128 research outputs found

    MRS Drone: A Modular Platform for Real-World Deployment of Aerial Multi-Robot Systems

    Full text link
    This paper presents a modular autonomous Unmanned Aerial Vehicle (UAV) platform called the Multi-robot Systems (MRS) Drone that can be used in a large range of indoor and outdoor applications. The MRS Drone features unique modularity with respect to changes in actuators, frames, and sensory configuration. As the name suggests, the platform is specially tailored for deployment within a MRS group. The MRS Drone contributes to the state-of-the-art of UAV platforms by allowing smooth real-world deployment of multiple aerial robots, as well as by outperforming other platforms with its modularity. For real-world multi-robot deployment in various applications, the platform is easy to both assemble and modify. Moreover, it is accompanied by a realistic simulator to enable safe pre-flight testing and a smooth transition to complex real-world experiments. In this manuscript, we present mechanical and electrical designs, software architecture, and technical specifications to build a fully autonomous multi UAV system. Finally, we demonstrate the full capabilities and the unique modularity of the MRS Drone in various real-world applications that required a diverse range of platform configurations.Comment: 49 pages, 39 figures, accepted for publication to the Journal of Intelligent & Robotic System

    Minimum-time trajectory generation for quadrotors in constrained environments

    Full text link
    In this paper, we present a novel strategy to compute minimum-time trajectories for quadrotors in constrained environments. In particular, we consider the motion in a given flying region with obstacles and take into account the physical limitations of the vehicle. Instead of approaching the optimization problem in its standard time-parameterized formulation, the proposed strategy is based on an appealing re-formulation. Transverse coordinates, expressing the distance from a frame path, are used to parameterise the vehicle position and a spatial parameter is used as independent variable. This re-formulation allows us to (i) obtain a fixed horizon problem and (ii) easily formulate (fairly complex) position constraints. The effectiveness of the proposed strategy is proven by numerical computations on two different illustrative scenarios. Moreover, the optimal trajectory generated in the second scenario is experimentally executed with a real nano-quadrotor in order to show its feasibility.Comment: arXiv admin note: text overlap with arXiv:1702.0427

    A multimodal micro air vehicle for autonomous flight in near-earth environments

    Get PDF
    Reconnaissance, surveillance, and search-and-rescue missions in near-Earth environments such as caves, forests, and urban areas pose many new challenges to command and control (C2) teams. Of great significance is how to acquire situational awareness when access to the scene is blocked by enemy fire, rubble, or other occlusions. Small bird-sized aerial robots are expendable and can fly over obstacles and through small openings to assist in the acquisition and distribution of intelligence. However, limited flying space and densely populated obstacle fields requires a vehicle that is capable of hovering, but also maneuverable. A secondary flight mode was incorporated into a fixed-wing aircraft to preserve its maneuverability while adding the capability of hovering. An inertial measurement sensor and onboard flight control system were interfaced and used to transition the hybrid prototype from cruise to hover flight and sustain a hover autonomously. Furthermore, the hovering flight mode can be used to maneuver the aircraft through small openings such as doorways. An ultrasonic and infrared sensor suite was designed to follow exterior building walls until an ingress route was detected. Reactive control was then used to traverse the doorway and gather reconnaissance. Entering a dangerous environment to gather intelligence autonomously will provide an invaluable resource to any C2 team. The holistic approach of platform development, sensor suite design, and control serves as the philosophy of this work.Ph.D., Mechanical Engineering -- Drexel University, 200

    The Role of Vision Algorithms for Micro Aerial Vehicles

    Get PDF
    This work investigates the research topics related to visual aerial navigation in loosely structured and cluttered environments. During the inspection of the desired infrastructure the robot is required to fly in an environment which is uncertain and only partially structured because, usually, no reliable layouts and drawings of the surroundings are available. To support these features, advanced cognitive capabilities are required, and in particular the role played by vision is of paramount importance. The use of vision and other onboard sensors such as IMU and GPS play a fundamental to provide high level degree of autonomy to flying vehicles. In detail, the outline of this thesis is organized as follows • Chapter 1 is a general introduction of the aerial robotic field, the quadrotor platform, the use of onboard sensors like cameras and IMU for autonomous navigation. A discussion about camera modeling, current state of art on vision based control, navigation, environment reconstruction and sensor fusion is presented. • Chapter 2 presents vision based control algorithms useful for reactive control like collision avoidance, perching and grasping tasks. Two main contributions are presented based on relative depth map and image based visual servoing respectively. • Chapter 3 discusses the use of vision algorithms for localization and mapping. Compared to the previous chapter, the vision algorithm is more complex involving vehicle’s poses estimation and environment reconstruction. An algorithm based on RGB-D sensors for localization, extendable to localization of multiple vehicles, is presented. Moreover, an environment representation for planning purposes, applied to industrial environments, is introduced. • Chapter 4 introduces the possibility to combine vision measurements and IMU to estimate the motion of the vehicle. A new contribution based on Pareto Optimization, which overcome classical Kalman filtering techniques, is presented. • Chapter 5 contains conclusion, remarks and proposals for possible developments

