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a b s t r a c t 

Missing-data strategies have been developed to improve the noise-robustness of automatic speech recog- 

nition systems in adverse acoustic conditions. This is achieved by classifying time-frequency (T-F) units 

into reliable and unreliable components, as indicated by a so-called binary mask. Different approaches 

have been proposed to handle unreliable feature components, each with distinct advantages. The direct 

masking (DM) approach attenuates unreliable T-F units in the spectral domain, which allows the extrac- 

tion of conventionally used mel-frequency cepstral coefficients (MFCCs). Instead of attenuating unreliable 

components in the feature extraction front-end, full marginalization (FM) discards unreliable feature com- 

ponents in the classification back-end. Finally, bounded marginalization (BM) can be used to combine the 

evidence from both reliable and unreliable feature components during classification. Since each of these 

approaches utilizes the knowledge about reliable and unreliable feature components in a different way, 

they will respond differently to estimation errors in the binary mask. The goal of this study was to iden- 

tify the most effective strategy to exploit knowledge about reliable and unreliable feature components 

in the context of automatic speaker identification (SID). A systematic evaluation under ideal and non- 

ideal conditions demonstrated that the robustness to errors in the binary mask varied substantially across 

the different missing-data strategies. Moreover, full and bounded marginalization showed complementary 

performances in stationary and non-stationary background noises and were subsequently combined using 

a simple score fusion. This approach consistently outperformed individual SID systems in all considered 

experimental conditions. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

1. Introduction 

The automatic identification of speakers in adverse scenar- 

ios is an important building block for many applications, includ- 

ing access control, authentication, personalization of communica- 

tion services and forensic applications ( Campbell, 1997; Camp- 

bell et al., 2009 ). Conventional speaker identification (SID) sys- 

tems employ mel-frequency cepstral coefficients (MFCCs) in com- 

bination with Gaussian mixture model (GMM) classifiers ( Reynolds 

and Rose, 1995 ) and universal background model (UBM) adaptation 

( Reynolds et al., 20 0 0 ). To increase the robustness of SID systems 

against changes in the acoustic environment between the training 

and testing stage, feature normalization strategies are usually ap- 

plied. The most commonly used normalization strategies are file- 

based or adaptive cepstral mean and variance normalization ( Viikki 
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and Laurila, 1998 ) as well as histogram equalization (HEQ) tech- 

niques ( de la Torre et al., 2005 ). 

In contrast to conventional approaches, the missing-data 

technique classifies the time-frequency (T-F) representation of 

noisy speech into target-dominated (reliable) and interference- 

dominated (unreliable) T-F units ( Cooke et al., 2001 ). This binary 

decision can, for example, be accomplished by the so-called ideal 

binary mask (IBM), which assumes a priori knowledge about the 

energy of the target and the interfering noise ( Wang, 2005 ). The 

recognition of speaker identities is subsequently performed using 

only those T-F units that are believed to be reliable. Many stud- 

ies have demonstrated that the missing-data technique improves 

the robustness of automatic speech recognition ( Vizinho et al., 

1999; Cooke et al., 2001; Ris and Dupont, 2001 ) and SID systems 

( Drygajlo and El-Maliki, 1998; Jan ̌covi ̌c and Köküer, 2006; Shao and 

Wang, 2006; May et al., 2012a; 2012b; Zhao et al., 2014 ) in noisy 

environments. If, instead of a binary classification, an estimation 

of the feature uncertainty is available, this information can be ex- 

http://dx.doi.org/10.1016/j.specom.2016.12.002 
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ploited by an uncertainty decoder for improved robustness ( Deng 

et al., 2005; Shao et al., 2007; Ozerov et al., 2013; Yu et al., 2014 ). 

For a comprehensive overview the reader is referred to Kolossa and 

Haeb-Umbach (2011) . 

Assuming that a binary decision about the feature reliability is 

available, two different approaches exist to incorporate the knowl- 

edge about reliable and unreliable T-F units in the classification 

back-end. The first - full marginalization (FM) - ignores all unre- 

liable T-F units and estimates the likelihood of a particular speaker 

identity based on reliable T-F units only. Despite being dominated 

by noise, unreliable T-F units can be used to provide counter- 

evidence based on the concept of energetic masking ( Cooke et al., 

2001 ). Consequently, the second approach - bounded marginaliza- 

tion (BM) - additionally exploits knowledge about unreliable T-F 

units for improved identification performance by effectively penal- 

izing less energetic speaker models. 

One of the most critical factors that limits the performance of 

missing-data strategies is the accuracy of the binary mask. When 

a priori knowledge in form of the IBM is available, the BM ap- 

proach is very effective and produces SID scores above 95% , even 

at negative signal-to-noise ratios (SNRs) ( May et al., 2012b ). How- 

ever, when estimated binary masks (EBMs) are used instead, the 

achievable performance of BM decreases due to misclassified T-F 

units in the binary mask, most noticeably in highly non-stationary 

background noises ( May et al., 2012b ). In addition, BM treats reli- 

able and unreliable feature components differently during classifi- 

cation and, thus, requires a correspondence between the individual 

T-F units in the binary mask and the feature components used for 

recognition. Therefore, the BM approach is limited to spectral fea- 

tures, such as filter-bank energy (FBE) features, which are known 

to be less powerful than their decorrelated counterparts, such as 

MFCC features, which operate in the cepstral domain. 

