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Abstract—Automatic visual language identification (VLID) is
the technology of using information derived from the visual
appearance and movement of the speech articulators to iden-
tify the language being spoken, without the use of any audio
information. This technique for language identification (LID) is
useful in situations in which conventional audio processing is
ineffective (very noisy environments), or impossible (no audio
signal is available). Research in this field is also beneficial in
the related field of automatic lip-reading. This paper introduces
several methods for visual language identification (VLID). They
are based upon audio LID techniques, which exploit language
phonology and phonotactics to discriminate languages. We show
that VLID is possible in a speaker-dependent mode by discrimi-
nating different languages spoken by an individual, and we then
extend the technique to speaker-independent operation, taking
pains to ensure that discrimination is not due to artefacts, either
visual (e.g. skin-tone) or audio (e.g. rate of speaking). Although
the low accuracy of visual speech recognition currently limits the
performance of VLID, we can obtain an error-rate of < 10% in
discriminating between Arabic and English on 19 speakers and
using about 30s of visual speech.

Index Terms—Lip reading, speech recognition, language iden-
tification, visual speech processing.

I. INTRODUCTION

T has long been known that visual speech cues can be

used by humans to improve speech perception under noisy
conditions [1], and the use of visually-derived features to
improve automatic speech recognition has been the subject
of considerable research [2]-[5]. In the limit, when the audio
signal becomes completely inaudible, or is not available, this
process becomes lip-reading. Many (primarily deaf) humans
can apparently lip-read accurately and fluently, and machine
lip-reading techniques have also received considerable at-
tention recently [6]-[8]. A related technology is language
identification (LID), which is the technique of identifying
automatically the language spoken by a speaker. Audio LID
is a mature technology, able to discriminate quite reliably
between tens of spoken languages spoken by speakers that
are unknown to the system, using just a few seconds of
representative speech [9]-[11].

Given the success of LID in the audio domain and the in-
creasing interest in visual speech processing, it is interesting to
enquire whether language can be discriminated automatically
by purely visual means. Visual language identification (VLID)
is an unexplored area of research that is both an interesting
research topic in visual speech processing, and a technology
that, if successful, would find several useful applications, in,
for instance, law-enforcement, and as the first stage of a system
that performed visual speech processing. In research terms, it
is useful because the task is inherently simpler than lip-reading
and it enables us to focus on one of the most difficult aspects
of visual speech processing, which is the variation in features
across different speakers.

In this paper, we describe initial experiments in the field of
VLID. The paper is structured as follows: in Section II, we
give relevant background information, including brief reviews
of the primary audio LID techniques. Section III describes the
datasets we recorded for the task, and section IV describes the
techniques and visual features we use. Section V describes
our first experiments in speaker-dependent VLID, in which
we used bi- and tri-lingual speakers. Section VI extends the
techniques to speaker-independent experiments, and includes
a description of how we enhanced our features, and an
investigation into the effects of skin-tone on discrimination.
We end with reflections on what we have learnt and achieved,
and some ideas for future work.

II. BACKGROUND
A. Audio Language Identification

Audio language identification is a mature field of research,
with many successful techniques developed to achieve high
levels of language discrimination with only a few seconds of
test data. The main approaches make use of the phonetic and
phonotactic characteristics of languages which are proven to
be an identifiable discriminatory feature between languages
[12]: see reviews in [13], [9] and [14]. In the next sections,
we briefly review the techniques used in these approaches.

1) Phone-Based Tokenisation: There are several ap-
proaches to LID which exploit the difference in phonetic
content between languages to achieve language discrimination.
Such techniques require the training of a phone recogniser,
usually comprising a set of hidden Markov models (HMMs),
which are used to segment input speech into a sequence of
phones.

In an approach called phone recognition followed by lan-
guage modelling (PRLM) [13], phonotactics is the feature of
language used for discrimination. The contention here is that
different languages have different rules regarding the syntax
of phones, and this can be captured in a language model. In
this technique (Figure 1), a single phone recognition system
is used to tokenise an utterance using a shared phone set,
trained using one language. The phone sequences produced
by this system can then be analysed in terms of the co-
occurrence (or n-gram) probabilities of phones in an utterance.
Statistical models are built using language-specific training
data, and these models generate a likelihood score of input
utterances being produced by that model. For classification,
simple maximum likelihood approaches can be used, or more
complex back-end classifiers such as Gaussian mixture models
(GMMs), neural networks or support vector machines (SVMs)
can be applied. This system can be extended by building
PRLM systems using language-specific phone recognisers, and
running the recognition systems in parallel (Parallel PRLM =
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Fig. 1. A system diagram of the phone recognition followed by language
modelling approach to audio LID.

PPRLM). A state-of-the-art PRLM system entered into the
2009 NIST language recognition evaluation achieved a mean
recognition error of 1.64% on 30-second test utterances in the
23 language closed-set test [10].

2) Gaussian Mixture Model Tokenisation: The tokenisation
sub-system within the LID architecture is usually applied at
a phone level. [15] presents a variant to the standard PPRLM
LID approaches which uses sub-phone, frame-level tokenisa-
tion. In this method, a Gaussian mixture model (GMM) is
trained for each language from language-specific acoustic data.
Each GMM can be considered to be an acoustic dictionary
of sounds, with each mixture component modelling a distinct
sound from the training data. Given an MFCC frame, the
mixture component is found which produces the highest
likelihood score, and the index of that component becomes
the token for that frame (Figure 2). For a stream of input
frames, a stream of component indices will be produced, on
which language modelling followed by back-end classification
can be performed, as is common in audio LID [15], [16].
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Fig. 2. A system diagram of GMM-tokenisation, instead of phone recogni-
tion, as applied to audio LID.

For the NIST 1996 12 language evaluation task [17], [15]
report a minimum error rate of 17%, which is higher than
standard PRLM techniques. Despite this increase in error rate,
several advantages are offered by this approach. Firstly, the
training of the tokeniser does not require transcribed data,
which simplifies the incorporation of additional languages into
the system and is especially advantageous for VLID where
there is no agreed protocol for transcriptions. Secondly, there
is a reduction in computational cost using this technique
compared with phone recognition.