    Biomimetic vision-based collision avoidance system for MAVs.

    Get PDF
    This thesis proposes a secondary collision avoidance algorithm for micro aerial vehicles based on luminance-difference processing exhibited by the Lobula Giant Movement Detector (LGMD), a wide-field visual neuron located in the lobula layer of a locust’s nervous system. In particular, we address the design, modulation, hardware implementation, and testing of a computationally simple yet robust collision avoidance algorithm based on the novel concept of quadfurcated luminance-difference processing (QLDP). Micro and Nano class of unmanned robots are the primary target applications of this algorithm, however, it could also be implemented on advanced robots as a fail-safe redundant system. The algorithm proposed in this thesis addresses some of the major detection challenges such as, obstacle proximity, collision threat potentiality, and contrast correction within the robot’s field of view, to establish and generate a precise yet simple collision-free motor control command in real-time. Additionally, it has proven effective in detecting edges independent of background or obstacle colour, size, and contour. To achieve this, the proposed QLDP essentially executes a series of image enhancement and edge detection algorithms to estimate collision threat-level (spike) which further determines if the robot’s field of view must be dissected into four quarters where each quadrant’s response is analysed and interpreted against the others to determine the most secure path. Ultimately, the computation load and the performance of the model is assessed against an eclectic set of off-line as well as real-time real-world collision scenarios in order to validate the proposed model’s asserted capability to avoid obstacles at more than 670 mm prior to collision (real-world), moving at 1.2 msˉ¹ with a successful avoidance rate of 90% processing at an extreme frequency of 120 Hz, that is much superior compared to the results reported in the contemporary related literature to the best of our knowledge.MSc by Researc

    Distributed Control for Collective Behaviour in Micro-unmanned Aerial Vehicles

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.The work presented herein focuses on the design of distributed autonomous controllers for collective behaviour of Micro-unmanned Aerial Vehicles (MAVs). Two alternative approaches to this topic are introduced: one based upon the Evolutionary Robotics (ER) paradigm, the other one upon flocking principles. Three computer simulators have been developed in order to carry out the required experiments, all of them having their focus on the modelling of fixed-wing aircraft flight dynamics. The employment of fixed-wing aircraft rather than the omni-directional robots typically employed in collective robotics significantly increases the complexity of the challenges that an autonomous controller has to face. This is mostly due to the strict motion constraints associated with fixed-wing platforms, that require a high degree of accuracy by the controller. Concerning the ER approach, the experimental setups elaborated have resulted in controllers that have been evolved in simulation with the following capabilities: (1) navigation across unknown environments, (2) obstacle avoidance, (3) tracking of a moving target, and (4) execution of cooperative and coordinated behaviours based on implicit communication strategies. The design methodology based upon flocking principles has involved tests on computer simulations and subsequent experimentation on real-world robotic platforms. A customised implementation of Reynolds’ flocking algorithm has been developed and successfully validated through flight tests performed with the swinglet MAV. It has been notably demonstrated how the Evolutionary Robotics approach could be successfully extended to the domain of fixed-wing aerial robotics, which has never received a great deal of attention in the past. The investigations performed have also shown that complex and real physics-based computer simulators are not a compulsory requirement when approaching the domain of aerial robotics, as long as proper autopilot systems (taking care of the ”reality gap” issue) are used on the real robots.EOARD (European Office of Aerospace Research & Development), euCognitio