The performance of FBE features can be improved by applying 

a derivative finite impulse response (FIR) filter across frequency 

channels, which produces decorrelated filter-bank energy (DFBE) 

features ( Nadeu et al., 1995; 2001 ). These DFBE features achieve 

similar SID performance compared to MFCC features, with the 

advantage that frequency-specific distortions due to background 

noise remain local and can still be associated with a restricted set 

of T-F units. While it is not beneficial to exploit information about 

unreliable T-F units after the FIR-based decorrelation stage due to 

the wide feature bounds ( Barker, 2012 ), DFBE features can be com- 

bined with FM, where unreliable feature components are ignored 

during classification. 

Alternatively, the knowledge about reliable and unreliable T-F 

units can be exploited in the feature extraction front-end. Specifi- 

cally, the spectral representation of noisy speech can be enhanced 

by a binary or continuous gain function ( El-Solh et al., 2007; Sad- 

jadi and Hansen, 2010; Jensen and Hendriks, 2012; Godin et al., 

2013 ). This allows the use of conventional decorrelation stages, 

such as the discrete cosine transform (DCT), to convert the modi- 

fied FBE features to MFCC features. When assuming a priori knowl- 

edge about the noise power, it was shown that an ideal noise re- 

duction scheme based on a continuous gain function achieved the 

same SID performance compared to IBM-based BM ( May et al., 

2012b ). Likewise, the direct masking (DM) approach applies the 

IBM directly to the FBE features, and was reported to produce simi- 

lar automatic speech recognition performance compared to the BM 

strategy ( Hartmann et al., 2013 ). However, estimation errors in the 

gain function can distort the resulting feature vector, which may 

limit the effectiveness under realistic conditions. 

Each of the aforementioned missing-data methods has distinct 

advantages and applies the binary mask in a different way. As 

a result, mask estimation errors will have different consequences 

on the achievable speaker identification performance. Nevertheless, 

the influence of binary mask errors on the different missing-data 

strategies has not yet been systematically investigated. The ma- 

jority of studies obtained an estimation of the binary mask by 

predicting the local SNR in individual T-F units ( Drygajlo and El- 

Maliki, 1998; Renevey and Drygajlo, 20 0 0; Cooke et al., 20 01; Ris 

and Dupont, 2001; May et al., 2012b ). Recently, supervised learning 

approaches have reported increased mask estimation accuracies by 

exploiting a prior knowledge about the distribution of acoustic fea- 

tures observed during an initial training phase ( Seltzer et al., 2004; 

May and Dau, 2013; 2014; Zhao et al., 2014 ). However, the gen- 

eral advantage of missing-data strategies is that speaker models 

are trained with clean speech only, and no prior knowledge about 

the acoustic environment or about the interfering noise is required. 

SID systems based on the GMM-UBM back-end are the most 

commonly-used systems when applying missing-data strategies 

( Togneri and Pullella, 2011; May et al., 2012a; 2012b; Zhao et al., 

2012; 2014 ). Lately, the i-vector approach has received increasing 

attention, in particular in the field of speaker verification, by con- 

sidering the inter- and intra-speaker variability of the feature vec- 

tor ( Dehak et al., 2011 ). A recent comparative study of noise re- 

duction strategies (e.g. power spectral subtraction, Wiener filter- 

ing and log-minimum mean-square error speech enhancement) re- 

ported similar relative improvements over a MFCC baseline system 

for both GMM-UBM and i-vector-based SID systems ( Godin et al., 

2013 ). From this perspective, a similar benefit can be expected 

when the DM approach is combined with i-vector-based SID sys- 

tems. 

The goal of this study was to determine the effectiveness of full 

marginalization, bounded marginalization and direct masking in 

the context of closed-set SID under ideal and non-ideal conditions. 

To facilitate a proper comparison, a unified framework was used to 

optimize the criteria for deriving ideal and estimated binary masks 

for each missing-data system separately. In non-ideal conditions, 

EBMs were obtained by applying a threshold criterion to the es- 

timated speech presence probability (SPP) in individual T-F units, 

which was shown to produce competitive results compared to su- 

pervised learning approaches ( May and Gerkmann, 2014 ). A sys- 

tematic comparison between ideal and non-ideal conditions was 

performed to analyze the robustness of the different missing-data 

approaches to estimation errors in the binary mask. Moreover, the 

SID performance was compared to a conventional noise reduction 

scheme. Afterwards, the noise-robustness of the most successful 

missing-data systems was compared to a conventional MFCC sys- 

tem across a wide range of acoustic conditions. Finally, a simple 

score fusion was tested which combined two missing-data systems 

with complementary advantages in stationary and non-stationary 

background noises. To support reproducible research, the complete 

Matlab code of the SID framework, which was used to produce all 

experimental results in the present study, is available online ( May, 

2016 ). 

