
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Recognition of handwritten Arabic characters Recognition of handwritten Arabic characters

Iman Khodadadzadeh A Thesis
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Khodadadzadeh A Thesis, Iman, "Recognition of handwritten Arabic characters" (2010). Electronic Theses
and Dissertations. 8040.
https://scholar.uwindsor.ca/etd/8040

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8040?utm_source=scholar.uwindsor.ca%2Fetd%2F8040&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Recognition of Handwritten Arabic Characters

By

Iman Khodadadzadeh

A Thesis

Submitted to the Faculty of Graduate Studies through the

Department of Electrical and Computer Engineering in Partial Fulfillment

of the Requirements for the Degree of Master of Applied Science at

The University of Windsor

Windsor, Ontario, Canada

2010

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your Tile Votre reference
ISBN: 978-0-494-62730-3
Our file Notre reference
ISBN: 978-0-494-62730-3

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

©2010 Iman Khodadadzadeh

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise
retained in a retrieval system or transmitted in any form, on any medium by any means
without prior written permission of the author.

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such

material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University of Institution.

IV

Abstract

Palm-held computing is on the rise. A keyboard is too big for a palm-held computer so

a stylus and tablet system for interaction requires a much smaller interface. Hence, there

is need for handwriting recognition. Very little research has gone into handwriting

recognition in Arabic/Persian (A/P) due to the difficulty of the task. As the Arab world

becomes increasingly computerized and mobile, and technology becomes increasingly

ubiquitous, the need for a natural interface becomes apparent.

This research will show average character recognition rates above 95% for A/P

characters. Uses of Discrete Cosine Transform (DCT) for feature extraction with Neural

Networks and Hidden Markov Models (HMM) as classifiers have shown great

performance with multiple unconstrained writers. Multi layer perceptron (MLP) networks

are emphasized, since this provides a higher performance during both training and

testing. Since the overall method represents low computational overhead, it would be

suitable for hand held devices - the target application device.

v

Acknowledgements

I would like to express my sincere appreciation to Dr. Maher Sid-Ahmed and

Dr. Esam Abdel-Raheem, my supervisors, for their invaluable guidance and

encouragement. They guided me throughout my thesis with great patience. Dr. Maher

Sid-Ahmed introduced me to this interesting area of research and mentored me through

the solution search process with his great experience in this field. I would always

remember his positive role in my future career path. I would also like to express my

gratitude to the other members of my committee, Dr. J. Wu and Dr. R. Grass, for their

kindness, assistance and valuable comments.

Also, I would like to express my heartfelt thanks to my parents M. Khodadadzadeh

and K. Maleki, for their everlasting support and encouragement in my life. Without their

understanding and help, I could never reach this milestone.

VI

Table of Contents

Author's Declaration of Originality iv

Abstract v

Acknowledgements vi

List of Figures ix

List of Tables xi

Chapter 1. Introduction 1

1.1. Overview 1

1.2. Motivation 2

1.3. Objective 3

1.4. Outline 4

Chapter 2. Background Information 6

2.1. Overview 6

2.2. Arabic Characters 9

2.3. Character Recognition Process 12

2.3.1.Perceptron Learning Mechanism 14

2.3.2.Hidden Markov Models 17

2.4. State of the Art 18

2.5. Summary 20

Chapter 3 . Proposed Recognition System 22

3.1. Overview 22

3.2. Preprocessing 24

vii

3.2.1. Data Acquisition 24

3.2.2. File Storage 28

3.2.3. Segmentation 28

3.2.4. Normalization 29

3.3. Feature Extraction 34

3.4. Classification 40

3.4.1. Overview 40

3.4.2. Artificial Neural Networks 42

3.4.3. Hidden Markov Models 48

3.5. Summary 52

Chapter 4. Experimental Results 53

4.1. Neural Network Classifier 54

4.2. HMM Classifier 59

4.3. Summary 61

Chapter 5. Conclusion and future work 63

5.1 Conclusions 63

5.2 Summary of contributions 64

5.3 Future Research Directions 65

5.4 Real-world applications of the concept 65

5.5 Summary 66

References 67

Appendix A 71

VitaAuctoris 76

viii

List of Figures

Number

Page

Fig 2.1. Offline vs. online characters 7

Fig 2.2. Arabic calligraphy 9

Fig 2.3. Arabic characters with different number of strokes 11

Fig 2.4. Generalized Arabic/Persian character recognition framework 13

Fig 2.5. Perceptron 14

Fig 2.6. Nonlinearity of XOR 16

Fig 2.7. An example of HMM model 17

Fig 3.1. Proposed recognition system phases 23

Fig 3.2. Normalizating and smoothing noisy written characters 26

Fig 3.3. Data collection and training interfaces 27

Fig 3.4. Handwritten "Alif coordinates with their associated time stamps 28

Fig 3.5. Pen trajectory artifacts 30

Fig 3.6. Character normalization 31

Fig 3.7. Translation and scaling effects of handwritten characters 32

Fig 3.8. Normalized "Saad" character 33

Fig 3.9. Representation of temporal features of "Nun" character 35

Fig 3.10. Illustration of DCT coefficients 38

Fig 3.11. Basic ROM accumulator (RAC) design 40

Fig 3.12. Multi layer perceptron with intermediate hidden layers 42

ix

Fig 3.13. Network of MLP's, first architecture 46

Fig 3.14. Network of MLP's, second architecture 47

Fig 3.15. Training procedure of the recognition engine 47

Fig 3.16. Written character x andy signals and the sliding window 51

Fig 3.17. Windowed DCT features for two characters "Taa" and "Thaa" 52

Fig 4.1. Average recognition rates of MLPs 55

Fig 4.2.Iillustrating MSE of the network 56

Fig 4.3. Performance comparison of the network on the test data set 58

x

List of Tables

Number Page

Table 2.1 Sample Arabic/Persian characters 11

Table 4.1 Performance characteristics of the networks 57

Table 4.2 Misclassification rate of neural network for each character class 57

Table 4.3 Recognition rates of different HMM parameters (M=2) 59

Table 4.4 Recognition rates of different HMM parameters (M==3) 59

Table 4.5 Misclassification rate of HMM for each character class 60

Table 4.6 Comparison of reported online A/P recognition systems 61

XI

Chapter 1

Introduction

1.1. Overview

Automatic text recognition has been an active subject of research since the early days

of usage of personal computers. A survey in 1972 cites about 130 works on this subject

[1]. Although the subject has been around for a long time, still it remains as a challenging

and exciting area of research. In recent years it has grown into a mature discipline and

achieved a huge body of work.

Despite the predictions in the digital era that handwriting and even paper itself would

become obsolete, both persist. While computers have simplified the task of digital

production of documents, the convenience of pen and paper makes them an important

medium of communication for many tasks. A brief survey of students in any lecture

theatre would confirm the superiority of handwritten notes over those typing on laptops.

However, the convenience of having the information in digital format provides a strong

incentive to find an easy way of converting the handwritten text to its digital format.

Handwriting recognition can be defined as the task of transforming text represented in

the spatial form of graphical marks into its symbolic representation. Not only is this

useful for making digital copies of handwritten documents, but also in many automated

1

processing tasks, such as automatic mail sorting or cheque processing where it plays a

vital part.

1.2. Motivation

On-line character recognition is a challenging problem. Much of the difficulty stems

from the fact that pattern recognition is a complex process that cannot be solved

completely by analytical methods.

Many applications in hand-held computing and digital signatures and verification use

on-line character recognition. As computers become increasingly ubiquitous and mobile,

the interfaces have been rapidly shrinking. However, as the technology that powers these

hand-held and portable devices miniaturizes components, one component has severe

limitations on size reduction.

The standard computer keyboard cannot shrink to the size of hand-held devices such

as personal digital assistants or cell phones and still be useable. The need for a natural

interface that can scale gracefully with the shrinking size of personal digital assistant

platforms becomes apparent. A small stylus or pen and electronic tablet are a suitable

solution for most hand-held devices. Handwriting is a vital process for this interface to be

useful.

Thirty years of research has gone into producing on-line Latin or Asian language letter

recognition systems. However, very little has been done in A/P until recently and these

automated methods are still at an early stage compared to their counterparts. The cursive

Arabic offers unique challenges not present in such scripts, such as the presence of

frequent dots and diacritical elements.

2

Most of the current Arabic letter recognition systems do not allow for noisy data input.

Hand-held computing must make this allowance because of the environment for using

such a device. Handhelds are typically used while in moving vehicles or walking where

the probability of noise being introduced into the writing process is high.

1.3. Objective

In order to overcome complexities of A/P handwriting a practical approach is

presented in this thesis which would lead to a generalization in handwriting recognition

process regardless of the original language. However, other methods may achieve the

same level of recognition rate under the same conditions such as similar training

databases and test samples, but the level of simplicity and accuracy of the proposed

method makes it an interesting candidate for tackling the problem. Since A/P handwriting

is cursive in nature, it is a challenging task to develop a complete system with the

capability of segmentation and recognition with high accuracy. Hence, efforts have been

made to achieve high recognition rate for an isolated character set. In this way, simplicity

and accuracy can be achieved in the same time using mobile devices with lower

processing power.

1.4. Outline

The outline of the forthcoming chapters is as follows. Chapter two discusses some

background information regarding generic handwriting recognition systems and

supervised learning methods, A/P letters characteristics with some of the previous work

in this area.

3

Chapter three presents the proposed system in detail. Different stages of the

recognition system including preprocessing, feature extraction and classification are

discussed. The methods and steps used in the preprocessing phase makes the raw data

ready for feature extraction. This is an important step that should be taken to reduce

sensitivity of the system to input noise as well as shape variations. Different types of

normalizations such as spatial and temporal normalizations appropriate for the task in

hand are proposed. In the feature extraction stage, use of cosine transform coefficients

has been proposed for discrimination between character classes. Type of the transform

and the method used for construction of feature vectors is explained and shown. When

the feature vectors are extracted, the unknown input can be classified using the classifier

to one of the pre-defined classes. The classifier associates certain feature values to their

classes during the training phase and has the ability to assign unknown input values to the

closest class. Two types of classifiers are introduced and used in this research. Feed

forward neural network is considered as our primary classifier and proposed architectures

that can be used for a system of classifiers which has proven to effectively discriminate

A/P character classes. In another effort, to prove the suitability of DCT features for the

task of A/P character recognition, a Hidden Markov Model (HMM) is used to classify the

data. However due to different natures of these two classifiers, a slight modification is

made to the way feature vectors are formed before the classification phase.

In chapter four, the experimental results are presented. Along with the results, changes

in different system parameters are explained and these parameters are tuned to achieve

the best performance. One of the metrics used in the pattern recognition field is the

4

recognition rate. The final recognition rate of the system is presented and compared to

other reported rates in the literature.

