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Abstract

Humans are constantly exposed to a variety of acoustic stimuli ranging from music

and speech to more complex acoustic scenes like a noisy marketplace. The human

auditory perception mechanism is able to analyze these different kinds of sounds and

extract meaningful information suggesting that the same processing mechanism is ca-

pable of representing different sound classes. In this thesis, we test this hypothesis by

proposing a high dimensional sound object representation framework, that captures

the various modulations of sound by performing a multi-resolution mapping. We then

show that this model is able to capture a wide variety of sound classes (speech, music,

soundscapes) by applying it to the tasks of speech recognition, speaker verification,

musical instrument recognition and acoustic soundscape recognition.

We propose a multi-resolution analysis approach that captures the detailed vari-

ations in the spectral characterists as a basis for recognizing sound objects. We then

show how such a system can be fine tuned to capture both the message informa-

tion (speech content) and the messenger information (speaker identity). This system

is shown to outperform state-of-art system for noise robustness at both automatic
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speech recognition and speaker verification tasks.

The proposed analysis scheme with the included ability to analyze temporal mod-

ulations was used to capture musical sound objects. We showed that using a model

of cortical processing, we were able to accurately replicate the human perceptual sim-

ilarity judgments and also were able to get a good classification performance on a

large set of musical instruments. We also show that neither just the spectral feature

or the marginals of the proposed model are sufficient to capture human perception.

Moreover, we were able to extend this model to continuous musical recordings by

proposing a new method to extract notes from the recordings.

Complex acoustic scenes like a sports stadium have multiple sources producing

sounds at the same time. We show that the proposed representation scheme can

not only capture these complex acoustic scenes, but provides a flexible mechanism

to adapt to target sources of interest. The human auditory perception system is

known to be a complex system where there are both bottom-up analysis pathways

and top-down feedback mechanisms. The top-down feedback enhances the output of

the bottom-up system to better realize the target sounds. In this thesis we propose

an implementation of top-down attention module which is complimentary to the high

dimensional acoustic feature extraction mechanism. This attention module is a dis-

tributed system operating at multiple stages of representation, effectively acting as

a retuning mechanism, that adapts the same system to different tasks. We showed

that such an adaptation mechanism is able to tremendously improve the performance
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of the system at detecting the target source in the presence of various distracting

background sources.

Primary Reader: Dr. Mounya Elhilali

Secondary Reader: Dr. Andreas G. Andreou
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Chapter 1

Principles of Sound Recognition

1.1 Sound Objects

1.1.1 Introduction

We experience auditory stimuli persistently, and the experience of analyzing and

making sense of auditory stimuli is second nature to us. However defining auditory

objects is a non-trivial task. Identity of sound objects are not necessarily tied to

the source of the sound. For example, in an orchestra, the entire violin section can

sound as one object. Hence identity of sound objects is more closely related to the

perception of sound. Sound objects can be very fine grained objects like single notes

played by a musical instrument, single phoneme spoken by a human or a single burst

by a firearm. Sound objects can also be very complex like a musical performance by

1
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a band, cocktail sound of multiple speakers or the cockaphony of a busy street.

Humans, however, are very adept at analysing all these various sound objects

effortlessly. Moreover, humans can adapt to different conditions and pay attention to

targets of importance. For example, they can pay attention to a friend’s speech in a

noisy street, or they can identify their dogs bark amongst other barks in a park.

The mammalian brain relies on the same sensory pathway to carry the auditory

information from all kinds of complex acoustic signals (speech, music, complex scenes

etc) to the higher cognition areas. Thus similar transformations occur on all incoming

signals to convert the sound pressure waveform into intermediary signals and finally

meaninful perceptions. These transformations are known to be based on analysis

the modulations of sound in a distributed, multi-resolution and high dimensional

mappings. In this thesis we propose a model for sound processing based on the

physiological observations and show how this model is capable of identifying speech

sounds, musical instruments and complex acoustic scenes.

1.1.2 Object Recognition Literature

Previous attempts at recognizing sound objects consider representations that are

specifically designed for the kind of sound objects considered. In this section we

summarize a few relevant models proposed for musical timbre, speech representation

and acoustic scene classification.

The sounds of different musical instruments form uniquely identifiable sound ob-

2
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jects. This identity is given to the sound object by the timbre of that instrument.

Although humans are able to identify timbre intuitively, the underlying dimensions

of timbre are hard to pinpoint. Measures of spectral shape have been proposed as

basic dimensions of timbre (e.g., formant position for voiced sounds in speech, sharp-

ness, and brightness) [2, 3]. But timbre is not only in the spectrum, as changes of

amplitude over time, the so-called temporal envelope, also have strong perceptual

effects [4, 5]. To identify the most salient timbre dimensions, statistical techniques

such as multidimensional scaling have been used; where perceptual differences be-

tween sound samples were collected and the underlying dimensionality of the timbre

space inferred [6, 7]. These studies suggest a combination of spectral and temporal

dimensions to explain the perceptual distance judgments, but the precise nature of

these dimensions varies across studies and sound sets [8, 9].

Recent studies have actively explored the neural underpinnings of timbre percep-

tion. Correlates of timbre dimensions suggested by multidimensional scaling studies

have been observed using event-related potentials(ERPs) [10]. Other imaging studies

have attempted to identify the neural substrates of natural sound recognition, by

looking for brain areas that would be selective to specific sound categories, such as

voice-specific regions in secondary cortical areas [11, 12] and other sound categories

such as tools [13] and musical instruments [14].

To bridge this gap, we investigate how cortical processing of spectro-temporal

modulations can subserve both sound source recognition of musical instruments and

3
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perceptual timbre judgments. Specifically, computational models of cortical receptive

fields are shown to be suited to classify a sound source from its evoked neural activity,

across a wide range of instruments, pitches and playing styles, and also to predict

accurately human judgments of timbre similarities.

Given that humans are quite adept at communicating even at relatively high lev-

els of noise [15], numerous noise robustness approaches in the literature focused on

bringing biological intuition and knowledge into front-end feature extraction (e.g. Mel

cepstral analysis, perceptual linear prediction, RASTA filtering) [16]. Additional tech-

niques were also proposed to address mismatches due to stationary or slow-varying

noise/channel; such as spectral subtraction (SS) [17], log-DFT mean normalization

(LDMN), long-term log spectral subtraction (LTLSS), cepstral mean normalization

(CMN) [18], and variance normalization [19]. Overall, state-of-the-art systems rely

on a combination of auditory motivated front-end schemes augmented with feature

normalization techniques [20]. Such schemes are often augmented with speech en-

hancement front-ends in order to tackle mismatch conditions [21, 22]. Nonetheless,

current techniques remain quite limited in dealing with various classes of distortions,

including nonstationary noise sources, reverberant noises and slowly-varying channel

conditions.

Attempts at automatic acoustic event and scene classification have typically fol-

lowed the path of extracting short term features from waveforms and learning the

statistics of these features to later classify an unknown example. Mel Frequency

4



CHAPTER 1. PRINCIPLES OF SOUND RECOGNITION

Cepstral Coefficients (MFCC), filterbank energies or Perceptual Linear Prediction

coefficients (PLP) have been popularly used as features for this task [23–25]. They

are often complimented with other low level features like zero crossing rate, short

time energy, spectral flux, pitch, brightness and bandwidth [24, 26, 27] or are trans-

formed to account for long term statistics [28]. Though short term spectral attributes

coupled with low-level features have been quite successful in a number of applica-

tions, studies have also shown that they are limited in capturing the full range of

information relevant for acoustic scene recognition; and that joint local modulations

in energy along both time and frequency are able to better capture the qualities of

acoustic scenes [29]. This rich modulation space builds on neurophysiological studies

in the mammalian auditory system indicating that neurons at the level of auditory

cortex respond to local joint spectral and temporal modulation in the signal [30]. This

biological analysis can be viewed as mapping sound onto a high dimensional feature

space which captures the detailed variations of the spectral profile and its temporal

variations, as a basis for representing acoustic events.

1.1.3 Proposed approach

The proposed work aims at 1) developing a neuro-computational framework for

recognition of sound objects based on neurophysiological processing of auditory stim-

uli, 2) investigating the role of goal-directed feedback mechanisms in modulating the

efficacy of this recognition process. The former is useful for a wide range of tasks like
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musical instrument recognition, scene classification, speaker recognition, etc. The

latter aims at giving insight into mechanisms of attention and their role in adapting

sensory processing to tasks or goals and changing acoustic environments. Unlike ob-

ject recognition tasks in the visual system, the auditory modality presents us with

a number of challenges; the least of which is the lack of a clear definition of what a

sound object is. Moreover, natural and artificial visual scenes often contain a large

proportion of static or slow-moving elements, auditory scenes are essentially dynamic;

and are frequently present in conjunction with other masking effects which are often

dynamic as well. A successful effort in tackling this problem has tremendous appli-

cations in engineering systems in the fields of prosthetics and communication aids,

hearing technologies, surveillance, defense systems as well as robotics.

1.2 Biomimetic Object Recognition

One of the most remarkable feats that humans are able to perform rapidly and

reliably is to recognize and understand the complex acoustic world that surrounds

them. This process is a multi-faceted problem which encompasses various aspects of

auditory perception. It encompasses the ability to detect, identify and classify sound

objects; to robustly represent and identify these objects in multisource environments;

and to guide actions and behaviors in line with complex goals and shifting acoustic

soundscapes. Such capabalities could provide much needed robustness and flexibility
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to a number of technologies. Hence we look at a hierarchical system of object recogni-

tion that has been motivated by the neurophysiological processes in the mammalian

auditory cortex.

1.2.1 Hierarchical System of Object Recognition

The hierarchical system of object recognition we propose consists of four stages as

shown in Figure 1.1. The basic acoustic representation stage mimics the behaviour

of the sub cortical processes and results in converting an incoming waveform into a

time-frequency representation. The high dimensional acoustic representation stage

mimics the behaviour of the auditory cortex and analyzes the time-frequency repre-

sentation for a number of different cues. The perceptual object representation stage

then collects statistics of different sound classes and behaves like the higher levels of

the auditory cortex in helping to recognize objects. Finally, the attentional feedback

stage adapts the high-dimensional acoustic representation stage and the object repre-

sentation stage based on the task at hand. Each of these stages are described below.

1.2.1.1 Basic Acoustic Representation

The acoustic signal reaching the ear drum undergoes transformation from pres-

sure waves in the air to waves along the cochlear membrane. This transformation

distributes the energy at different frequencies to different locations on the membrane.
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Figure 1.1: Schematic of the proposed sound object recognition model. The basic
and high-dimensional acoustic representation modules project the acoustic stimuli
into a robust, discriminative high dimensional representation. The perceptual object
recognition module collects the statistics of sound objects and learns to discriminate
classes. The attentional feedback module relays back information regarding the task
or environment to influence the cortical processing and object recognition modules

The frequencies are spread out on a logarithmic scale along the length of the cochlear

membrane. Inner hair cells then transform these mechanical vibrations to nerve fir-

ings in the auditory nerve, which are also tonotopically organized. These stimuli then

travel to the superior olivary complex, via the cochlear nucleus, where sound source

localization cues, like interaural time and level differences are extracted. As these

stimuli proceed to the inferior colliculus in the mid-brain, enhanced frequency selec-

tivity, integration of localization cues and loss of phase locking to higher frequencies

occurs. At this stage, the main representation is still primarily along two dimensions

namely time and frequency. Details of the auditory system can be found in [31].

In the subcortical stage, the waveform is passed through a set of 128 asymmetric
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filters h(t; f) placed uniformly on a logarithmic axis covering 5.3 octaves starting

from 180Hz. This is similar to the frequency-space transformation of the cochlear

membrane. This is followed by a spectral derivative and a half wave rectification stage,

which models the lateral inhibition networks in the cochlear nucleus, sharpening the

frequency resolution of these filters. The mid brain processing is implemented as a

short term integration with window µ(t; τ) = e−t/τu(t) and τ = 4ms followed by cubic

root compression. These subcortical transformations can be collectively written as in

Eq. 1.1 and the details of implementation can be found in [32].

z(t, f) = (max(∂f (s(t)⊗t h(t; f)), 0)⊗t µ(t; τ))
1
3 (1.1)

where ⊗t represents convolution with respect to time.

This resulting time-frequency representation is referred to as the auditory spec-

trogram.

1.2.1.2 High Dimensional Acoustic Representation

This information then reaches the primary auditory cortex (A1) via the medial

geniculate body. A1 contains continuums of neurons which exhibit selectivity not

just to the frequency content of sounds; but also to details of their spectral shapes

and bandwidths as well as their temporal dynamics. Unlike the implicit encoding of

these features in peripheral and midbrain stages, the representation at the level of A1

appears to explicitly map sounds onto a rich high-dimensional space. Here, we spec-

ulate that this multidimensional cortical representation provides a rich, potentially
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over-complete, basis that highlights unique aspects of sound objects; hence allowing

us to identify them under their different acoustic manifestations; and even in presence

of interferers.

The transformation of the stimuli in the auditory cortex is modeled as a filter-

bank corresponding to a 2D affine wavelet transform, with a spectro-temporal mother

wavelet, defined to be Gabor-shaped in frequency and exponential in time. Each filter

is tuned (Q = 1) to a specific rate (ω in Hz) of temporal modulations and a specific

scale of spectral modulations (Ω in cycles/octave), and a directional orientation (+

for upward and - for downward). For input spectrogram z(t, f), the response of each

STRF in the model is given by Eq. 1.2.

r±(t, f ;ω,Ω; θ, φ) = z(t, f) ∗t,f STRF±(t, f ;ω,Ω; θ, φ) (1.2)

where ∗t,f denotes convolution in time and frequency and θ and φ are the characteristic

phases of the STRF’s which determine the degree of asymmetry in the time and

frequency axis respectively. Details of the design of the filter functions STRF± can

be found in [33].

An alternative and more generalized way to analyze the spectro-temporal modu-

lations in the spectrogram is by using 2D Gabor filters [34,35]. Similar to the earlier

model, it would give us a view of the various spectro-temporal modulations at each

frequency, but would also provide us control over the gain and tuning of each filter.

This would be a useful property as described later in Section 4. This set of two
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dimensional Gabor filters are defined as Eq. 1.3.

G(t, f ;σt, σf ) =
1

2πσtσf
e
− 1

2

(
t2

σ2
t

+ f2

σ2
f

)
e2πi(ωt+Ωf) (1.3)

Where σt, σf denote the spread/tuning of the filter in time and frequency direction

respectively. The response of each filter is then given by a 2d convolution with the

auditory spectrogram similar to that in Eq. 1.2.

1.2.1.3 Perceptual Object Representation

The information from the primary auditory cortex then travels to higher stages in

the auditory cortex where the formation and perception of the sound objects occur.

Very little is known about the actual processing at these stages. In this thesis we

use a diverse set of approaches to model the distribution of features from the high

dimensional acoustic representation described above. These approaches have been

chosen to fit the particular tasks which we were attempting to solve and will be

described in detail in the following chapters.

1.2.2 Attentional Feedback

This feed forward system is augmented with feedback from higher levels to many

stages as early as the periphery [31]. The functions and mechanisms of these feedbacks

are relatively less well known, but they are believed to assist in task-related attention

modulation [36]. Numerous experimental findings have shown that receptive fields
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at the level of A1 adapt their spectral and temporal properties when animals are

engaged in behavioral tasks, potentially to enhance the representation of sound object

of interest. These findings from ferrets [37], guinea pigs [38] and monkeys [39] have

all suggested that the neural representation of sensory information can be modulated

by cognitive processes such as attention in order to mediate behavior. Such findings

appear at odds with psychoacoustic results indicating that auditory attention operates

at a much higher-level; namely at the level of perceptual objects [40–42]. The claim

is that objects are formed by integrating features from low-level cues. Top-down

attention then plays a role in selecting the objects relevant to the current task. There

is no unifying model of auditory attention that accounts for these findings. However,

some attempts have been made to model top-down attention in the visual domain [43].

Also, there is evidence to show that similar attentional mechanisms might operate

on different sensory modalities [39, 41, 44]. In Chapter 4 we propose a mechanism to

allow for top-down influences at multiple stages of processing and show how this can

be extremely beneficial for target detection.