2. System 

The SID framework shown in Fig. 1 consisted of a training and 

a testing stage. First, speaker models were trained with features 

extracted from clean speech. In the testing stage, features were 

derived from noisy speech and the reliability of individual fea- 

ture components was estimated by means of a binary mask. The 

subsequent classification stage was configured to use three dif- 

ferent missing-data strategies, namely full marginalization (FM), 

bounded marginalization (BM) and direct masking (DM). Depend- 

ing on which type of missing-data strategy was used, different fea- 

ture decorrelation and normalization stages were combined. A list 

of tested configurations is shown in Table 1 . Each processing stage 

is described in detail in the following. 
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Fig. 1. Block diagram showing the training and the testing stage of the speaker identification framework. 

Table 1 

Configurations of evaluated SID systems. 

Direct Decor- Normal-Method Features masking relation ization Classifier

FBE BM FBE no no no BM
DFBE FM FBE no FIR HEQ FM
DFBE DM FBE yes FIR HEQ GMM
MFCC DM FBE yes DCT HEQ GMM

2.1. Filter-bank energy features 

The input signal was sampled at a rate of 16 kHz and divided 

into overlapping frames of 20 ms duration with a shift of 10 ms. 

Each frame was Hamming windowed and zero-padded to a length 

of 512 samples and a short-time discrete Fourier transform (STFT) 

was computed. The STFT magnitudes were multiplied by 32 audi- 

tory filters whose center frequencies were equally spaced on the 

mel-frequency scale between 80 and 80 0 0 Hz, resulting in an au- 

ditory spectrogram. This auditory spectrogram was cube-root com- 

pressed to produce the final set of FBE features used for identifi- 

cation. Cube-root compression is often employed in missing-data 

systems because it allows for a proper definition of the lower fea- 

ture bound, which is commonly set to zero. 

2.2. Binary masks 

2.2.1. Ideal binary mask 

The IBM requires a priori information about the target and the 

masker. Assuming knowledge about the energy of both the target 

and masker in individual T-F units, the true local SNR was com- 

puted. Subsequently, the IBM M IBM 

( t, f ) was determined by com- 

paring the SNR in time frame t and frequency channel f to a pre- 

defined local criterion (LC) 

M IBM 

( t, f ) = 

{
1 if SNR ( t, f ) > LC 

0 otherwise . 
(1) 

2.2.2. Estimated binary mask 

In practical applications, the IBM is not available and, hence, 

has to be blindly estimated from the noisy speech signal. In this 

study, the binary mask was estimated by an algorithm that does 

not require any a priori knowledge about the target or the inter- 

fering signal. More specifically, the EBM was derived from noisy 

speech by first estimating the a posteriori SPP in the STFT domain 

using Gerkmann and Hendriks (2012) . Here, the same STFT param- 

eters as described in Section 2.1 were used. This discrete Fourier 

transform domain SPP was integrated into 32 auditory filters and 

averaged across a spectro-temporal neighborhood function, which 

substantially improved the accuracy of the EBM ( May and Gerk- 

mann, 2014 ). Following May and Gerkmann (2014) , a plus-shaped 

neighborhood function spanning over 5 time frames and 5 auditory 

filters was applied. Finally, the estimated binary mask M EBM 

( t, f ) 
was obtained by comparing the SPP in the auditory domain, de- 

noted as ˜ P ( t, f ) , in time frame t and frequency channel f to a 

threshold 

M EBM 

( t, f ) = 

{
1 if ˜ P ( t, f ) > θSPP 

0 otherwise . 
(2) 

2.3. Direct masking 

The binary mask was applied as a binary gain function directly 

to the compressed FBE features to attenuate noise-dominated fea- 

ture components. The amount of noise reduction was limited by a 

lower floor β in order to reduce the impact of distortions (musi- 

cal noise) caused by the binary processing. Commonly used floor 

values are within the range of 20–26 dB ( Berouti et al., 1979; An- 

zalone et al., 2006; Zhao et al., 2014 ). In this study, β was set to 

26 dB according to Zhao et al. (2014) . 

2.4. Decorrelation stage 

2.4.1. FIR-based frequency filtering 

A second-order FIR was used to filter the compressed FBE 

features across frequency to produce decorrelated filter-bank en- 

ergy (DFBE) features ( Nadeu et al., 2001 ). In contrast to the 

conventionally-used DCT, the FIR filtering maintains the frequency 

axis of the feature space by combining information present in two 

neighboring frequency channels. As a result, the influence of inter- 

fering noise in a restricted frequency region can still be assigned to 

a limited frequency range in the DFBE feature space, which makes 

it possible to use DFBE features in combination with full marginal- 

ization. 