Chapter five provides a broad perspective of the results and conclusions of the thesis.

It describes some future directions for machine learning research for Arabic handwriting

recognition.

5

Chapter 2

Background Information

2.1. Overview

The primary task of handwriting recognition is to take an input script and correctly

assign each segment or subsection as one of the possible output classes. There are two

kinds of input for handwriting recognition: off-line and on-line. Off-line recognition

systems take an image of the script from a scanner, digital camera or other digital input

source. In off-line recognition systems, image is binarized using a threshold technique

whether being in color or gray-scale, so that the image pixels are either on (1) or off (0).

The rest of the preprocessing is similar to the on-line version with two key differences:

Off-line processing occurs at a time after the writing is complete and the scanned image

is preprocessed. Secondly, off-line inputs have no temporal information associated with

the image. The system is not able to infer any relationships between pixels or the order in

which strokes were created. Its knowledge is limited to whether a given pixel is on or off.

On-line recognition systems accept (x, y) coordinate pairs from an electronic pen

touching a pressure-sensitive digital tablet. On-line processing occurs in real-time while

the writing is taking place. Also, relationships between pixels and strokes are supplied

6

due to the implicit sequencing of on-line systems that can assist in the recognition task

(see Fig 2.1).

JF*^

Sheen Isolated

Qaaf Isolated

Ghain Isolated

Hhaa Begirutiag

Fig. 2.1. a) Samples of some binarized characters. Image of the characters are converted into gray-level
pixels using a scanner and binarized [2]. b) Online characters. The x,y coordinates of the pen tip
is recorded as a function of time with a digitizer.

Pen-based interfaces provide a convenient means of interaction with computers and

are in smaller forms than the traditional keyboard and electronic mouse. Devices such as

Tablet PC, hand-held computers and other mobile technology devices provide the

opportunity for these new interfaces to become the prevalent means of human-computer

interfacing. The international growth in the usage of these devices has led to a growing

research interest in the field of pen computing. Pen-based interactions can be in the form

of artificial gesture languages to perform certain actions or commands like Palm Graffiti

[3] or in the form of handwriting for data exchange in text format which consist of words,

letters and numbers. The applications of online recognition include text entry for form

7

filling and message writing, computer-aided education [4], handwritten document

retrieval [5], [6], etc. High recognition accuracy is required for any of those applications.

The research of online HWR started in 1960s and has been receiving intensive interest

from the 1980s [7], [8]. During the past two decades, there has been a great advance in

this field, which mainly concerns western scripts [9]. There has been extensive work

done also in Japanese and Chinese scripts which pose a different form of handwriting

from Latin characters and have their own challenges [10]. The first survey which focuses

on Arabic/Persian (A/P) HWR was introduced by Lorigo et al [11] in 2006, in which they

confirm that the HWR of A/P scripts has been addressed more recently than other scripts

and presents unique technical challenges. Insufficiency of data is the first obstacle in

development of a recognizer for this script. In addition to the lack of online data sets in

these scripts, the high level of complexity is a major challenge. This complexity is due to

several factors. Cursive nature of A/P handwriting causes deformations that make

recognition a difficult task. There are no capital letters and some letters are not connected

to the letters that follow them. Thus, words cannot be segmented based on pen-up/pen-

down information or space between letters. Block or hand printed letters do not exist in

Arabic. In summary, "Many researchers have been working on cursive script recognition

for more than three decades. Nevertheless, the field remains one of the most challenging

problems in pattern recognition and all the existing systems are still limited to restricted

applications" [12].

Additionally, A/P script has a number of different styles of calligraphy

including Naskh, Persian Nastaliq, Kufie, etc. which makes the recognition task even

8

more complex when writers independent handwritings are taken into consideration as

shown in Fig 2.2.

«M!C- n* -l I-,,, J i^ I <*fĉ JL,̂ *—Jw«L « 4

(a) (b)

Fig. 2.2. a) Different Arabic calligraphy [13]. b) Different writing styles of Kufie calligraphy [14].

2.2. Arabic Characters

Arabic is written by more than 200 million people, in over 20 different countries. The

Arabic script evolved from a type of Aramaic, with the earliest known document dating

from 512 AD. The Aramaic language has fewer consonants than Arabic, so new letters

were created around the 7th century by adding dots to existing letters. There are therefore

several letters differing only by a single dot. Other small marks (diacritics) are used to

indicate short vowels, but they rarely appear in handwritten documents since the context

generally makes the pronunciation unambiguous. They are used mostly in formal

9

documents and in cases of ambiguity. Most Arabic handwriting research focuses on non-

vocalized Arabic text.

In online handwriting, the input stream can be segmented into smaller units to

facilitate the recognition process. The smaller units are in the form of strokes, which a

series of them would build up the characters and characters would build up words. For

example, in Arabic language each of the 28 basic characters would consist of different

number of strokes despite their position in the word. As shown in Fig 2.3, each character

is written with different number of strokes. In this figure the primary stroke is shown in

blue and the second and third strokes are shown in green and red respectively. Persian

language is also similar to Arabic except for four additional characters which make the

character set up to 32. Since each character in these scripts has two to four different

forms that vary according to its relative position in the word (being isolated, initial,

medial, or final), this extends the character shapes from 28 to about 72 classes. Table 2.1

presents A/P character set and their different forms. Persian specific characters are shown

with an asterisk.

10

*

§

_b
4>s

•J •

J

i •
Jp

Fig. 2.3. Arabic characters with different number of strokes. The first, second and third strokes are shown
in blue, green and red respectively.

Charact
er

Alif

Baa

Paa*

Taa

Thaa

Jeem

Chee*

Haa

Khaa

Dall

Dhall

Raa

Zaa

Zhe*

Seen

Sheen

Saad

Dhaad

TTaa

Dhaa

Ayn

Ghyan

Faa

Qaaf

Kaaf

Beginnin
gForm

1

b

b
•* b_jj

AJ

- » •

trf"
i i .

i i .

b

o j

b
U
13
r"
i S

1..-I

' • • -

>
Lt,

(*
(̂
ia

i 3

J>

Middle
Form

u
Ua

<
us
_W

l * * * »

^
j ^ ,

Cri_i

J v **

>
f J 3

J >

ft

*3^
* < * • ' - *

(_S-u2

' ' "•* *

1 ^ - *

JkS

J t f
IAXU

(JAJJJ

U*
11.

jXjJii

End
Form

is

^
l_ l§

c ^

t—y

e
s-
e
&

OJU=

j j

>
t.

L W

l>a)

u ^
i J

i t

fr*
&

L J ^

i i
LJU.

Isolated
Form

1

L_l

L-l

O

il l

2

2

C

c
J

j

J

j

J

LV

IJS

o=

(>»
J.

J»

t
&
c j

3
cS

11

Gaaf*

Laam

Meem

Noon

Waw

Haa

Yaa

&

J
i > i "

iP

J J

d»

cW

l_£3Lul

J ^

Luji

j i .

J j S

If*

US"

4

JS

<"*
OS

>•
•u

ur!

uS

J
?

a

j

»

L£

Table 2.1. Sample Characters and their different shapes in
different positions of the word. Persian specific characters
are written with an asterisk.

Arabic makes extensive use of dots and diacritical markings. Dots are used to

distinguish characters base shapes with one, two, or three dots placed above or below

them depending on the character. The markings can be stylized (for example, three dots

are sometimes written together) depending on the writer.

2.3. Character Recognition Process

A typical HWR system is depicted in Fig 2.4 It includes the frequent components of

recognition algorithms such as preprocessing, stroke or character segmentation, feature

extraction and a classifier. Some approaches do not use all of these elements but only a

subset of them. First, the input data is preprocessed to convert it to a suitable

representation for later stages by reducing noise and performing primary calculations.

Then features are detected from segmented data. Features can be structural or globally

processed characteristics or even pure data points which are passed to the recognizer.

12

Segmentation j -

Recognition
Engine Feature Extraction

Fig. 2.4. Generalized Arabic/Persian character recognition framework.

Structural features are geometrical aspects of handwriting, such as loops, branch

points, endpoints, and dots. These characteristics can be grouped to form feature vectors

of input pattern and would be used to measure the similarity of the input pattern to

reference models. In a hybrid structural-statistical representation, the structural

representation elements (primitives) and relationships can be measured probabilistically.

Hidden Markov Models can be regarded as instances of hybrid representations [15].

Statistical features are numerical measures computed over series of input points. By

mapping the pattern trajectory into a 2D image and extracting the so-called offline

features, pixel densities and histograms of chain code directions can be computed as

statistical features.

After the feature extraction stage, classification of the unknown input data can be done

using different types of classifiers. However, each requires specific types of features

therefore the types that can be used is problem dependent. In the following sections some

preliminary information about two types of classifiers used in this work is presented. First

we would overview properties of constructing elements of neural networks called

perceptron and their learning ability. Then HMM's are introduced briefly as a statistical

Raw data
input

Pre-processing

13

classifier. More details of the properties and specific parameters are discussed in

chapter 3.

2.3.1. Perceptron Learning Mechanism

The role of supervised learning in a pattern recognition problem is in training the

classifier. Input is passed into the classifier along with a target label. If the classification

does not match the target label, the weights can be adjusted so that the input is correctly

classified. The supervised learning technique used in this work as a classifier is a multi

layer perceptron. By doing so, we gain a powerful discrimination engine for classifying

the unknown input characters. Perceptrons are simple neurons with a fixed number of

inputs and matching weights for each input as illustrated in Fig 2.5.

c

Xi %\ Wi \ . . ^

*' O — -|

~)+l

b

^

- " ' '

XN-I {J"

Fig. 2.5. Perceptron.

The output is binary and a perceptron has a threshold or bias, b, which provides the

boundary between the two output classes.

i V - l

a = ^dwtx,+b (2.1)
(=0

14

In (2.1), the result a is the input for the delimiter. The delimiter is a function which

usually decides that an output is in class 1 if it is positive and class 2 if it is negative.

Substituting the bias (b) as the first input simplifies (2.1) and results in (2.2).

a(n) =]jT wt (n)xi (n) = wT (n)x(n) (2.2)
;=0

This equation assumes that xo(n) = 1, wo(n) = b(n) and that there are n training

samples. This defines the hyperplane decision surface between the binary output classes

(Cj and C2).