1.3 Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2 we discuss a

modulation based approach to noise-robust speech recognition system. In Chapter

3 we describe how the biomimetic object recognition system is able to capture the

12
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Timbre space and an application of such a model to musical performances. In Chapter

4 we describe the proposed model of top-down attentional mechanisms and show how

we are able to attend to targets in a multisource environment. Finally, in 5 we present

the conclusions of this work and some possible future directions.
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Chapter 2

Multi-dimensional Representations

for Speech Sound Objects

2.1 Chapter Outline

Humans are quite adept at communicating in presence of noise. However most

speech processing systems, like automatic speech and speaker recognition systems,

suffer from a significant drop in performance when speech signals are corrupted with

unseen background distortions. Here we explore the use of the proposed hierarchical

system of sound object recognition (Section 1.2.1) for speech representation. However,

here we focus on the information-rich spectral attributes of speech as it presents an

intricate yet computationally-efficient analysis of the speech signal by careful choice of

model parameters. Further, the approach takes advantage of an information-theoretic
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analysis of the message and speaker dominant regions in the speech signal, and de-

fines feature representations to address two diverse tasks such as speech and speaker

recognition. The proposed analysis surpasses the standard Mel-Frequency Cepstral

Coefficients (MFCC), and its enhanced variants (via mean subtraction, variance nor-

malization and time sequence filtering) and yields significant improvements over a

state-of-the-art noise robust feature scheme, on both speech and speaker recognition

tasks.

2.2 Introduction

Despite the enormous advances in computing technology over the last few decades,

progress in the fields of automatic speech recognition (ASR) and automatic speaker

verification/recognition (ASV) still faces tremendous challenges when dealing with

realistic acoustic environments and signal distortions. Tackling both speech and

speaker feats adds additional hurdles since information about the speaker identity

and the speech message tends to be reflected in slightly distinct yet overlapping com-

ponents of the speech signal. For instance, whereas formant frequencies convey crucial

information about the articulatory configuration of the vocal tract, they also reveal

details about speaker-specific vocal tract geometries. Yet, our brains efficiently de-

code the signal information pertaining to both speech content and speaker identity

using a common front-end machinery that is quite robust even at relatively high levels
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of distortion and noise [45].

Mel-Frequency Cepstral Coefficients (MFCC) are a classic example of the success-

ful influence of biological intuition onto speech technologies, making them a staple in

state-of-the-art ASR and ASV systems [20, 46]. MFCCs provide a compact form of

representing spectral details in the speech signal, that is motivated by both percep-

tual and computational considerations. They exploit the unique nature of frequency

mapping in the auditory system, by warping the linear frequency axis into a nonlin-

ear quasi-logarithmic scale. They also allow the decoupling of the speech production

source and vocal tract characteristics via homomorphic filtering. In doing so, they

highlight information about both the characteristics and configuration of the speech

articulators that can be translated into a parametrization of both the identity of the

speaker as well as the content of the speech message. While quite efficient and suc-

cessful in conveying this information, features like MFCCs remain limited by their

global analysis of the frequency spectrum. For instance, the first few coefficient de-

scribe details of the spectral tilt and compactness in the spectrum; but across all

frequencies. Such broad analysis scatters information in specific frequency regions

across all cepstrum coefficients.

In contrast, our knowledge of the central auditory system reveals that neurons in

the auditory midbrain and primary auditory cortex exhibit a tuning to spectral details

that is localized along the tonotopic axis [30,47,48]. Such neural architecture provides

a detailed multi-resolution analysis of the spectral sound profile that can bear great
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relevance to the front-end feature schemes used in speech and speaker recognition

systems. Only few studies have attempted to translate the intricate multiscale cor-

tical processing into algorithmic implementations for speech systems, yielding some

improvements for ASR tasks (in noise) albeit at the expense of great computational

complexity [49, 50]. To the best of our knowledge, no similar work was done for

speaker recognition.

Admittedly, translating neurophysiological strategies into compact and efficient

signal processing methods comes with a number of challenges; which have often hin-

dered the introduction of biomimetic front-ends for such complex tasks as ASR or

ASV [51]. They often amount to complex and computationally-intensive mappings

that are impractical to use in real systems. In the present work, we set out to de-

vise a simple, effective, and computationally-efficient multi-resolution representation

of speech signals that builds on the principles of spectral analysis taking place in

the central auditory system. By carefully optimizing the choice of model parame-

ters, the analysis constrains the signal encoding to a perceptually-relevant subspace

that maximizes recognition in presence of noise while maintaining computational ef-

ficiency. Further, unlike any of the previous approaches, speech (linguistic message)

and speaker (identity) dominant regions in the signal encoding are analyzed, and

different parameters are defined for speech and speaker recognition tasks. By em-

ploying the same front-end processing machinery, we maintain a generic framework

for speech processing that can change parameters to shift focus either towards speech
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content information for ASR tasks or speaker information for ASV tasks. The fol-

lowing section describes details of the proposed multi-resolution spectral model and

motivates the choice of its parameters. Next, we describe the experimental setup

and results. We finish with a discussion of the proposed analysis, and comment on

potential extensions towards achieving further noise robustness.

2.3 Methods

The parameterization of speech sounds is achieved through a multistage auditory

analysis that captures processing taking place at various stages along the auditory

pathway from the periphery all the way to the primary auditory cortex (A1). We first

describe the peripheral analysis used to obtain the ‘auditory spectrogram’ represen-

tation, followed by a detailed description of the cortical analysis for multi-resolution

parameterization of the speech input.

2.3.1 Peripheral Analysis

The peripheral analysis of the incoming audio signal is modeled as described in

Section 1.2 and is given by Equations 1.1. The outcome of this analysis is a transfor-

mation of the one-dimensional signal s(t) into a time-frequency spectrogram y(t, f)

consisting of 128 frequency channels covering 5.3 octaves(Figure 2.1(a)). The resul-

tant spectrogram exhibits a number of characteristics; most importantly, in preserv-
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ing detailed speech information such as formant structure as well as exhibiting noise

robustness qualities over conventional representations [52–54].

Figure 2.1: (a) Processing stages starting from an acoustic waveform s(t) to ob-
tain proposed features, parameterized by time t, tonotopic frequency f and spectral
modulation filter parameter Ωc. (b) Example of spectral details revealed by multi-
resolution analysis for vowel /a/ (c) (left) Average auditory spectrum computed over
the TIMIT corpus, y(f) = 〈〈|y(f ; t0)|〉T 〉Ψ; (right) Average spectral modulation pro-

file, Y (Ω) = 〈〈|Y (Ω; t0)|〉T 〉Ψ

2.3.2 Cortical Analysis

The spectrogram reveals layered information about the speech signal that is dis-

tributed over different frequency bands and varying over multiple time-constants.

The next stage of processing extracts detailed information about the spectral shape
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in y(t, f) via a bank of modulation filters operating in the Fourier domain resulting

in the spectral cortical representation. The analysis mimics the spectral tuning of

neurons in the central auditory pathway in which individual neurons are not only

tuned to specific tonotopic frequencies (like cochlear filters); they are also selective to

various spectral shapes, in particular to peaks of various widths on the frequency axis,

hence expanding the cochlear one dimensional tonotopic axis onto a two-dimensional

sheet [47,55]. This analysis provides a more localized mapping of the spectral profile;

that not only highlights details of bandwidth and spectral patterns in the signal but

centers around the different frequency channels (Figure 2.1(b)). Mathematically, the

multi-resolution spectral analysis is modeled by taking the Fourier transform of each

spectral slice y(t0, f) in the auditory spectrogram and multiplying it by a modulation

filter HS(Ω; Ωc). The inverse Fourier transform then yields the modulation filtered

version of the auditory spectrogram1. The spectral modulation filter HS(Ω; Ωc) is

defined as

HS(Ω; Ωc) = (Ω/Ωc)2e[1−(Ω/Ωc)2] , 0 ≤ Ω ≤ Ωmax, (2.1)

where Ω represents spectral modulations (or scales) and has units of cycles/octave

(CPO), parameterizing the spectral resolution at which the auditory spectrogram is

analyzed. Ωmax is the highest spectral modulation frequency set at 12 CPO (given

the spectral resolution of 24 channels per octave).

1The modulation filtering is performed in real domain.
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2.3.3 Choice of scales

There are two important aspects in defining the proposed multi-resolution features

for a specific task (ASR or ASV): (i) the span of the modulation filters; and (ii)

the distribution of filters over the chosen span. In the current study, we constrain

the range of scales to less than 4 CPO, since they cover more than 90% of the entire

spectral modulation energy in speech (Figure 2.1(c)) and are shown to be most crucial

for speech comprehension [56]. To determine the filter distribution over the range 0−4

CPO, we employ a judicious sampling scheme in which the modulation regions with

concentrated energy are sampled more densely; while the regions with less energy are

sampled more coarsely. The set of scales Ωc is chosen by dividing the average spectral

modulation profile of speech (computed over the entire train data of TIMIT corpus

[57]) into equal energy regions. The average spectral modulation profile Y (Ω) =

〈〈|Y (Ω; t0)|〉T 〉Ψ is defined as the ensemble mean of the magnitude Fourier transform

of the spectral slice y(t0, f) averaged over t0 and over all speech data Ψ. The resulting

ensemble profile, shown in Figure 2.1(b), is then divided into M equal energy regions

Γi:

Γi =

∫ Ωi+1

Ωi

Y (Ω)dΩ, Γi = Γi+1, i = 1, ...,M − 1, (2.2)

where Ωi and Ωi+1 denote the lower and upper cutoffs for kth band, Ω1 = 0, and

ΩM = 4.

The scheme has the dual advantage of (i) implicitly encoding the high energy sig-
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nal components which are inherently noise robust (ii) sampling the given modulation

space with a smaller set of scales which is important both in terms of computation

complexity as well the dimensionality of the resulting feature space. Setting M = 5,

the sampling scheme results approximately in a log-scale in the spectral modulation

space, at 0.25, 0.5, 1.0, 2.0, and 4.0 CPO2. The output of the five spectral modulation

filters for an example speech utterance is shown in Figure 2.2.

2.3.4 Encoding of speech and/vs speaker informa-

tion

The speech signal, discounting the environmental and channel effects, carries in-

formation about both the underlying linguistic message and the speaker identity

(Figure 2.1(b)). This information is manifested in slightly distinct yet overlapping

components, and to separate these components is in general a non-trivial task. The

spectral modulation filtering described above captures the overall spectral profile in-

cluding formant peaks by employing broad scale filters (0.25 and 0.5 CPO) as well as

narrower spectral details such as harmonic and subharmonic structures using higher

resolution filters (1, 2 and 4 CPO). In order to select a set of scales (Ωc) that are rele-

vant for diverse tasks such as speech and speaker recognition, we analyze the mutual

information (MI) between the feature variables (X) encoding various scales and the

2The original sampling results in spectral modulations at {0.18, 0.59, 1.34, 2.36, 4.0} CPO.
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corresponding (i) underlying linguistic message (Yl) (ii) speaker identity (Ys). The

MI, a measure of the statistical dependence between random variables [58], is defined

for two discrete random variables X and Y as:

I(X;Y ) =
∑

x∈X,y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
(2.3)

To estimate the MI, the continuous feature variables are quantized by dividing the

range of observed features into cells of equal volume. To characterize the underlying

linguistic message, phoneme labels from the TIMIT corpus are divided into four

broad phoneme classes - the variable Yl thus taking 4 discrete values representing

the phoneme categories: vowels, stops, fricatives, and nasals. The average MI, taken

as the average of the MI computed across all the frequency bands for any given

scale, between the feature representations at different scales and the speech message

is shown in Figure 2.3(a). In the case of speaker identity, the ‘sa1’ speech utterance

(She had your dark suit in greasy wash water all year) taken from the TIMIT corpus

is compared across 100 different speakers - the variable Ys taking 100 discrete values

representing the speaker identity. The average MI between different scales and speaker

information is shown in Figure 2.3(b)3.

Notice that the lower scales clearly provide significantly more information about

the underlying linguistic message, while the speaker information is centered around 1

3The difference in MI levels between the speech message and speaker identity may be attributed
to the observation that the speech signal encodes more information about the underlying linguistic
message as compared to speaker information.
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Figure 2.2: Illustration of the spectral modulation filtering at scales 0.25, 0.5, 1.0, 2.0,
and 4.0 CPO for the utterance “come home right away” taken from TIMIT speech
database. The top panel shows the time domain waveform along with the underlying
phoneme label sequence.
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CPO - probably highlighting the significance of overall spectral profile including for-

mant peaks in encoding speech message and the significance of pitch or harmonically-

related frequency channels in representing speaker-specific information. In order to

put more emphasis on message-dominant information present in the speech signal, it

is important to encode information captured by lower scales for the speech recognition

task. Consequently, for the speaker recognition task it is useful to encode information

captured by higher scales. Therefore, in the feature encoding for the speech recog-

nition task we choose Ωc = {0.25, 0.5, 1.0, 2.0} CPO and for the speaker recognition

task Ωc = {0.5, 1.0, 2.0, 4.0} CPO.

Figure 2.3: Mutual Information (MI) between feature representations encoding dif-
ferent scales and speech message (left panel), MI between feature representations
encoding different scales and speaker information (right panel).

Finally, the filtered spectrograms (one for each scale in Ωc) are downsampled in

frequency by a factor of 4. This is achieved by integrating the 128 frequency channels

into 32-bands, equally-spaced on a log-frequency axis4. The final multi-resolution

features are defined as 128 dimensional feature vector (32 auditory frequency chan-

4This reduction of the spectral axis resolution did not affect the ASR/ASV performance
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nels multiplied by 4 scales) at each time frame of 10 ms. An estimate of processor

usage shows that computing the multi-scale modulation filtering operation on top of

the auditory-inspired spectrogram increases CPU time by about 75% relative to an

efficient implementation of Mel-Frequency Cesptral Coefficients.

2.4 Experimental Setup

2.4.1 Phoneme recognition setup

Speaker independent phoneme recognition experiments are conducted on TIMIT

database (excluding ’sa’ dialect sentences), using the hybrid Hidden Markov Model/Multilayer

perceptron (HMM/MLP) framework [59–61]. The training, cross-validation and test

sets consist of 3400, 296 and 1344 utterances from 375, 87 and 168 speakers respec-

tively. 61 hand-labeled symbols of the TIMIT training transcription are mapped to

a standard set of 39 phonemes along with an additional garbage class [62]5.

MLP with a single hidden layer is trained to estimate the posterior probabili-

ties of phonemes (conditioned on the input acoustic feature vector) by minimizing

the cross entropy between the input feature vectors and the corresponding phoneme

target classes [63]. Temporal context is captured by training a second MLP (in a

hierarchical fashion) which operates on a longer temporal context of 23 frames of

5It is possible to achieve higher recognition performance (in clean or matched condition) by using
a larger set of 49 labels during the training and mapping to the standard set of 39 phonemes only
during the scoring
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posterior probabilities estimated by the first MLP [64]. Both MLPs have a single

hidden layer with sigmoid nonlinearity (1500 hidden nodes) and an output layer with

softmax nonlinearity (40 output nodes). The final posterior probability estimates

are converted to scaled likelihoods by dividing them with the corresponding prior

probabilities (unigram language model) of phonemes. An HMM with 3 states, each

with equal self and transition probabilities, is used for modeling each phoneme. The

emission likelihood of its each state is set to be the scaled likelihood. Finally, the

Viterbi algorithm is applied for decoding the phoneme sequence. Note that the hy-

brid HMM/MLP system achieves better phoneme recognition performance than the

standard HMM/GMM systems [65].

2.4.2 Speaker recognition setup

Text independent speaker verification experiments using Gaussian Mixture Models

(GMM) are conducted on a subset of the NIST 2008 speaker recognition evaluation

(SRE) [66]. In our UBM-GMM based speaker recognition system [46], the Universal

Background Model (UBM) is trained with data obtained from a set of 325 speakers. In

the UBM training, a total of 256 mixtures and 10 expectation-maximization iterations

for mixture split are used. A total of 85 target speaker models are obtained by

maximum a posteriori (MAP) adaptation of the UBM. MIT Lincoln Lab GMM toolkit

is used for the UBM-GMM training. An independent set of 500 test trials is used to

evaluate the verification performance. The number of impostor and genuine trials in
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the test set are 169 and 331 respectively. The data represents training and testing from

an interview setting using the same microphone [66]6. This condition is specifically

chosen in order to focus on additive noise distortions, without introducing other

channel mismatch scenarios in the standard NIST SRE - hence ensuring consistency

across ASR and ASV results in noise. Also, the UBM-GMM recognition backend does

not include factor analysis techniques [46] which address various channel mismatch

scenarios present in the NIST SREs. Notice however that the UBM-GMM system

used even without the factor analysis techniques achieves state-of-the-art recognition

performance on the same microphone matched channel condition evaluated in this

work.