2.4.2. DCT 

The classical MFCC features were obtained by applying a DCT 

to the FBE features ( Davis and Mermelstein, 1980 ). The first basis 
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function of the DCT is related to the overall energy and, therefore, 

is strongly affected by interfering noise. Thus, the first MFCC fea- 

ture was omitted for improved noise-robustness and 13 coefficients 

(2nd–14th) were retained. 

2.5. Feature normalization 

To improve the ability of the trained speaker models to deal 

with acoustic conditions that differed from the clean training data, 

the extracted features were normalized by file-based HEQ ( de la 

Torre et al., 2005 ). Instead of normalizing only the feature mean 

and the variance ( Viikki and Laurila, 1998 ), HEQ equalizes all mo- 

ments of the feature distribution. The HEQ was performed with a 

mapping function consisting of 100 percentiles using the reference 

implementation from Schädler and Kollmeier (2015) . 

2.6. Classification 

Each classifier produced a matrix of likelihood scores, which 

contained the frame-based likelihoods for each of the enrolled 

speaker identity. Equal prior probabilities were assumed for all 

speakers. 

2.6.1. Gaussian mixture models 

A conventional GMM classifier was used to calculate frame- 

based likelihoods ( Reynolds and Rose, 1995 ). 

2.6.2. Full marginalization 

Given a binary mask, the classifier was modified to discard un- 

reliable T-F units during identification and computed the frame- 

based likelihoods based on reliable T-F units only ( Cooke et al., 

2001 ). 

2.6.3. Bounded marginalization 

Given a binary mask, the BM classifier utilized knowledge about 

both reliable and unreliable T-F units ( Cooke et al., 2001 ). The 

lower bound was set to zero and the upper bound for each un- 

reliable T-F unit was set to the corresponding FBE feature value. 

2.7. Score fusion and identification 

A simple score fusion approach according to Zhao et al. (2012) ; 

2014 ) was implemented to combine the evidence provided from 

multiple SID systems. First, a vector of SID scores s was produced 

for each system by adding the frame level log-likelihood scores 

across all frames. Then, this vector of SID scores s was normalized 

across all enrolled speaker identities to a range between [0, 1] for 

each individual SID system separately 

ˆ s = 

s − min ( s ) 

max ( s ) − min ( s ) 
, (3) 

and subsequently combined across SID systems on a sentence-by- 

sentence basis. The SID decision was obtained by selecting the 

speaker identity that maximized the final SID score. 

3. Evaluation 

3.1. Databases 

Closed-set speaker identification experiments were conducted 

using two different databases, namely the EMIME database 1 

( Wester, 2010 ) consisting of 56 speakers and the TIMIT database 

( Garofolo et al., 1993 ) containing 630 speakers. The smaller EMIME 

1 The EMIME database is available at http://www.emime.org 

database was used as a validation set, whereas large-scale com- 

parisons were performed using the TIMIT database. In general, 

a restricted subset of 10 sentences was randomly selected for 

each speaker, from which 8 sentences were used for training (see 

Section 3.2 ) and the remaining 2 sentences were mixed with 

noise at various SNRs and subsequently used for evaluation (see 

Section 3.3 ). To reduce the influence of this randomized selection, 

the speaker identification performance was averaged over a series 

of 10 simulations, each containing a new set of randomly selected 

sentences for training and testing. 

The EMIME database consists of bilingual recordings from four 

different languages (English, Finnish, German and Mandarin). For 

each language, a set of 145 sentences is available for 14 speakers (7 

male and 7 female talkers) in their respective mother tongue and 

in English. For the SID experiments reported in this study, the En- 

glish recordings based on the close-talking microphone were used, 

resulting in a closed set of 56 speakers (28 male and 28 female 

talkers). 

The TIMIT database contains 10 phonetically balanced sentences 

from 630 speakers (438 males and 192 females), forming a set of 

6300 sentences ( Garofolo et al., 1993 ). The two dialect sentences 

(the SA sentences) were the same across all 630 speakers, and, 

therefore, were always included in the training set. 

3.2. Model training 

All SID systems were trained with features extracted from clean 

speech. A simple energy-based voice activity detector was used 

during training to consider only features with relevant speech ac- 

tivity. Speech activity was detected if the frame-based energy was 

within 40 dB of the global maximum measured across each sen- 

tence ( Kinnunen and Li, 2010 ). 

Speaker models were trained using the following two-step pro- 

cedure. First, a UBM was constructed by training a 128-component 

GMM with diagonal covariance matrices using the pooled speech 

material from all enrolled speakers. Second, speaker-specific GMM 

models were obtained by adapting the mean vectors of the UBM 

to the speaker-specific speech material using 5 iterations and a 

relevance factor of 16 ( Reynolds et al., 20 0 0 ). The UBM adap- 

tation of speaker models has been shown to substantially im- 

prove the performance of missing-data SID systems, in particu- 

lar for non-stationary background noises ( May et al., 2012b ). All 

GMMs were implemented using the NETLAB package ( Nabney and 

Bishop, 2004 ). Whenever the TIMIT database was used, the UBM 

was trained with the remaining speech material from 430 speak- 

ers that were not used for the actual identification experiment in 

order to support sequential enrollment of speaker identities. 