In [18] and [19], a PPRLM LID system similar to that
described in Section II-A1 [13] is proposed, except the lan-
guage models themselves, rather than the scores they produce,
become the vectors used by the back-end classifier. Instead of
a maximum likelihood or linear discriminant analysis (LDA)
back-end, SVMs are built from the bigram language models of
the tokenised training data, an SVM for each language, each
comparing that target language against all other languages.

B. Human Visual Language Ildentification Experiments

There has been very little work in investigating whether
humans are capable of VLID. [20] reported a number of
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VLID experiments using human subjects. In one experiment,
Spanish-Catalan bilingual subjects were shown 48 silent video
clips of people speaking fluently in Spanish or Catalan, two
extremely phonologically similar languages. The task was to
identify whether the language spoken in the current utterance
differed to that of the previous one. Results showed above
chance classification accuracy for both Spanish and Catalan
dominant participants on this task (57.4% and 60.9% accu-
racy, respectively), and neither group was found to have a
statistically significant advantage over the other. The syllabic
count in a sentence was identified as a significant influence
on accuracy, with longer test utterances (with higher syllabic
counts) resulting in higher recognition accuracies.

C. Visual-Only Speech Recognition

VLID relies on visual speech recognition. Visual speech
recognition has generally been studied in the context of audio-
visual (AV) speech recognition, and experiments in the field
have been mostly speaker-dependent (single speaker) or multi-
speaker (the test-set speakers are present in the training-set,
although the test data itself is different)—for instance [21],
[7], [3]. However, some recent work has focused purely on
visual speech recognition, and has extended it to speaker-
independent.

[21] and [3] present recognition performances for the
visual component of their audio-visual systems. [21] uses both
multi-speaker and speaker-independent scenarios. In a digit
recognition task using studio recorded video, they obtained
61.47% word accuracy in a speaker-independent task and
76.42% using a multi-speaker task. [7] describes and evaluates
two methods of visual feature extraction for integration into an
audio-visual speech recogniser. Video-only recognition results
are presented for multi-speaker, word-level, isolated letters
recognition, using HMMs for speech modelling, and using
low resolution grayscale video. The best results presented are
41.9% word accuracy, using active appearance model (AAM)
features, and 26.9% using active shape model (ASM) features.

[6] presents results for visual speech-recognition only. They
also used letters of the alphabet as test-data but at higher
camera resolution and using colour. Their results show that
an accuracy of above 80% is achieved for all speakers in
a multi-speaker testing scenario, but in speaker-independent
tests, the accuracy drops dramatically to below 10%, and in
some cases to around chance level. This paper illustrates the
strong speaker dependency of the AAM features and cites this
as the reason for the poor speaker-independent performance.

A further analysis of the speaker-independent performance
of various recognition features is presented in [22]. Using
the GRID corpus [23], which consists of speech utterances
derived from a highly constrained artificial grammar, and
filmed at standard video resolution, [22] concluded that ap-
pearance derived features in general out-perform those derived
from shape alone, meaning that the appearance of the mouth
contains useful information for computer lip-reading. [24]
continues this work and suggests some improvements for
speaker-independent visual-only speech recognition by using
a per speaker z-score normalisation [25], which is used in
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this paper (section IV-C), and by applying a hierarchical
LDA discriminative training process (HiLDA), which yields
a modest improvement to 44% viseme accuracy.

D. Active Appearance Models

Features for visual speech processing are not as well-
developed as those for audio. Various feature sets have been
tested including DCT coefficients [26], active shape models
[27] (ASMs), active appearance models (AAMs) and sieve
features [22]. The previous section has described papers in
which the recognition performance of some of these features
has been studied, and the current finding is that AAM features
give the best recognition performance overall [24], despite
their poor performance in [6]. AAMs are also routinely used
for tracking the contours of the lips and other facial features
[28]. For a full exposition of AAMs and how they are used
as features in visual speech recognition, see [7].

III. DATASETS

Table 1 presents a brief summary of the content of the
two datasets used in the experiments described in this paper.
The first dataset, known as United Nations 1 (UN1), was pri-
marily designed for speaker-dependent language recognition
using multilingual speakers, and the second, known as United
Nations 2 (UN2), was for speaker-independent experiments,
specifically for discriminating between English and Arabic
speech. Both datasets contain audio and video data of speakers
reading the United Nations Declaration of Human Rights.
In addition to the audio and video, the datasets contain the
tracking information corresponding to the = and y coordinates
of a number of contours relating to facial features, principally,
the lips.

TABLE I
A BRIEF SUMMARY OF THE UN1 AND UN2 DATASETS.

[ Dataset | Resolution [ FPS | # Languages | # Speakers | # Hours |
UNI1 576 x 768 25 12 26 ~ 6.5
UN2 1920 x 1080 60 2 35 ~7

The UNI1 dataset was recorded initially for the speaker-
dependent experiments described in Section V, and was also
used for initial speaker-independent experiments not reported
here. Most of the speakers recorded were competent multilin-
guals, fluent in either two or three languages. Only a few were
truly multilingual, in that they had the same linguistic ability
in all languages that they spoke, having learnt to speak them
from a very early age [29].

The video camera used for recording the UN1 dataset was
a Sony DV domestic video camera. The video format was DV,
at a compression ratio of 5:1, which is 25 Mbps (=~ 3.1MBps),
the image resolution was 576 x 768 pixels (down-sampled to
480 x 640), and the frame rate was 25 frames per second
(progressive scan). We rotated the camera by 90 degrees, so
that the dimension with the greatest resolution was the vertical,
rather than horizontal dimension. This meant we could frame
a speakers’s face, whilst occupying most of the frame. Audio
was captured from the video camera’s built in microphone,

and the speech in the audio is intelligible. However, it was
not the focus of this database, and therefore no special care
was taken to avoid low-level background noise.