2.4.3 Features

(i) For phoneme recognition experiments, each MFCC feature vector is obtained

by stacking a set of 9 frames of standard 13 Mel frequency cepstral coefficients along

with their first, second, and third order temporal derivatives7. The feature vector for

the proposed system is obtained by taking the original 128 dimensions (32 auditory

frequency channels x 4 scales, as described in Section 2.3 along with their first, sec-

ond, and third order temporal derivatives.

(ii) For speaker recognition experiments, each MFCC feature vector is obtained by

6corresponds to condition 2 of the eight common conditions evaluated in the NIST 2008 speaker
recognition evaluation

7the 9 frame context window and the resulting 468 dimensional feature representation achieved
best recognition performance, better than the standard 39 dimensional MFCC features [67]
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taking 19 Mel frequency cepstral coefficients along with their first and second or-

der temporal derivatives. Note that the higher order cepstral coefficients are more

common in the speaker recognition literature and form the state-of-the-art feature

representation in recent NIST SREs. Similarly, the feature vector for the proposed

system is obtained by taking the base feature representation along with its first and

second order temporal derivatives.

2.5 Recognition Results

2.5.1 Performance of multi-resolution features

Extending the mutual information analysis presented in the Section 2.3.4, we em-

pirically show the relevance of set of scales {0.25, 0.5, 1.0, 2.0}CPOand{0.5, 1.0, 2.0, 4.0}

CPO for speech and speaker recognition tasks respectively. The performance of the

multi-resolution features that encode these two sets of scales for the ASR and ASV

tasks is shown in Table 2.1. Notice in particular how encoding the lower scales and

omitting the higher scales improved the speech recognition performance, and vice-

versa for speaker recognition task.
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Table 2.1: Automatic Speech Recognition (ASR) and and Automatic Speaker Verifica-
tion (ASV) performance of the proposed multi-resolution features. ASR performance
is shown in Phoneme Recognition Rate (PRR) and ASV performance is shown in
Equal Error Rate (EER).

Scales encoded ASR Performance ASV Performance

in the features (CPO) (in PRR, %) (in EER, %)

[0.25, 0.5, 1, 2] 71.9 3.4

[0.5, 1, 2, 4] 68.7 2.7

2.5.2 Comparison with standard front-end features

The proposed multi-resolution features are contrasted with MFCC features on

both ASR and ASV tasks. To evaluate the noise robustness aspect of the two feature

representations, various noisy versions of the test set are created by adding four types

of noises at Signal-to-Noise-Ratio (SNR) levels of 20dB, 15dB, and 10dB. The noise

types chosen are, Factory floor noise (Factory1), Speech babble noise (Babble), Volvo

car interior noise (Volvo), and F16 cockpit noise (F16), all taken from NOISEX-92

database, and added using the standard FaNT tool [68]. In all the experiments, the

recognition models are trained only on the original clean training set and tested on the

clean as well as noisy versions of test set (mismatch train and test conditions). The

phoneme recognition accuracy and speaker verification performance of the MFCCs

and the multi-resolution features is listed in Table 2.2. The proposed multi-resolution

features achieve ASR and ASV performance comparable to that of MFCCs under

clean conditions. With additive noise conditions reflecting a variety of real acoustic
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scenarios, the multi-resolution features perform substantially better than the MFCCs

- an average relative improvement of 38.9% on the ASR task and an average relative

error rate reduction of 31.9% on the ASV task.

2.5.3 Comparison with state-of-the-art noise ro-

bust scheme

We further compare the performance of multi-resolution features with a state-

of-the-art noise robust feature scheme, Mean-Variance ARMA (MVA) processing of

MFCC features [20]. The MVA processing, when applied with the standard MFCC

features, combines the advantages of multiple noise robustness schemes: cepstral mean

subtraction, variance normalization, and temporal modulation filtering. The MVA

has been shown to provide excellent robustness for additive noise distortions and form

the state-of-the-art in noise robustness evaluations on the Aurora 2.0 and Aurora 3.0

databases [20]. Note that the auto-regression-moving-average (ARMA) filtering in the

MVA processing is shown to be superior to temporal modulation filtering techniques

like RASTA [69] for noise robustness.

To further improve the noise robustness of multi-resolution features and be con-

sistent with the temporal modulation filtering employed in the MVA feature scheme,

the multi-resolution features are processed with a bandpass modulation filter applied

in the temporal domain 8. The filtering is done in the Fourier domain of the mod-

8Note that the MVA processing has been shown to be optimal for cepstral domain features [20].
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Table 2.2: Automatic Speech Recognition (ASR) and and Automatic Speaker Verifi-
cation (ASV) performance of MFCC and multi-resolution feature representations for
different types of noise.

Noise SNR (dB)
ASR Performance (PRR) ASV Performance (EER)

MFCC Proposed MFCC Proposed

Clean ∞ 71.4 71.9 2.7 2.7

Factory1

20 48.2 61 7.1 5.9

15 38.1 53.1 10.9 7.6

10 28.3 42.7 17.8 11.4

5 19.6 30.9 28.4 18.7

Average 33.5 46.9 16.1 10.9

Babble

20 48.1 64.1 5.4 4.1

15 37.3 55.8 7.9 5.9

10 27.6 43.7 11.5 9.7

5 19.5 29 24.8 14.2

Average 33.1 48.1 12.4 8.4

Volvo

20 60.8 70.9 3.9 2.9

15 55.7 70.7 4.6 3.4

10 49.9 70.1 6.4 4.8

5 42.9 68.9 10.9 6.5

Average 52.3 70.1 6.4 4.4

F16

20 48.5 61.4 10.7 7.5

15 37.8 53.3 16.3 10.7

10 27 40.9 21.7 14.5

5 18.2 27.2 29.9 21.1

Average 32.8 45.7 19.6 13.4
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ulation amplitude. First the Fourier transform of the time sequence of each feature

in the feature stream is taken, then is multiplied by a bandpass modulation filter

HT (w; [0.5, 12]) capturing the modulation content within the specified range of 0.5Hz

and 12Hz. Note that this temporal modulation range has been shown to be informa-

tion rich and crucial for speech comprehension [56]. The inverse Fourier transform

then yields the modulation filtered version of the feature stream. The bandpass mod-

ulation filter HT (w; [0.5, 12]) is defined as follows:

HT (w; [0.5, 12]) = (αw)2 e[1−(αw)2], (2.4)

α =


1/0.5, 0 ≤ w < 0.5

1/w, 0.5 ≤ w ≤ 12

1/12, 12 < w ≤ wmax,

where wmax is the modulation frequency resolution - 50Hz corresponding to the 10ms

frame-rate of the feature stream.

The phoneme recognition accuracy and speaker verification performance of MVA

and enhanced multi-resolution features (E MRF) is shown in Table 2.3. In addition

to being comparable in the clean/matched conditions, the E MRF features perform

significantly better than MVA features in noisy/mismatch conditions - an average

relative improvement of 12.2% on the ASR task and an average relative error rate

reduction of 33.9% on the ASV task.

Consequently, it may be sub-optimal to apply the same processing on the multi-resolution features.

33



CHAPTER 2. SPEECH SOUND OBJECTS

Table 2.3: Automatic Speech Recognition (ASR) and and Automatic Speaker Verifi-
cation (ASV) performance of MFCC MVA and E MRF representations for different
types of noise.

Noise Type SNR (dB)
ASR Performance (PRR) ASV Performance (EER)

MFCC MVA E MRF MFCC MVA E MRF

Clean ∞ 68.2 69.5 3 2.9

Factory1

20 55.7 61.7 5.4 5.2

15 48.4 55.3 10 6.5

10 39.4 45.5 16.6 10.7

5 30.2 34.3 23.9 16.3

Average 43.4 49.2 13.9 9.6

Babble

20 56.5 64.5 4.5 3.9

15 49.5 57.7 6.2 5.4

10 40.7 48.1 10.7 8.9

5 29.7 34.4 19.5 12.4

Average 44.1 51.1 10.2 7.6

Volvo

20 63.5 69.4 3.6 3

15 62 69.2 5.2 3.4

10 60.2 68.6 6.5 4.6

5 58.1 67.7 9.4 6.2

Average 60.9 68.7 6.1 4.3

F16

20 57.1 61.8 12.4 7.3

15 50.8 55.6 18.3 10.2

10 43.2 46.4 22.4 12.4

5 34.6 35.1 26.6 16.6

Average 46.4 49.7 19.9 11.6
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2.6 Discussion

In this work, we begin to address the issue of versatile speech representations

that could bear relevance to both speaker and speech recognition tasks. The pro-

posed scheme captures the prominent features of the speech spectrum ranging from

its broad trends (which correlate with vocal tract shape and length) to its rapidly

varying details (which capture information about harmonics and voice quality). Be-

cause of the non-targeted nature of the proposed multi-resolution analysis, it is able

to map the speech signal onto a rich space that highlights information about the

glottal shape and movements as well as vocal tract geometry and articulatory config-

uration. Notice how the proposed analysis allowed for defining two slightly different

feature representations for speech and speaker recognition tasks using the same fea-

ture analysis machinery. This multi-resolution representation can be viewed as a local

variant (w.r.t log-frequency axis) of the analysis provided by the cepstral decompo-

sition (MFCC). Spectral shape information in cepstral analysis is scattered over all

cepstrum coefficients and hence must be considered collectively, and not individu-

ally. In the proposed localized approach, one can mine the information in each scale

component individually. While the two methods perform comparably in clean, the

proposed feature representations reveal substantial robustness under noisy conditions

in both ASR and ASV tasks.

The current effort is not the first attempt at bringing more biological realism

to analysis of speech signals. A number of authors have explored improvements to
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speech feature analysis that ranged from detailed modeling of the efferent auditory

periphery, including intricate nonlinear effects and firing patterns at the auditory

nerve [70–74], cochleogram-type representations [75], stabilized and normalized audi-

tory image representations [76], to even more selective model-based spectro-temporal

fragments and dynamic maps [77, 78]. Auditory-inspired techniques have generally

led to noticeable improvements over more ’conventional’ signal processing methods

for recognition tasks, particularly when dealing with distorted signals in presence of

background or competing noises [16, 79, 80]. Additional techniques have also been

proposed to take advantage of the multi-resolution scheme taking place at more cen-

tral stations of the auditory pathway; whereby the spectral details of the signal as

they evolve over time are meticulously analyzed via parallel channels that capture in-

tricate details of the signal of interest. Recent implementations of such schemes have

been shown to yield noticeable improvements to automatic speech recognition, par-

ticularly with regards to its noise-robustness [49]. The current work falls in the same

category of more centrally-inspired analysis of speech signals. It provides two major

advantages over comparable methods [49,50]: It does not involve dimension-expanded

representations (close to 30,000 dimensions) which would inherently require tedious

and computationally-expensive schemes hence limiting their applicability. Instead,

our model is constrained to a perceptually-relevant spectral modulation subspace

and further uses a judicious sampling scheme to encode the information with only

four modulation filters. This results in a low-dimensional and highly robust feature

36



CHAPTER 2. SPEECH SOUND OBJECTS

space. The enhanced multi-resolution features also constrain temporal modulations

to a perceptually-relevant space shown to be crucial for speech comprehension. Note

that none of the components of the model have been calibrated to deal with a spe-

cific noise condition making it appropriate for testing in a wide range of acoustic

environments.

Our ongoing efforts are aimed at achieving further improvements by applying the

multi-resolution analysis on enhanced spectral profiles obtained from speech enhance-

ment techniques [22] that benefit from additional voice/speech activity detectors and

noise estimation/compensation techniques. Also, the noise robustness obtained here

from the proposed multi-resolution features can extend to other large scale ASR tasks

in TANDEM framework [81]. Similarly, more elaborate ASV systems are achiev-

able using multi-resolution features in conjunction with standard practices in speaker

recognition like factor analysis, supervectors and score normalization [46].
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Chapter 3

Multi-dimensional Representations

for Music Sound Objects

3.1 Chapter Outline

Timbre is the attribute of sound that allows humans and other animals to distin-

guish among different sound sources. Studies based on psychophysical judgments of

musical timbre, ecological analyses of sound’s physical characteristics as well as ma-

chine learning approaches have all suggested that timbre is a multifaceted attribute

that invokes both spectral and temporal sound features. Here, we explored the neural

underpinnings of musical timbre. We used a neuro-computational framework based

on spectro-temporal receptive fields, recorded from over a thousand neurons in the

mammalian primary auditory cortex as well as from simulated cortical neurons, aug-
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mented with a nonlinear classifier. The model was able to perform robust instrument

classification irrespective of pitch and playing style, with an accuracy of 98.7%. Us-

ing the same front end, the model was also able to reproduce perceptual distance

judgments between timbres as perceived by human listeners. We also extended this

model to continous musical performances and proposed a note extraction technique

along with model adaptation to be able to capture the musical instrument identitiy.

The study demonstrates that joint spectro-temporal features, such as those observed

in the mammalian primary auditory cortex, are critical to provide the rich-enough

representation necessary to account for perceptual judgments of timbre by human

listeners, as well as recognition of musical instruments.

3.2 Introduction

A fundamental role of auditory perception is to infer the likely source of a sound;

for instance to identify an animal in a dark forest, or to recognize a familiar voice on

the phone. Timbre, often referred to as the color of sound, is believed to play a key

role in this recognition process [82]. Though timbre is an intuitive concept, its formal

definition is less so. The ANSI definition of timbre describes it as that attribute

that allows us to distinguish between sounds having the same perceptual duration,

loudness, and pitch, such as two different musical instruments playing exactly the

same note [83]. In other words, it is neither duration, nor loudness, nor pitch; but is
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likely ”everything else”.

As has been often been pointed out, this definition by the negative does not state

what are the perceptual dimensions underlying timbre perception. Spectrum is ob-

viously a strong candidate: physical objects produce sounds with a spectral profile

that reflects their particular sets of vibration modes and resonances [84]. Measures of

spectral shape have thus been proposed as basic dimensions of timbre (e.g., formant

position for voiced sounds in speech, sharpness, and brightness) [2, 3]. But timbre is

not only spectrum, as changes of amplitude over time, the so-called temporal enve-

lope, also have strong perceptual effects [4, 5]. To identify the most salient timbre

dimensions, statistical techniques such as multidimensional scaling have been used:

perceptual differences between sound samples were collected and the underlying di-

mensionality of the timbre space inferred [6, 7]. These studies suggest a combination

of spectral and temporal dimensions to explain the perceptual distance judgments,

but the precise nature of these dimensions varies across studies and sound sets [9,85].

Importantly, almost all timbre dimensions that have been proposed to date on the

basis of psychophysical studies [86] are either purely spectral or purely temporal. The

only spectro-temporal aspect of sound that has been considered in this context is re-

lated to the asynchrony of partials around the onset of a sound [6,7], but the salience

of this spectro-temporal dimension was found to be weak and context-dependent [87].

Technological approaches, not concerned with biology nor human perception, have

explored much richer feature representations that span both spectral, temporal, and
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spectro-temporal dimensions. The motivation for these engineering techniques is an

accurate recognition of specific sounds or acoustic events in a variety of applications

(e.g. automatic speech recognition; voice detection; music information retrieval; tar-

get tracking in multisensor networks and surveillance systems; medical diagnosis,

etc.). Myriad spectral features have been proposed for audio content analysis, rang-

ing from simple summary statistics of spectral shape (e.g. spectral amplitude, peak,

centroid, flatness) to more elaborate descriptions of spectral information such as Mel-

Frequency Cepstral Coefficients (MFCC) and Linear or Perceptual Predictive Coding

(LPC or PLP) [88–90]. Such metrics have often been augmented with temporal infor-

mation, which was found to improve the robustness of content identification [91, 92].

Common modeling of temporal dynamics also ranged from simple summary statistics

such as onsets, attack time, velocity, acceleration and higher-order moments to more

sophisticated statistical temporal modeling using Hidden Markov Models, Artificial

Neural Networks, Adaptive Resonance Theory models, Liquid State Machine systems

and Self-Organizing Maps [93,94]. Overall, the choice of features was very dependent

on the task at hand, the complexity of the dataset, and the desired performance level

and robustness of the system.

Complementing perceptual and technological approaches, brain-imaging techniques

have been used to explore the neural underpinnings of timbre perception. Correlates

of musical timbre dimensions suggested by multidimensional scaling studies have been

observed using event-related potentials [10]. Other studies have attempted to iden-
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tify the neural substrates of natural sound recognition, by looking for brain areas

that would be selective to specific sound categories, such as voice-specific regions in

secondary cortical areas [11, 12] and other sound categories such as tools [13] or mu-

sical instruments [14]. A hierarchical model consistent with these findings has been

proposed in which selectivity to different sound categories is refined as one climbs

the processing chain [95]. An alternative, more distributed scheme has also been sug-

gested [96,97], which includes the contribution of low-level cues to the large perceptual

differences between these high-level sound categories.