3.3. Evaluation 

The speaker identification systems were tested with noisy 

speech. Therefore, the clean speech material was corrupted with 

different noise types at −5, 0, 5, 10 and 15 dB SNR. The fol- 

lowing five background noises were used: two types of speech- 

shaped noise (stationary ICRA1-noise and non-stationary ICRA7- 

noise ( Dreschler et al., 2001 )), 0.5-Hz amplitude-modulated white 

noise, as well as factory noise and cockpit noise from the NOI- 

SEX database ( Varga and Steeneken, 1993 ). The SID performance 

was evaluated by comparing the estimated identity with the real 

speaker identity on a sentence-by-sentence basis. 

In addition, the accuracy of the binary decisions was quanti- 

fied by comparing the similarity between the estimated binary 

mask and the ideal binary mask, which was computed with an 

LC of 0 dB. First, the hit rate (HIT; percentage of correctly classi- 

fied speech-dominated T-F units) minus the false alarm rate (FA; 

percentage of erroneously identified noise dominated T-F units) 

http://www.emime.org
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Fig. 2. Influence of the LC on IBM-based SID performance for different missing- 

data systems. The SID performance was evaluated for 56 speakers at 0 dB SNR and 

averaged across all five noise types. 

was computed. The HIT - FA metric is often used to evaluate bi- 

nary speech segregation systems ( Kim et al., 2009 ). Furthermore, 

the overall percent of misclassified T-F units (accuracy) was mea- 

sured, reflecting both the correctly classified target-dominated and 

the correctly classified noise-dominated T-F units. Finally, the mask 

density was determined, which indicates the percentage of reliable 

T-F units in the binary mask. 

4. Experiments 

A series of five closed-set SID experiments was conducted. The 

first two experiments evaluated the four missing-data systems 

(listed in Table 1 ) under ideal and non-ideal conditions with 56 

speakers from the EMIME database. Specifically, the first experi- 

ment used IBMs (see Section 2.2.1 ) and analyzed the influence of 

the LC. The second experiment employed EBMs (see Section 2.2.2 ) 

and investigated the role of the threshold parameter θ SPP . Based 

on these first two experiments, optimal threshold parameters were 

derived for all missing-data systems and kept constant across the 

remaining experimental conditions. The third experiment analyzed 

the sensitivity of the DM approach to errors in the binary mask by 

comparing the performance of EBMs with estimated ratio masks 

(ERMs) and a conventional noise reduction algorithm. The last two 

experiments used 200 speakers from the TIMIT database and eval- 

uated the SID performance over a wide range of SNRs. The fourth 

experiment compared the best performing missing-data strategies 

to a conventional MFCC system. Finally, the fifth experiment com- 

bined two missing-data approaches with complementary advan- 

tages in stationary and non-stationary background noises. 

4.1. Experiment 1: SID performance using IBMs 

The SID performance of the four missing-data systems using 

IBMs is shown in Fig. 2 as a function of the LC. The SID experiment 

was conducted with 56 speakers from the EMIME database at 0 

SNR and the results were averaged across 10 simulations and all 

five background noises. The highest SID performance of 93 . 1% was 

achieved by the bounded marginalization method (“FBE BM”) with 

an LC of 0 dB. Because this system utilized both reliable and un- 

reliable T-F units for the likelihood calculations, a balanced thresh- 

old around 0 dB was expected to be optimal. The two systems that 

combined the direct masking stage with either MFCC (“MFCC DM”) 

or DFBE features (“DFBE DM”) performed fairly similar, with opti- 

mal LCs at −12 dB and −18 dB leading to 85 . 8% and 87 . 4% identi- 

fication performance, respectively. Compared to BM, the lower SID 

accuracy of the DM approach can be attributed to the fact that un- 

reliable feature components were attenuated, thus ignoring poten- 

tial speaker-specific differences. Full marginalization (“DFBE FM”) 

Fig. 3. Influence of the threshold parameter θ SPP on EBM-based SID performance 

for different missing-data systems. The SID performance was evaluated for 56 

speakers at 0 dB SNR and averaged across all five noise types. 

discarded unreliable T-F units and only used reliable T-F units for 

identification. The obtained SID performance of 68 . 4% was substan- 

tially lower compared to the other methods, with an optimal LC of 

−3 dB. 

4.2. Experiment 2: SID performance using EBMs 

The SID performance for the missing-data systems employing 

the EBM is presented in Fig. 3 as a function of the threshold pa- 

rameter θ SPP . Similar to the previous experiment, a set of 56 speak- 

ers was tested at 0 dB SNR and results were averaged across 10 

simulations and all five noise types. In addition, the quality of the 

EBM was evaluated by two technical measures, namely the HIT - 

FA and the accuracy (see Section 3.3 ), and both are shown along 

with the mask density in Table 2 . 