The UN2 dataset was recorded for the speaker-independent
experiments described in Section VI. We recorded a larger
number of speakers than in UN1 for each language, and
we recorded only native speakers of a language. The video
recorded was also of a higher definition and frame-rate than
in UNI1: it was captured using a Sanyo Xacti VPC-FHI1
domestic video camera, which contains a CMOS sensor. The
video was recorded at 60 frames per second (progressive
scan), at a resolution of 1920 x 1080 and encoded natively
using the MPEG-4 AVC/H.264 codec, at a compression ratio
of 1:118.7, which is 24Mbps (3MBps). Although the Sanyo
camera enabled us to record at a higher resolution, it was
found experimentally that video resolution had little effect
on performance. We also captured high quality audio using a
tie clip microphone. Word-level transcriptions were manually
generated for the English and Arabic speech, and automatically
expanded phonetic transcriptions were created (The English
transcription contained Arpabet phones and the Arabic tran-
scription a transliteration scheme of the IPA, as described in
[30D).

All video data were captured in a studio environment, where
lighting was controlled. Each subject sat facing a screen which
displayed the text they had to read. They were given a mouse
with which to scroll through the document. Subjects were told
to sit as still as possible, to face the camera and to avoid
occluding their face with their hands. In UN1, the entire head
was captured in order to assist the mouth-tracking process,
and in case additional facial information was necessary for any
further work, and just the mouth region was captured in UN2.
Subjects were also advised to carry on reading regardless of
any recital mistakes. The text chosen was the United Nations
Universal Declaration of Human Rights, because it is freely
available in over 300 languages on the web [31]. Using the
same text in each language gives some consistency in the
style of speaking used and also in the phonetic coverage
of the speech. Speakers were required to read about 900
words, which typically took about seven minutes, in each of
their fluent languages for UN1, and the entire declaration for
UN?2 (lasting about 14 minutes). Full details of the recording
conditions can be found in [32].

1V. TECHNIQUES
A. Building Active Appearance Models

In section II-C we described several computer lip-reading
experiments where the recognition features used were derived
from an AAM (for appearance), an ASM (for shape) or
a combination of both. Although the recognition accuracies
reported are far worse than current audio speech recognition
systems can achieve, the literature shows that AAMs currently
outperform a range of other visual features in these tasks. In
our speaker independent experiments we use AAM features.
However, in our earlier, speaker dependent experiments, we
used ASM features, since they also provide good language
discrimination.



To construct an AAM, a selection of training images is
marked with a number of points that identify the features of
interest on the face. We use the inner and outer lip contours,
the jaw line, eyes and eyebrows, totalling around 49 landmark
points. The parameters corresponding to non-lip elements are
included only for the purpose of assisting tracking capability
and are discarded during feature vector generation. The im-
ages labelled should represent the extremities in shape and
appearance that the model is expected to track, and represent:
we label between 10 and 20 images per speaker. The feature
points are normalised for pose (translation, rotation and scale),
the z and y vectors are concatenated and subject to a PCA,
to form the ASM. A representation of part of a shape model
is shown in Figure 3. In all cases, where PCA was used to
reduce the dimensionality of a set of features, we used the top
N PCA components which accounted for 95% of the variance
of the data. This means that the dimensionality of the features
used varies between different datasets.

Fig. 3. The first mode (left) and second mode (right) of variation of the shape
component of an AAM varying between +3 standard deviations from the
mean. Lines are separated by one standard deviation. The first mode appears
to capture variation due to mouth opening and closing, and the second appears
to capture variation due to lip-rounding.

AAM appearance is computed as follows: Each training
image is shape normalised by warping it from the labelled
feature points, to the mean shape. Our implementation of
the AAM uses the RGB colour space. The pixel intensities
within the mean shape are concatenated, and the vectors
representing each colour channel are then concatenated. The
resultant vectors, one for each training image, are subject to a
PCA. An example appearance model is shown in Figure 4.
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Fig. 4. The mean and first three modes of variation of the appearance
component of an AAM.

We use the inverse compositional project-out algorithm [33]
to track landmark positions over a sequence of video frames.
This algorithm iteratively adjusts the landmark positions on
an image by minimising the error between the mean appear-
ance and the appearance contained by the current landmarks,
warped to the mean shape. The initial position of the land-
marks are set manually, or by their position on the previous
frame. If the tracking is inaccurate, it can be necessary to use
different initial landmarks, or to adjust the training images so
that they better model the variation observed.

To generate the feature vectors used for recognition, all
non-lip landmarks are discarded from the training images
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and the tracked landmarks. New ASM and AAM models are
built using the reduced set of training landmarks, and each
tracked frame is projected through the models. ASM vectors
are the features used in section V for our speaker-dependent
work (between 5 and 6 dimensions), whilst concatenated ASM
and AAM vectors are used in section VI for our speaker-
independent work (8 shape and 48 appearance dimensions).
These vectors form a parameter trajectory through the AAM
space, one vector for each video frame, corresponding to the
words spoken by the speaker being tracked. The eigenvalues
for each dimension vary, which means that the scale of each
dimension is different. Normalisation is required to prevent
individual modes from dominating distance calculations (such
as in clustering algorithms) on the basis of their contribution
to the overall variation: this is described in section IV-C.

B. Visual Models of Phonemes

Visual speech is typically transcribed into visemes. The
usual way of defining visemes is to use expert knowledge to
construct a many-to-one mapping from phonemes to visemes,
which leads to about 15 visemes compared to about 40
phonemes. This reduction in the number of units reduces
the number of possible bigrams of units by about 85%
compared with using phone units, and hence reduces VLID
performance. Our experience using visemes that were defined
by the mapping described in [34] showed that performance
was limited, and analysis of this mapping showed that it
was highly over-simplified. Although we know that there are
several phonemes that cannot be discriminated visually (for
instance, it is impossible to detect voicing visually, or place
of articulation when this is far back inside the oral cavity), we
have found that VLID accuracy is enhanced by training models
using video segments corresponding to 42 audio phonemes.
We term this representation a “visually-described-phoneme”,
or VDP. Therefore, in this work, we tokenise our speech in
terms of VDPs, rather than visemes.