A common issue for the psychophysical, technological, and neurophysiological in-

vestigations of timbre is that the generality of the results is mitigated by the particular

characteristics of the sound set used. For multi-dimensional scaling behavioral stud-

ies, by construction, the dimensions found will be the most salient within the sound

set; but they may not capture other dimensions which could nevertheless be crucial for

the recognition of sounds outside the set. For engineering studies, dimensions may be

designed arbitrarily as long as they afford good performance in a specific task. For the

imaging studies, there is no suggestion yet as to which low-level acoustic features may

be used to construct the various selectivity for high-level categories while preserving

invariance within a category. Furthermore, there is a major gap between these studies

and what is known from electrophysiological recordings in animal models. Decades

of work have established that auditory cortical responses display rich and complex

spectro-temporal receptive fields, even within primary areas [30, 98]. This seems at
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odds with the limited set of spectral or temporal dimensions that are classically used

to characterize timbre in perceptual studies.

To bridge this gap, we investigate how cortical processing of spectro-temporal

modulations can subserve both sound source recognition of musical instruments and

perceptual timbre judgments. Specifically, cortical receptive fields and computational

models derived from them are shown to be suited to classify a sound source from its

evoked neural activity, across a wide range of instruments, pitches and playing styles,

and also to predict accurately human judgments of timbre similarities

3.3 Methods

3.3.1 Psychoacoustics

3.3.1.1 Stimuli

Recordings of single musical notes were extracted from the RWC Music Database

[99], using the notes designated “medium-volume” and “staccato”, with pitches of A3,

D4, and G#4. The set used for the experiments comprised 13 sound sources: Piano,

Vibraphone, Marimba, Cello, Violin, Oboe, Clarinet, Trumpet, Bassoon, Trombone,

Saxophone, male singer singing the vowel /a/, male singer singing the vowel /i/. Each

note was edited into a separate sound file, truncated to 250 ms duration with 50ms

raised cosine offset ramp (the onset was preserved), and normalized in RMS power.
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More details on the sound set can be found in [100]. The analyses presented in the

current study exclude the results from the 2 vowels, as only musical instruments were

considered in the model classification experiments.

3.3.1.2 Participants and Apparatus

A total of twenty listeners participated in the study (14 totally nave participants,

6 participants experienced in psychoacoustics experiment but nave to the aim of

the present study; mean age: 28y; 10 female). They had no self-reported history

of hearing problems. All twenty subjects performed the test with the D4 pitch.

Only six took part in the remaining tests with notes A3 and G#4. Results from

the 6 subjects tested on all 3 notes are reported here, even though we checked that

including all subjects would not change our conclusions. Stimuli were played through

an RME Fireface sound-card at a 16-bit resolution and a 44.1 kHz sample-rate. They

were presented to both ears simultaneously through Sennheiser HD 250 Linear II

headphones. Presentation level was 65 dB(A). Listeners were tested individually in a

double-walled IAC sound booth.

3.3.1.3 Procedure

Subjective similarity ratings were collected. For a given trial, two sounds were

played with a 500 ms silent interval. Participants had to indicate how similar they

perceived the sounds to be. Responses were collected by means of a graphical interface
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with a continuous slider representing the perceptual similarity scale. The starting

position of the slider was randomized for each trial. Participants could repeat the

sound pair as often as needed before recording their rating. In an experimental

block, each sound was compared to all others (with both orders of presentations)

but not with itself. This gave a total of 156 trials per block, presented in random

order. Before collecting the experimental data, participants could hear the whole

sound set three times. A few practice trials were also provided until participants

reported having understood the task and instructions. A single pitch was used for all

instruments in each block; the three types of blocks (pitch A3, D4, or G#4) were run

in counterbalanced order across participants. Two blocks per pitch were run for each

participants, and only the second block was retained for the analysis.

3.3.1.4 Multidimensional scaling (MDS) and acoustical cor-

relates

To compare the results with previous studies, we ran an MDS analysis on the

dissimilarity matrix obtained from human judgments. A standard non-metric MDS

was performed (Matlab, the MathWorks). Stress values were generally small, with a

knee-point for the solution at two dimensions (0.081, Kruskal normalized stress1). We

also computed acoustical descriptors corresponding to the classic timbre dimensions.

Attack time was computed by taking the logarithm of the time taken to go from

-40dB to -12dB relative to the maximum waveform amplitude. Spectral centroid was
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computed by running the stimuli in an auditory filterbank, compressing the energy in

each channel (exponent: 0.3), and taking the center of mass of the resulting spectral

distribution.

3.3.2 Auditory Model

The cortical model is comprised of two main stages: an early stage mimicking

peripheral processing up to the level of the midbrain, and a central stage capturing

processing in primary auditory cortex (A1). This model is described in Section 1.2

and is given by Equations 1.1,1.2. The present study uses 11 spectral filters with

characteristic scales [0.25, 0.35, 0.50, 0.71, 1.00, 1.41, 2.00, 2.83, 4.00, 5.66, 8.00]

(cycles/octave) and 11 temporal filters with characteristic rates [4.0, 5.7, 8.0, 11.3,

16.0, 22.6, 32.0, 45.3, 64.0, 90.5, 128.0] (Hz), each with upward and downward direc-

tionality. All outputs are integrated over the time duration of each note. In order

to simplify the analysis, we limit our computations to the magnitude of the cortical

output r±(t, f ;ω,Ω; θ, φ) (i.e. responses corresponding to zero-phase filters).

Finally, dimensionality reduction is performed using tensor singular-value decom-

position [101]. This technique unfolds the cortical tensor along each dimension (fre-

quency, rate and scale axes) and applies singular value decomposition on the unfolded

matrix. We choose 5 eigenscales, 4 eigenrates and 21 eignefrequencies resulting in 420

features with the highest eigenvalues, preserving 99.9% of the variance in the original

data. The motivation for this cutoff choice is presented later.
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3.3.3 Cortical receptive Fields

Data used here was collected in the context of a number of studies [37, 102, 103]

and full details of the experimental paradigm are described in these publications.

Briefly, extracellular recordings were performed in 15 awake non-behaving domestic

ferrets (Mustela putorius) with surgically implanted headposts. Tungsten electrodes

(3-8 M) were used to record neural responses from single and multi-units at different

depths. All data was processed off-line and sorted to extract single-unit activity.

Spectro-Temporal Receptive fields (STRF) were characterized using TORC (Temporally-

Orthogonal Ripple Combination) stimuli [104], consisting of superimposed ripple

noises with rates between 4-24 (Hz) and scales between 0 (flat) and 1.4 peaks/octave.

Each stimulus was 3 sec with inter-stimulus intervals of 1 -1.2sec, and a full set of 30

TORCs was typically repeated 6-15 times. All sounds were computer-generated and

delivered to the animal’s ear through inserted earphones calibrated in-situ. TORC

amplitude is fixed between 55-75 dB SPL.

STRFs were derived using standard reverse correlation techniques, and a signal-to-

noise ratio (SNR) for each STRF was measured using a bootstrap technique (see [104]

for details). Only STRFs with SNR≥2 were included in the current study, resulting

in a database of 1110 STRFs (average 74 STRFs/animal). Note because of the

experimental paradigm, STRFs spanned a 5-octave range with low frequencies 125,

250 or 500Hz. In the current study, all STRFs were aligned to match the frequency

range of musical note spectrograms. Since all our spectrograms start at 180Hz and
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cover 5.3 octaves, we scaled and shifted the STRF’s to fit this range.

The neurophysiological STRFs were employed to perform the timbre analysis by

convolving each note’s auditory spectrogram z(t, f) with each STRF in the database

as shown in Equation 3.1.

rn(t, f) = z(t, f) ∗ STRF (t, f)(2) (3.1)

The resulting firing rate vector rn(t, f) was then integrated over time yielding an

average response across the tonotopic axis. The output from all STRFs were then

stacked together, resulting in a 142080 (128 frequency channels x1110 STRFs) dimen-

sional vector. We reduced this vector using singular value decomposition and mapped

it onto 420 dimensions, which preserve 99.9% of the data variance in agreement with

dimensionality used for model STRFs.

3.3.4 Timbre Classification

In order to test the cortical representation’s ability to discriminate between dif-

ferent musical instruments, we augmented the basic auditory model with a statistical

clustering model based on support vector machines (SVM) [105]. Support vector

machines are classifiers that learn a set of hyperplanes (or decision boundaries) in

order to maximally separate the patterns of cortical responses caused by the different

instruments.

Each cortical pattern was projected via Gaussian kernel to a new dimensional
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space. The use of kernels is a standard technique used with support vector machines,

aiming to map the data from its original space (where data may not be linearly sep-

arable) onto a new representational space that is linearly separable. This mapping

of data to a new (more linear space) through a the use of a kernel or transform is

commonly referred to as the “kernel trick” [105]. In essence, kernel functions aim

to determine the relative position or similarity between pairs of points in the data.

Because the data may lie in a space that is not linearly separable (not possible to

use simple lines or planes to separate the different classes), it is desirable to map the

data points onto a different space where this linear separability is possible. How-

ever, instead of simply projecting the data points themselves onto a high-dimensional

feature space which would increase complexity as a function of dimensionality, the

“kernel trick” avoids this direct mapping. Instead, it provides a method for mapping

the data into an inner product space without explicitly computing the mapping of

the observations directly. In other words, it computes the inner product between the

data points in the new space without computing the mapping explicitly. The kernel

used here is given by Equation 3.2

K(x, y) = exp (
−(x− y)T (x− y)

σ
) (3.2)

where x and y are the feature vectors of 2 sound samples. The parameter for the

Gaussian kernel and the cost parameter for the SVM algorithm were optimized on a

subset of the training data. A classifier Cij is trained for every pair of classes i and j.

Each of these classifiers then gives a label lij for a test sample. Note that lij=i or j. We
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count the number of labels Ri =
∑

1(lij = i). The test sample is then assigned to the

class with maximum count given by arg maxi(Ri). The parameter σ in Equation 3.2

was chosen by doing a grid search over a large parameter span in order to optimize the

classifier performance in correctly distinguishing different instruments. This tuning

was done by training and testing on a subset of the training data. For model testing,

we performed a standard k-fold cross validation procedure with k=10 (90% training,

10% testing). The dataset was divided into 10 parts. We then left out one part at

a time and trained on the remaining 9 parts. The results reported are the average

performance over all 10 iterations. A single Gaussian parameter was optimized for

all the pair-wise classifiers across all the 10-fold cross validation experiments.

3.3.5 Analysis of Support Vector distribution

In order to better understand the mapping of the different notes in the high-

dimensional space used to classify them, we performed a closer analysis of the support

vectors for each instrument pair i and j. Support vectors are the samples from each

class that fall exactly on the margin between class i and class j, and therefore are likely

to be more confusable between the classes. Since we are operating in the ’classifier

space’, each of the support vectors is defined in a reduced dimensional hyperspace

consisting of 5 eigen-scales, 4 eigen-rates, and 21 eigen-frequencies as explained above

(a total of 420 dimensions). The collection of all support vectors for each class i can

be pulled together to estimate a high-dimensional probability density function. The
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density function estimate was derived using a histogram method by partitioning the

sample space along each dimension into 100 bins, counting how many samples fall

into each bin and dividing the counts by the total number of samples. We label the

probability distribution for the d-th dimension (d = 1,..,420) pi,d. We then computed

the symmetric KL divergence, KLi,j(d) [58], between the support vectors for classes i

and j from the classifier Cij as shown in Equation 3.3. The KL divergence is simply a

measure of difference between pairs of probability distributions as defined in Equation

3.3.

KLi,j(d) = pi,dlog

(
pi,d
pj,d

)
+ pj,dlog

(
pj,d
pi,d

)
(3.3)

The bins with zero probability were disregarded from the computation of the KL di-

vergence. An alternative method that smoothed the probability distribution over the

zero bins was also tested and yielded virtually comparable results. Overall, this analy-

sis is meant to inform about the layout of the timbre decision space. We analyzed the

significance of the results between the broad timbre classes (winds, percussions and

strings) by pooling individual comparisons between instruments within each group

(See Figure 3.5).

3.3.6 Dataset

We used the RWC music database [99] for testing the model. 11 instruments were

used for this task, which included string (violin, piano, cello), percussion (vibraphone,
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marimba) and wind instruments (saxophone, trumpet, trombone, clarinet, oboe, and

bassoon). We extracted an average of 1980 notes per instrument ranging over different

makes of the instruments, as well as a wide range of pitches and styles of playing

(staccato, vibrato, etc.). The notes were on average 2.7 sec in duration but varied

between 0.1-18 sec. The sampling frequency of the wave files in the database was

44.1 kHz. We performed preprocessing on the sound files by first down sampling to

16 kHz then filtering using a pre-emphasis filter (FIR filter with coefficients 1 and

-0.97).

3.3.7 Human vs. Model Correlation

We tested the auditory model’s ability to predict human listeners’ judgment of

musical timbre distances. Just like the timbre classification task, we used the cortical

model augmented with Gaussian Kernels. In order to optimize the model to the test

data, we employed a variation of the Gaussian kernel that performs an optimized

feature embedding on every data dimension as defined in Equation 3.4.

K(x, y) = exp (−
N∑
i=1

(xi − yi)2

σi
) (3.4)

where N is the number of dimensions of the features x and y. σi’s are parameters for

the kernel that need to be optimized. We define an objective function that optimizes

the correlation between the human perceptual distances and the distances in the
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embedded space.

J =

∑n
i=1

∑n
j=1

(
K(xi, xj)−K

)
(D(i, j)−D)(

n(n−1)
2
− 1
)
σKσD

(3.5)

where xi is the average profile for the ith instrument over all notes; D(i, j) is the av-

erage perceived distance between the ith and jth instrument based on psychoacoustic

results K and D are the average distances from the kernel and the psychoacoustic

experiment respectively. σK represents the variance of the kernel distances over all

samples (all instrument pairs). Similarly σD is the variance of the human perceived

distances. We used a gradient ascent algorithm to learn σi which optimize the objec-

tive function.

The correlation analysis employed the same dataset used for the human psy-

chophysical experiment described above. Each note was 0.25s in duration with sam-

pling rate 44.1 kHz and underwent the same preprocessing as mentioned earlier. The

absolute value of the model output was derived for each note and averaged over du-

ration following a similar procedure as the timbre classification described above. The

cortical features obtained for the three notes (A3, D4, G#4) were averaged for each

instrument i to obtain xi. Similarly the perceived human distances between instru-

ment i and j were obtained by averaging the (i,j)th and (j,i)th entry in the human

distance matrix over all the 3 notes to obtain D(i,j).

Finally, the human and model similarity matrices were compared using the Pear-

son’s correlation metric. In order to avoid overestimating the correlation between

the two matrices (the two symmetric values appearing twice in the correlation), we
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correlated only the upper triangle of each matrix.

3.3.7.1 Dimensionality reduction of cortical features

As is the case with any classification problem in high-dimensional spaces, all anal-

yses above had to be performed on a reduced number of features which we obtained

using tensor singular value decomposition (TSVD), as described earlier. This step is

necessary in order to avoid the curse of dimensionality which reduces the predictive

power of the classifier as the dimensionality increases [106]. In order to determine

the ’optimal’ size of the reduced features, we ran a series of investigations with a

range of TSVD thresholds. The analysis comparing the correlation between the cor-

tical model and human judgments of timbre similarity is shown in Figure 3.8. The

analysis led to the choice of 420 dimensions as near optimal. It is important to note

that our tests were not fine-grained enough in order to determine the exact point

of optimality. Moreover, this choice is only valid with regards to the data at hand

and classifier used in this study, namely a support vector machine. If one were to

choose a different classifier, the optimal reduced dimensionality may be different. It

is merely a number that reflects the tradeoff between keeping a rich dimensionality

that captures the diversity of the data; while reducing the dimensionality in order to

fit the predictive power of the classifier.

To further emphasize this point, we ran a second analysis contrasting the system

performance with the full cortical model (joint spectro-temporal modulations) against
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a model with separable modulations; all while maintaining the dimensionality of

the reduced space fixed. This experiment (Figure 3.8 - red curve) confirmed that

the original space indeed biases the system performance, irrespective of the size of

reduced data. Results from Table 3.2 are also overlaid in the same figure for ease of

comparison.