Bounded marginalization (“FBE BM”) showed the highest SID 

performance of 59 . 1% with an optimal speech presence probabil- 

ity threshold of θSPP = 0 . 6 . Furthermore, the technical EBM evalu- 

ation presented in Table 2 revealed that this threshold produced 

a high binary mask accuracy of 85 . 7% , reflecting the requirement 

that both speech-dominated and noise-dominated T-F units in the 

EBM must be correctly estimated with similar priority. For all other 

missing-data methods, the highest SID accuracy was obtained with 

a SPP threshold of θSPP = 0 . 4 . Interestingly, this threshold coin- 

cided with the highest HIT - FA of 54 . 9% , as indicated in Table 2 . 

Full marginalization (“DFBE FM”) was almost as good as BM and 

achieved 54 . 9% SID accuracy. Although the FM strategy showed 

the lowest performance of all missing-data methods under ideal 

conditions in the previous experiment, it was apparently more ro- 

bust against estimation errors in the EBM. In contrast, the SID sys- 

tems based on direct masking were less effective when a real- 

istic amount of speech-dominated T-F units was misclassified in 

the binary mask. In addition, there was a substantial performance 

Table 2 

Evaluation of the EBM as a function of the threshold param- 

eter θ SPP . 

Threshold Metric (%)
θSPP HIT -FA Accuracy Density
0.1 5.5 22.6 93.2
0.2 27.9 45.4 68.3
0.3 48.5 68.1 42.8
0.4 54.9 80.0 27.9
0.5 51.5 84.4 19.9
0.6 43.6 85.7 14.8
0.7 33.9 85.6 10.9
0.8 23.5 85.1 7.4
0.9 12.8 84.4 4.0
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Fig. 4. SID performance of the DM approach with EBMs and ERMs in comparison 

to a conventional noise reduction stage (“NR”) for both DFBE and FBE features. The 

performance is shown for 56 speakers at 0 dB SNR and averaged across all five 

noise types. 

gap between the two DM systems employing either MFCC or DFBE 

features. When MFCCs were used (“MFCC DM”), each erroneously 

classified T-F unit affected all MFCC features due to the DCT, re- 

sulting in a distorted representation of the target signal. Consider- 

ing the DFBE features (“DFBE DM”), the decorrelation was achieved 

by an FIR filter which only combined information from two 

neighboring frequency channels. Consequently, the distortions 

caused by misclassified T-F units remained local and did not affect 

a large number of DFBE features, which may explain the higher 

performance in comparison to the MFCC-based system. Evidently, 

there were large differences between the tested missing-data sys- 

tems when comparing their performance under ideal and non- 

ideal conditions. In particular, the DM approach was very sensitive 

to estimation errors in the binary mask, which limited the SID ac- 

curacy in non-ideal conditions. 

4.3. Experiment 3: DM versus noise reduction 

To further analyze the sensitivity of the DM approach to er- 

rors in the binary mask, Fig. 4 compares the SID performance for 

both DFBE and FBE features using estimated binary masks and es- 

timated ratio masks. Instead of binarizing the estimated SPP in 

the auditory domain 

˜ P ( t, f ) using (2) , it was directly used as an 

estimation of the ratio mask. Similar to the binary masks, the 

same flooring value of 26 dB was applied to the ratio masks (see 

Section 2.3 ). In addition to the DM approach, the effect of a con- 

ventional noise reduction algorithm was tested by enhancing the 

STFT representation of noisy speech prior to feature extraction. 

Specifically, the minimum mean-square error (MMSE) gain func- 

tion ( Ephraim and Malah, 1984 ) was combined with the MMSE- 

based noise power estimation algorithm ( Gerkmann and Hendriks, 

2012 ), which was also used for the estimation of the SPP. Sim- 

ilar to the two previous experiments, a set of 56 speakers from 

the EMIME database was tested at 0 dB and results were averaged 

across 10 simulations and all five noise types. 

It can be seen that the DM approach was much more effective 

when estimated ratio masks were used (“DM ERM”) instead of es- 

timated binary masks (“DM EBM”). Interestingly, there was almost 

no difference between the two feature representations when using 

either DM with ERMs or the MMSE-based noise reduction (“NR”), 

which highlights the sensitivity of the MFCC feature representa- 

tion to errors in the binary mask. Moreover, despite the limited 

spectral resolution of 32 filters, the DM approach with ERMs per- 

formed slightly better than the noise reduction algorithm, which 

operated at a much higher spectral resolution in the STFT domain. 

In general, this experiment demonstrated the limitation of the DM 

approach when being used with binary masks. Although the ra- 

tio mask was substantially more effective than the binary mask, 

Fig. 5. SID performance for 200 speakers as a function of the SNR averaged across 

a) more stationary noises (ICRA1, 0.5-SAM and cockpit noise) and b) non-stationary 

noise (ICRA7 and factory noise). 

the overall SID scores were almost 10% below the performance ob- 

tained by full and bounded marginalization reported in the previ- 

ous experiment (see Section 4.2 ). 

