6,491 research outputs found

    Optimal signal processing in small stochastic biochemical networks

    Get PDF
    We quantify the influence of the topology of a transcriptional regulatory network on its ability to process environmental signals. By posing the problem in terms of information theory, we may do this without specifying the function performed by the network. Specifically, we study the maximum mutual information between the input (chemical) signal and the output (genetic) response attainable by the network in the context of an analytic model of particle number fluctuations. We perform this analysis for all biochemical circuits, including various feedback loops, that can be built out of 3 chemical species, each under the control of one regulator. We find that a generic network, constrained to low molecule numbers and reasonable response times, can transduce more information than a simple binary switch and, in fact, manages to achieve close to the optimal information transmission fidelity. These high-information solutions are robust to tenfold changes in most of the networks' biochemical parameters; moreover they are easier to achieve in networks containing cycles with an odd number of negative regulators (overall negative feedback) due to their decreased molecular noise (a result which we derive analytically). Finally, we demonstrate that a single circuit can support multiple high-information solutions. These findings suggest a potential resolution of the "cross-talk" dilemma as well as the previously unexplained observation that transcription factors which undergo proteolysis are more likely to be auto-repressive.Comment: 41 pages 7 figures, 5 table

    Synthetic Biology: A Bridge between Artificial and Natural Cells.

    Get PDF
    Artificial cells are simple cell-like entities that possess certain properties of natural cells. In general, artificial cells are constructed using three parts: (1) biological membranes that serve as protective barriers, while allowing communication between the cells and the environment; (2) transcription and translation machinery that synthesize proteins based on genetic sequences; and (3) genetic modules that control the dynamics of the whole cell. Artificial cells are minimal and well-defined systems that can be more easily engineered and controlled when compared to natural cells. Artificial cells can be used as biomimetic systems to study and understand natural dynamics of cells with minimal interference from cellular complexity. However, there remain significant gaps between artificial and natural cells. How much information can we encode into artificial cells? What is the minimal number of factors that are necessary to achieve robust functioning of artificial cells? Can artificial cells communicate with their environments efficiently? Can artificial cells replicate, divide or even evolve? Here, we review synthetic biological methods that could shrink the gaps between artificial and natural cells. The closure of these gaps will lead to advancement in synthetic biology, cellular biology and biomedical applications

    Mathematical approaches to differentiation and gene regulation

    Get PDF
    We consider some mathematical issues raised by the modelling of gene networks. The expression of genes is governed by a complex set of regulations, which is often described symbolically by interaction graphs. Once such a graph has been established, there remains the difficult task to decide which dynamical properties of the gene network can be inferred from it, in the absence of precise quantitative data about their regulation. In this paper we discuss a rule proposed by R.Thomas according to which the possibility for the network to have several stationary states implies the existence of a positive circuit in the corresponding interaction graph. We prove that, when properly formulated in rigorous terms, this rule becomes a theorem valid for several different types of formal models of gene networks. This result is already known for models of differential or boolean type. We show here that a stronger version of it holds in the differential setup when the decay of protein concentrations is taken into account. This allows us to verify also the validity of Thomas' rule in the context of piecewise-linear models and the corresponding discrete models. We discuss open problems as well.Comment: To appear in Notes Comptes-Rendus Acad. Sc. Paris, Biologi

    Timing molecular motion and production with a synthetic transcriptional clock

    Get PDF
    The realization of artificial biochemical reaction networks with unique functionality is one of the main challenges for the development of synthetic biology. Due to the reduced number of components, biochemical circuits constructed in vitro promise to be more amenable to systematic design and quantitative assessment than circuits embedded within living organisms. To make good on that promise, effective methods for composing subsystems into larger systems are needed. Here we used an artificial biochemical oscillator based on in vitro transcription and RNA degradation reactions to drive a variety of “load” processes such as the operation of a DNA-based nanomechanical device (“DNA tweezers”) or the production of a functional RNA molecule (an aptamer for malachite green). We implemented several mechanisms for coupling the load processes to the oscillator circuit and compared them based on how much the load affected the frequency and amplitude of the core oscillator, and how much of the load was effectively driven. Based on heuristic insights and computational modeling, an “insulator circuit” was developed, which strongly reduced the detrimental influence of the load on the oscillator circuit. Understanding how to design effective insulation between biochemical subsystems will be critical for the synthesis of larger and more complex systems

    Development of novel orthogonal genetic circuits, based on extracytoplasmic function (ECF) σ factors