Tied-State Multiple Mixture Component Triphone HMMs
are normally used in state-of-the-art speech recognition sys-
tems because of their ability to model coarticulation around
a central phone. To build visual triphones (used only in the
SI experiments), we manually transcribed the accompanying
audio at word level and used a pronunciation dictionary to
expand this transcription automatically to phone level. A
“flat start” was then applied to the training data so that the
segmentation of the AAM frames into VDPs was driven by the
data, and not influenced by the audio segmentation. Triphones
were built using context-based clustering as described in the
HTK manual [35].

C. Enhancing the AAM Features

We examined typical AAM features and found the distri-
bution of values within each dimension to be approximately
Gaussian, although means, variances and scale varied from
speaker to speaker, and from dimension to dimension. In the
experiments on speaker-independent (SI) LID described in
section VI, each AAM dimension was z-score normalised per
speaker in an attempt to reduce the speaker dependency of
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the features. Before normalisation, AAM features are well
separated between speakers, meaning that there is no corre-
spondence between the feature vectors for each speaker. After
applying the z-score, the relative distance between speakers is
much smaller. The normalisation is defined as

zj = 56107‘% (1)

J

where z; is the j’th dimension of the normalised vector z, T
is the mean of the speaker’s vectors in dimension j, and o is
the standard deviation in dimension j.

In these experiments, the data was also linearly interpolated
from 60 Hz to 100 Hz, as in [4], in order to provide a suitable
number of visual frames to train three state HMMs of VDPs.
Although such up-sampling does not, of course, provide any
new information, it avoids the problems that are encountered
when there are only a few frames per state available.

To improve the discrimination of the features we extract, we
also weight the j’th dimension of the feature vector z; by the
mutual information between this feature and the VDP classes.
The mutual information was estimated for each dimension by
pooling the training vectors and labelling them according to
their VDP class. Then, for each dimension of the feature space,
the training-data values (over all phone classes) were quantised
using a linear quantiser with 16 levels. The mutual information
between the classes and z; is then estimated as follows:

RS | Pr(Cylz; (1)
I(C,z])—];;Pr(Ck,zj(l))log< Pr(Cy) ), 2)

where z;(l) is the [’th quantisation level in dimension z;,
L; = 16 and K is the number of classes, e.g. 42 if VDPs
are used. By weighting the feature vectors in this way, we
give greater weight to the AAM dimensions which are most
useful for discriminating the phone classes, whilst giving lower
weighting to the least important, which we might expect to be
the more speaker-dependent dimensions.

D. Language Modelling and SVM Classification

In the SI experiments, we use a set of ten English speakers
to provide training-data: this data is not then used for testing.
Because there is not enough Arabic data to partition in this
way, only English data is used for visual model training.
Bigram language models for the two languages to be discrim-
inated are built from the phone transcriptions of the training-
set (generated by the English VDP recogniser). Test data is
transcribed into phones, and each language model produces a
likelihood for a given utterance, which is length normalised.
Back-off weights are calculated and used for unseen bigrams
in the test data. Classification is performed using an SVM
back-end classifier. For a given utterance in our experiments,
two language model likelihoods are produced, as shown in
Figure 5. The vector constructed from the likelihoods contains
two streams; the first is the ratio of likelihoods of the utterance
between the two language models. The second stream applies
a linear discriminant analysis (LDA, [36]) transformation to
the likelihood scores, builds a Gaussian probability density
function (GPDF) from the projected data, and then uses the

ratio between the likelihoods from each language. The two
streams are then concatenated together. At training time, these
vectors are used to build a SVM, which finds the maximum
margin hyperplane separating the training data classes. Our
SVM uses a Gaussian radial basis function kernel to create a
non-linear classifier, as the likelihood scores are not linearly
separable. In this task we found that fusion of SVM and LDA
outperformed implementations of either LDA or SVMs alone.

Arabic
AAM English | ] Language Model =1 Pr(Ar | Arm)
isual- Hypothesis
Featunje 1 Visual Phone SVM Classifier > ypothesised
Extraction Recogniser | | Enalish N Language
nglis Pr(En | Enim)
Language Model
Fig. 5. The system used for speaker independent VLID of English and

Arabic.

V. SPEAKER-DEPENDENT VISUAL LANGUAGE
IDENTIFICATION

The work in [6] showed that there is strong speaker depen-
dency in the visual features i.e. there is little correspondence
between the feature spaces occupied by different speakers. In
the preliminary experiments in VLID described in this section,
we attempt to discriminate between different languages spoken
by the same person. This avoids the complex effects on the
features when multiple speakers are used, and hence enables
us to focus on the question of whether VLID is even possible.
We used the UN1 dataset, described in Section III. The system
developed here is based upon a standard audio LID approach,
where feature vectors are tokenised and then language models
are estimated from the streams of tokens produced by each
language.

A. VLID using ASMs and Vector Quantisation

English
Language Model ||
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ASM Vector )
Feature |—{ Quantisation |- French N Pr(Fr | Friw) *Hi:pOthCSlSCd
Extraction Codebook Language Model anguage
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N
German
Language Model
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4
Video

Frames

Fig. 6. Unsupervised VLID system diagram, using VQ tokenisation of ASM
feature frames.

Figure 6 shows the automatic video language identification
system developed here. This system uses vector quantisation
(VQ) tokenisation [37] of the feature vectors rather than
GMMs. This approach has the advantage that a VQ Bigram
“language model” can be constructed for each different lan-
guage to aid classification.