4.4. Experiment 4: comparison with MFCCs 

Based on the second and third experiment, bounded marginal- 

ization with FBE features and full marginalization with DFBE fea- 

tures were found to be the most robust missing-data strategies 

under realistic conditions. Therefore, both approaches were com- 

pared with the frequently-used MFCC features over a wide range of 

SNRs using 200 speakers from the TIMIT database. Both missing- 

data systems employed their previously determined optimal SPP 

thresholds θ SPP . The SID performance is presented in Fig. 5 as a 

function of the SNR for a) stationary and b) non-stationary back- 

ground noises in separate panels. The corresponding evaluation of 

the EBM quality in terms of HIT - FA and mask accuracy is pre- 

sented in Table 3 . 

Considering more stationary background noises (panel a), 

bounded marginalization (“FBE BM”) was the most effective 

missing-data strategy which combined the information from both 

reliable and unreliable T-F units. As shown in Table 3 , this was 

due the high accuracy of the estimated binary mask in stationary 

noises, which was above 90% at lower SNRs. However, the results 

were somewhat different for highly non-stationary and speech- 

modulated background noises as shown in panel b). Here, the SID 

performance of the BM approach (“FBE BM”) decreased, because 

it was much more challenging to obtain an accurate estimation of 

the EBM. This is also reflected in Table 3 , where the binary mask 

accuracy for non-stationary noises reduced by more than 15% at 

low SNRs compared to stationary noises. Instead of explicitly ex- 

ploiting knowledge about unreliable T-F units, full marginalization 

simply ignores unreliable feature components, which apparently 

reduced the sensitivity to errors in the binary mask. As a result, 

FM (“DFBE FM”) achieved the highest SID accuracy in the presence 
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Table 3 

Evaluation of the EBMs produced by the two missing-data systems, “DFBE FM” and 

“FBE BM”, as a function of the SNR and the stationarity of the background noise. 

SNR (dB)Method Metric (%) −5 0 5 10 15
HIT -FA 59.3 65.1 69.3 72.1 74.0DFBE FM Accuracy 88.5 87.2 86.6 86.5 86.8
HIT -FA 39.9 49.7 57.9 64.1 68.9

St
at

io
na

ry

FBE BM Accuracy 92.7 90.0 87.8 86.0 84.8
HIT -FA 33.5 39.4 44.5 49.6 55.1DFBE FM Accuracy 67.3 69.2 71.7 75.0 78.7
HIT -FA 26.3 34.8 42.0 48.9 56.1N

on
-

st
at

io
na

ry
FBE BM Accuracy 77.0 76.2 75.8 76.3 77.8

of non-stationary background noises. When comparing the MFCC- 

based system (“MFCC”) to the FBE features with a conventional 

GMM classifier (“FBE”), a considerable improvement in SID accu- 

racy was obtained. However, compared to the two missing-data 

approaches (“FBE BM” and “DFBE BM”), the MFCC features ap- 

peared to be less robust against the impact of background noise. 

Nevertheless, the ability of the two missing-data strategies, BM 

and FM, to deal with interfering noise was shown to strongly de- 

pend on the stationarity of the background noise. 

4.5. Experiment 5: combining full and bounded marginalization 

The previous experiment showed that it seemed advantageous 

to combine full marginalization and bounded marginalization due 

to their complementary performances in stationary and non- 

stationary background noises. Therefore, both systems were com- 

bined using a simple score fusion described in Section 2.7 . In ad- 

dition, an BM-based SID system with IBMs was used for compari- 

son to indicate the upper performance limit of missing-data strate- 

gies. Figure 6 shows the SID performance for 200 speakers from 

the TIMIT database as a function of the SNR for a) stationary, b) 

non-stationary and c) all background noises in separate panels. 

In general, the combined SID approach (“FBE BM & DFBE FM”) 

was always better than the individual missing-data systems. In the 

presence of stationary noise (panel a), where the EBM was esti- 

mated with high accuracy, the SID performance of the combined 

system was dominated by the bounded marginalization approach 

(“FBE BM”). On the other hand, in case of non-stationary back- 

ground noise (panel b), the combined system benefited from full 

marginalization (“DFBE FM”), which ignored unreliable T-F units, 

thereby decreasing the sensitivity to errors in the EBM. In compar- 

ison to the ideal SID system based on a priori knowledge (“FBE BM 

IBM”), the proposed combination obtained a fairly similar perfor- 

mance level in the presence of stationary noise (panel a) down to 

5 dB SNR. Clearly, there is some room for improvements in non- 

stationary scenarios, due to the difficulty of obtaining an accurate 

estimation of the binary mask. 

In summary, the high SID performance of the combined sys- 

tem can be attributed to the complementary error statistics of 

full and bounded marginalization and potential synergy effects be- 

tween the different feature sets (FBE and DFBE features). A sub- 

stantial performance benefit over an MFCC-based system (“MFCC”) 

was achieved, without assuming any a priori knowledge about the 

interfering noise. 