3.3.8 Control experiments

3.3.8.1 Auditory spectrum analysis

The auditory spectrum was obtained by analyzing the input waveform with the

128 cochlear filters described above, and integrating over the time dimension. The

resulting feature vector was 128x1 representation of the spectral profile of each signal.

Unlike a simple Fourier analysis of the signal, the cochlear filtering stage operated on

a logarithmic axis with highly asymmetric filters.

3.3.8.2 Separable spectro-temporal modulation analysis

For an input spectrogram y(t, f), the response of each rate filter (RF) and scale

Filter(SF) was obtained separately as defined in Equations 3.6,3.7.

rt(t, f ;ω; θ) = y(t, f) ∗t RF (t;ω; θ) (3.6)

rs(t, f ; Ω;φ) = y(t, f) ∗f SF (t; Ω;φ) (3.7)
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where ∗t denotes convolution in time, ∗f denotes convolution in frequency and

θ is the characteristic phase of the RF and φ is the characteristic phase of the

SF which determine the degree of asymmetry in the time and frequency axis re-

spectively. Details of the design of the filter functions SF and RF can be found

in [33]. Unlike the analysis given in Equation 1.2, the spectral and temporal mod-

ulations were derived separately using one-dimensional complex-valued filters (ei-

ther along time or along frequency axis). The resulting magnitude outputs from

Equations 3.7,3.6 were then stacked together to form the feature vector with 4224

(11scalesX128frequecies+22ratesX128frequecies) dimensions. The dimensionality was

then reduced to 420 using tensor singular value decomposition retaining 99.9% of the

variance.

3.3.8.3 Global modulation analysis

For this experiment, we used the rt(t, f ;ω; θ) and rs(t, f ; Ω;φ) from Equations

3.7,3.6, and integrated the output over time and frequency for each note. The result-

ing rate and scale responses were then stacked together to form the feature vector.

3.3.8.4 Under sampled joint modulation

In this experiment we aimed to make the dimensionality of the cortical model

comparable to the separable model by under sampling the rate, scale and frequency

axes. The auditory spectrogram was down sampled along the frequency axis by a
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factor of 2. This auditory spectrogram representation was then analyzed by 6 spectral

filters with characteristic scales [0.25, 0.47, 0.87, 1.62, 3.03, 5.67] (cycles/octave) and

5 temporal filters with characteristic rates [4.0, 8.0, 16.0, 32.0, 64.0] (Hz), each with

upward and downward directionality resulting in a 3840 dimensional representation.

The dimensionality was then reduced to 420 using tensor singular value decomposition

retaining 99.99% of the variance

3.4 Results

3.4.1 Cortical processing of complex musical sounds

Responses in primary auditory cortex (A1) exhibit rich selectivity that extends

beyond the tonotopy observed in the auditory nerve. A1 neurons are not only tuned

to the spectral energy at a given frequency, but also to the specifics of the local

spectral shape such as its bandwidth [107], spectral symmetry [55], and temporal

dynamics [108] (Figure 3.1). Put together, one can view the resulting representation

of sound in A1 as a multidimensional mapping that spans at least three dimensions:

(1) Best frequencies that span the entire auditory range; (2) Spectral shapes (including

bandwidth and symmetry) that span a wide range from very broad (2-3 octaves) to

narrowly tuned (¡ 0.25 octaves); and (3) Dynamics that range from very slow to

relatively fast (1-30 Hz).

This rich cortical mapping may reflect an elegant strategy for extracting acous-
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Figure 3.1: Neurophysiological receptive fields. Each panel shows the receptive field
of 1 neuron with red indicating excitatory (preferred) responses, and blue indicating
inhibitory (suppressed) responses. Examples vary from narrowly tuned neurons (top
row) to broadly tuned ones (middle and bottom row). They also highlight variability
in temporal dynamics and orientation (upward or downward sweeps).

tic cues that subserve the perception of various acoustic attributes (pitch, loudness,

location, and timbre) as well as the recognition of complex sound objects, such as dif-

ferent musical instruments. This hypothesis was tested here by employing a database

of spectro-temporal receptive fields (STRFs) recorded from 1110 single units in pri-

mary auditory cortex of 15 awake non-behaving ferrets. These receptive fields are

linear descriptors of the selectivity of each cortical neuron to the spectral and tempo-

ral modulations evident in the cochlear ”spectrogram-like” representation of complex

58



CHAPTER 3. MUSIC SOUND OBJECTS

acoustic signals that emerges in the auditory periphery. Such STRFs (with a variety of

nonlinear refinements) have been shown to capture and predict well cortical responses

to a variety of complex sounds like speech, music, and modulated noise [109–113].

Figure 3.2: Schematic of the timbre recognition model. An acoustic waveform from
a test instrument is processed through a model of cochlear and midbrain processing;
yielding a time-frequency representation called auditory spectrogram. This later is
further processed through the cortical processing stage through neurophysiological or
model spectro-temporal receptive fields. Cortical responses of the target instrument
are tested against boundaries of a statistical SVM timbre model in order to identify
the instrument’s identity.

To test the efficacy of STRFs in generating a representation of sound that can

distinguish among a variety of complex categories, sounds from a large database

of musical instruments were mapped onto cortical responses using the physiological

STRFs described above. The time-frequency spectrogram for each note was con-

volved with each STRF in our neurophysiology database to yield a firing rate that is

then integrated over time. This initial mapping was then reduced in dimensionality

using singular value decomposition to a compact eigen-space; then augmented with

a nonlinear statistical analysis using support vector machine (SVM) with Gaussian

kernels [105] (see 3.3 for details). Briefly, support vector machines are classifiers that

learn to separate, in our specific case, the patterns of cortical responses induced by the

different instruments. The use of Gaussian kernels is a standard technique that allows
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Model
Performance

Mean STD

Auditory Spectrum
79.1% 0.7%

(Gaussian kernel SVM)

Neurophysiological STRFs
87.2% 0.8%

(Gaussian kernel SVM)

Full Cortical Model
96.2% 0.5%

(Linear SVM)

Full Cortical Model
98.7% 0.2%

(Gaussian kernel SVM)

Table 3.1: Classification performance for the different models. The middle column
indicates the mean of the accuracy scores for the 10 fold cross validation experiment
and the right column indicates their standard deviation. Models differ either in their
feature set (e.g. full cortical model versus auditory spectrogram) or in the classifier
used (linear SVM versus Gaussian kernel SVM).

to map the data from its original space (where data may not be linearly separable)

onto a new representational space that is linearly separable. Ultimately, the analysis

constructed a set of hyperplanes that outline the boundaries between different instru-

ments. The identity of a new sample was then defined based on its configuration in

this expanded space relative to the set of learned hyperplanes (Figure 3.2).

Based on the configuration above and a 10% cross-validation technique, the model

trained using the physiological cortical receptive fields achieved a classification accu-
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racy of 87.22% 0.81 (the number following the mean accuracy represents standard

deviation, see Table 3.1). Remarkably, this result was obtained with a large database

of 11 instruments playing between 30 and 90 different pitches with 3 to 19 playing

styles (depending on the instrument), 3 style dynamics (mezzo, forte and piano), and

3 manufacturers for each instrument (an average of 1980 notes/instrument). This

high classification accuracy was a strong indicator that neural processing at the level

of primary auditory cortex could not only provide a basis for distinguishing between

different instruments, but also had a robust invariant representation of instruments

over a wide range of pitches and playing styles.

3.4.2 The cortical model

Despite the encouraging results obtained using cortical receptive fields, the classifi-

cation based on neurophysiological recordings was hampered by various shortcomings

including recording noise and other experimental constraints. Also, the limited se-

lection of receptive fields (being from ferrets) tended to under-represent parameter

ranges relevant to humans such as lower frequencies, narrow bandwidths (limited to

a maximum resolution of 1.2 octaves), and coarse sampling of STRF dynamics.

To circumvent these biases, we employed a model that mimics the basic trans-

formations along the auditory pathway up to the level of A1. Effectively, the model

mapped the one-dimensional acoustic waveform onto a multidimensional feature space.

Importantly, the model allowed us to sample the cortical space more uniformly than
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Figure 3.3: Spectro-temporal modulation profiles highlighting timbre differences be-
tween piano and violin notes. (A) The plot shows the time-frequency auditory spec-
trogram of piano and violin notes. The temporal and spectral slices shown on the
right are marked. (B) The plots show magnitude cortical responses of four piano
notes (left panels), played in normal (left) and Staccato (right) at F4 (top) and F#4
(bottom); and four violin notes (right panels), played in normal (left) and Pizzicatto
(right) also at pitch F4(top) and F#4 (bottom). The white asterisks (upper leftmost
notes in each quadruplet) indicate the notes shown in part (A) of this figure.
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physiological data available to us, in line with findings in the literature [30,98,114].

The model operates by first mapping the acoustic signal into an auditory spec-

trogram. This initial transformation highlights the time varying spectral energies of

different instruments which is at the core of most acoustic correlates and machine

learning analyses of musical timbre [3, 9, 87, 115, 116]. For instance, temporal fea-

tures in a musical note include fast dynamics that reflect the quality of the sound

(scratchy, whispered, or purely voiced), as well as slower modulations that carry nu-

ances of musical timbre such as attack and decay times, subtle fluctuations of pitch

(vibrato) or amplitude (shimmer). Some of these characteristics can be readily seen

in the auditory spectrograms, but many are only implicitly represented. For example,

Figure 3.3A contrasts the auditory spectrogram of a piano vs. violin note. For violin,

the temporal cross-section reflects the soft onset and sustained nature of bowing and

typical vibrato fluctuations; the spectral slice captures the harmonic structure of the

musical note with the overall envelope reflecting the resonances of the violin body. By

contrast, the temporal and spectral modulations of a piano (playing the same note)

are quite different. Temporally, the onset of piano rises and falls much faster, and its

spectral envelope is much smoother.

The cortical stage of the auditory model further analyzes the spectral and temporal

modulations of the spectrogram along multiple spectral and temporal resolutions. The

model projects the auditory spectrogram onto a 4-dimensional space, representing

time, tonotopic frequency, spectral modulations (or scales) and temporal modulations
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(or rates). The four dimensions of the cortical output can be interpreted in various

ways. In one view, the cortical model output is a parallel repeated representation

of the auditory spectrogram viewed at different resolutions. A different view is one

of a bank of spectral and temporal modulation filters with different tuning (from

narrowband to broadband spectrally, and slow to fast modulations temporally). In

such view, the cortical representation is a display of spectro-temporal modulations

of each channel as they evolve over time. Ultimately each filter acts as a model

cortical neuron whose output reflects the tuning of that neuronal site. The model

employed here had 30,976 filters (128freq x 22 rates x 11 scales), hence allowing us

to obtain a full uniform coverage of the cortical space and bypassing the limitations

of neurophysiological data. Note that we are not suggesting that 30K neurons are

needed for timbre classification, as the feature space is reduced in further stages of

the model (see below). We have not performed an analysis of the number of neurons

needed for such task. Nonetheless, a large and uniform sampling of the space seemed

desirable.

By collapsing the cortical display over frequency and averaging over time, one

would obtain a two-dimensional display that preserves the ”global” distribution of

modulations over the remaining two dimensions of scale and rates. This ”scale-rate”

view is shown in Figure 3.3B for the same piano and violin notes in Figure 3.3A

as well as others. Each instrument here is played at two distinct pitches with two

different playing styles. The panels provide estimates of the overall distribution of
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spectro-temporal modulation of each sound. The left panel highlights the fact that

the violin vibrato concentrates its peak energy near 6 Hz (across all pitches and

styles); which matches the speed of pulsating pitch change caused by the rhythmic

rate of 6 pulses per second chosen for the vibrato of this violin note. By contrast,

the rapid onset of piano distributes its energy across a wider range of temporal mod-

ulations. Similarly, the unique pattern of peaks and valleys in spectral envelopes of

each instrument produces a broad distribution along the spectral modulation axis,

with the violin’s sharper spectral peaks activating higher spectral modulations while

the piano’s smoother profile activates broad bandwidths. Each instrument, therefore,

produces a correspondingly unique spectro-temporal activation pattern that could

potentially be used to recognize it or distinguish it from others.

3.4.3 Musical timbre classification

Several computational models were compared in the same classification task anal-

ysis of the database of musical instruments as described earlier with real neurophysio-

logical data. Results comparing all models are summarized in Table 3.1. For what we

refer to as the full model, we used the 4-D cortical model. The analysis started with

a linear mapping through the model receptive fields, followed by dimensionality re-

duction and statistical classification using support vector machines with re-optimized

Gaussian kernels (see 3.3). Tests used a 10% cross-validation method. The cortical

model yielded an excellent classification accuracy of 98.7%± 0.2.
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Figure 3.4: The confusion matrix for instrument classification using the auditory
spectrum. Each row sums to 100% classification (with red representing high values
and blue low values). Rows represent instruments to be identified and columns are
instrument classes. Off diagonal values that are non-dark blue represent errors in
classification. The overall accuracy from this confusion matrix is 79.1% 0.7.
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We also explored the use of linear support vector machine, by bypassing the

use of the Gaussian kernel. We performed a classification of instruments using the

cortical responses obtained from the model receptive fields and a linear SVM. After

optimization of the decision boundaries, we obtained an accuracy of 96.2% ± 0.5.

This result supports our initial assessment that the cortical space does indeed capture

most of the subtleties that are unique to a common instrument but distinct between

different classes. It is mostly the richness of the representation that underlies the

classification performance: only a small improvement in accuracy is observed by

adding the non-linear warping in the full model.

In order to better understand the contribution of the cortical analysis beyond

the time-frequency representation, we explored reduced versions of the full model.

First we performed the timbre classification task using the auditory spectrogram

as input. The feature spectra were obtained by processing the time waveform of

each note through the cochlear-like filterbank front-end and averaging the auditory

spectrograms over time, yielding a one-dimensional spectral profile for each note.

These were then processed through the same statistical SVM model, with Gaussian

functions optimized for this new representation using the exact same methods as

used for cortical features. The classification accuracy for the spectral slices with

SVM optimization attained a good but limited accuracy of 79.1%0.7. It is expected

that a purely spectral model would not be able to classify all instruments. Whereas

basic instrument classes differing by their physical characteristics (wind, percussion,
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strings) may have the potential to produce different spectral shapes, preserved in the

spectral vector, more subtle differences in the temporal domain should prove difficult

to recognize on this basis (see Figure 3.4). We shall revisit this issue of contribution

and interactions between spectral and temporal features later (see 3.4.7).

We performed a post-hoc analysis of the decision space based on cortical features

in an attempt to get a better understanding of the configuration of the decision hyper-

planes between different instrument classes. The analysis treated the support vectors

(i.e. samples of each instrument that fall right on the boundary that distinguishes it

from another instrument) for each instrument as samples from an underlying high-

dimensional probability density function. Then, a measure of similarity between pairs

of probability functions (symmetric Kullback-Leibler (KL) divergence [58]) was em-

ployed to provide a sense of distance between each instrument pair in the decision

space. Because of the size and variability in the timbre decision space, we pooled the

comparisons by instrument class (winds, strings and percussions). We also focused our

analysis on the reduced dimensions of the cortical space; called ’eigen’-rate, ’eigen’-

scale and ’eigen’-frequencies; obtained by projecting the equivalent dimensions in the

cortical tensor (rate, scale and frequency, respectively) into a reduced dimensional

space using singular-value decomposition (see 3.3). The analysis revealed a number

of observations (see Figure 3.5). For instance, wind and percussion classes were the

most different (occupy distant regions in the decision space), followed by strings and

percussions then strings and winds (average KL distances were 0.58, 0.41, 0.35, re-
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spectively). This observation was consistent with the subjective judgments of human

listeners presented next (see off-diagonal entries in Figure 3.6B). All 3 pair compar-

isons were statistically significantly different from each other (Wilcoxon ranksum test,

p¡10-5 for all 3 pairs). Secondly, the analysis revealed that the 2 first ’eigen’-rates

captured most of the difference between the instrument classes (statistical signifi-

cance in comparing the first 2 eigenrates with the others; Wilcoxon ranksum test,

p=0.0046). In contrast, all ’eigen’-scales were variable across classes (Kruskal-Wallis

test, p=0.9185 indicating that all ’eigen’-scales contributed equally in distinguishing

the broad classes). A similar analysis indicated that the first four ’eigen’-frequencies

were also significantly different from the remaining features (Wilcoxon ranksum test,

p¡10-5). One way to interpret these observations is that the first two principal ori-

entations along the rate axis captured most of the differences that distinguish winds,

strings and percussions. This seems consistent with the large differences in tempo-

ral envelope shape for these instruments classes, which can be represented by a few

rates. By contrast, the scale dimension (which captures mostly spectral shape, sym-

metry and bandwidth) was required in its entirety to draw a boundary between these

classes, suggesting that unlike the coarser temporal characteristics, differentiating

among instruments entails detailed spectral distinctions of a subtle nature.
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3.4.4 Comparison with standard classification al-

gorithms

Spectral features have been extensively used for tasks of musical timbre classifi-

cation of isolated notes, solo performances or even multi-instrument recordings. Fea-

tures such as Cepstral Coefficients or Linear Prediction of the spectrum resonances

yielded performance in the range of 77% to 90% when applied to databases similar

to the one used in the present study [117–119].