The video data for each speaker is tracked using an active
appearance model (AAM), from which active shape model
(ASM) features are derived as described in Section IV-A.
The vectors produced by this process are clustered using
VQ to produce a VQ codebook. This codebook is then used
to tokenise the training data utterances as sequences of VQ
symbols. VQ Bigram “language models” for each language
recorded by a speaker are then built from these sequences, for
each language spoken by that speaker. Unseen bigrams are
smoothed to a count of one during generation of the language
models.

Test data is transcribed into codewords in the same way
as the training data is coded. These codewords are processed
by the different language models to produce a likelihood for
a given utterance for each of the target languages. Back-off
weights are calculated and used for unseen bigrams in the test
data. Classification of a test utterance is determined by the
bigram language model producing the highest total likelihood
for the given utterance. This is calculated by finding the sum of
the log probabilities from a language model across all frames
in a test utterance, giving the total log probability of a test
utterance given a language model.

B. Experiments

Cross-fold validation was used to evaluate the performance
of the LID system developed here. An equal number of ASM
vectors from each language of a single speaker were divided
sequentially and exhaustively to give test utterance durations
of 60, 30, 7, 3 and 1 seconds. As an example, if a speaker
read the UN Declaration in English (lasting 6 minutes) and
French (lasting 7 minutes), the frames in the shorter recital
would be divided into 6 one-minute, 12 30-second, 51 7-
second, 120 3-second and 360 1-second test utterances. The
longer recitals are trimmed to the length of the shorter ones
and are partitioned consistently with the shortest one, to ensure
balanced training data. A single test utterance is selected from
each language and all remaining test data is used for training.
Partitioning the data in the way described above means that
the number of test utterances for shorter test durations greatly
exceeds the number of longer duration utterances, and so a
certain difference in error-rate measured on long utterances is
less statistically significant than the same difference measured
on short utterances. The number of codewords used to vector
quantise the data is also an experimental parameter, ranging
from 8 to 256 codes. Three speakers were used in these
tests: one trilingual speaker (English/French/German) and two
bilingual speakers (English/Arabic and English/German). This
is a small fraction of the number of speakers available in UN1
database, but the manual work and time involved in preparing
the sequences for tracking, and then tracking them, should not
be underestimated.

Figure 7 shows the results of tests on an En-
glish/French/German trilingual speaker for different numbers
of VQ codewords, and shows that performance increases with
the duration of the data and the number of codes used. The
performance of the three speakers’ 256-codeword systems are
also shown in Figure 8. This figure shows that the different lan-
guage combinations tested here are not equally discriminable,
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Fig. 7. Results for a VLID system trained on three separate recitals of the

UN declaration, read by a single speaker in three different languages; English,
French and German. The task is to identify the language from some unseen
test data from the same speaker.
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Fig. 8. VLID error for each of the three multilingual speakers tested, and

the overall mean. The results shown are for a 256 VQ-codeword system.

either because of true intra-language variation or because of
the speaking style of the individual speakers. The figures
suggest that classification error decreases with test utterance
duration and low error can be achieved for longer utterances.
However, it seemed unlikely to us that one second utterances
would be sufficient to provide high discrimination performance
between three languages. Furthermore, the performance of the
eight codeword systems in Figure 7 suggests that eight mouth
shapes are sufficient to discriminate between three languages,
which was also a surprising finding: audio LID generally
uses a symbol set containing over 40 phones, although it is
generally used to discriminate many more languages.

C. Bias Due to Speaking Rate and Recording Conditions

We investigated the extent to which unintended effects
during recording may have biased results. These might include
changes in lighting intensity and colour during the recording,
and changes in pose. Since we use only the shape contours
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of the mouth, we have largely removed the effect of lighting
on our features, although these factors could have affected
the performance of the tracker, potentially leading to uneven
tracking performance. However, we checked carefully for
these effects by examining the spectral distribution of colours
in different sessions, and were satisfied that there were no
systematic differences between the lighting in each video.
Another possible explanation for the low error-rates achieved
was that the rate of speech in each recital might be assisting
discrimination. When we measured the duration of the recitals
for our speakers, we found that they tended to speak their
native tongue faster than their other languages i.e. recital speed
was correlated with language fluency.

In a low codeword system, each codeword represents a
broad area within the feature space, and since rate of speech
is linked to rate of change of features, we would expect to
see longer runs of the same codeword in slower or less fluent
speech. Such a characteristic would be modelled by the bigram
language models and would therefore contribute towards clas-
sification effectiveness. To test the hypothesis that we were
actually measuring differences in rate of speech rather than
differences in languages, we performed a similar experiment to
the one shown in Figure 7, except that repetitions of the same
codeword were ignored and treated as a single occurrence of
the codeword. For the eight codeword system, the lowest error-
rate in Figure 7, achieved after 60 seconds of data, increased
from 5% to 40% after 60 seconds, and for the 16 codeword
system, the corresponding rise was from 10% to 27%.

Higher codeword systems were not as affected, as finer
clustering of the vector space results in close clusters of data
being represented by a number of different codewords, and
hence groups of different codewords rather than runs of the
same codeword are likely to be observed in slowly-changing
speech. The recitals of the speaker that we subjectively judged
to have the highest bilingual fluency of the three speakers
tested were almost equal in duration. For this speaker, the
error-rate rose very little when the experiment described above
was run on their utterances.

To determine the sensitivity of our system to variations in
speaking rate, we tested it to see whether it could discriminate
between three recitations of the same language recorded at
different speaking speeds. The system was trained on a single
speaker reading three English recitals of the UN declaration
in English, read at three different speeds: very slow, a normal
reading pace, and very fast. Increasing the rate of speech
increases coarticulation, which affects the phonetic content
(for instance, assimilation and deletion of phonemes occur
more in rapid speech). It is probable therefore that such a large
difference in speech rate, as tested here, will alter the phonetic
and thus the visual appearance of the speech, resulting in some
ability to discriminate between sessions despite containing the
same language. Results are shown in Figure 9.