5. Discussion and conclusion 

This study compared the effectiveness of three missing-data 

strategies in the context of closed-set speaker identification, 

namely full marginalization (FM), bounded marginalization (BM) 

and direct masking (DM). A systematic evaluation under ideal and 

Fig. 6. SID performance for 200 speakers as a function of the SNR averaged across 

a) more stationary noises (ICRA1, 0.5-SAM and cockpit noise), b) non-stationary 

noise (ICRA7 and factory noise) and c) all five background noises. 

non-ideal conditions demonstrated that the performance of the 

different strategies was strongly affected by estimation errors in 

the binary mask. 

Although BM and DM performed similarly under ideal con- 

ditions, the effectiveness of DM was drastically reduced when 

estimated binary masks were used. In particular, the combina- 

tion of DM with MFCC features produced low SID scores under 

realistic conditions, presumably because each erroneously attenu- 
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ated speech-dominated T-F unit affected several MFC coefficients 

due the DCT stage, thereby distorting the resulting feature rep- 

resentation. In contrast, the FM approach produced similar SID 

scores compared to BM in conditions where the binary mask was 

estimated, despite showing the lowest potential of all missing- 

data strategies under ideal conditions. Interestingly, both FM and 

BM showed distinct advantages depending on the stationarity of 

the interfering noise. Whereas BM achieved the highest SID per- 

formance in the presence of stationary noise, the FM approach 

was more robust to non-stationary background noises. Apparently, 

there is a trade-off between the ability of the BM approach to ben- 

efit from the information contained in the unreliable T-F units and 

the accuracy of the estimated binary mask. Because FM does not 

explicitly utilize information from unreliable feature components, 

it is less sensitive to errors in the EBM, which are more likely to 

occur in non-stationary environments. 

The combination of two missing-data systems, namely DM and 

BM, has been proposed in Zhao et al. (2014) . However, the first 

three experiments in this study suggested that the DM strategy is 

particularly sensitive to estimation errors in the binary mask. In- 

stead, the score fusion between FM and BM proposed here was 

shown to combine the distinct advantages of both missing-data 

strategies in stationary and non-stationary conditions. 

Under non-ideal conditions, the EBM was derived by apply- 

ing a threshold to the estimated speech presence probability in 

individual T-F units. It was demonstrated that optimal thresh- 

olds varied across missing-data strategies, reflecting their differ- 

ent requirements on the EBM. Whereas the optimal SPP thresh- 

old for both DM and FM maximized the HIT - FA rate, the BM ap- 

proach achieved the highest SID performance when both speech- 

dominated and noise-dominated T-F units were correctly classified 

with similar priority, which was reflected by a high classification 

accuracy of the EBM. This is an important observation that must 

be considered when comparing binary mask estimators with dif- 

ferent missing-data strategies. Often, algorithms that estimate the 

EBM have been optimized for a particular missing-data system, 

which complicates a transparent comparison. To assist the devel- 

opment of EBM estimators and to optimize their respective pa- 

rameters, the two technical measures, namely the HIT - FA and 

the binary mask accuracy, seemed appropriate. Apart from eval- 

uating the performance of binary masks on the basis of individual 

T-F units, the clustering of binary mask errors has been recently 

shown to strongly affect speech intelligibility ( Kressner and Rozell, 

2015 ), and its influence on SID performance should therefore be 

considered in future investigations. 

The mask density, which reflects the percentage of speech- 

dominated T-F units in the EBM, can be quite low, thereby lim- 

iting the amount of information that is available for the identifi- 

cation task. In addition, the binary mask represents a binary deci- 

sion, without reflecting the uncertainty of the underlying estima- 

tion. Among all tested strategies, the DM approach was shown to 

be particularly sensitive to estimation errors in the binary mask. 

To alleviate this, the binary decision about reliability can be soft- 

ened by replacing the binary mask with the probability that in- 

dividual T-F units are reliable ( Barker et al., 20 0 0 ). Such a ratio 

mask was shown to be superior to binary masks when being used 

in conjunction with the DM approach and its effectiveness for the 

classification-based missing-data strategies will be subject of fur- 

ther investigations. 

In this study, the EBM was estimated without assuming any 

prior knowledge about the interfering background noise. Moreover, 

speaker models were trained with clean and anechoic speech, re- 

sulting in a very flexible SID system which does not require any 

prior knowledge about the acoustic environment. However, if con- 

crete assumptions about the acoustic environment can be made, 

for example about the type of interfering noise, then the esti- 

mation of the binary mask can be treated as a binary classifica- 

tion problem. This would allow the use of supervised learning ap- 

proaches, for instance based on amplitude modulation spectrogram 

features ( May and Dau, 2014 ). These approaches were shown to 

substantially improve the accuracy of the EBM, at the cost of re- 

ducing the flexibility of the SID system. 
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