The weights are updated according to the rules in (2.3). If the weights are correctly

classified, the new weights are unchanged. However, if the classification was incorrect,

the weights are moved toward training input x modulated by a learning rate ij(n). This

learning rate may be fixed or decay over time.

if wTx(n) > 0 :

wi(n + l) = wi(n)

wt(n +1) = wt{ri) - r}(n)x(ri)

if wTx(n) < 0 :

wj(n + l) = wi(ri)

wt(n +1) = w.(«) + 7](n)x(n)

ifx(n) belongs to class Cj

if x(n) belongs to class C2

if x(n) belongs to class C2

if x(ri) belongs to class C,

A simple perceptron works properly if the classes are linearly separable. Linearly

separable classes do not have any quadratic, cubic, or higher order terms in the equation

15

defining the solution. This means that the classes in m dimensions must be far enough

apart that a hyperplane surface in (m-1) dimensions can separate them. If this cannot be

accomplished then the solution is non-linear and a perceptron will not correctly separate

the classes. XOR is a classic example of a non-linear problem that cannot be solved by a

perceptron and it is considered as the weakness of perceptron in solving complex

nonlinear problems. Looking at Fig 2.6, there is no way to draw a straight line that

separates the V symbols and circle symbols.

1 <>

Fig. 2.6. Nonlinearity of XOR.

If the problem has a non-linear solution, a multi-layer perceptron (MLP) with hidden

layers can be used. However, MLP suffers from getting trapped in local error minima as

well as lengthy learning times as the number of inputs or nodes increase and they require

special algorithms and architectures to compensate this problem. Stated differently:

"Since back-propagation learning is basically a hill climbing technique, it runs the risk of

being trapped in a local minimum where every small change in synaptic weights

increases the cost function. But somewhere else in the weight space there exist another

set of synaptic weights for which the cost function is smaller than the local minimum in

which the network is stuck. In principle, neural networks such as multi-layer perceptrons

16

have to overcome the scaling problem, which addresses the issue of how well the

network behaves as the computational task increases in size and complexity" [16]. MLP

structure and suitable learning algorithm is discussed in detail in chapter 3.

2.3.2. Hidden Markov Models

Hidden Markov models (HMMs) are one of the most popular methods in machine

learning and statistics for modeling temporal sequences such as speech. As one of the

major research directions for on-line handwriting recognition, HMM is widely used

because of the time sequential nature of online scripts as well as its capability of

modeling shape variability in probabilistic terms.

An HMM defines a probability distribution over sequences of observations (symbols)

Y = lyl,...,yt,...,yg\ by invoking another sequence of unobserved, or hidden, discrete

state variables S = \sl,...,st,...,Sg\ as shown in Fig 2.7.

Fig. 2.7. An example of probabilistic parameters of a HMM with three hidden states and four possible
observations.

17

The basic idea in an HMM is that the sequence of hidden states has Markov dynamics

-i.e. given st, sr is independent of s for all T < t < p; and that the observations yt are

independent of all other variables given st. The model is defined in terms of two sets of

parameters, the transition matrix whose if element is P(st+l — j\st = i) and is shown

in Fig 2.7 by "a" parameters and the emission matrix whose iq element is

P(yt = q\st=l) and is shown in Fig 2.7 by "6" parameters. For more information on

HMM's please refer to [17]. Details of the model parameters used in this work is

explained in chapter 3.

2.4. State of the Art

Despite the works that have been done in the offline A/P recognition systems, work in

online section is scarce and yet an active area of research. Amin et al [18] being among

the first to tackle the problem, introduced IRAC I system for isolated Arabic characters.

He has reported the recognition rate of 95.4% and used structural features along with a

nearest-neighbor classification technique. Al-Emami and Usher [19] used the same

analysis method for selecting the character features and a decision tree for the

classification. Features such as length and slop of each segment being used to derive

directional codes, number of dots and their position with respect to the baseline were

computed to build the characters feature vector. El-Wakil and Shoukry's system [20] also

utilized structural features in a chain code with a nearest neighbor classifier. They have

used features such as position and number of dots along with number of strokes and their

18

slopes and reported a recognition rate of 93%. In another similar study, Alimi and

Ghorbel [21] used a template matching approach with dynamic programming to achieve

recognition rate of 95% by tuning system parameters and avoiding the complexities of

character dots coding.

A neuro-fuzzy approach was used by Alimi [22] in a later study in which characters

were modeled by theory of movement generation. Based on this theory, the features

extracted from each character are the neuro-physiological parameters of the equation

describing the curvilinear velocity of the script. For each character presented to the

system, a fuzzy membership is assigned to each output of the neural network. The

recognition rate reported in this system was 89% , however, all the diacritical marks and

dots above and under the main character stroke were discarded. Mezghani et al [23] used

a method based on the combination of two Kohonen maps obtained using two different

representations of on-line characters signals: tangents and Fourier descriptors. Using the

topology of Kohonen maps after training, they pruned and filtered them out from their

dead and outlier nodes. After this processing the recognition accuracy increased

significantly, from 86.56% to 93.54% for 18 classes of Arabic characters by discarding

the dots data. Klassen [24] used self-organizing feature map (SOM) network tuned to

produce relevant features for Arabic recognition from data coordinates while reducing the

input space. His system also uses the initial stroke information discarding diacritical data

and considering only 15 classes of Arabic characters and needs improvement with

regards to considering the secondary strokes of the characters. A Persian recognition

system is also introduced by Soleymani et al [25] which uses fuzzy linguistic modeling

for representation of handwriting parameters. The method used, segments the strokes into

19

meaningful tokens and represents the tokens by simple features. Then fuzzification of the

features and fuzzy inference is used for the task of recognition. Results reported indicates

that in a writer independent environment the recognition is about 75%, but by tuning the

parameters for a single writer the recognition rate can be boosted up to 95%. In a recent

research, a template matching scheme was applied by J. Sternby et al [26] to Arabic

script recognition. It showed promising results despite the normalization problem of

popular template matching methods such as Dynamic Time Warping (DTW).

Since none of these methods were applied to the same data set, the reported

recognition rate cannot be fundamentally compared against each other and still the lack

of a complete and diverse data set for online A/P characters can be seen. Some of these

methods can be applied to unconstraint handwriting recognition due to their dynamic

nature of problem solving which prevents the need for prior segmentation; however, in

other methods segmentation should be performed as part of a preprocessing phase to

come up with fundamental writing parts that could be in the form of strokes or characters.

In this work, we concentrate on isolated A/P characters which can be as a result of boxed

input or even a prior segmentation phase.

2.5. Summary

In this chapter we had a quick review of A/P handwriting characteristics followed by

an introduction to character recognition processes and their building blocks. Some

preliminaries to supervised learning methods for perceptron learning and HMM models

were given. The state of the art on A/P handwriting recognition was reviewed. In the next

20

chapter the proposed recognition system with details of each stage specifications is

provided.

21

Chapter 3

Proposed Recognition System

3.1. Introduction

As discussed earlier, a typical pattern recognition system consist of several stages:

Data acquisition, Storage, Segmentation, Data compression, Normalization, Feature

extraction and Classification. The goal of the system is to correctly classify the unknown

input pattern to one of the desired classes. Each stage would have a unique objective

which would enhance the overall recognition rate. These objectives are as follows:

• Data acquisition: The raw data should be collected accurately while

minimizing input noise and quantization errors

• Storage: Data should be stored in a file for training purposes and also the

repeatability of the experiment for evaluation of overall system performance.

• Segmentation: To divide the input sequence of data into defined blocks which

can be clearly understood by the recognition engine and also suitable for the

feature extraction phase.

• Normalization and data compression: Purpose of normalization is to make

the inputs invariant to factors such as rotation, scaling and translation. Using

data compression techniques, we decrease the size of input data by omitting

22

mutual information or excess data points resulting in a decrease in the

complexity of the system while minimizing loss of accuracy.

• Feature extraction: Further reducing the dimensionality of the input space by

grouping the input data to relevant features.

• Classification: Correctly classifying the input to one of the output classes.

Figure 3.1 shows the phases of the Handwritten Arabic Character Recognition system

described in this work. However, the Data acquisition, file storage, segmentation and

normalization can be regarded as part of the preprocessing stage. In the rest of this

chapter each of the preprocessing, feature extraction and classification phases would be

explained in detail.

Data Input

"

File Storage

123,23,0.0033

124,37,0.0043

Segmentation

K

| \

/ \
\ Classification \+-

\ i

/
/ Feature
\ Extraction

-{ Normalization

Fig. 3.1. Proposed recognition system phases.

23

3.2. Preprocessing

3.2.1. Data Acquisition

This stage consists of an interface that converts the handwriting to time stamped

coordinates of pen trajectory. This interface can be a digital tablet or any other human-

computer interface which can record dynamics of handwriting. Here, for the purpose of

training and testing databases, computer mouse movement has been used to collect data.

Although in some cases the writers felt a little uncomfortable writing with a mouse as

they would with a pen, the sloppy handwriting helps to make the overall system more

robust to noise and error since there are different types of noises present in the system.

After data collection, noise reduction should be performed using a smoothing algorithm

and appropriate filtering. The smoothing algorithm would average the coordinates of the

points using neighboring data points which would eliminate the high frequency from the

digitizer or erratic pen motions that happen often on tablet surfaces or jittery mouse

motion. Filtering reduces the number of points by eliminating duplicated or close points.

This procedure is normally done during preprocessing stage but since we have used a

similar data collection platform for collecting data using mouse motions and simulating

mouse button click as the act of pen up and down, the noise reduction stage is omitted

from the preprocessing phase. Data collected using this method closely resembles

smoothed and filtered data collected from the tablet.

A sample of noisy and sloppy written "Yaa" and "Thaa" characters before and after

smoothing and filtering is depicted in Fig. 3.2. We have used locally weighted scatter plot

24

smoothing (LOESS) method which uses local polynomial regression fitting to smooth

and filter primary input data [27].

The "LOESS" method use locally weighted linear regression to smooth data. The

smoothing process is considered local because, like the moving average method, each

smoothed value is determined by neighboring data points defined within the span. The

process is weighted because a regression weight function is defined for the data points

contained within the span. In addition to the regression weight function, you can use a

robust weight function, which makes the process resistant to outliers. Finally, LOESS

uses a quadratic polynomial model in the regression part.

The local regression smoothing process follows these steps for each data point [27]:

1. Compute the regression weights for each data point in the span. The weights

are given by the tricube function shown below.

wi = 1 -
X - J C .

d(x)

3 V
(3.1)

x is the predictor value associated with the response value to be smoothed, xi

are the nearest neighbors of x as defined by the span, and d(x) is the distance

along the abscissa from x to the most distant predictor value within the span.

25

170 180 ISu 200 210 220

(a) *
240 250 260 270

(b)

Fig. 3.2. a) a sloppy written "Yaa" character before noise reduction and smoothing, b) The same character after
denoising and smoothing, c) Handwritten "Thaa" before noise reduction, d) "Thaa" character after
noise reduction and smoothing.