    Model-Based Control of Flying Robots for Robust Interaction under Wind Influence

    Get PDF
    Model-Based Control of Flying Robots for Robust Interaction under Wind Influence The main goal of this thesis is to bridge the gap between trajectory tracking and interaction control for flying robots in order to allow physical interaction under wind influence by making aerial robots aware of the disturbance, interaction, and faults acting on them. This is accomplished by reasoning about the external wrench (force and torque) acting on the robot, and discriminating (distinguishing) between wind, interactions, and collisions. This poses the following research questions. First, is discrimination between the external wrench components even possible in a continuous real-time fashion for control purposes? Second, given the individual wrench components, what are effective control schemes for interaction and trajectory tracking control under wind influence? Third, how can unexpected faults, such as collisions with the environment, be detected and handled efficiently and effectively? In the interest of the first question, a fourth can be posed: is it possible to obtain a measurement of the wind speed that is independent of the external wrench? In this thesis, model-based methods are applied in the pursuit of answers to these questions. This requires a good dynamics model of the robot, as well as accurately identified parameters. Therefore, a systematic parameter identification procedure for aerial robots is developed and applied. Furthermore, external wrench estimation techniques from the field of robot manipulators are extended to be suitable for aerial robots without the need of velocity measurements, which are difficult to obtain in this context. Based on the external wrench estimate, interaction control techniques (impedance and admittance control) are extended and applied to flying robots, and a thorough stability proof is provided. Similarly, the wrench estimate is applied in a geometric trajectory tracking controller to compensate external disturbances, to provide zero steady-state error under wind influence without the need of integral control action. The controllers are finally combined into a novel compensated impedance controller, to facilitate the main goal of the thesis. Collision detection is applied to flying robots, providing a low level reflex reaction that increases safety of these autonomous robots. In order to identify aerodynamic models for wind speed estimation, flight experiments in a three-dimensional wind tunnel were performed using a custom-built hexacopter. This data is used to investigate wind speed estimation using different data-driven aerodynamic models. It is shown that good performance can be obtained using relatively simple linear regression models. In this context, the propeller aerodynamic power model is used to obtain information about wind speed from available motor power measurements. Leveraging the wind tunnel data, it is shown that power can be used to obtain the wind speed. Furthermore, a novel optimization-based method that leverages the propeller aerodynamics model is developed to estimate the wind speed. Essentially, these two methods use the propellers as wind speed sensors, thereby providing an additional measurement independent of the external force. Finally, the novel topic of simultaneously discriminating between aerodynamic, interaction, and fault wrenches is opened up. This enables the implementation of novel types of controllers that are e.g. compliant to physical interaction, while compensating wind disturbances at the same time. The previously unexplored force discrimination topic has the potential to even open a new research avenue for flying robots

    Robotics and the Future of International Asymmetric Warfare

    Get PDF
    In the post-Cold War world, the world's most powerful states have cooperated or avoided conflict with each other, easily defeated smaller state governments, engaged in protracted conflicts against insurgencies and resistance networks, and lost civilians to terrorist attacks. This dissertation explores various explanations for this pattern, proposing that some non-state networks adapt to major international transitions more quickly than bureaucratic states. Networks have taken advantage of the information technology revolution to enhance their capabilities, but states have begun to adjust, producing robotic systems with the potential to grant them an advantage in asymmetric warfare

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    New frontiers in ocean exploration: the E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2019 field season

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Raineault, N.A., and J. Flanders, eds. (2020). New frontiers in ocean exploration: The E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2019 field season. Oceanography 33(1), supplement, 122 pp., https://doi.org/10.5670/oceanog.2020.supplement.01.New Frontiers in Ocean Exploration: The E/V Nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2019 Field Season is the tenth consecutive supplement on ocean exploration to accompany Oceanography. These booklets provide details about the innovative technologies deployed to investigate the seafloor and water column and explain how telepresence can both convey the excitement of ocean exploration to global audiences and allow scientists as well as the public on shore to participate in expeditions in real time. The supplements also describe the variety of educational programs the Ocean Exploration Trust, the NOAA Office of Ocean Exploration and Research, and the Schmidt Ocean Institute support in conjunction with schools, museums, visitors centers, and aquariums, as well as internships that bring high school students, undergraduates, graduate students, teachers, and artists on board ships. Through these supplements, we have explored the geology, chemistry, biology, and archaeology of parts of the global ocean and seas. We hope you enjoy this booklet and share it widely.Support for this publication is provided by the Ocean Exploration Trust, the NOAA Office of Ocean Exploration and Research, the National Marine Sanctuary Foundation, and the Schmidt Ocean Institute
    • …
    corecore