There is wide agreement in the literature that inclusion of simple temporal fea-

tures, such as zero-crossing rate, or more complex ones such as trajectory estimation

of spectral envelopes, is often desirable and results in improvement of the system

performance. Tests on the RWC database with both spectral and temporal features

reported an accuracy of 79.7% using 19 instruments [120] or 94.9% using 5 instru-

ments [116]. Tests of spectrotemporal features on other music databases has often

yielded a range of performances between 70-95% [121–124].

Whereas a detailed comparisons with our results is beyond the scope of this paper,

we can still note that, if anything, the recognition rates we report for the full auditory

model are generally in the range or above those reported by state-of-the-art signal

processing techniques.
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3.4.5 Psychophysics timbre judgments

Given the ability of the cortical model to capture the diversity of musical timbre

across a wide range of instruments in a classification task, we next explored how

well the cortical representation (from both real and model neurons) does in capturing

human perceptual judgments of distance in the musical timbre space. To this end, we

used human judgments of musical timbre distances using a psychoacoustic comparison

paradigm.

Human listeners were asked to rate the similarity between musical instruments.

We used three different notes (A3, D4 and G#4) in three different experiments. Sim-

ilarity matrices for all three notes yielded reasonably balanced average ratings across

subjects, instrument pair order (e.g. piano/violin vs. violin/piano) and pitches, in

agreement with other studies [125] (Figure 3.6A). Therefore, we combined the matri-

ces across notes and listeners into an upper half matrix shown in Figure 3.6B, and used

it for all subsequent analyses. For comparison with previous studies, we also ran a

multidimensional scaling (MDS) analysis [126] on this average timbre similarity rating

and confirmed that the general configuration of the perceptual space was consistent

with previous studies (Figure 3.6C) [6]. Also for comparison, we tested acoustical

dimensions suggested in those studies. The first dimension of our space correlated

strongly with the logarithm of attack-time (Pearson’s correlation coefficient: =0.97,

p¡10-3), and the second dimension correlated reasonably well with the center of mass

of the auditory spectrogram, also known as spectral centroid (Pearson’s correlation
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Figure 3.5: The average KL divergence between support vectors of instruments be-
longing to different broad classes. Each panel depicts the values of the 3 dimensional
average distances between pairs of instruments of a given couple of classes: (A) wind
vs. percussion; (B) string vs. percussion; (C) wind vs. string. The 3 dimensional
vectors are displayed along eigenrates (x-axis), eigenscales (y-axis) and eigenfrequency
(across small subpanels). Red indicates high values of KL divergence and blue indi-
cates low values.
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coefficient: =0.62, p=0.04).

3.4.6 Human vs. model timbre judgments

The perceptual results obtained above, reflecting subjective timbre distances be-

tween different instruments, summarizes an elaborate set of judgments that poten-

tially reveal other facets of timbre perception than the listeners’ ability to recognize

instruments. We then explored whether the cortical representation could account for

these judgments. Specifically, we asked whether the cortical analysis maps musical

notes onto a feature space where instruments like violin and cello are distinct, yet

closer to each other than a violin and a trumpet. We used the same 11 instruments

and 3 pitches (A3, D4 and G#4) employed in the psychoacoustics experiment above

and mapped them onto a cortical representation using both neurophysiological and

model STRFs. Each note was then vectorized into a feature data-point and mapped

via Gaussian kernels. These kernels are similar to the radial basis functions used

in the previous section, and aimed at mapping the data from its original cortical

space to a linearly separable space. Unlike the generic SVM used in the classification

of musical timbre, the kernel parameters here were optimized based on the human

scores following a similarity-based objective function. The task here was not merely

to classify instruments into distinct classes, but rather to map the cortical features

according to a complex set of rules. Using this learnt mapping, a confusion matrix

was constructed based on the instrument distances, which was then compared with
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the human confusion matrix using a Pearson’s correlation metric. We performed a

comparison with the physiological as well as model STRFs. The simulated confusion

matrices are shown in Figure 3.7A-B.

The success or otherwise of the different models was estimated by correlating the

human dissimilarity matrix to that generated by the model. No attempt was made at

producing MDS analyses of the model output, as meaningfully comparing MDS spaces

is not a trivial problem [125]. Physiological STRFs yielded a correlation coefficient

of 0.73, while model STRFs yielded a correlation of 0.94 (Table 3.2).

3.4.7 Control Experiments

In order to disentangle the contribution of the ”input” cortical features versus the

”back-end” machine learning in capturing human behavioral data, we recomputed

confusion matrices using alternative representations such as the auditory spectrogram

and various marginals of the cortical distributions. In all these control experiments,

the Gaussian kernels were re-optimized separately to fit the data representation being

explored.

We first investigated the performance using auditory spectrum features with opti-

mized Gaussian kernels. The spectrogram representation yielded a similarity matrix

that captures the main trends in human distance judgments, with a correlation coef-

ficient of 0.74 (Figure 3.7C, leftmost panel). Similar experiments using a traditional

spectrum (based on Fourier analysis of the signal) yield a correlation of 0.69.
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Figure 3.6: Human listener’s judgment of musical timbre similarity. (A) The mean
(top row) and standard deviation (bottom row) of the listeners’ responses show the
similarity between every pair of instruments for three notes A3, D4 and G#4. Red
(values close to 1) indicates high dissimilarity and blue (values close to 0) indicates
similarity. (B) Timbre similarity is averaged across subjects, musical notes and upper
and lower half-matrices, and used for validation of the physiological and computa-
tional model. (C) Multidimensional scaling (MDS) applied to the human similarity
matrix projected over 2 dimensions (shown to correlate with attack time and spectral
centroid).
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Feature Set
Distance Metric

L2

Features

L2

Reduced features

Gaussian kernel distance

Reduced features

Fourier-based Spectrum - - 0.69

Auditory Spectrum 0.473 - 0.739

Global Spectro-

temporal Modulation

0.509 - 0.701

Seperable Spectro-

temporal Modulations

0.561 0.561 0.830

Full Cortical Model 0.611 0.607 0.944

Neurophysiological

STRFs

- - 0.73

Table 3.2: Correlation coefficients for different feature sets. Each row represents the
correlation coefficient between the model and human similarity matrix using a direct
Euclidian distance the specific feature itself (left); on a reduced dimension of the fea-
tures (middle column) or using the Gaussian kernel distance (right column). Auditory
Spectrum: time-average of the cochlear filterbank; Global Spectro-temporal Modu-
lations: model STRFs averaged in time and frequency; Separable Spectro-temporal
modulations: model STRFs averaged separately in rate and scale, and then in time;
Full cortical model: STRFs averaged in time; Neurophysiological STRFs: as the full
cortical model, but with STRFs collected in primary auditory cortex of ferrets.
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Figure 3.7: Model musical timbre similarity. Instrument similarity matrices based
kernel optimization technique of the (A) neurophysiological receptive field and (B)
cortical model receptive fields. (C) Control experiments using the auditory spectral
features (left), separable spectro-temporal modulation feature (middle), and global
modulation features [separable spectral and temporal modulations integrated across
time and frequency] (right). Red depicts high dissimilarity. All the matrices show
only the upper half-matrix with the diagonal not shown.
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Next, we examined the effectiveness of the model cortical features by reducing

them to various marginal versions with fewer dimensions as follows. First, we per-

formed an analysis of the spectral and temporal modulations as a separable cascade

of two operations. Specifically, we analyzed the spectral profile of the auditory spec-

trogram (scales) independently from the temporal dynamics (rates) and stack the two

resulting feature vectors together. This analysis differed from the full cortical analy-

sis that assumes an inseparable analysis of spectro-temporal features. An inseparable

function is one that cannot be factorized into a function of time and a function of

frequency; i.e. a matrix of rank greater than 1 (see 3.3). By construction, a separable

function consists of temporal cross sections that are scaled versions of the same essen-

tial temporal function. A consequence of such constraint is that a separable function

cannot capture orientation in time-frequency space (e.g. FM sweeps). In contrast,

the full cortical analysis estimates modulations along both time and frequency axes

in addition to an integrated view of the two axes including orientation information

The analysis based on the separable model achieved a correlation coefficient of 0.83

(Table 3.2).

Second, we further reduced the separable spectro-temporal space by analyzing the

modulation content along both time and frequency without maintaining the distribu-

tion along the tonotopic axis. This was achieved by simply integrating the modulation

features along the spectral axis thus exploring the global characteristic of modula-

tion regardless of tonotopy (Figure 3.7C, rightmost panel). This representation is
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somewhat akin to what would result from a 2-dimensional Fourier analysis of the au-

ditory spectrogram. This experiment yielded a correlation coefficient of 0.70 (Table

3.2), supporting the value of an explicit tonotopic axis in capturing subtle difference

between instruments.

Next, we addressed the concern that the mere number of features included in the

full cortical model enough to explain the observed performance. We therefore under-

sampled the full cortical model by employing only 6 scale filters; 10 rate filters and

64 frequency filters by coarsely sampling the range of spectro-temporal modulations.

This mapping resulted in a total number of dimensions of 3840; to be comparable

to the 4224 dimensions obtained from the separable model. We then performed the

dimensionality reduction to 420 dimensions, similar to that used for the separable

analysis discussed above. The correlation obtained was 0.86; which is better than

that of the separable spectro-temporal model (see Figure 3.8). This result supports

our main claim that the coverage provided by the cortical space allows extracting

specific details in the musical notes that highlight information about the physical

properties of each instrument; hence enabling classification and recognition.

Finally, we examined the value of the kernel-learning compared to using a simple

Euclidian L2 distance at various stages of the model (e.g. peripheral model, cortical

stage, reduced cortical model using tensor singular value decomposition). Table 3.2

summarizes the results of this analysis along various stages of the model shown in

Figure 3.2. The analysis revealed that the kernel-based mapping does provide notice-
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able improvement to the predictive power of the model but cannot -by itself- explain

the results since the same technique applied directly on the spectrum only yielded a

correlation of 0.74.

Figure 3.8: Correlation between human and model similarity matrices as a function
of reduced feature dimensionality. In each simulation, a cortical representation is
projected onto a lower dimensional space before passing it onto the SVM classifier.
Each projection maintains a given percentage of the variability in the original data
(shown adjacent to each correlation data point). We contrast performance using full
cortical model (black curve) vs. separable spectro-temporal modulation model (red
curve). The empirical optimal performance is achieved around 420 dimensions; which
are the parameters reported in the main text in Table 3.2.
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3.5 Application to Musical Performances

As we have seen previously, models learnt on a data base of musical notes are able

to generalize well to unseen examples. It is desirable, however, to have a system that

could also generalize to continuous musical performances by artists. Such musical

recordings consist of sequences of notes and chords. This poses a challenge when a

system trained on isolated notes is used to classify continuous music recordings due

to the difference in temporal characteristics. We can either ignore the presence of

note boundaries and uniformly window the musical recording to note-sized segments

or identify regions of single note occurrences and segment them. The remainder of

this section we describe how we implement both these approaches.

3.5.1 Note Extraction

Traditionally the task of note extraction has been morphed into the task of de-

tecting note onsets and then labelling the region between two onsets as a note. Onset

detection involves evaluating the given audio signal using an onset detection function

and applying certain selection criteria to decide the onset times. Onsets are caused

by a break in the steady state nature of a note. Thus previous onset detection at-

tempts have tried to use phase deviation features which detect the departure from

steady state behaviour [127] [128]. However, a note is also characterized by a region

of relatively steady pitch and significant harmonicity level. We exploit this fact and
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propose a potential alternative to extract notes that would be able to identify regions

of stable pitch frequency and high harmonicity. This method described in detail below

performs better for instrument recognition when compared to some of the methods

from [128] based on weighted phase deviation and rectified complex domain features

on a small set of data. This is due to the fact that onset based approaches are sen-

sitive to signal level characteristics which are easily affected by changing conditions

like recording instruments and environments. However, the proposed method for note

extraction performs reliably in varying conditions by using high level information like

pitch and harmonicity estimates.

Continuous music recording consists of a series of notes and chords played in succes-

sion. To avoid the artifacts that occur from analyzing multiple notes, we segment

continuous recordings into individual notes based on estimating pitch and its har-

monicity. We estimate the pitch using a model based on a template matching pro-

posed by Goldstein et al. [129]. We compare the spectrogram slice of the audio at any

given time to templates generated at different pitches. These templates are models

of the auditory spectrum of a generic note at a particular pitch value. The pitch

of the best matching template is then assigned to be the pitch of the sound at that

time. For this purpose, we chose the pitch template T (f ; fp) to be a cosine function

modulated by a Gaussian envelope(see Fig. 3.9 a) repeated at the harmonics of a
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Figure 3.9: a. An example of the base function used to create the template b. An
example of the template for a particular pitch frequency.

particular pitch frequency fp as given by Eq 3.8.

rClT (f ; fp) =
∑
n

2e
−
(
f−nfp
αθ(n)

)2

cos(2π
θ(n)

β
(f − nfp)) (3.8)

where θ(n) = 1 + 0.7 ∗ n is a shrinkage factor, α = 18.28 and β = 26 are constants.

We then calculated the match in terms of correlation value H(t; fp) and used the

maximum value to calculate P (t), the pitch for that time instant, as shown in Eqs.

3.9, 3.10.

rClH(t; fp) = corr(y(f, t), T (f ; fp)) (3.9)

P (t) = argmax
fp

H(t; fp) (3.10)

S(t) = max
fp

H(t; fp) (3.11)

where y(f, t) is the spectrogram and corr is the Pearson’s correlation coefficient. The

harmonicity S(t) calculated as in Eq. 3.11 indicates the degree of match to the
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template at the selected pitch value. We know that boundary between 2 successive

notes can be identified by the change in the pitch of sound. We also know that due

to the overlap of notes at the note boundaries the harmonicity of the sound at the

boundary is not high. We exploit these two facts and decide the note boundaries

when both these criteria are met as described below.

We selected the potential note boundaries based on P (t) as those time instances

when the following condition is met:

Cabs(P (t)− ˜P (t)) ≥ τ1 (3.12)

˜P (t) = mode({P (t− w), P (t− w + 1)...P (t)}) (3.13)

where τ1 = 0.2 and w = 30ms.

We select the potential note boundaries based on S(t) (which is normalised to be

0 mean and unit variance) when the following criteria are satisfied.

CS(t) ≤ S(k) for all k : t− w ≤ k ≤ t+ w (3.14)

S(t) ≤
∑n+w

k=n−mw S(k)

mw + w + 1
− τ2 (3.15)

S(t) ≤ gµ(t− 1) (3.16)

where m = w = 30ms, τ2 = 0.3, and gµ(t− 1) is a thresholding function given by

Cgµ(t) = min(S(t), µgµ(t− 1) + (1− µ)S(t)) (3.17)

Finally the note boundaries are selected as those times where the potential note

boundaries based on both the pitch and harmonicity agree (with a tolerance of 40ms).
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Figure 3.10: The note extraction scheme is depicted here. An example of spectrogram
(A) of a piano audio segment containing 4 notes which is convolved with a pitch
template (B) to yield the pitch estimate (C) and harmonicity (D) along with the
candidate onset points. Finally the note boundaries are depicted in red (E) where
the candidates coincide.

This method not only has the advantage of looking at high level features like pitch

and harmonicity but also combines the information from these two methods to get

reliable candidates for note boundaries as shown in the example in Fig. 3.10.

3.5.1.1 Choice of Notes

We created a new database of commercially available CDs of solo instrumental

music performances recorded in studios for the six instruments mentioned above.