The weights have these characteristics:

• The data point to be smoothed has the largest weight and the most

influence on the fit.

• Data points outside the span have zero weight and no influence on the

fit.

2. A weighted linear least-squares regression is performed. This regression uses a

second degree polynomial.

3. The smoothed value is given by the weighted regression at the predictor value

of interest.

26

If the smooth calculation involves the same number of neighboring data points on

either side of the smoothed data point, the weight function is symmetric. However, if the

number of neighboring points is not symmetric about the smoothed data point, then the

weight function is not symmetric. Note that unlike the moving average smoothing

process, the span never changes. For example, when the data point is smoothed with the

smallest predictor value, the shape of the weight function is truncated by one half, the

leftmost data point in the span has the largest weight, and all the neighboring points are to

the right of the smoothed value. The span value used in this method is a percentage of the

total number of data points, less than or equal to 1.

The data collection platform and the training interfaces are shown in Fig 3.3 and

Fig 3.4.

Fig. 3.3. Data collection interface.

a ^ T ra inFor f - i

Set ProportieB

C# Train

© Test

Stibcrst Sample •...=.

, Evaluate Samples

• -. Gear Screen .•

Q o s e

Select Your Group

I f t - ^ ^ ,d
Details

S e l e c t e d G r o u p :

N u m b e r o f S a m p l e s in Group :

Tota l S a m p l e s . ;

• ' 1 _ " ' . - J

1
i

Pa J

..' J

i
i
1
1

Fig. 3.4. Training database builder.

Using the "Train" button we can perform system training and using the "Send Data to

Matlab" button the collected data can be send to Matlab for further processing as the

main simulation and computation program in this paper. However all the calculations and

proposed techniques can be easily developed and launched for mobile and handheld

devices.

3.2.2. File Storage

After the raw data has been collected and the initial denoising is done, the time

stamped coordinates should be recorded in a file for further processing and evaluation in

the training and testing phases. Here, the data is transferred in a simple text file between

the interface and the recognition program in Matlab. A sample of a written "Alif'

coordinates is shown in Fig 3.5.

28

d l 3 6 , S 6 _ J ^ ^ > ~ - - ~ ^ ^
135, 86, 0.0278187, o T " * \ ^ ^
135, 89, 0.0384979, 0,
135, 93, 0.0479856, 0,
135, 104, 0.058554, 0,
135, 112, 0.0690289, 0,
135, 123, 0.0790951, 0,
135, 131, 0.0890421, 0,
135, 139, 0.0988924, 0,
135, 144, 0.109478, 0,
135, 149, 0.11954, 0,
135, 151, 0.1294485, 0,
135, 153, 0.1398889, 0,
135, 154, 0.1501171, 0,
135, 155, 0.1607036, 0,

_^-- """~~ ~~~~~~~~~~-̂

^ < T x , X Time, Class Tag#})
^————_ ___———"""""'̂

Fig. 3.5. Handwritten "Alif' coordinates with their associated time stamps.

3.2.3. Segmentation

This phase includes the segmentation of characters to its fundamental strokes using the

pen-up and pen-down information. However, we have considered the whole character as

a continuous sequence of points as they are being written.

3.2.4. Normalization

Input data in this stage can be considered almost raw. Other than the initial smoothing

and denoising, there has not been any preprocessing done so far. Increasing the

recognition rate can be achieved by some prior processing to ensure accuracy of

recognition. Preprocessing should reduce the sensitivity of feature extraction to

variability of handwriting styles and at the same time should preserve main features of

written characters. Geometric variations in handwritings are usually due to varieties in

29

writing styles. Therefore, in a writer independent environment, normalization should be

taken into account to eliminate such variations in handwriting data.

We performed the following steps to meet the above mentioned goals and to increase

the recognition rate:

1. Time Normalization: As stated earlier, one of the advantages of on-line

character recognition is that temporal information such as sequence and length of

time to produce strokes is implicit. Sequence information was used in our system

to give the feature extraction stage additional temporal information about a

coordinate within a stroke. However, as a result of different handwriting speeds

of different persons, pen up/down artifacts and different pressure points in

handwritten characters, the character trajectory is not uniform. We therefore,

need to normalize the sequence information over the unit interval in order to

compare different handwritings. This problem is shown in Fig 3.6. To make the

character trajectory uniform we should resample the data to have equidistance

time samples of x and >> coordinates. Normalizing time with t e [0,100] corrected

this problem. Time normalization is divided across strokes so that if a letter has 2

strokes, the first or primary stroke will be lower in the time-normalized sequence

and the second or secondary stroke will have higher time-normalized sequence

numbers. Time normalization was done by interpolating JC and y coordinates

using the nearest neighbor interpolation method. Nearest neighbor takes the value

of the nearest sampling point for each position to reconstruct the function. A

sample written "Seen" character is depicted in Fig 3.7 before and after time

normalization.

30

150

Fig. 3.6. Pen trajectory artifacts.

100 120

Fig. 3.7. a) Character "Seen" before normalization, b) The same character after time normalization.

2. Translation Normalization: To ensure translation invariance, all the points are

shifted by a constant so that the minimum x and y coordinates would be zero. In

this way, regardless of the character starting and ending coordinates, the entire

character contour is shifted. However, for complete translation invariance, proper

measures should be taken during feature extraction phase and this step is only to

simplify further calculations.

31

3. Scaling Normalization: Now that all data are translated to the same spot relative

to the origin, we need to give the feature extraction stage characters that are the

same size. This gives a wider variety in input and should lead to more robust

feature extraction. Scaling reduces or enlarges the size of the letters to a

predefined size. To achieve scaling invariance, the character should be resized in

a manner that spatial structure of it would be preserved. This is achieved via

aspect ratio (AR) calculation described by:

AT) -'max ^min ** ^ \

X — X
max min

Since we have shifted the character to origin, thus ymin = xmi„ = 0. Then we scale

the y coordinate to the range (0 - 150). The range ofy is selected empirically to be

within the range of input height of a normal handwriting on tablet surface and also

in a manner that general spatial structure of A/P characters would not be

deformed. In our system, the predefined size is given by calculating the average

difference between the maximum and minimum in the y direction across all

training database characters. Now with respect to the new y coordinates and the

AR for new x coordinates can be calculated as:

new

(150 ^

V ^ - X m a x J

.x (3.3)

Fig 3.8 shows a typical letter before and after scaling and translation. As different

characters in Arabic handwriting have different aspect ratios, special care should be taken

in the scaling phase. Figure 3.9 depicts the same letter after normalization.

32

300

250

200

150

100h

Fig. 3.8. Translation and scaling effects of "Saad" handwritten character.

300

Fig. 3.9. Normalized "Saad" character.

There are other types of normalizations available which further helps the recognition

process. Making a data-set rotation invariant is another typical normalization. Rotation is

considered when the characters are written with respect to a line that is a rotated version

of the horizontal line. A possible solution is to use an algorithm to detect the longest axis

about which to rotate the letter and normalize it with respect to the origin. However, this

method is too computationally intensive. Since we are using neural networks as classifier

and we have the advantage of training it to identify complex boundary regions, by having

33

small rotated versions of the characters in the training database, our system can handle

small rotations in the input.

Another type of normalization in this context is skew normalization. Skew is

stretching or shrinking an object. Italicized letters are an example of skew. Again, by

training the system with slightly skewed letters the system is able to become robust to

this type of input variations. Besides the classifier, the choice of feature extraction

methods would also impose the type of normalizations needed. By performing the above

steps, we can guarantee that raw data are ready for the feature extraction step and that

unwanted noise is omitted from the input.

3.3. Feature Extraction

A typical character recognition system includes two main stages: feature extraction

and classification. In the first stage, each character can be described using a set of

features that will distinguish it from other characters. In the second stage, the feature

vector of the unknown character is fed into the classifier to match the closest class using a

classification criterion. The purpose of feature extraction stage is to realize that not all

data points are equally important to the pattern recognition task. Using neural networks

for the task of classification, this would result in further reduction of the data input space

which helps to keep the network sizes computationally tractable.

As mentioned earlier, different sets of features have been used in previous works.

Usually in on-line character recognition, the features are manually chosen. Examples

include number of strokes, position of strokes, curvilinear velocity, or maxima and

minima. Generally, structural features are grouped as follows:

34

Spatial features: In conjunction with image processing techniques, these set of

features have shown promising results in offline systems. Features such as the difference

between adjacent coordinates, slope of the tangent line at each point and curvature, zonal

info plus stroke directions, loop features or invariant mapping techniques are considered

in this group. However, because of the complexity of extracting some of these features

we did not find them practical in online systems which require small time delays and less

processing power.

Temporal features: In online systems we already have the information about how the

character has been written. Complex preprocessing steps cannot be performed in practical

online systems such as tablets and PDA's since data is collected as the character is being

written. Hence, taking advantage of the dynamic characteristics of the data is crucial and

consists of speed, angular velocity and other features of this kind. These features would

be available for processing as the character is being written on the tablet which is shown

in Fig 3.10.

As it can be seen from the velocity profile of x axis in part c of this figure, a sudden

change in velocity higher than a threshold would indicate a dot that is considered a

secondary stroke. These interpretations from the dynamics of handwriting would

facilitate further the recognition process.

35

150

Fig. 3.10. Representing temporal features of "Nun" character, a) character shape after preprocessing stage, b) x
coordinates as a signal of time, c) Velocity of x signal, d) Acceleration of the x signal.

Another type of features in this category are frequency domain features of the written

character x and y signals. Since dealing with each stroke of a character separately would

result in accumulation of error in case of misrecognition, we would consider all strokes of

a character in their written order as a single sequence of points. The sampling points of

multiple strokes now would look like:

{ (\ o . ^ o) - (x v . > ' v W { K o ' ^ o) - ^ - . ^) }

In which, each parenthesis indicates a stroke assuming the whole character would have n

strokes collected as they are written (s0,sli...,srir_l,sn) and the number of sample points

in each stroke can be / orj samples and they are not necessarily equal.

36

Here, we have used Discrete Cosine Transform (DCT) for converting the

corresponding character signals to frequency domain coefficients using DCT type II as in

(3.4) and (3.5),

2 N~l

^=-r2>»c o s

V « n=0

2 N~l

\n „=o

7t

~N
n + — \k

\ 2)

' n(1
— n + —
N{ 2

k = 0,\,...,N-l

k = 0,l,...,N-l

(3-4)

(3.5)

which x„ mdy„ are the x and y coordinates of the characters. Using the derived Cosine

Transform Coefficients, we would construct a feature vector for each class which has

been found effective and accurate in describing characteristics of each individual A/P

characters. The values for k = 0 are discarded as they only contain information about the

position of characters and they generally are DC components of the character signals. The

coefficients for high values of A: describe high frequency features of x andy signals but do

not contain much information about the overall shape of the signals. In fact, signals

representing characters mostly have low frequency components so we used the 10 lowest

coefficients of each of the JC and y axis signals for determining the feature vector. Totally,

there would be 20 coefficients in the feature vector representing each character as

in (3.6).