    Get PDF
    The synthetic biology field aims to apply the engineering 'design-build-test-learn' cycle for the implementation of synthetic genetic circuits modifying the behavior of biological systems. In order to reach this goal, synthetic biology projects use a set of fully characterized biological parts that subsequently are assembled into complex synthetic circuits following a rational, model-driven design. However, even though the bottom-up design approach represents an optimal starting point to assay the behavior of the synthetic circuits under defined conditions, the rational design of such circuits is often restricted by the limited number of available DNA building blocks. These usually consist only of a handful of transcriptional regulators that additionally are often borrowed from natural biological systems. This, in turn, can lead to cross-reactions between the synthetic circuit and the host cell and eventually to loss of the original circuit function. Thus, one of the challenges in synthetic biology is to design synthetic circuits that perform the designated functions with minor cross-reactions (orthogonality). To overcome the restrictions of the widely used transcriptional regulators, this project aims to apply extracytoplasmic function (ECF) σ factors in the design novel orthogonal synthetic circuits. ECFs are the smallest and simplest alternative σ factors that recognize highly specific promoters. ECFs represent one of the most important mechanisms of signal transduction in bacteria, indeed, their activity is often controlled by anti-σ factors. Even though it was shown that the overexpression of heterologous anti-σ factors can generate an adverse effect on cell growth, they represent an attractive solution to control ECF activity. Finally, to date, we know thousands of ECF σ factors, widespread among different bacterial phyla, that are identifiable together with the cognate promoters and anti-σ factors, using bioinformatic approaches. All the above-mentioned features make ECF σ factors optimal candidates as core orthogonal regulators for the design of novel synthetic circuits. In this project, in order to establish ECF σ factors as standard building blocks in the synthetic biology field, we first established a high throughput experimental setup. This relies on microplate reader experiments performed using a highly sensitive luminescent reporter system. Luminescent reporters have a superior signal-to-noise ratio when compared to fluorescent reporters since they do not suffer from the high auto-fluorescence background of the bacterial cell. However, they also have a drawback represented by the constant light emission that can generate undesired cross-talk between neighboring wells on a microplate. To overcome this limitation, we developed a computational algorithm that corrects for luminescence bleed-through and estimates the “true” luminescence activity for each well of a microplate. We show that the correcting algorithm preserves low-level signals close to the background and that it is universally applicable to different experimental conditions. In order to simplify the assembly of large ECF-based synthetic circuits, we designed an ECF toolbox in E. coli. The toolbox allows for the combinatorial assembly of circuits into expression vectors, using a library of reusable genetic parts. Moreover, it also offers the possibility of integrating the newly generated synthetic circuits into four different phage attachment (att) sites present in the genome of E. coli. This allows for a flawless transition between plasmid-encoded and chromosomally integrated genetic circuits, expanding the possible genetic configurations of a given synthetic construct. Moreover, our results demonstrate that the four att sites are orthogonal in terms of the gene expression levels of the synthetic circuits. With the purpose of rationally design ECF-based synthetic circuits and taking advantage of the ECF toolbox, we characterized the dynamic behavior of a set of 15 ECF σ factors, their cognate promoters, and relative anti-σs. Overall, we found that ECFs are non-toxic and functional and that they display different binding affinities for the cognate target promoters. Moreover, our results show that it is possible to optimize the output dynamic range of the ECF-based switches by changing the copy number of the ECFs and target promoters, thus, tuning the input/output signal ratio. Next, by combining up to three ECF-switches, we generated a set of “genetic-timer circuits”, the first synthetic circuits harboring more than one ECF. ECF-based timer circuits sequentially activate a series of target genes with increasing time delays, moreover, the behavior of the circuits can be predicted by a set of mathematical models. In order to improve the dynamic response of the ECF-based constructs, we introduced anti-σ factors in our synthetic circuits. By doing so we first confirmed that anti-σ factors can exert an adverse effect on the growth of E. coli, thus we explored possible solutions. Our results demonstrate that anti-σ factors toxicity can be partially alleviated by generating truncated, soluble variants of the anti-σ factors and, eventually, completely abolished via chromosomal integration of the anti-σ factor-based circuits. Finally, after demonstrating that anti-σ factors can be used to generate a tunable time delay among ECF expression and target promoter activation, we designed ECF/AS-suicide circuits. Such circuits allow for the time-delayed cell-death of E. coli and will serve as a prototype for the further development of ECF/AS-based lysis circuits

    Synthetic biology—putting engineering into biology

    Get PDF
    Synthetic biology is interpreted as the engineering-driven building of increasingly complex biological entities for novel applications. Encouraged by progress in the design of artificial gene networks, de novo DNA synthesis and protein engineering, we review the case for this emerging discipline. Key aspects of an engineering approach are purpose-orientation, deep insight into the underlying scientific principles, a hierarchy of abstraction including suitable interfaces between and within the levels of the hierarchy, standardization and the separation of design and fabrication. Synthetic biology investigates possibilities to implement these requirements into the process of engineering biological systems. This is illustrated on the DNA level by the implementation of engineering-inspired artificial operations such as toggle switching, oscillating or production of spatial patterns. On the protein level, the functionally self-contained domain structure of a number of proteins suggests possibilities for essentially Lego-like recombination which can be exploited for reprogramming DNA binding domain specificities or signaling pathways. Alternatively, computational design emerges to rationally reprogram enzyme function. Finally, the increasing facility of de novo DNA synthesis—synthetic biology’s system fabrication process—supplies the possibility to implement novel designs for ever more complex systems. Some of these elements have merged to realize the first tangible synthetic biology applications in the area of manufacturing of pharmaceutical compounds.

    Model Reduction Tools For Phenomenological Modeling of Input-Controlled Biological Circuits

    Get PDF
    We present a Python-based software package to automatically obtain phenomenological models of input-controlled synthetic biological circuits that guide the design using chemical reaction-level descriptive models. From the parts and mechanism description of a synthetic biological circuit, it is easy to obtain a chemical reaction model of the circuit under the assumptions of mass-action kinetics using various existing tools. However, using these models to guide design decisions during an experiment is difficult due to a large number of reaction rate parameters and species in the model. Hence, phenomenological models are often developed that describe the effective relationships among the circuit inputs, outputs, and only the key states and parameters. In this paper, we present an algorithm to obtain these phenomenological models in an automated manner using a Python package for circuits with inputs that control the desired outputs. This model reduction approach combines the common assumptions of time-scale separation, conservation laws, and species' abundance to obtain the reduced models that can be used for design of synthetic biological circuits. We consider an example of a simple gene expression circuit and another example of a layered genetic feedback control circuit to demonstrate the use of the model reduction procedure
    corecore