This shows that similar discrimination is achieved to the
three language identification task of Figure 7. However, the
speed variation we used was extreme: the durations of the
readings of the text at fast, medium and slow speeds were
4.6, 6.2 and 7.8 mins respectively, whereas the durations of
the texts read in the three different languages by the tri-

lingual speaker were 7.2, 7.8 and 9.0 mins. Hence when
different languages were processed, a much smaller speed
variation gave about the same discrimination performance,
which indicates that rate of speech is not the only effect
present.

Finally, we examined whether our system could discriminate
between three recording sessions that we had designed to be
identical: the same speaker reading the same material in the
same language at the same speed. Figure 9 (upper curve)
does show a significant reduction in system performance when
compared to Figure 7. However, all results shown in Figure 9
are statistically significantly better than the chance error-rate of
66.6%. We can confidently exclude tracking consistency and
subtle lighting differences as the reason for this discrimination,
since the AAM is trained with equal amounts of data from
all sessions and only shape features, rather than shape and
appearance, are used for testing. It is more likely that there
is a small physical difference between sessions, such as slight
pose variations, or that reading performance across sessions
was sufficiently different to make the sessions distinguishable.

60 :
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Fig. 9. Showing the mean error-rate across six different codebook sizes (8,

16, 32, 64, 128 and 256 codes) for VLID systems trained on visual speech
recorded in two different ways. The upper trace is the error when trained on
three separate recitals of the UN declaration in English, spoken by the same
speaker, and designed to be identical in rendition. The lower trace is the error
when trained on three recitals from the same speaker read at three different
speeds: slow, normal and fast.

D. Discussion

Our results for speaker-dependent VLID are somewhat
equivocal, because they show that differences in speaking-
rate can contribute to language identification. The second
experiment showed that apparently even very small differences
in a speaker’s recital (possibly pose, lighting conditions or
recital speed) could be picked up by our system and in some
cases were classified with above chance accuracy. However,
the fact that different languages spoken at rather similar speeds
were as well discriminated as a single language spoken at three
extreme speeds indicates that there is a language effect present
in these results. Further evidence to confirm that the language



effects presented here are genuine comes from the speaker-
independent VLID results reported in the next section.

VI. SPEAKER-INDEPENDENT VISUAL LANGUAGE
IDENTIFICATION

In the previous section, we showed that VLID is possible
in speaker-dependent mode by using sub-phonetic units of
ASM features, in a manner similar to GMM-tokenisation in
audio LID [13]. For speaker-independent VLID, we chose to
use the phone recognition followed by language modelling
(PRLM) architecture (Figure 1) described in Section II-A,
for two reasons: firstly, we cannot continue to use speaker-
dependent vector quantisation codebooks in these experiments,
and a codebook built using data from many different speakers
essentially clusters into areas related to each speaker, and
provides little language-specific information. Secondly, exper-
iments in audio LID have shown that phone-based tokenisation
outperforms frame-based methods. In these experiments, we
use AAM instead of ASM features, because we have shown
that they are currently the best features for speaker indepen-
dent lip-reading, as described in section II-D.

We therefore need to tokenise our visual features using
units that are common to all speakers. One such unit is the
“viseme”, which has been described as the visual appearance
of a phoneme in [38], but the exact relationship between
phonemes and visemes is unclear and is still a matter for
ongoing research [39]. Typically, a single viseme would model
many phonetic classes that are considered to be confusable.
As described in section IV-B, we found improved language
identification accuracy by using a full set of phonemes trained
using visual features, which we term ‘“visually-described-
phonemes”, or VDPs. This raises the difficulty of the strong
speaker dependency of our AAM features which was com-
mented upon in section V, and we report in the next section
some approaches to ameliorating this dependency. We also
use a database that has more speakers (UN2) so that the non
language-specific variations mentioned in the previous section
tend to be averaged out (although a specific problem with
skin-tone is discussed in Section VI-C).

A. Experimental Setup

The task in these experiments is to discriminate between
English and Arabic from visual-only information. We selected
19 speakers (10 English and 9 Arabic) from the UN2 dataset
for these experiments (Section III). Our testing procedure was
19-fold cross validation, where each of the 19 speakers is held
out of the training set in turn, and used for testing instead. As
before, for each speaker to be tested, their data was divided
sequentially and exhaustively into segments of 1, 3, 7, 30 and
60 seconds.

In our preliminary experiments using our new dataset, we
did not build our VDP recogniser from a development set.
Instead, we built several English recognisers from our training
data, according to which fold of the cross-fold validation we
were using (to ensure that the test speaker was not used
to train the models). Upon analysis of the likelihood scores
from the language models, we consistently saw that unseen
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data was grouped away from the data used to train the
models. We solved this problem by using ten unseen English
speakers as a “development set”, on which to train our VDP
recogniser, which is the approach commonly adopted in audio
LID. Without using a development set, we had to generate
features for all speakers, for each validation fold, since the
feature-generation process for AAMs is data-driven. Using a
development set, we can generate a single AAM model from
which we can create one set of features for all speakers.

In the language modelling subsystem, counts of phones
that did not occur in the training data were smoothed to a
count of one. When training the VLID system, the amount of
training data for each language was balanced, so that neither
language had a bias based upon how well it was modelled. We
also length-normalised our language model scores, by using
the mean language model score for each utterance. Length
normalisation accounts for the fact that longer utterances will
have lower likelihoods than shorter ones. Although silence (or
its visual equivalent) was recognised in the phone recognition
portion of the system, we removed silence from the language
modelling subsystem, since silence is not an indicator of the
identity of a spoken language.

B. Results

Figure 10 shows the VLID results for the experiments
described in this section. Each line is a different speaker.
It was found that near perfect language discrimination can
be achieved on the corresponding audio data after about 7
seconds of test data. By contrast, most speakers shown here
require at least 30 seconds, some 60 seconds, to achieve
a similar performance using visual features. There is also
greater variation between the performance of speakers in the
visual domain when compared to the audio domain, with
some speakers only achieving low levels of discrimination with
60s of data. A maximum mean VLID error-rate of 4.64% is
achieved after 60 seconds of test data, compared to 0% using
audio features. All speakers’ results shown in Figure 10, for
test utterance durations of 60 seconds, are considered to be
above chance (p < 0.05).