FV -[Xl,X2,...,Xl0,Yl,Y2,...,Yw\ (3.6)

In A/P handwriting, there are groups of characters that show similar signal patterns

with slight differences. However, DCT coefficients have shown great discriminating

power between character classes. This has been illustrated in Fig 3.11. In this figure

37

features of four characters "Daal", "Zaal", "Saad" and " Dhaad " are depicted in which

"Daal" and "Zaal" differ only in an additional dot and the other two also have a similar

difference. As it can be seen from the mean coefficient values from different handwriting

samples for each character class, these classes show different frequency characteristics.

In comparison to other frequency domain transforms like Fourier Descriptors, DCT

has great advantages and has proven to be more efficient [28],[29]. Due to its energy

compactness, it is possible to represent higher power spectrum of the signals with fewer

coefficients which would result in reduced dimensionality as well. Although complexity

of direct application of DCT formulas is in the order of 0(N2), but by application of fast

algorithms the complexity level can be reduced to 0(N log N). Also, using fast DCT

algorithms that incorporate distributed arithmetic (DA) and are available in off the shelf

chips in the market the feature extraction stage can be implemented easily and is

performed with small amount of time delay.

38

Daal Features
• 4 0 0 J T

10 12
n

Saad Features

'

/\ jkL

^ ^

Y

r

O^

8 10 12 14 16
n

Dhaad Features

18 20

2 4 6 8 10 12 14 16 18
n

Fig. 3.11. Illustration of DCT coefficients of four Arabic characters from top to bottom.

39

Distributed arithmetic is an efficient method for computing an inner product,

N-l

z = CTX = YJCixi (3.7)
i=0

where C = [c0,c1,...,.cAf_1] is a fixed coefficient vector and Ŷ' = rx0,JC1,...,JCAf_1j is an

input vector. If x, is represented in B-bit 2's complement form as follows:

B-l

x. = -x.0 + Y, Xy 2~j 0<i<N-l (3.8)
7=1

Then the output z is given by substituting (3.8) in (3.7),

N-l B-l

z=~YJcixi0+YJ
1=0 7=1 L 1=0

N-l

Y^ (3.9)

JV—i

Since there are 2^ possible values for ^]c,x(y for eachy = 0,1, ...,B-1, these values can be
7=0

pre-computed and stored in a ROM. Then, eq. 3.9 can be implemented with a ROM of

size 2^ and an accumulator, as can be seen in Fig 3.12. Since the ROM size grows

exponentially with respect to the vector size N, several techniques have been developed

for reducing the size of the ROM. Interested readers are referred to Sungwook et al [30]

for more information on DA architectures.

40

„

0 ~
x,

1
•

XN-J

''l*

ROM

' r

+/-
< Shift

S/R

er/1 Reg

Fig. 3.12. Basic ROM accumulator (RAC) design.

3.4. Classification

3.4.1. Overview

In handwriting recognition, the main task is the extraction of features from raw data.

Classification methods are well developed and they generally work well if the features

are suitable for the task. The classification stage consists of two parts; training and

testing. In the training phase, the features of the training data are computed and fed to the

classifier for training purposes. In the testing phase, after extraction of the features of the

unknown input character, these features are sent to the classifier to be matched with the

nearest class.

There are different numbers of classifiers used in this context which can be grouped

into three general types as follows

Neural Networks: such as feed forward neural networks (FFNN) or time

delayed neural networks (TDNN).

Statistical Models: such as hidden Markov models (HMM)

Template Matching Models: such as Elastic matching and minimum distance

measures.

41

The nature of feature extraction method dictates the appropriate classifier that can be

used. The dimensionality reduction characteristic of DCT coefficients makes them an

appropriate candidate for neural classification. Training procedures of neural networks

greatly depend on the size of the feature vector and network size should be

computationally tractable to achieve acceptable performance. Here we have used

different architectures of neural networks along with the cosine descriptors to perform the

classification. For comparison of different classifiers, a HMM model is also constructed

and used with a slight variation to the feature vector. Details of the classifier models are

discussed the following sections and the results are presented in chapter 5.

3.4.2. Artificial Neural Networks

Artificial neural networks (ANN), or "neural networks", consist of simple processing

elements with high degree of interconnection as depicted in Fig 3.13 [31]. Recall from

section 2.1.3 that these small processing elements are called perceptrons. As discussed

earlier, the weights of the elements can be adjusted using a training data set. While these

nodes are capable of solving linear problems, we learned that multi-layer perceptrons

with hidden layers were useful for solving non-linear and complex problems with. MLP's

elements are organized into three layers: an input layer, intermediate hidden layers and an

output layer which gives a character choice based on the input features.

42

o o Input Layer

Intermediate Layers

o o Output Layer

Fig. 3.13. Multi layer perceptron with intermediate hidden layers.

Due to variability of handwriting geometry and hence the feature vectors, the classifier

must be able to take into account peculiarities of different writing styles. Neural networks

have proven very competitive compared to classical methods [32] especially for patterns

requiring complex boundary decisions or with outliers. Their power comes from their

nonlinearity and ability to implement arbitrary decision regions and hence is a good

candidate for pattern recognition tasks involving variable geometry. In this work, we

have used a system of multiple classifiers for our recognition engine, consisting of one

classifier for each set of characters. The proposed architectures are discussed at the end of

this section.

Each classifier is a Multi-Layer Perceptron (MLP) Network and is trained with

resilient back propagation algorithm [33]. Backpropagation is the most widely used

algorithm for supervised learning with multi-layered feed-forward networks. The basic

idea of the backpropagation learning algorithm is the repeated application of the chain

rule to compute the influence of each weight in the network with respect to an arbitrary

error function E:

43

dE dE ds; dnet:

(3.10) dwtJ dst dnett dwtj

where w. is the weight from neuron j to neuron /, s, is the output, and neti is the

weighted sum of the inputs of neuron /. Once the partial derivative for each weight is

known, the aim of minimizing the error function is achieved by performing a simple

gradient descent:

dE
wij(t + l) = wiJ(t)-s—(t) (3.11)

dwtj

Obviously, the choice of the learning rate e, which scales the derivative, has an

important effect on the time needed until convergence is reached. If it is set too small, too

many steps are needed to reach an acceptable solution; on the contrary a large learning

rate will possibly lead to oscillation, preventing the error to fall below a certain value.

Many algorithms have been proposed so far to deal with the problem of appropriate

weight-update by doing some sort of parameter adaptation during learning. Resilient

propagation is an efficient learning scheme that performs a direct adaptation of the

weight step based on local gradient information. In crucial difference to other developed

adaptation techniques, the effort of adaptation is not blurred by gradient behavior. The

following pseudo-code fragment shows the algorithm of resilient backpropagation

adaptation and learning process.

44

For all weights and biases {

if(— (? - l) * | - (0 > 0) t h e n {
8wIJ dw0

Av (t) = minimum (A„ (t-l)*Tj+, Amax)

Awf}.(/) = - sign (—(/))* \(0
dwv

wj,(/ + l) = w„(0 + Aw(,(/)

}

else if (— (f - 1) * — (0 < 0) then {
dwtj dwtJ

A,, (0 = maximum (Aff (/ - 1) * /;". Amm)

wiJ(t + l) = wlj(t)-AyviJ(t-\)

dwtJ

}

else if (— (f - 1) * — (0 = 0) then {

Awff(/) =-sign (-—(/))* Atf(0

w9(/ + l) = w„(0 + Awff(0

}

In the above algorithm, for each weight its individual update-value A. is introduced

which determines the size of the weight-update. This adaptive update-value change's

during the learning process based on the error function E. Verbalized, the adaptation-rule

works as follows: every time the partial derivative of the corresponding weight w..

changes its sign, which indicates that the last update was too big and the algorithm has

jumped over a local minimum, the update-value A. is decreased by the factor^". If the

derivative retains its sign, the update-value is slightly increased in order to accelerate

convergence in shallow regions.

45

Once the update-value for each weight is adapted, the weight-update itself follows a

very simple rule: if the derivative is positive (increasing error), the weight is decreased by

its update-value, if the derivative is negative, the update-value is added. However, there

is one exception: If the partial derivative changes sign, i.e. the previous step was too large

and the minimum was missed, the previous weight-update is reverted. Due to that

"backtracking" weight-step, the derivative is supposed to change its sign once again in

the following step. In order to avoid a double punishment of the update value, there

should be no adaptation of the update-value in the succeeding step. In practice this can be

done by setting = 0, in the A adaptation-rule above. For more information on
dwt] '•>

resilient backpropagation algorithm please refer to [33].

As indicated earlier, different architectures of MLP networks can be used for the

classification task. In this work two possible architectures with high accuracy has been

proposed and the results are discussed.

One of the possible architectures is depicted in Fig 3.14. The recognition engine is a

system of multiple classifiers consisting of one classifier for each character. Each

classifier of this engine is designed to accept the associated character by producing high

output and reject others by producing low output. The result aggregation unit would

classify data to the classifier group which has the maximum output.

46

Recognized
Character

Preprocessed
Data

Fig. 3.14. Network of MLP's with each character is represented individually by one MLP.

In another tested configuration, classifiers of this engine are designed to accept the

two associated characters by producing high output for each and reject others by

producing a low output as shown in Fig 3.15.

Recognized
Character

/ Result
/ Aggregation

NN1

„-^'L X' '""/ '"^

NN2 NN3

R Bcognition Engine

*

\ . ^

NN15

,̂

NN16 I

Preprocessed
Data

Fig. 3.15. Network of MLP's with every two characters represented by one MLP.

Since similar A/P characters come in series in the alphabet, we divided the 32

characters set to two groups of 16 classes and trained each network with a character class

47

from each group in order to get the most discrimination possible. The training procedure

and the assigned classes are illustrated in Fig 3.16.

Recognition Engine

NN1 NN2

/ \
/

NN3 NN15 NN16

7T—IT

\

/ /
/

x ' y y \ y y \
^ y y \

< x\ \ BS J 4>"

Group 1

0"° (>=» a iS

Group 2

Preprocessed
Data Groups

Fig. 3.16. Training procedure of the recognition engine and their class assignment.