This database contains, on average two hours of data per instrument. All the sounds

were downsampled to 16kHz and pre-emphasized with a FIR filter with coefficients

[1 ,-0.97]. The goal of this experiment was to test a model trained on isolated notes
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Figure 3.11: Note accuracy as a function of the time cutoff τn

from RWC database against notes extracted from such recordings. One significant

source of error could be due to the fact that continuous recordings are not always a

sequence of notes. For example, a piano performance can have chords which leads to

the extraction of many small segments during note extraction due to the ambiguity

of pitch estimate. To remove this source of error, we use only those notes extracted

which are longer in time than a threshold τn. We tested for various values of τn

experimentally by testing against a system trained on RWC database and the results

are shown in Fig 3.11. Based on these results, we chose the optimal value of 750ms

as the value of τn for all future experiments.
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Figure 3.12: Accuracy for uniform windowing experiments i) and ii) as a function of
the time cutoff τw

3.5.1.2 Short Term analysis

As a computationally less expensive alternative to note extraction, we used uni-

form windowing of solo music, where each recording was segmented into non-overlapping

regions of duration τw. This method ignores the occurrences of notes or chords and

treats each segment equally. The time duration, τw, for this window is a parameter

which will control the degree of mismatch between the two databases. To estimate

the optimal value of τw, we ran 2 sets of experiments: i) train on notes from RWC

and test on uniform windowed segments from solo music database ii) train on uni-

form windowed segments from solo music database and test on RWC notes. There

is a tradeoff between these results and we choose 2s as the value for τw for all future

experiments as this seems to be quite important for experiment ii) as showing in Fig

3.12.
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3.5.2 Cross-domain testing

We train 3 different classifiers on features extracted from the RWC notes, notes

extracted from the solo music database and uniform window segments also from the

solo music database. We then test these 3 classifiers again all 3 feature sets. This

is done using k-fold cross validation technique with k=10. The results for these are

shown in table 3.3.

Table 3.3: The cross testing results.

Train \Test RWC Notes Windows

RWC 98.5%± 0.2% 78%± 2.1% 71%± 1%

Notes 44.7%± 0.9% 97.7%± 0.6% 93.4%± 0.5%

Windows 58.5%± 1.5% 97.3%± 0.5% 96.9%± 0.4%

The high classification accuracy for the cross testing between the note extraction

technique and uniform windowing technique on the solo music database tells us that

there was a high degree of agreement between these methods. The higher accuracy

for the note extraction technique as compared to the uniform windowing technique

when tested against a classifier trained on RWC notes indicates that note extraction

was better at reducing the difference between the datasets (as expected because the

RWC dataset also has isolated notes). Finally the low classification accuracy for the

classifiers trained on the feature sets derived from solo music database when tested

on RWC database indicates that RWC database is a more generalized database with
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much more variance in the data as compared to the solo music database. Thus this

model was limited and could not generalize to the wide range of variations present in

RWC database.

3.5.2.1 Model Adaptation

A key issue when testing systems on out-of-domain data was the difference in sta-

tistical distributions of the different datasets as was demonstrated previously. These

differences could have arisen due to many factors such as, differences in recording in-

struments, room acoustics, channel noise etc. Many adaptation techniques have been

proposed in the literature to adapt existing machine learning models using a small

set of data from the out of domain dataset. Here we assume that at least a limited

amount of data is available to adapt a trained model. In order to adapt the SVM

boundaries, we maximized the margin of the new data points using an objective func-

tion and learning mechanism similar to the original training of the model [130]. We

used this technique to adapt a system trained on RWC database using 200 notes per

class from the solo music recordings. The resulting improvement in performance from

80.27% to 86.6% indicated that the availability of limited data could be exploited to

adapt the model to different conditions.
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3.6 Discussion

This study demonstrates that perception of musical timbre could be effectively

based on neural activations patterns that sounds evoke at the level of primary auditory

cortex. Using neurophysiological recordings in mammalian auditory cortex as well as

a simplified model of cortical processing, it is possible to accurately replicate human

perceptual similarity judgments and classification performance among sounds from

a large number of musical instruments. Of course, showing that the information

is available at the level of primary auditory cortex does not imply that all neural

correlates of sound identification will be found at this level. Nevertheless, it suggests

that the spectro-temporal transforms as observed at this stage are critical for timbre

perception. Moreover, our analysis highlights the ability of the cortical mapping

to capture timbre properties of musical notes and instrument-specific characteristics

regardless of pitch and playing style. Unlike static or reduced views of timbre that

emphasize three or four parameters extracted from the acoustic waveform, the cortical

analysis provides a dynamic view of the spectro-temporal modulations in the signal

as they vary over time. A close examination of the contribution of different auditory

features and processing stages to the timbre percepts highlights three key points.

First, neither the traditional spectrum nor its variants (e.g. average auditory spec-

trum [32]) are well-suited to account for timbre perception in full. According to our

simulations, these representations encode the relevant spectral and temporal acous-

tic features too implicitly to lend themselves for exploitation by classifiers and other
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machine learning techniques. In some sense, this conclusion is expected given the mul-

tidimensional nature of the timbre percept compared to the dense two-dimensional

spectrogram; and is in agreement with other findings from the literature [93].

Second, when considering more elaborate spectro-temporal cortical representa-

tions, it appears that the full representation accounts best for human performance.

The match worsens if instead marginals are used by collapsing the cortical represen-

tation onto one or more dimensions to extract the purely spectral or temporal axes

or scale-rate map (Figure 3.8, Tables 3.1 and 3.2). This is the case even if all dimen-

sions are used separately, suggesting that there are joint spectro-temporal features

that are key to a full accounting of timbre. While the role of both purely spectral

and temporal cues in musical timbre is quite established [86], our analysis emphasizes

the crucial contribution of a joint spectro-temporal representation. For example, FM

modulations typical of vibrato in string instruments are joint features that cannot be

easily captured by the marginal spectral or temporal representations. Interestingly,

acoustical analyses and fMRI data in monkeys suggest that the spectro-temporal pro-

cessing scheme used here may be able to differentiate between broad sound categories

(such as monkey calls vs. bird calls vs. human voice), with corresponding neural

correlates when listening to those sounds [131].

Third, a nonlinear decision boundary in the SVM classifier is essential to attain

the highest possible match between the cortical representation and human perception.

Linear metrics such as L2 are less optimal, indicating that the linear cortical repre-
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sentation may not be sufficiently versatile to capture the nuances of various timbres.

The inadequacy of the linear cortical mapping has previously been described when

analyzing neural responses to complex sounds such as speech at the level of auditory

cortex [110,111,113]. In these cases, it is necessary to postulate the existence of non-

linearities such as divisive normalization or synaptic depression that follows a linear

spectro-temporal analysis so as to account fully for the observed responses. In the

current study, the exact nature of the nonlinearity remains unclear as it is implicitly

subsumed in the Gaussian kernels and subsequent decisions.

We then attempted to extened this model to continuous musical recordings. We

showed that a constant windowing approach was not able to capture all the nuances

present at the note boundaries. We proposed a note extraction scheme based on

a template matching approach which is believed to be biologically plausible. This

approach along with model adaptation was shown to be the most beneficial in cross

testing of models trained on musical notes and tested on musical performances.

In summary, this study leads to the general conclusion that timbre percepts can

be effectively explained by the joint spectro-temporal analysis performed at the level

of mammalian auditory cortex. However, unlike the small number of spectral or

temporal dimensions that have been traditionally considered in the timbre literature,

we cannot highlight a simple set of neural dimensions subserving timbre percep-

tion. Instead, the model suggests that subtle perceptual distinctions exhibited by

human listeners are based on ’opportunistic’ acoustic dimensions [100] that are se-
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lected and enhanced, when required, on the rich baseline provided by the cortical

spectro-temporal representation.
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Chapter 4

Multi-dimensional Representations

for Soundscapes and Role of

Attention

4.1 Introduction

An auditory object is often equated to the sound produced by a single source

[132]. While the correspondence between the two is not always a one-to-one mapping,

the soundscape incident on a listener generally consists of multiple auditory objects

that constitute the acoustic scene. Identifying an auditory object is not a trivial

task, especially since each object can present itself in a multitude of variations. For

example, the blast of a car horn can differ depending on the make, the speed of the
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vehicle, and also the distance of the vehicle from the listener. Subsequently, this

makes the identification of a collection of auditory objects (i.e. the acoustic scene)

significantly harder. To add to this complexity, the nature and number of acoustic

objects in a typical scene change over time. In a street, the sounds coming from

passing cars can blend every now and then with speech from pedestrians or music

from street artists. Changing scenarios add a new dimension of difficulty to the task

of acoustic scene classification.

Attempts at automatic acoustic event and scene classification have typically fol-

lowed the path of extracting short term features from waveforms and learning the

statistics of these features to later classify an unknown example. Mel Frequency

Cepstral Coefficients (MFCC), filterbank energies or Perceptual Linear Prediction

coefficients (PLP) have been popularly used as features for this task [23–25]. They

are often complimented with other low level features like zero crossing rate, short

time energy, spectral flux, pitch, brightness and bandwidth [24, 26, 27] or are trans-

formed to account for long term statistics [28]. Though short term spectral attributes

coupled with low-level features have been quite successful in a number of applica-

tions, studies have also shown that they are limited in capturing the full range of

information relevant for acoustic scene recognition; and that joint local modulations

in energy along both time and frequency are able to better capture the qualities of

acoustic scenes [29]. This rich modulation space builds on neurophysiological studies

in the mammalian auditory system indicating that neurons at the level of auditory
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cortex respond to local joint spectral and temporal modulation in the signal [30]. This

biological analysis can be viewed as mapping sound onto a high dimensional feature

space which captures the detailed variations of the spectral profile and its temporal

variations, as a basis for representing acoustic events.

This sensory mapping is complemented with cognitive mechanisms, most notably

task-driven attention, which allows us to isolate and recognize objects of interest

amidst other competing sound events [36]. Neurophysiological and brain imaging

studies have shown that task-driven attention modulates the gain of sensory cortex

responses to highlight features of interest [133,134]. Attention has been argued to act

as a Bayesian prior representing distribution of beliefs acting as gating mechanism to

reduce uncertainty, to increase signal-to-noise ratio or to refine perceptual inference

around some goal-specific point in sensory space [135]. In addition, attention is also

believed to modulate cognitive and decision-making frontal areas of the brain, most

notably prefrontal cortex [136]. Psychoacoustic evidence also supports the premise

that attention operates at multiple levels, be it feature-based or object-based levels

of representation [40–42, 137]. Motivated by these observations, the current study

attempts to develop a scheme that incorporates attentional mechanisms in a model

for scene recognition for multi-source environments. The model focuses on attentional

processes operating at the level of both sensory representation and cognitive decisions.
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4.2 Methods

4.2.1 Experimental Setup

4.2.1.1 Data

All the experiments are conducted on the BBC Sound Effects Database [138]

which contains 18 scene classes. We selected 12 scenes from these as listed in Table

1 based on the number of recordings which in total resulted in 47 hours of data.

The recordings which are at 44.1kHz sampling rate are down sampled to 16kHz and

pre-emphasized using a filter with coefficients [1 -0.97]. These recordings are then

randomly divided into training and testing sets in a 9:1 ratio. To simulate a multi-

source environment (ME) we further mix the recordings in the test set with recordings

from other classes at different target to masker ratios (TMR) from -20dB to 20dB in

steps of 5dB. In addition to this, as an Adaptation Set(AS) we create 180 randomly

chosen 1s segments for each class from the training set and simulated the multisource

environment conditions similar to the testing set as explained above.

4.2.1.2 Testing

All the models will be trained on the original training dataset and some experi-

mental conditions are allowed to use the Adaptation set to adapt different parameters.

The model is then tested on the recordings in the ME set and is asked to detect the
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presence of the target class. We consider a measure that not only considers the hit

rate (HR) but also the false alarms (FA) to ensure that the model is not biased

towards recognizing the target class. This measure is the Dprime measure evaluated

as d′ = Z(HR)−Z(FA) where Z(.) is the inverse cumulative distribution function of

a standard normal distribution. Consider an example confusion matrix show in Table

4.1 which was a result of evaluating the system with class 2 designated as the target

class. Then the Hit Rate is calculated as HR2 = X22/(X21+X22+X23). The False

Alarm rate would be calculated as FA2 = (X12 +X32)/(X11 +X13 +X31 +X33).

Thus we need an improvement in not only correct recognition of the target when it is

present but also to recognize the absence of target to get an improved Dprime score.

Table 4.1: An example confusion matrix with three classes.

True Label \Predicted Label 1 2 3

1 X11 X12 X13

2 X21 X22 X23

3 X31 X32 X33

4.2.1.3 Baseline

We compare the proposed sensory based feature representations with two state

of the art representations for auditory scene analysis : 1) MFCC [23] 2) Opensmile

features [139] . For the MFCC features we use a Hamming window length of 25ms
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with an overlap of 15ms and 13 dimensional MFCCs are calculated and finally the

C0 component is ignored. The mean, standard deviation and skew is calculated for

these 12 coefficients over the duration of the segment and concatenated resulting in

36 dimensional feature vectors.

For the Opensmile features we use the opensource toolkit [140] with the configura-

tion set to emo large.conf feature set. This scheme extracts four main basic features

sets namely spectral, cepstral, energy and voicing features. The derivative and ac-

celeration coefficients of these basic features are concatenated. These short term

features are then combined into a single feature for the entire duration of the consid-

ered segment using 39 statistical functionals like mean, standard deviation, quartiles,

percentiles etc resulting in a 6669 dimensional feature vector. These features are then

reduced to a 120 dimensional feature vector using SVD technique to keep 99.99% of

the variance.

4.2.2 Scene Analysis Model

The proposed model for scene analysis (Figure 4.1) can be divided into the sensory

based feature representation stage and the object representation stage. We further-

more implemented adaptation strategies to readjust both these stages of the model

to a given target class.
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Figure 4.1: Schematic of the proposed scene analysis model. The basic and high-
dimensional acoustic representation modules project the acoustic stimuli into a robust,
discriminative high dimensional representation as described in 4.2.2.1. The percep-
tual object recognition module collects the statistics of sound objects and learns to
discriminate classes as described in 4.2.2.2. The attentional feedback module collects
information related to the target and the environmental information related to the
task at hand. It then relays back information to influence the gain and orientation of
the high dimensional feature extraction stage and also the statistical models in the
object representation stage. These influences tune the system to better detect the
presence of the target source sounds.
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Table 4.2: List of Classes used and number of recordings and amount of data in
minutes for each class.

Class Number of Recordings Minutes

Transportation 559 781

Animals 426 597

Foley 220 133

Industry 140 181

Humans 129 326

Emergency 119 142

Sports 77 156

Technology 77 60

Water 60 178

SciFi 58 21

Households 48 83

Weather 41 155

4.2.2.1 Sensory Feature Representation

We implemented a feature representation scheme broadly based on the processing

of the sound in the mammalian auditory system. This scheme is further divided

into 3 stages. The first stage models the transformations from the periphery to the

cochlear nucleus and is given by Equation 1.1 in Section 1.2. The smoothing filter

µ(t; τ) is applied with a time constant of τ = 4ms. The resulting time frequency
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representation z(f, t) from the second stage is referred to as the auditory spectrogram.

The third stage of processing mimics the behavior of the primary auditory cortex. The

neurons at this stage are sensitive to various features like frequency, pitch, temporal

variations, spectral modulations, joint spectrotemporal variations etc. Thus these

neurons are effectively acting as feature detectors for the higher stages of processing

in the auditory cortex. We modeled these as a bank of 2d Gabor filters (GF(.))

which are sensitive to joint temporal and spectral variations (denoted by rates r and

scales s respectively) as given in Equation 1.3 in Section 1.2. These filters are linear

approximations to the receptive field shapes found in the primary auditory cortex

[34, 109]. The filtering operation can be viewed as a two dimensional convolution

with the auditory spectrogram followed by time averaging of the absolute response

as shown in Equation 4.1, resulting in a 3 dimensional tensor representation of the

cortical features CF (f, s, r). The averaging is done over non overlapping 1s windows

for each recording. We consider the Gabor filters at 10 upward and 10 downward

rates in equal logarithmic steps from 2Hz to 215Hz; and at 11 scales from 0.25 cycles

per octave to 8 cycles per octave at uniform steps in the logarithmic scale. The

features are reduced to a size of 120 features (x) retaining 99% of the variance using

the Tensor SVD dimensionality reduction method [101].

CF (s, r; f) =
∑
t

|z(f, t)⊗t,f GF (s, r; f, t)| (4.1)
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4.2.2.2 Object Representation

The features from the training data for each class are used to learn a Gaussian

mixture model (GMM) representation which models the distribution of the features.