Table II gives the VDP recognition results for this experi-
ment as % accuracy (as defined in the HTK manual) with a
breakdown of the number of correct phones (#C), deletions
(#D), substitutions (#S), insertions (#I) and total phones (#T).
The test-set accuracy of 17.7% is very low (it compares with
a phone accuracy of about 47.6% on the corresponding audio
data), but is in line with our recent lip-reading experimentes
on other data [22]. Despite this, it is still possible to get some
VLID discrimination, given enough data, in this two-language
discrimination experiment.

TABLE II
SPEAKER-INDEPENDENT VISUALLY-DESCRIBED-PHONEME RECOGNITION
PERFORMANCE. THE RESULTS PRESENTED ARE FOR THE ENGLISH TEST
DATA USED IN THE EXPERIMENT DESCRIBED IN SECTION VI-B

[ Train/Test [[ Accuracy | #C | #D [ #S | #I [ #T |
Train 31.25 33580 | 19840 | 24803 9136 78223
Test 17.71 25364 | 20015 | 33063 | 11474 | 78442
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Fig. 10. Speaker-independent VLID results using a PRLM approach with
the UN2 visual-only dataset. Each plot line represents the performance of a
test speaker. The dashed line is the mean over the speakers.

C. Eliminating the Effect of Skin Tone

The results for VLID accuracy presented in Section VI-B
showed that good, two-class, speaker-independent language
discrimination could be achieved using visual features. De-
spite extensive care being taken during the recording process,
differences in the recordings could have occurred during data
capture, such as focus, colour balance or lighting conditions,
and these differences, rather than differences in language,
might be responsible for our discrimination. However, the
most noticeable difference between the English and Arabic
recordings is the skin tone of the speakers: the Arabic speakers
all have a darker skin tone than the English speakers. This sec-
tion reports on experiments designed to answer this question
“To what extent is our system’s discrimination of English and
Arabic based on skin tone rather than genuine language cues?”

Firstly, we note that the skin tone of a speaker is a constant
signal over an utterance. Thus, if skin tone were actually the
dominant discriminator in our experiments, we would expect
that presenting only a few frames to the classifier would
be sufficient to achieve good classification accuracy. From
Figure 10, we can see that using one second of signal gives
a mean error-rate of about 30%. However, we do not know
how much of this performance is due to skin tone and how
much to language differences. Hence we devised experiments
to minimise the effect of colour on our features, by

1) using only shape components (eliminating any appear-

ance information);

2) using a binary representation of the mouth and teeth as

colour-free appearance information.

The first experiment removes skin tone altogether from our
features. Using shape features also discards any information
about the tongue and teeth movements, and any other informa-
tive colour variation that is actually separate from skin tone.
Therefore, if language discrimination is possible using only
shape, we would expect this discrimination to be lower than
that obtained using combined shape and appearance features.

When the feature dimensions corresponding to appearance
are discarded, 8 shape parameters remain out of 56 for the
combined shape and appearance features, and these are the
dimensions we use for recognition.

Shape parameters are not the optimal skin tone free features
that we can extract from the face, as they provide information
about only one articulator, the lips. Our second experiment
was to use a representation of an additional articulator in order
to improve upon our shape-only results. Although we expect
the results to be better than using shape-only features, we do
not expect performance comparable to that using our original
features.

Original Image

After Tooth Classification

——

g’

Fig. 11. A binary representation of the teeth. The black pixels have been
identified as teeth, and the white pixels as mouth pixels.

Using the hand-labelled images that were created for build-
ing the speaker specific AAM trackers, we hand labelled tooth
and mouth regions. A 3 x 3 pixel grid was placed over
each labelled pixel, then the red, green and blue intensities
of those 9 pixels were concatenated and used as the feature
vector for each central pixel. A multilayer perceptron classifier
was trained speaker-dependently to discriminate between the
27-dimensional vectors corresponding to tooth and non-tooth
regions for each speaker. Test vectors were constructed for
each pixel contained within the outer lip contour of a test
image, and then the recognised regions were set to 255 for
non-tooth and O for tooth regions, according to the results of
the classifier. Finally, small enclosed regions were removed,
to reduce the noise caused by a small number of pixels being
classified incorrectly.

Using this technique, we were able to represent a sequence
of video frames as a series of binary images where the teeth
are black and everything else is white (Figure 11). From this,
we can perform PCA as in our previous experiments, and run
VLID experiments as before. This means that our features
contain shape information relating to the lip contours and
appearance information corresponding to the position of the
teeth within the mouth.

D. Results for skin tone experiments

The remainder of this section presents the results using
the shape-only and tooth-pixel recognition features described
above in a PRLM system. It should be noted that we cannot
present phone recognition accuracy of the Arabic test data



through the English phone recogniser, since we do not have
transcriptions of the Arabic speech in terms of English phones.

TABLE III
SPEAKER-INDEPENDENT VISUALLY-DESCRIBED-PHONEME RECOGNITION
PERFORMANCE OF THE ENGLISH TEST DATA. THE RESULTS PRESENTED
RELATE TO THE AAM SHAPE-ONLY EXPERIMENT DESCRIBED IN SECTION

VI-C.

[ Train/Test [ Accuracy [ #C | #D [ #S [ #I [ #T |
Train 12.58 12476 | 38933 | 26914 | 2536 | 78223
Test 12.09 11979 | 36889 | 29574 | 2498 | 78442
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Fig. 12.  Speaker-independent VLID results using shape-only recognition
features. Each plot line represents the performance of a test speaker. The
dashed line is the mean over the speakers.