The result aggregation unit consists of a MLP network itself which is trained to select

the specific class from the previous layer of networks. This configuration is found to be

more robust to errors caused by sloppy handwriting since it incorporates the similarity

and differences between classes and then produces the final results. In other words, we

have used the similarity and difference measure among the previous networks to enhance

the recognition process and also compensate the error of the non ideal MLP networks. In

the second configuration in total 17 MLP networks were used which comparing with the

previous configuration saves memory and processing resources, however the final

recognition rate is slightly reduced. Other configurations also can be investigated in this

context, such as reducing further the number of MLP modules to 8. This would result in

increase in the training time of the network and loss of performance.

48

3.4.2. Hidden Markov Models

As discussed in section 2.3.2, HMMs are double stochastic processes that can be used

to characterize the statistical properties of signals. In fact, a signal is considered as a

sequence of observation which can be observed directly. There are basically two different

kinds of observations, discrete and continuous. In this work, we use the continuous HMM

since our extracted sequences from A/P characters are continuous. Furthermore, it is not

recommended to discretise the output as long as it is possible [34]. A continuous HMM X

is defined by the elements as follow:

• Q, the number of hidden states in the model.

• T, length of sequences.

• 8 = {S^-.^SQ}, the finite set of hidden possible states.

• II = {ftj}, the initial state probability distribution where,

Q

;r, =/>[?, = £ ,] , l < z < g , a n d £ ; r , = l .

• A = {#..}, the state transition probability matrix, where,

• B = {bjt), the emission probability matrix. Where,

bj t = P[Ot \qt = Sj],l<j<Q,l<t<T. There are different approaches to

define the emission probability for continuous observations. The most general

49

representation of the PDF is a finite mixture of the form

M

h< = Hcjm^Ot,ujm,Ujm), \<j<Q (3.12)
m=\

where c. , the mixture coefficient for the mth mixture in state j is always

greater than or equal to zero and summation over m should be equal to 1. N is a

Gaussian function, and u . and U, are the mean vector and the covariance

matrix of the mth mixture component in statey respectively.

To have a functional HMM for real-world applications, three basic problems should be

solved. These problems are,

• Evaluation: Calculating P(0 \ X).

• Decoding: Choosing the state sequence that explains the observations.

• Parameter Estimation: Adjusting the model parameters.

HMMs can be used as classifiers in two different ways; path discriminant and model

discriminant [35]. In path discriminant approach, only one HMM is used for all classes

and different state sequences of the model distinguish classes. While in the model

discriminant approach, a separate model is used for each class and the class label is

obtained based on the probability of output:

c = argmax[P(0\Zi)] (3.13)
Hi<L

where, L is the total number of classes. In this work, we used the second approach

where a distinct model is built for each individual class. We use Baum-Welch method for

50

training and considering that there are more than one sample in training set for each class,

the modified version of this method is utilized [36].

Since HMM's perform better on sequential type of data and features, DCT descriptors

can be used with a slight modification with this classifier. As in speech recognition tasks,

we have used a similar procedure to extract sequential features. We have used a sliding

window on the sequence of data points and extracted the DCT features of the moving

window as illustrated in Fig 3.17.

2 5 0

TOO

TOO

Fig. 3.17. Written character x and y signals and the sliding window for feature extraction.

We found that using a sliding window with overlaps has the best result and provides

the classifier with distant feature vectors. Different values can be used for the HMM

classifier parameters which directly affects the final recognition rate. These parameters

51

are discussed in detail in chapter 4. In Fig 3.18, a sample feature vector extracted for two

characters "Taa" and "Thaa" is depicted. It is assumed that the windows size is 15 points

and overlap is 10 points. Hence, there are 18 windows along a character that is time

normalized to (0 - 100). In each window only the first 3 DCT coefficients of each x andy

signals are extracted. Forming them in a vector we would have 6 sequences of length 18.

For simplicity only two feature sequences are shown in Fig 3.18.

Fig. 3.18. Windowed DCT features for two characters "Taa" and "Thaa".

As can be seen from the figure, HMM classifier can easily detect these two classes

from their respective feature sequences. The results of applying this method with the

range of acceptable parameter values are discussed in section 4.2.

3.5. Summary

In this chapter, details of each recognition stage consisting of data acquisition,

preprocessing, feature extraction and classification were provided. The experimental

results along with the recognition rates will be given in the next chapter.

52

Chapter 4

Experimental Results

Recognition systems need large databases for training and testing purposes. Although

some work has been conducted in online A/P handwriting, but generally they presented

results on databases of their own or databases which were unavailable to the public.

Consequently, there is no benchmark to compare the results obtained by the researches.

Without any available database of online A/P handwritten characters, we collected our

own sample characters from different individuals. Two sets of data have been developed.

One collected for training purpose which consists of 2600 isolated character sample from

10 different writers. Another data set is built for testing purpose which consists of 500

individual character samples from another set of 10 writers. Since we wanted to test our

developed system in a writer independent environment, we collected the test samples

from writers who had not participated in the training phase. After training the system

with the training data set and optimizing recognition engine parameters, the completely

different test data were applied to the system for evaluation of its performance.

After performing a series of experiments, we found that using a set of 10 DCT

coefficients for each of the x and y signals would give the recognition engine enough

discriminative power to result in a high recognition rate. These coefficients were

53

arranged in a feature vector as it was described in chapter 3. The feature vectors are fed to

the recognition engine for classification. In the following, first we will discuss the results

of applying the features to the neural network and then compare the results to HMM

classifier as an alternate classifier for the recognition engine.

4.1. Neural Network Classifier

As described in section 3.4.2 we used two architectures for the MLP network along

with the resilient backpropagation (RPROP) algorithm for training purposes. RPROP

algorithm parameters used in the training process are as follows,

A 0 = 0 . 0 7 , A m a x =50 , rj+ = 1.2, 77" =0 .5

The training database is divided to 3 sections. For training, 60% of the database is

randomly chosen and for validation and testing purpose, 20% of the reminder is

accredited to each section. As in the two proposed architectures there are individual

MLP's for different character classes, we found that in order to make use of mutual

information in the overall network it is best to randomly divide the training database for

each of the MLP's individually. In this case each network is trained using a different set

of training data helping the overall system to generalize better and hence more robust to

shape variations.

The first architecture that used 33 MLP networks had an average recognition rate of

96.5%. However, the overhead of the system was high as each network had been

assigned to only one character resulting in 32 MLP's for 32 characters and one for the

result aggregation unit. On the other hand, we fund that using the second architecture we

54

can still have the same performance with only 17 MLPs. Every two characters are

assigned with one MLP and one MLP for the result aggregation unit. So we emphasized

more on this architecture and adjusted its parameters for the best performance. In

Fig 4.1 the average recognition rate for different number of hidden nodes of this

architecture is depicted.

90 -

80 -

70 -

2 60 _
re
^ 5 0 -
o
2 4 0 -
c
ha

° 3 0 -
oe20 -

10 -

__ _ _ oe_A7

|

1
)
|

Si
j

/
f

•

1
/
1

1

so

\

Su.
Vg-

\

^

1

fj

-+—.f
* * <

|

«fe
„ ^ » _ .O ^Q O . ^) _
-Oj-^ ^

\

i
j

N^"4™^*^*^*^o

74^^
1
j

•4\ ^

0 1 0 2 0No. of HiddiS Nodes 4 0 5 0 6 0

Fig. 4.1. Average recognition rates of MLPs with different number of hidden nodes.

It should be reminded that these recognition rates are the result of applying the totally

different test database to the system which would completely simulate a writer

independent environment and the 20% test data of training database is only for test and

evaluation of the training procedure and is not shown here.

A common problem in supervised learning is that classifiers might overfit the training

data. It means by becoming acquainted to the training data, the classifier cannot relate

other test data with small variations to the same class. In other words, the classifier lacks

generalization ability and its performance is considerably reduced. The validation

procedure in the training stage of neural networks helps that overfitting does not occur in

55

the MLP's and forces an early stopping in the training. In order to optimize further the

neural network classifier we have chosen the one with 50 hidden nodes. In the first step,

performance plots of the 16 MLP's are drawn. A sample performance plot for the first

MLP network is illustrated in Fig 4.2.

Best Validation Performance is 0.0085864 at epoch 5364
T-

5

0 1000 2000 3000 4000 S000 6000

6564 Epochs

Fig. 4.2. Performance plot of the netl illustrating MSE of the network for the training, validation and test sets.

As shown in Fig. 4.2, the best validation performance of the first network is at epoch

5364 which represent the point where the mean square error (MSE) of the validation set

is at minimum and the network is balanced in terms of training and generalization. The

best validation performance and MSE of training, validation and test datasets for all 16

MLP networks is presented in Table 4.1.

56

NeU

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Best Validation
MSE

0.008500

0.016020

0.013530

0.020180

0.027090

0.011791

0.011709

0.013870

0.016560

0.032280

0.030572

0.021030

0.031420

0.015503

0.017190

0.022766

Epoch

5364

923

752

1515

1146

5039

2568

962

10133

1239

2118

1872

2517

1280

1202

1495

Training
MSE

0.004830

0.006802

0.008163

0.009951

0.013716

0.008198

0.005907

0.008430

0.009847

0.016475

0.019861

0.013433

0.018284

0.010511

0.008686

0.010983

Individual Test
data set MSE

0.028902

0.020090

0.014718

0.026458

0.019636

0.013194

0.019920

0.021600

0.034276

0.042627

0.034305

0.029104

0.033938

0.022798

0.016803

0.037386

Training
MSE (After

Opt.)

0.005982

0.009619

0.008216

0.012831

0.013949

0.008900

0.006234

0.010301

0.013781

0.019740

0.019839

0.014115

0.019654

0.014783

0.012085

0.013075

Individual Test data
set MSE (After

Opt.)

0.018193

0.013501

0.011785

0.024185

0.016724

0.011012

0.017824

0.020123

0.031325

0.039837

0.030342

0.025193

0.032874

0.019840

0.012827

0.034524

Table 4.1. Performance characteristics of the networks before and after optimization.

Afterwards, training procedure is repeated up to the number of epochs found by

minimum validation errors. The resulting training and test errors are presented in

Table 4.1 as well. This way the recognition rate was further enhanced up to 97.01%.

Table 4.2 shows the misclassification rates for each of the character classes individually.

Class
Number

1

2

3
4

5

6

7

8

9
10

Misclassification
Rate
0%

7.1%

0%
0%

0%

0%

0%

0%

7.1%

5.6%

Class
Number

17
18

19

20

21

22

23

24

25
26

Misclassification
Rate
0%
0%
0%

12.5%

0%
0%
0%
5%

21.1%

0%

11
12
13
14
15
16

0%
0%
0%

7.1%
5.6%
5.6%

27
28
29
30
31
32

0%
5.9%
0%

5.3%
0%
0%

Table 4.2. Misclassification rates of individual classes after optimizing the neural networks.

