanding of killer whale populations in the Australian and Antarctic regions. Visual surveys, photo-identification and passive acoustic recordings were combined to study these populations. This study describes the call repertoire of killer whales found in Australian and Antarctic waters, presents an acoustic comparison between sympatric ecotypes in Antarctic waters and investigates the sociality and feeding preferences of killer whales in the Bremer Sub-Basin

    Understanding and Decoding Imagined Speech using Electrocorticographic Recordings in Humans

    Get PDF
    Certain brain disorders, resulting from brainstem infarcts, traumatic brain injury, stroke and amyotrophic lateral sclerosis, limit verbal communication despite the patient being fully aware. People that cannot communicate due to neurological disorders would benefit from a system that can infer internal speech directly from brain signals. Investigating how the human cortex encodes imagined speech remains a difficult challenge, due to the lack of behavioral and observable measures. As a consequence, the fine temporal properties of speech cannot be synchronized precisely with brain signals during internal subjective experiences, like imagined speech. This thesis aims at understanding and decoding the neural correlates of imagined speech (also called internal speech or covert speech), for targeting speech neuroprostheses. In this exploratory work, various imagined speech features, such as acoustic sound features, phonetic representations, and individual words were investigated and decoded from electrocorticographic signals recorded in epileptic patients in three different studies. This recording technique provides high spatiotemporal resolution, via electrodes placed beneath the skull, but without penetrating the cortex In the first study, we reconstructed continuous spectrotemporal acoustic features from brain signals recorded during imagined speech using cross-condition linear regression. Using this technique, we showed that significant acoustic features of imagined speech could be reconstructed in seven patients. In the second study, we decoded continuous phoneme sequences from brain signals recorded during imagined speech using hidden Markov models. This technique allowed incorporating a language model that defined phoneme transitions probabilities. In this preliminary study, decoding accuracy was significant across eight phonemes in one patients. In the third study, we classified individual words from brain signals recorded during an imagined speech word repetition task, using support-vector machines. To account for temporal irregularities during speech production, we introduced a non-linear time alignment into the classification framework. Classification accuracy was significant across five patients. In order to compare speech representations across conditions and integrate imagined speech into the general speech network, we investigated imagined speech in parallel with overt speech production and/or speech perception. Results shared across the three studies showed partial overlapping between imagined speech and speech perception/production in speech areas, such as superior temporal lobe, anterior frontal gyrus and sensorimotor cortex. In an attempt to understanding higher-level cognitive processing of auditory processes, we also investigated the neural encoding of acoustic features during music imagery using linear regression. Despite this study was not directly related to speech representations, it provided a unique opportunity to quantitatively study features of inner subjective experiences, similar to speech imagery. These studies demonstrated the potential of using predictive models for basic decoding of speech features. Despite low performance, results show the feasibility for direct decoding of natural speech. In this respect, we highlighted numerous challenges that were encountered, and suggested new avenues to improve performances

    Deliverable D1.1 State of the art and requirements analysis for hypervideo

    Get PDF
    This deliverable presents a state-of-art and requirements analysis report for hypervideo authored as part of the WP1 of the LinkedTV project. Initially, we present some use-case (viewers) scenarios in the LinkedTV project and through the analysis of the distinctive needs and demands of each scenario we point out the technical requirements from a user-side perspective. Subsequently we study methods for the automatic and semi-automatic decomposition of the audiovisual content in order to effectively support the annotation process. Considering that the multimedia content comprises of different types of information, i.e., visual, textual and audio, we report various methods for the analysis of these three different streams. Finally we present various annotation tools which could integrate the developed analysis results so as to effectively support users (video producers) in the semi-automatic linking of hypervideo content, and based on them we report on the initial progress in building the LinkedTV annotation tool. For each one of the different classes of techniques being discussed in the deliverable we present the evaluation results from the application of one such method of the literature to a dataset well-suited to the needs of the LinkedTV project, and we indicate the future technical requirements that should be addressed in order to achieve higher levels of performance (e.g., in terms of accuracy and time-efficiency), as necessary
    corecore