We use 128 mixtures for each class with diagonal covariance matrices. During testing

given a recording we extract x(t), the time series of reduced features as explained

above and the class with the highest posterior probability under the learnt GMM is

chosen as the label(l̃) for the recording as shown in Equation 4.2.

l̃ = argmax
l
P (z(t)|l) (4.2)

4.2.3 Models of Attention at the Sensory Feature

Representation stage

As discussed in the previous section, task driven attentional effects at the sensory

representation stage can be seen as a boosting or gain of the relevant feature detectors

or as a shape change to detect new relevant features. We describe below how we

incorporate these in our model in order to improve the performance in detecting the

given target.

4.2.3.1 Gain Adaptation

Given a target to attend to, we adapt the gains of the Gabor filters using prior

knowledge of the target. Here we use the mean activity pattern (Ml) from the entire
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training data as the prior knowledge to adapt the gains. Ml is normalized to be

between 0 and 1. We limit the level of adaptation using a gain control parameter

α. The gains (gl) are limited to be in the range of 1 − α to 1 as shown in Equation

4.3. We then simply weight the output of the filtering operation with these gain

coefficients as in Equation 4.4. This operation should suppress those features which

were not active during training and retain only the active features.

gl(f, s, r) = (1− α) +Ml(f, s, r) ∗ α (4.3)

ĈF l(s, r; f) = gl(f, s, r) ∗ CF (s, r; f) (4.4)

4.2.3.2 Orientation Adaptation

In order to attend to the target class (l), we propose a mechanism to fine tune

the filter shapes in such a way that the features of the target class are enhanced.

Here we allow the filter to change its shape only by changing the orientation of the

main lobe (Figure 4.2) within a fixed limit of 3 degrees. The orientation is calculated

as θ = arctan(s/r). Using the adaptation set for the target class, we calculate the

best orientation for each filter, which results in most similar maximum activity to the

mean activity of the target class, at the output of the filters on average, as shown

in Equation 4.5. We then use these pairs of filter parameters to design the Gabor

filters and extract features as in Equation 4.1. Here theta0 represents the original
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orientation, ˆthetal represents the optimized orientation.

θ̂l = arg max
|θ−θ0|≤3

∑
f

(CFl(s, r; f)−Ml(s0, r0; f))2 (4.5)

Thus by allowing the filters to fine tune their orientation to the target in the

multisource setting the detection performance should be enhanced.

Figure 4.2: An example of a Gabor Filter. The orientation θ for the filter is calculated
from the slope of the main lobe of the Gabor filter. Orientation Adaptation allows
this orientation to be changed within a limit of 3 degrees such that the similarity to
the target mean representation is maximized.

4.2.4 Models of Attention at the Object Represen-

tation stage

Attending to a particular target is known to induce adaptation at higher stages of

processing in the auditory system, which deal with object representations [41,136]. In

order to model this phenomenon we use a strategy of adapting the guassian mixtures
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using MAP adaptation technique. MAP adaptation has been proven to be useful for

many applications like Image segmentation [141], EEG verifications [142], Speaker

Verification [143] etc. We use the adaptation set for the target class to calculate the

reduced features X. Using these features, we adapt the GMM parameters (ϕ), which

contain the means and the prior probabilities of the target class mixtures, as shown in

Equation 4.6. Here γ = (1 + β)−1 where β is the relevance parameter which controls

the degree of adaptation. Increasing values of β leads to more reliance on the new

data. This mechanism of adaptation should adjust the target class model to better

represent the distribution of the target in the multisource testing condition.

ϕ̂ = argmax
ϕ

P (X|ϕ)1−γP (ϕ)γ (4.6)

4.3 Results

In order to test the performance of the proposed system, we train the GMM model

on the clean training set, and further adapt the system to the considered target class

using the Adaptation set as explained in Sections 4.2.3, 4.2.4. This system is then

tested in the ME condition using the artificially generated ME set to generate a

confusion matrix for each SNR condition. We then compute the d’ metric for each

confusion matrix generated. We repeat this process for all the 12 classes as the

target class. The results for the proposed system, Opensmile baseline and the MFCC

baseline system are given in Table 4.3. We observe an doubling and tripling in the
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dprime result of the proposed system when compared to the OpenSmile baseline and

MFCC baseline respectively. This remarkable improvement shows the ability of the

proposed system to better identify the target sources in the multisource environment.

In order to better assess the contribution of the different adaptation techniques of the

proposed system, we test the different components of the system below.

Table 4.3: Dprime evaluation results for the proposed system with and without adap-
tation and the baseline systems.

System Dprime

Proposed System 1.15

Proposed System without Adaptation 0.52

Opensmile features 0.51

MFCC features 0.36

4.3.1 Gain Adaptation

The proposed gain adaptation technique uses prior knowledge of the target class

mean activation pattern as described before in Section 4.2.3.1. This method boosts

the output of those GF filters whose mean activitty is high in the target class. Thus in

the ME testing condition we boost the target representation and supress the interfer-

ence sources. In order to test this system we evaluate a system without Orientation

Adaptation. Within such a system we further test for - with and without Object

Adaptation conditions. The results for these testing conditions are shown in Table
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4.4. The 48% relative improvement of the Gain Adaptation system with respect to

the Proposed System without any Adaptation techniques shows that the proposed

approach to suppressing the background distractions while enhancing the target rep-

resentation is effective. Moreover applying the Object Adaptation technique enhances

the Gain Adaptation by a further 45% relative improvement. This complimentary

improvements by the adapation techniques at the Feature representation and Object

representation stages further enforces the ability of the Gain Adaptation technique

to boost the target representation.

Table 4.4: Dprime evaluation results for Gain Adaptation system with and without
Object Adaptation.

System Dprime

Proposed System 1.15

Gain Adaptation & Object Adaptation 1.12

Gain Adaptation 0.77

Proposed System without Adaptation 0.52

4.3.2 Orientation Adaptation

The propsed Orientation Adaptation technique uses prior knowledge about the

target class and adapts the orientation of the Gabor Filters using the AS examples to

fine tune the orientation of the main lobe to maximize the similarity of the response

to the target class. Thus we enhance the representation of the target class and supress
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the representation of the other sources in the ME condition. To test this hypothesis

we evaluate the proposed system without Gain Adaptation, both with and without

Object Adaptation. The results of these evaluations can be found in Table 4.5. The

19% relative improvement is obtained by the Orientation Adaptation technique when

compared to the proposed system without any Adaptation applied. This shows the

ability of the Orientation Adaptation technique to enhance the target source repre-

sentation in the presence of distracting background sources. A further 27% relative

improvement is achieved by coupling the Object Apatation and Orientation Adapta-

tion techniques. This shows that by further adapting the statistical representation of

the Objecte Representation stage, we are able to further enhance the separation of

the target class induced by Orientation Adaptation.

Table 4.5: Dprime evaluation results for Orientation Adaptation system with and
without Object Adaptation.

System Dprime

Proposed System 1.15

Orientation Adaptation & Object Adaptation 0.79

Orientation Adaptation 0.62

Proposed System without Adaptation 0.52
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4.3.3 Object Adaptation

The propsed Object Adaptation technique uses the AS examples to change the

statistics of the Object Representation stage to better fit the multisource evalua-

tion scenario. We use MAP adaptation technique to move the means and the prior

probabilites of the Gaussian Mixtures in the Object Representation stage to the new

statistics in the ME setting. In order to test the Object Adaptation stage we evalu-

ate the proposed system with and without Object Adaptation. We also evaluate the

proposed system with and without Gain and Orientation Adaptation. The results of

these tests can be found in Table 4.6. We see a 36% relative improvement by applying

the Object Adaptation technique as compared to a system without any Adaptation.

However, when Object Adaptation technique is applied to a system with Gain and

Orientation Adaptation we see a 47% relative improvement in performance. Thus we

can see that 1) the Object Adapation technique is effective at modifying the Object

Representation to match the changed statistics in the ME testing condition 2) the

Object Adaptation technique performs better in conjunction with Gain and Orienta-

tion Adaption showing that the enhancement of target representation is essential to

best identify the target in multisource setting. All the results above are assimilated

in the Figure 4.3 to show the progression of improvements achieved by the various

adaptation techniques.
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Figure 4.3: Overall results on the ME testing condition. The proposed system, base-
line systems and the various adaptations utilized in the proposed system.
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Table 4.6: Dprime evaluation results for Proposed system with and without Object
Adaptation. We also evaluate the Object Adaptation without Gain and Orientation
Adaptation.

System Dprime

Proposed System 1.15

Gain & Orientation Adaptation 0.78

Object Adaptation 0.71

Proposed System without Adaptation 0.52

4.4 Discussion

Automatic systems for auditory scene recognition or sound object recognition con-

sist of two main components - feature extraction and statistical modelling. Existing

studies focus on improving the feature extraction and building improved statistical

models [23, 144]. However all of these systems are feed forward in nature [24, 26].

Multiple studies attempt to adapt the system to changing evironmental conditions.

This is achieved by the use of statistical techniques which adapt the statistical mod-

els [141–143]. Neurophysiological studies however show that top-down attentional

mechanisms affect the sensory cortex responses and the higher decision making stages

along the auditory pathway [133,134,136]. It is important to however note that such

mechanisms differ from the more well known bottom-up attentional mechanisms.

Such bottom-up mechanisms are known to be feed-forward and involuntary and come

into action when a salient event captures your attention. For example when a lound
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bang captures your attention in an otherwise normal scenario. Top-down attentional

mechanisms are voluntary and come into effect when the subject predecides to pay

attention to a target. For example when we are trying to pay attention to speech in

the middle of a noisy street.

In this study we use a representation of sound which was not only proven to

provide high degree of seperability between different classes of audio but also provides

a convinient mechanism to incorporate top-down task driven attention [145]. Here we

proposed new techniques to improve the recognition of target classes in the presence of

multiple sources. The proposed system consists of two techniques to adapt the Sensory

Feature Representation stage and a technique to adapt the Object Representation

stage. At the Feature Representation stage we proposed a technique to change the

gain of the Gabor Filters to enhance the target class represenation. We also proposed

a techniqe to change the orienation of the main lobe of the Gabor Filter to fine tune

the filters to the target class in the ME condition. At the Object Represenation

stage we adapt the statistical model to better fit the changing statistics in the ME

condition. We showed the effectiveness of the proposed techniques individually and

in conjugation with each other at detecting the target class. Such an adaptation

technique would be useful in various applications for mobile devices which are often

used in various acoustic conditions with multiple sources.

In the future we aim to expand this work to build a system which can pay attention

to a target class but also continually adapt to changing environmental conditions. We
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also intend to examine the ability of the system to choose the attentional mechanism

and the degree of modulation to be used automatically depending on the target

class, the current manifestation of the target source and the distracting background

sources. Another direction of investigation would be to incorporate the ability of

non-parametric shape changes of the Gabor filters to capture the target sounds.
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Conclusion

5.1 Thesis Overview

The human auditory perception system is exposed to a wide variety of acoustic

stimuli, be it a well defined musical note, a friend speaking, or a complex acoustic

scene like a bar or a busy fair. Humans are able to effortlessly analyse all these

complex sounds and extract meaningful information from them. This suggests that

a similar processing mechanism is sufficient to deal with a wide variety of acoustic

sound classes. In this thesis we tested this hypothesis by proposing a high dimensional

sound object representation mechanism which was motivated by the neurophysiolog-

ical studies on the transformations in the auditory pathway. This representation

captures the various modulations present in sounds by analyzing the sounds locally

at multiple resolutions leading to a multi-dimensional representation. Such a high
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dimensional mapping projects different sounds to distinct regions leading to better

discriminability. We then showed that this model is able to capture a wide variety of

sound classes (speech, music, soundscapes) by applying it to the tasks of speech recog-

nition, speaker verification, musical instrument recognition and acoustic soundscape

recognition.

We first tested the proposed hierarchical sound object recognition system’s ability

to capture speech sound objects. The spectral characteristics of speech sound objects

demonstrate a lot of intricate information which can be used to identify them. Thus

we modified the proposed high dimensional representation to focus on the analysis

of spectral characteristics in a detailed yet computationally-efficient manner. This

approach captures the promient features of the spectrum varying from the broad

variations (related to vocal tract shape and length) to finer modulations (related to

harmonics and voice quality). We showed how this representation yields itself to

capturing speech information content and the messenger/speaker information and

how it can be fine tuned to these tasks. While the well known cepstral coefficients

(MFCC) capture global modulations along the spectral slice, the proposed approach

captures local modulations as various resolutions. We showed that while the two

approaches are comparable in performance in clean conditions, the proposed approach

outperforms a state-of-art system in mismatch noisy testing condition for both the

speech recognition and speaker verification tasks.

The proposed sound object recognition system was then applied to the task of
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musical instrument recognition. We showed that using a model of cortical process-

ing, we were able to accurately replicate the human perceptual similarity judgments

and also were able to get a good classification performance on a large set of musical

instruments. Our analysis showed that the proposed representation captures instru-

ment identity regardless of pitch and playing style. From the perception matching

experiments we learnt that 1) neither the traditional spectrum nor its variants were

well-suited to account for timbre perception 2) the full cortical representaion is essen-

tial and that none of the marginals are sufficient 3) a non-linear decision boundary

is essential in the SVM to get the best match and the presence of non-linearities at

the cortical stage is well known. Moreover, we were able to extend this model to

continuous musical recordings where we showed that a biologically plausible template

based note extraction scheme along with model adaptation were successful in extrap-

olating the models learnt on notes to the new setting. In summary, this study leads to

the general conclusion that timbre percepts can be effectively explained by the joint

spectro-temporal analysis performed at the level of mammalian auditory cortex.

The previous approaches at classifying acoustic scenes reply on representations of

the signal characteristics like zero crossing rate, loudness etc. in combination with

spectral features like cepstral coefficients, perceptual linear prediction coefficients etc.

In this thesis we showed that a simple set of features based on capturing the modu-

lations from the time-frequency auditory spectrogram in a joint manner is sufficient

to capture the identity of the acoustic scenes and outperform the previously reported
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techniques. However in complex soundscapes there are multiple sound sources pro-

ducing sounds at the same time. Thus we saw the need to have a mechanism of

selecting a target source from this mix of sources.

5.1.1 Model of Top-down Attention

The auditory system is well known to be a bi-directional system where, in the

bottom-up direction the transformations on the stimuli from the environment occurs

as the information travels upwards towards decision making areas, and in the top-

down direction feedback information is applied on these lower level transformations

in such a way to either enchance the representation of the target sounds or to bet-

ter adapt to the changing environmental conditions. In such a system the top-down

influences act in a complimentary manner enhancing the output of the bottom-up

system. The previously proposed models in the literature for soundscape recognition

follow a feed-forward topology which is static and does not adapt to different tasks.

In this thesis we proposed a flexible framework where we were able to implement a

top-down attention module which is complimentary to the proposed high dimensional

acoustic feature extraction mechanism. This attention module is a distributed system

operating at multiple stages. It affects the Sensory Feature Representation stage by

adapting the gain and orientation of the filters. It also affects the Object Representa-

tion stage by moving the statistical models to better fit the changing environmental

conditions. In summary, the attentional feedback module acts as a retuning mech-
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anism, that adapts the same system to different tasks. We showed that such an

adaptation mechanism is able to tremendously improve the performance of the sys-

tem at detecting the target source in the presence of various distracting background

sources.

5.2 Alternative Hypothesis

In this thesis we tested the hypothesis that similar representations are capable of

representing various sounds belonging to diverse categories. However there could be

alternate strategies employed by the auditory system in order to tackle different tasks.

For example some studies show that there could be dedicated processing pathways for

analyzing different classes of sounds [13]. This could mean that the representations

along these different paths could indeed be distinct from each other. There is further

evidence which shows that within speech there are distinct streams of processing for

slow and fast varying components of speech [1]. The information from these streams

could then be combined at a later stage of processing (See Figure 5.1). We have done

some work incorporating this knowledge to provide improved enhancement of speech

recognition by dividing the processing of modulations into different streams [146].

Alternatively, there could be different distinguishing features of sounds that are

not captured by the proposed modulation analysis. For example, there is some evi-

dence of template based matching in the auditory pathway that could be useful for
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Figure 5.1: Multiple streams of Processing. A distint pathways for processing the
slow and fast varying components of speech. Adapted from [1]

pitch perception [147]. Note that we have also incorporated a template matching

based approach for note extraction as described in Section 3.5.1. In the future we

would like to investigate further into template based approaches for sound object

recognition and possibly apply it in a different stream of processing which would act

in a complimentary manner to the proposed high dimensional modulation analysis.
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