The test procedure error results before and after optimization is illustrated in Fig 4.3

for comparison purpose. Although the training errors has increased according to

Table 4.1 but individual test errors after optimization has decreased and this proves the

generalization concept of the neural networks.

0.045
jjj" 0.040
1 . 0.035
g 0.030
W 0.025
ro 0.020
f 0.015
g 0.010
| 0.005

0.000

1

• ;

t

!

t

t

t

t

o * t

2

•

1 M

" 1
i

t S. i i . ! i . \ 1 L

3 4 5 6 7 8

Net,

• Test MSE before Opt.

ms^ p

i ;
I. '.
J i -! .

- i\

. I l l £ • !

9 10 11

"• i 1?
: i ; j

. * i :!

: " : ! < • •

* - * : • :
L » " J ™ •
i * - 1 I

i - *

> , 1 %* 1 ± .

12 13 14

• Test MSE after Opt.

: i! .

, |
4

3 1

u n •
b» * b £

15 16

Fig. 4.3. Performance comparison of the network on the test data set before and after optimization.

In the next section, results of the recognition system using a HMM classifier is

presented and at last our system would be compared to other systems reported in the

literature.

58

4.2. HMM Classifier

The Baum-Welch training algorithm is used for training the HMM parameters,

I = (A, B,n) for each letter-shape model. The initial state distribution # = {#,.} is

initialized to a random value between 0 < nl < 1 for 1 < / < Q where Q is the number of

states in the model. The observation matrix Y is initialized to reflect a uniform

distribution. We have empirically chosen the number of states and mixtures for classifier.

In our system, the number of states varies from 5 to 11 states and there are only two

values for the number of mixtures (M=2, M=3). Tables 4.3 and 4.4 shows the maximum

recognition rates achieved from the recognition engine when the number of DCT

coefficients of each x andy signals is 3 and the sliding windows width is 15 points.

O v f c ^ ^

5

8

10

12

5

94.7598

96.4233

94.7598

94.7598

6

93.8865

95.6332

97.8166

95.6332

8

92.1397

94.7598

93.4498

95.6332

9

93.4498

95.6332

95.6332

95.1965

Table 4.3. Recognition rates of different hidden states and overlap conditions when M=2.

Table 4.4. Recognition rates of different hidden states and overlap conditions when M=3.

As it can be seen from the tables, generally by reducing overlap size with respect to

the windows size recognition rates decrease and also by increasing the number of

Gaussian mixtures and number of hidden states, recognition rates worsens. We found that

59

using only two Gaussian mixtures for representation of observations probability densities

(pdf) is adequate and results in higher recognition rates. These two tables only illustrate

the maximum recognition rates achieved and since the initial state probabilities are

randomly assigned it is hard to get these results on each trial. For example in Table 4.3,

we conducted a series of simulations using the same parameter values that resulted in

97.81% recognition rate. The average recognition rate that was achieved after 10 trails

was only 94.88%. The best average recognition rate that could be found was for the case

(M=2, Q=6, OvL=8, FNumb=3, WinSize=15) which resulted in recognition rate of

95.12%. Table 4.5 represents the misclassification rates for each individual class.

Class
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Misclassification
Rate
9.1%
0%
0%
0%
0%
0%
0%

16.7%
14.3%
5.6%
0%
0%

28.6%
0%
0%
0%

Class
Number

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Misclassification
Rate
0%

5.9%
7.1%
0%

6.7%
6.3%
10.5%

5%
36.8%
5.9%
0%
0%
0%
0%
0%
0%

Table 4.5. Misclassification rates of individual classes with HMM classifier.

60

4.3. Summary

In this chapter different experimental results and the influence of various parameters

on the resulting recognition rate was discussed. As mentioned earlier, there is no common

data set for online A/P characters and comparison of this method with other methods is

not a fair assessment. However, the proposed method proves to be accurate and robust to

variations in handwriting and still among the highest recognition rates reported.

The recognition rates reported in literature are summarized in Table 4.6. Some of the

methods reported are complex systems with several different stages such as post

processing which further enhances the final recognition rates. For example, an additional

dictionary in the post processing stage for result validation can further enhance the

systems performance. However, dictionaries are usually used in systems that recognize

word or word parts. But additional linguistic models with memory of previous characters

can force the system to accept particular classes.

61

Publication

Aminetal.[18]

Al-Emami[19]

El-Wakil [20]

Alimi &
Ghorbel [21]

Alimi [22]

N. Mezghani
[23]

T. Klassen [24]

M. Soleymani
[25]

J. Sternby [26]

Proposed
method

Proposed
method

Features

Loop positions and
types, line positions
and directions

Length, slopes,
directional codes,
dots and positions

Structural features in
chain code

Template matching

Curvilinear velocity
parameters

Tangents, Fourier
descriptors

Data coordinates

Fuzzy linguistic
modeling

Angle, arc type,
length ratio

DCT coefficients

Windowed DCT
coefficients

Recognition
Engine

Nearest
neighbor

Decision tree

Nearest
neighbor

Dynamic
programming

Neuro-fuzzy
approach

Kohonen maps

Self
Organizing
maps (SOM)

Fuzzy
inference

Template
matching

Neural
Networks

HMM

Rec.
Rates

95.4%

100% *

93%

95%

89%

93.5% *

83.3%

95% *

97%

97.01%

95.1%

Table 4.6. Comparison of reported online A/P recognition systems and their

resultant recognition rates. *After parameter optimization or user adaption.

62

Chapter 5

Conclusion

5.1 Conclusions

This thesis addresses key stages in the Arabic/Persian character recognition task. In

chapter 2, basic characteristics of A/P handwriting are reviewed. The overall recognition

process and some background information on supervised learning methods are presented.

State of the art is reviewed to become familiar with the work that has been done in this

area. In chapter 3, detailed information on each of the recognition stages is given. The

proposed techniques that build the heart of our recognition system are explained in depth

and in chapter 4 the results are presented followed by discussion on different system

parameter settings.

We can conclude that our approach to recognizing A/P handwritten Letters is proved

as a viable concept. Further refinement of the networks will certainly produce higher

recognition accuracy while increasing the robustness of the solution.

The A/P language has some distinctions from Asian or Latin-script languages that

make it a unique recognition problem. Our system accounts for some of these in the

63

preprocessing and feature extraction phase by limiting the effects of handwriting

variations on letter classes.

Many of the previous approaches to A/P cursive character recognition involved

hierarchical reduction of the complexity of the problem and heuristic rules for feature

selection which would not react well to noisy input. Some of the best also include chain

rules that result in a more complicated system. Hence, we looked for a structural and

unified procedure for tackling the problem of A/P handwriting recognition.

Further work is necessary to explore non-linear classifiers and optimizing their

solutions. Also, to complete the A/P handwriting recognition process, our system should

handle segmentation. This can be done by adding additional segmentation phases prior to

our recognition engine. Due to complexity of segmentation procedure in A/P

handwriting, individual segmentation methods have been proposed in literature [37].

5.2 Summary of contributions

• A/P handwritten isolated character data set of 3100 characters.

• Pre-processing normalization phases that produce invariant and robust data from

input data coordinates while eliminating noise.

• Feature extraction method robust to shape variations and noise while reducing

dimensionality of input space.

• Multi layer perceptron networks with different possible connection architectures

tuned to recognize the 32 letter class shapes.

• Sequential feature extraction algorithm for possible application with sequential

classifier systems.

64

• Implementation of the proposed sequential feature extraction technique with a

recognition engine using continuous Gaussian HMMs and fine tuning the classifier

for high recognition rate.

• Potential of robustness in the presence of noise.

5.3 Future Research Directions

There are several ways to expand the work presented in this thesis. Some have been

listed here:

• Automatic segmentation of characters based on primary and secondary strokes.

• Changing the time normalization for primary and secondary strokes.

• Delayed stokes processing.

• Check robustness in noisy setting and with different random initializations.

• Try translating data about the centroid instead of extrema.

• Normalize scale after segmentation.

• Application of HMM's to explore automatic segmentation.

• Expanding the character classes to about 100 classes for consideration of

connectivity variations in different character classes and its influence on

recognition rates.

5.4 Real-world applications of the concept

Some real world applications can be listed as follows:

• Palm interface for A/P, which has a customizable Grafitti script but can also work

well for other people.

65

• Handwriting tutorial for children.

• Arabic input for computers where people do not know how to type.

• Cell phone input

5.5 Summary

Arabic handwriting recognition is a difficult problem but our hope is that the proposed

system will be a step towards a unified and structured approach to robustly solve it.

The concept is proved as a possibility. Now, it remains for further research to build on

this foundation and work towards automatic segmentation and recognition of A/P words.

66

References

[1] L. Harmon., "Automatic recognition of print and script", Proc. IEE, 60: 1165 -

1176,1972.

[2] S.A. Alshebeili, A.A.F. Nabawi, S.A. Mahmoud, Arabic character recognition

using 1-D slices of the character spectrum, Signal Processing, vol. 56 (1997), pp.

59-75.

[3] T. F. Stahovich, R. Davis, R. Miller, J. Landay and E. Saund, Pen-based

computing. Computer Graphics, vol. 29(4) (2005), pp. 477-479.

[4] M.Nakagawa, K. Akiyama, T. Ouguni, N. Kato, Handwriting-based user

interfaces employing online handwriting recognition, Advances in Handwriting

Recognition, S.-W. Lee (Eds.), World Scientific, 1999, pp. 578-587.

[5] D. Lopresti and G. Wilfong, Cross-domain searching using handwriting queries,

Proc. Seventh Int'l Workshop Frontiers in Handwriting Recognition (2000), 3-12.

[6] G.Russel, M.P. Perrone, Y. Chee, and A. Ziq, Handwritten document retrieval,

Proc. Eighth Int'l Workshop Frontiers in Handwriting Recognition (1999), 293-

296.

[7] T. F. Stahovich, R. Davis, R. Miller, J. Landay and E. Saund, Pen-based

computing. J. Computers & Graphics vol. 29(4) (2005), pp. 477-479.

[8] C. C. Tappert, C. Y. Suen and T. Wakahara., The state of the art in online

handwriting recognition, IEEE Trans, on Pattern Analysis and Machine

Intelligence, vol. 12 (1990), pp. 787-808.

[9] R. Plamondon and S. N. Srihari., Online and off-line handwriting recognition: A

comprehensive survey. IEEE Trans, on Pattern Analysis and Machine

Intelligence, vol. 22 (2000), pp. 63-84.