Table III presents the recogniser performance of the training
and test data used to achieve the VLID results shown in Figure
12. Figure 12 shows the VLID results obtained using AAM
shape parameters as features for visual-only phone recognition.
The results show that whilst around half the speakers can
achieve a good identification accuracy with 30 second test
utterances, the other half show little or no discrimination. This
result is not unexpected, since the amount of articulatory infor-
mation captured in the shape parameters is limited compared to
that derived from the appearance, which is also demonstrated
by the lower phone recognition accuracy in Table III compared
with Table II. In Figure 12, for the 60 second test utterances,
only the results for speakers who achieve lower than 20%
mean error after 60 seconds are statistically better than chance.
We conclude that some degree of appearance-free language
discrimination is possible, although at the cost of overall
accuracy.

Figure 13 shows the VLID results using AAM features,
generated from tooth segmented video frames, used for visual-
only phone recognition. The results show an improvement of
performance over the shape-only results in Figure 12, which
is expected since we have added the articulatory information
of the teeth to our features. A higher recognition accuracy
is also present in the phone recognition results shown in
Table IV. There are two outlier speakers whose performance
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Fig. 13. Speaker-independent VLID results using AAM recognition features
derived from tooth-segmented images. Each plot line represents the perfor-
mance of a test speaker. The dashed line is the mean over the speakers.

actually degrades as test utterance duration increases, and three
speakers who achieve only limited language discrimination.
These results are lower than those produced by the systems
built using full appearance information (Figure 10), which is
either due to a loss of visual information regarding modes of
variation corresponding to the tongue, and other potentially
informative modes, or because there is an effect due to skin
tone when full appearance information is used. However,
the results do show that reasonable language discrimination
can be achieved using colour-free appearance features, which
outperform shape alone but are less effective than using full
appearance features.

TABLE IV
SPEAKER-INDEPENDENT VDP RECOGNITION PERFORMANCE OF THE
ENGLISH TEST DATA. THE RESULTS PRESENTED RELATE TO THE
TOOTH-RECOGNITION EXPERIMENT DESCRIBED IN SECTION VI-C.

[ Train/Test [ Accuracy [ #C | #D [ #S [ #I1 [ #T |
Train 21.42 25460 | 22059 | 30704 | 8701 | 78223
Test 15.60 21441 | 23611 | 33390 | 9205 | 78442

E. Discussion

In this section, we have presented initial results in speaker-
independent VLID. We have demonstrated that good speaker-
independent language discrimination can be achieved using
a PRLM LID architecture, with VDP recognition performed
using visual features. We have also shown that some degree of
language discrimination is possible using features completely
free from appearance or from colour, which shows that the
shape and dynamics of the articulators are important for
visually-described-phoneme recognition and hence language
identification. Although skin tone is the most obvious visual
difference between the Arabic and English speakers, there
may well be subtler features, such as mouth shape and even
speaking style that are characteristic of a language group,
and it is important to test whether our system is classifying
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these features rather than the spoken language. In [25], we
report an ancillary experiment in which we took five bi-lingual
speakers and performed speaker-independent language ID on
them i.e. each speaker in turn was removed from the training-
set and used for testing. Results were about 80% accurate
using 60s of speech. This does not prove conclusively that we
have eliminated non-language biases, but it does suggest that
most of the recognition accuracy is obtained from recognising
the language and not other unrelated visual features. The
accuracy of our VDP recognisers is very low compared to
what can be achieved using audio features. Despite this, we
have shown that some degree of speaker-independent visually-
described-phoneme recognition is attainable, and that this can
be sufficient to achieve good VLID accuracy.

VII. OVERALL CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an account of initial
research into the task of visual language identification (VLID).
We have developed two methods for language identification
of visual speech, based upon audio LID techniques that
use language phonology as a feature of discrimination: an
unsupervised approach that tokenises active shape model
(ASM) feature vectors using vector quantisation (VQ), and
a supervised method of visual triphone modelling using active
appearance model (AAM) features. We have demonstrated that
VLID is possible in both speaker-dependent and independent
cases, and that there is sufficient information presented on
the lips to discriminate between two or three languages using
these techniques, despite the low phone recognition accuracies
that we observed. Throughout, we have taken pains to ensure
that the discrimination between languages we have obtained
is genuine and not based on differences in the recording or
the speakers.

VLID performance is limited by the poor recognition accu-
racies achieved by our visually-described-phoneme recognis-
ers. Two major issues must be tackled to address this: firstly,
the inherent speaker dependence of AAM features, and sec-
ondly, the problem of visual ambiguity of phones and therefore
the way that they are transcribed. Research into the nature of
VDP deletions and the composite units of visual speech [39]
may provide a method for dealing with this problem, including
the possibility of redefining how visual speech is transcribed,
to account for phones that are indiscriminable visually. Many-
to-one phone to viseme mappings do not address this problem
sufficiently.

Apart from one three-language discrimination task de-
scribed in section V, this research has focussed on discrim-
inating between two languages. In the future, the number
of languages included in the system should be increased to
determine how well this approach generalises when the chance
of language confusion is higher. Groups of phonetically similar
languages could be added to see if they are more confusable
than those with differing phonetic characteristics, as well as
tonal languages. A range of skin-tones should be present
across the languages used, to remove colour as a feature
of language. The effect of non-native speech on the visual
discrimination of languages could be investigated, as second

language speech is shown to affect speech perception in the
audio-visual domain [40].

The feature of language that we have used for discrimination
is phonology, specifically phonotactics, which governs the
allowable sequence of phones in a language. Phonotactics
are not the only aspect of language which can be used to
differentiate between them. [13] describes the use of phone
duration to improve audio LID. In some preliminary work not
described here, we tested the technique in [13], where PRLM
is performed using double the number of phones, and we
saw an increase in identification performance. In this method,
each recognised phone is labelled according to whether it is
shorter or longer than its mean duration, which doubles the
size of a phone set. Another feature of language is rhythm. [41]
explains that babies have the ability to distinguish languages
based on acoustic rthythm, and [42] suggests that adults also
have this ability and furthermore, rhythm is expressed visually.
Further work into VLID could therefore focus on incorporating
both of these additional language cues and evaluating their
contribution to language discrimination.
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