2,073 research outputs found

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Language Identification Using Visual Features

    Get PDF
    Automatic visual language identification (VLID) is the technology of using information derived from the visual appearance and movement of the speech articulators to iden- tify the language being spoken, without the use of any audio information. This technique for language identification (LID) is useful in situations in which conventional audio processing is ineffective (very noisy environments), or impossible (no audio signal is available). Research in this field is also beneficial in the related field of automatic lip-reading. This paper introduces several methods for visual language identification (VLID). They are based upon audio LID techniques, which exploit language phonology and phonotactics to discriminate languages. We show that VLID is possible in a speaker-dependent mode by discrimi- nating different languages spoken by an individual, and we then extend the technique to speaker-independent operation, taking pains to ensure that discrimination is not due to artefacts, either visual (e.g. skin-tone) or audio (e.g. rate of speaking). Although the low accuracy of visual speech recognition currently limits the performance of VLID, we can obtain an error-rate of < 10% in discriminating between Arabic and English on 19 speakers and using about 30s of visual speech

    Enhancing speaker verification accuracy with deep ensemble learning and inclusion of multifaceted demographic factors

    Get PDF
    Effective speaker identification is essential for achieving robust speaker recognition in real-world applications such as mobile devices, security, and entertainment while ensuring high accuracy. However, deep learning models trained on large datasets with diverse demographic and environmental factors may lead to increased misclassification and longer processing times. This study proposes incorporating ethnicity and gender information as critical parameters in a deep learning model to enhance accuracy. Two convolutional neural network (CNN) models classify gender and ethnicity, followed by a Siamese deep learning model trained with critical parameters and additional features for speaker verification. The proposed model was tested using the VoxCeleb 2 database, which includes over one million utterances from 6,112 celebrities. In an evaluation after 500 epochs, equal error rate (EER) and minimum decision cost function (minDCF) showed notable results, scoring 1.68 and 0.10, respectively. The proposed model outperforms existing deep learning models, demonstrating improved performance in terms of reduced misclassification errors and faster processing times

    Multimodal Based Audio-Visual Speech Recognition for Hard-of-Hearing: State of the Art Techniques and Challenges

    Get PDF
    Multimodal Integration (MI) is the study of merging the knowledge acquired by the nervous system using sensory modalities such as speech, vision, touch, and gesture. The applications of MI expand over the areas of Audio-Visual Speech Recognition (AVSR), Sign Language Recognition (SLR), Emotion Recognition (ER), Bio Metrics Applications (BMA), Affect Recognition (AR), Multimedia Retrieval (MR), etc. The fusion of modalities such as hand gestures- facial, lip- hand position, etc., are mainly used sensory modalities for the development of hearing-impaired multimodal systems. This paper encapsulates an overview of multimodal systems available within literature towards hearing impaired studies. This paper also discusses some of the studies related to hearing-impaired acoustic analysis. It is observed that very less algorithms have been developed for hearing impaired AVSR as compared to normal hearing. Thus, the study of audio-visual based speech recognition systems for the hearing impaired is highly demanded for the people who are trying to communicate with natively speaking languages.  This paper also highlights the state-of-the-art techniques in AVSR and the challenges faced by the researchers for the development of AVSR systems

    Recent Trends in Computational Intelligence

    Get PDF
    Traditional models struggle to cope with complexity, noise, and the existence of a changing environment, while Computational Intelligence (CI) offers solutions to complicated problems as well as reverse problems. The main feature of CI is adaptability, spanning the fields of machine learning and computational neuroscience. CI also comprises biologically-inspired technologies such as the intellect of swarm as part of evolutionary computation and encompassing wider areas such as image processing, data collection, and natural language processing. This book aims to discuss the usage of CI for optimal solving of various applications proving its wide reach and relevance. Bounding of optimization methods and data mining strategies make a strong and reliable prediction tool for handling real-life applications

    Recognition of handwritten Arabic characters

    Get PDF
    The subject of handwritten character recognition has been receiving considerable attention in recent years due to the increased dependence on computers. Several methods for recognizing Latin, Chinese as well as Kanji characters have been proposed. However, work on recognition of Arabic characters has been relatively sparse. Techniques developed for recognizing characters in other languages can not be used for Arabic since the nature of Arabic characters is different. The shape of a character is a function of its location within a word where each character can have two to four different forms. Most of the techniques proposed to date for recognizing Arabic characters have relied on structural and topographic approaches. This thesis introduces a decision-theoretic approach to solve the problem. The proposed method involves, as a first step, digitization of the segmented character. The secondary part of the character (dots and zigzags) are then isolated and identified separately thereby reducing the recognition issue to a 20 class problem or less for each of the character forms. The moments of the horizontal and vertical projections of the remaining primary characters are calculated and normalized with respect to the zero order moment. Simple measures of shape are obtained from the normalized moments and incorporated into a feature vector. Classification is accomplished using quadratic discriminant functions. The approach was evaluated using isolated, handwritten characters from a data base established for this purpose. The classification rates varied from 97.5% to 100% depending on the form of the characters. These results indicate that the technique offers significantly better classification rates in comparison with existing methods
    • …
    corecore