67

[10] C. -. Liu, S. Jaeger and M. Nakagawa., Online recognition of Chinese characters:

The state-of-the-art. IEEE Trans, on Pattern Analysis and Machine Intelligence,

vol. 26 (2004), pp. 198-213.

[11] L.M. Lorigo, V. Govindaraju, Offline Arabic handwriting recognition: a survey,

IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 28 (5) (2006), pp.

712-724.

[12] Amin, A. "Arabic Character Recognition", Handbook of Character Recognition

and Document Image Analysis, World Scientific Publishing Company, 1997, pp.

398.

[13] Arabic Styles, 2007, http://291etters.wordpress.com/2007/05/28/arabic-type-

history.

[14] Art of Arabic Calligraphy 1993, http://www.sakkal.com/Arab_Calligraphy_

Art6.html.

[15] F. Biadsy, J. El-Sana, N. Habash, Online Arabic Handwriting recognition using

hidden markov models, Proc. of the Tenth Int'l Workshop on Frontiers in

Handwriting Recognition, (2006), pp. 85-90.

[16] Haykin, S., Neural Networks: A Comprehensive Foundation, (2nd Edition),

Prentice-Hall, New Jersey, USA.1999. Chapter 3.8.3.9, Perceptrons.

[17] Rabiner, L.: A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition. Proc. of IEEE 77, (1989), pp. 257-286.

[18] A. Amin, A. Kaced, J. P. Haton and R. Mohr, Handwritten Arabic Characters

Recognition by the IRAC System, Proc. 5th Int'l Conf. on Pattern Recognition,

Miami, (1980), pp. 729-731.

[19] S. Al-Emami and M. Usher., On-line recognition of handwritten Arabic

characters. IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 12(7)

(1990), pp. 704-710.

[20] M. S. El-Wakil and A. A. Shoukry., On-line recognition of handwritten isolated

Arabic characters, Pattern Recognition 22(2) (1989), pp. 97-105.

[21] A. M. Alimi and O. A. Ghorbel. , The analysis of error in an on-line recognition

system of Arabic handwritten characters. Document Analysis and Recognition,

Proc. of ICDAR vol. 2 (1995), pp. 890-893.

68

http://291etters.wordpress.com/2007/05/28/arabic-type-
http://www.sakkal.com/Arab_Calligraphy_

[22] Alimi, M.A., A neuro-fuzzy approach to recognize Arabic handwritten

characters", Int'l Conf. on Neural Networks, vol. 3 (1997), pp.1397-1400.

[23] N. Mezghani, M. Cheriet and A. Mitiche., Combination of pruned kohonen maps

for online Arabic characters recognition. Proc. Seventh Int'l Conf. on Document

Analysis and Recognition (ICDAR), (2003), pp. 900-904.

[24] T.J. Klassen, M.I. Heywood. Towards the on-line recognition of Arabic

characters, Proc. of the Int'l Joint Conf. on Neural Networks (IJCNN'02), vol. 2,

pp. 1900-1905.

[25] 2002.M. Soleymani, S. B. Shouraki and S. Kasaei, A novel fuzzy approach to

recognition of online Persian handwriting, Proc. of 5th Int'l Conf. on Intelligent

Systems Design and Applications (ISDA), (2005), pp. 268-273.

[26] J. Sternby, J. Morwing, J. Andersson, C. Friberg, Online Arabic handwriting

recognition with templates, Pattern Recognition, vol. 42 (12) (2009), pp. 3278-

3286.

[27] Cleveland, W.S., Robust Locally Weighted Regression and Smoothing Scatter

plots. Journal of the American Statistical Association 74 (368) (1979), pp. 829-

836.

[28] N. Ahmed, T. Natarajan, and K. R. Rao, Discrete cosine transform, IEEE Trans.

Computers (1974), pp. 90-93.

[29] KR Rao and P. Yip, Discrete cosine transform: Algorithms, Advantages and

Applications, Academic Press, Boston, 1990

[30] Sungwook Yu and E. E. Swartziander Jr., DCT implementation with distributed

arithmetic, IEEE Transactions on Computers 50(9) (2001), pp. 985-991.

[31] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, second ed. John

Wiley and Sons, 2001.

[32] Huang, R.P. Lippmann, Comparisons between Neural Net and Conventional

classifiers, IEEE 1st Int'l Conf. Neural Networks (1987), pp. 485-493.

[33] M. Riedmiller, H. Braun , A direct adaptive method for faster back propagation

learning: The Rprop algorithm, Proc. of the IEEE Int'l Conf. on Neural Networks

(ICNN) (1993), pp. 586- 591.

69

[34] I Makaremi, M Ahmadi, An Efficient Wavelet Based Feature Extraction Method

for Face Recognition, Advances in Neural Networks, The Sixth Int'l Symp. On

Neural Networks (ISNN), Springer, (2009).

[35] Chen, M.Y., Kundu, A., Srihari, S.N., Variable Duration Hidden Markov and

Morphological Segmentation for Handwritten Word Recognition. IEEE

Transaction on Image Processing 4, 1675-1688 (1995)

[36] Rabiner, L.R., Jung, B.-H., Fundamentals of Speech Recognition. Prentice Hall,

Englewood Cliffs (1993).

[37] Husam A.A1 Hamad, Raed Abu Zitar, Development of an efficient neural-based

segmentation technique for Arabic handwriting recognition, Pattern Recognition,

doi:10.1016/j.patcog.2010.03.005

70

Appendix A

In the following, programming codes of the main recognition engine for the neural
network approach is provided which has been written in Matlab environment.

function RcR = RecEng

% Declaring Initial Parameter Values
thumb = 10;
mode = 0;
Hidnod = 50;
Agnod = 52;
BestEpochs = [5364 923 752 1515 1146 5039 2568 962 10133 1239 ...

2118 1872 2517 1280 1202 1495 22000];

% Loading Training Data
[X,Y,Target] = TrainData;

%% Fixing Scaling and Shifting Problem

% Shifting all characters to origin
MinX = min(X,[],2);
MinY = min(Y,[],2);

X = X - repmat(MinX,l,n);
Y = Y - repmat(MinY,l,n);

% Scaling Y to range [0 150] and X according to Aspect Ratio
MaxX = max(X,[],2);
MaxY = max(Y,[],2);

AsRatio = MaxY./ MaxX;
NMaxX = 150 ./AsRatio;

Y= 150*Y ./repmat(MaxY,l,n);
X = X ./ repmat(MaxX ./ NMaxX,l,n);

71

for i = 1 :m
forj = l:n

if isnan(X(ij))
X(ij)=0;

end
ifisnan(Y(ij))

Y(ij)=0;
end

end
end

clear Temp i j Ti T;

%% Computing the Fourier Discriptors

FDis = DCTFVec([X,Y],fnumb,mode);

%% Neural Network Implementation

%Resilient Back Propagation Method
fori =1:16

TmpTarget = [Target(i,:); Target(i+16,:)];
net{i} = newff(FDis,TmpTarget,Hidnod,{},'trainrp');

end

% Training the Network
TrTime = tic;

fori =1:16
i
TmpTarget = [Target(i,:); Target(i+16,:)];
net{i}.trainParam.show = 50;
net{i}.trainParam.epochs = BestEpochs(i);
net{i}.trainParam.showWindow = 0;
net{i}.trainParam.goal = le-5;
net{i}.trainParam.max_fail= 1200;
[net{i},tr{i}]=train(net{i},FDis,TmpTarget);

end

TrTl=toc(TrTime);

%%
TestSize = size(FDis,2);

Aglnput = zeros(32,TestSize);

72

fori =1:16

TmpOut = sim(net{i},FDis);
Aglnput(i,:) = TmpOut(l,:);
Aglnput(i+16,:) = TmpOut(2,:);

TmpTarget = [Target(i,:); Target(i+16,:)];
Err = TmpTarget - TmpOut;
TrPerf(i) = mse(Err);

end

Agnet = newff(AgInput,Target,Agnod,{},'trainrp');

Agnet.trainParam.show = 50;
Agnet.trainParam.epochs = BestEpochs(17);
Agnet.trainParam.goal = le-5;
Agnet.trainParam.showWindow = 0;
Agnet.trainParam.max_fail = 1200;

TrTime = tic;

[Agnet,Agtr]=train(Agnet,AgInput,Target);

TrT = TrTl + toc(TrTime)

clear X Y Target;

%% Testing Sequence

[X,Y,TsTarget] = TestData;

[m,n] = size(X);

% Fixing Scaling and Shifting Problem

MinX = min(X,[],2);
MinY = min(Y,[],2);

X = X - repmat(MinX,l,n);
Y = Y - repmat(MinY,l,n);

% Scaling Y to range [0 150] and X according to Aspect Ratio

MaxX = max(X,[],2);
MaxY = max(Y,[],2);

AsRatio = MaxY./ MaxX;
NMaxX = 150 ./AsRatio;

73

Y = 150*Y ./ repmat(MaxY,l,n);
X = X ./ repmat(MaxX ./ NMaxX, l,n);

fori= l:m
forj = l:n

ifisnan(X(ij))
X(ij)=0;

end
ifisnan(Y(ij))

Y(ij)=0;
end

end
end

% Computing the Fourier Discriptors

FDis = DCTFVec([X,Y],fiiumb,mode);

TestSize = size(FDis,2);

Aglnput = zeros(32,TestSize);

TsTarget = TsTarget*2 - repmat(l,32,TestSize);

TsTime = tic;

fori =1:16

TmpOut = sim(net{i},FDis);
AgInput(i,:)=TmpOut(l,:);
Aglnput(i+16, :)=TmpOut(2,:);

TmpTarget = [TsTarget(i,:); TsTarget(i+16,:)];
Err = TmpTarget - TmpOut;
TsPerf(i) = mse(Err);

end

Out = sim(Agnet,AgInput);

TsT = toc(TsTime)/TestSize

[C,I]=max(Out);

TsTarget = (TsTarget + repmat(l,32,TestSize))./2;

TsOutput = zeros(32,TestSize);

74

for i= IrTestSize

TsOutput(I(i),i) = 1;

end

% recognition rate

wrong = size(find(abs(TsOutput-TsTarget)>0),l)/2;

RcR = 100*(TestSize - wrong)/TestSize

Perf=TsPerf;

end

75

VitaAuctoris

Iman Khodadadzadeh was born in Tehran, Iran in 1984. He received his B.Sc degree in

Electrical Engineering from Amirkabir university of Technology in 2007. He worked as

an instrumentation engineer for 2 years. He is currently a candidate for the Master's

degree in Electrical and Computer Engineering department at the University of Windsor

and plan to graduate in summer 2010.

76

	Recognition of handwritten Arabic characters
	Recommended Citation

	ProQuest Dissertations

